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Abstract. In this paper we study front tracking for a model of one dimen-
sional, immiscible flow of several isentropic gases, each governed by a gamma-
law. The model consists of the p-system with variable gamma representing the
different gases. The main result is the convergence of a front tracking algo-
rithm to a weak solution, thereby giving existence as well. This convergence
holds for general initial data with a total variation satisfying a specific bound.
The result is illustrated by numerical examples.

1. Introduction

We want to describe the one dimensional, immiscible flow for several isentropic
gases. The different gases are initially separated, and the pressure is for all gases
given by a γ-law, that is, p = ργ , where ρ is the density and γ is the adiabatic gas
constant for each gas. We assume γ(x, t) > 1. In Lagrangian coordinates γ only
depends on x because the different gases cannot mix. Thus, the flow of these gases
is described for x ∈ R and t ∈ (0,∞) by the system

(1.1)

vt − ux = 0,

ut + p(v, γ)x = 0,

γt = 0,

where v = 1/ρ is the specific volume, u is the velocity, and p(v, γ) = v−γ is the
pressure function. This 3 × 3 system of hyperbolic conservation laws is strictly
hyperbolic for v < ∞.

We consider the Cauchy problem for this system, that is, system (1.1) with
general initial data

(1.2) v(x, 0) = v0(x), u(x, 0) = u0(x), γ(x, 0) = γ0(x), x ∈ R.

Glimm [13] proved global existence of a weak solution of the Cauchy problem with
initial data of small total variation for strictly hyperbolic systems where each fam-
ily is either genuinely nonlinear or linearly degenerate, thus including the present
system. This solution is found as a limit of the Glimm scheme [13] or of the front
tracking method [15, 4]. In [16] we extended the existence result to large initial data
for (1.1) by using the Glimm scheme. In this paper we prove that a front track-
ing algorithm converges to a weak solution, thereby giving an alternative existence
argument.

System (1.1) is an extension of the 2× 2 system

(1.3)
vt − ux = 0,

ut + p(v)x = 0,

which describes the flow of one isentropic gas. The parameter γ is constant, and the
pressure, still given by a γ-law, is a function of v only. For the p-system with γ = 1,
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Nishida [20] showed existence of a global weak solution for arbitrary bounded initial
data. For γ > 1, Nishida and Smoller [21] proved existence of a weak solution for
initial data where (γ − 1) times the total variation of the initial data is sufficiently
small. The case with large initial data for 2× 2 systems is also discussed in [5, 9].

The system (1.1) does not have a coordinate system of Riemann invariants, only
a 2-Riemann coordinate. Therefore we do not have the advantage of changing
variables to Riemann invariants as for the p-system and other 2 × 2 systems. Liu
[17] proved existence of a solution for the full Euler system with large initial data,
another 3 × 3 system without a coordinate system of Riemann invariants. Liu’s
change of variables is inspired by the use of Riemann invariants, but a similar
approach does not simplify system (1.1) because γ is a function of x. The general
results by Temple [25] include both the results of [21] and [17]. In [25] one considers
the flux function as a smooth one-parameter family of functions where one has
existence of a solution for initial data in B.V. when ε = 0. Then the system with
0 ≤ ε ≤ 1 has a unique solution if ε times the total variation of the initial data
is sufficiently small. Letting ε = γ − 1 for the p-system and the Euler equations,
one obtains similar results as in [21] and [17]. However, this approach cannot be
used for system (1.1) since γ is one of the variables. Wissman proved in [29] a large
data existence theorem for the 3 × 3 system of relativistic Euler equations in the
ultra-relativistic limit. Applying a change of coordinates the shock waves become
translation invariant and a Nishida-type of analysis is used.

For 3× 3 systems with a 2-Riemann coordinate, Temple and Young [26] showed
existence of a solution for initial data with arbitrary large total variation, provided
that the oscillations are small. This result applies to (1.1) as well, but we want
to avoid this restriction on the oscillations. Peng [23, 22] also considered certain
3× 3 systems (Lagrangian gas dynamics for a perfect gas and a model originating
in multiphase flow modeling) with large initial data.

All these existence results are proved using the Glimm scheme. Asakura shows
the convergence of front tracking for the p-system [3] and for the Euler equations [2]
with large initial data. The conditions on the initial data are the same as obtained
in [21] and [17]. In [7, 8] front tracking is used to study systems of conservation laws
whose flux functions depend on a parameter vector, µ, similar to those in [25]. An
approach for establishing L1-estimate pointwise in time between entropy solutions
for µ 6= 0 and µ = 0 is given. In particular, letting µ = γ − 1, the L1-estimate
between entropy solutions in the large for the isentropic Euler equations and the
isothermal Euler equations is established in [7] and between entropy solutions in
the large for the the Euler equations and the isothermal Euler equations in [8].

Amadori and Corli [1] extend the p-system with an extra equation, λt = 0, to
model multiphase flow, and use front tracking to prove existence of a weak solution
for large data. As for system (1.1), the pressure function in [1] is a function of
both v and the new variable, λ, making the two systems similar. However, since
the adiabatic gas constant, γ, is equal to one in [1], vacuum can never occur for
their system as it can for system (1.1). Furthermore, the wave curves in [1] are
monotone in λ, resulting in a considerably simpler analysis of the wave interactions
compared with the analysis necessary for the model considered here. The system
treated in [1] is a simplified version of the model discussed by Fan in [12]. Similar
models, but with a rather different pressure law, are also considered in [11] and
[19] applying completely different methods. A model in the context of the Navier–
Stokes equation with finitely many independent pressure laws has been studied in
[6].
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System (1.1) can also be rewritten as a 2×2 system with discontinuous flux. We
get

vt − ux = 0,

ut + p(v, γ(x))x = 0,

where the adiabatic gas constant of the different gases is given by the discontinuous
function γ(x).

This rest of this paper is organized as follows: In Section 2 we discuss the
wave curves of the system. The variable γ is constant along the rarefaction and
shock waves of the first and third family, therefore these curves are similar to the
wave curves of the p-system. However, these curves are not monotone in γ, which
considerably complicates the interactions of waves with different values of γ. The
second family is linearly degenerate and gives rise to a contact discontinuity along
which p and u are constant. Thus, by changing variables to p, u and γ, the Riemann
problem is easy to describe. The invariant region for the Riemann problem includes
vacuum. This is a problem since the interaction estimates are not valid when p tends
to zero, see [18].

Section 3 is the main part of this paper where we first present the front-tracking
algorithm. The solution of any Riemann problem is made piecewise constant by
approximating rarefaction waves as step functions. In addition, a simplified Rie-
mann solver generating non-physical fronts is introduced in order to ensure that the
number of fronts remains finite. The simplified solver is only used for interactions
where one or more fronts of the same family collide with a contact discontinuity and
the sum of the strengths of the incoming fronts times the strength of the contact
discontinuity is less than some threshold parameter. This solver generates non-
physical fronts, traveling either to the left or the right, with absolute speed larger
than any other front. Moreover, when these non-physical fronts collide with other
fronts, they just pass through without changing strength. In Section 3.2 we define
a Glimm functional and by considering all possible interactions we prove that it
is decreasing under the conditions given in Proposition 3.7. We use this to show
that there is a finite number of interactions up to any given time, hence, and thus
the front-tracking algorithm is well-defined. Furthermore, we introduce a genera-
tion concept in order to bound the total amount of non-physical fronts present at
any time. The approximate solution found using front tracking has bounded total
variation and is bounded away from vacuum whenever the conditions on the initial
data given in Lemma 3.18 and Lemma 3.19 are satisfied. We end Section 3 by
proving that the sequence of approximate solutions converges to a weak solution of
the system. This proves the main theorem:
Theorem 3.20. Assume that (sup(γ( · , 0))−1)T.V.(p( · , 0), u( · , 0)) and T.V.(γ( · , 0))
are sufficiently small. The the front tracking algorithm is well-defined and gives a
sequence which converges to a weak solution of (1.1).

Observe that by reducing the total variation of γ and reducing its supremum,
one can allow for arbitrary large total variation of p and u. Due to Wagner [27],
this result translates into existence for the system (3.58) in Eulerian coordinates.

In the last section we study some examples numerically. In the first example we
have one gas confined to an interval, surrounded by another gas. The two gases
have distinct but constant gammas. The constants that limit the total variation of
the initial data are computed, and the initial data are chosen so that they satisfy
the conditions in the theorem. The Glimm functional is explicitly computed, and
we observe decay in accordance with the theorem. In the second example the initial
data are piecewise constant, while γ is continuously varying in the third example.
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For these two examples, the total variation of the chosen initial data do not satisfy
the theorem, nevertheless we still observe that the Glimm functional is decaying.

2. The system

It is well-known that systems of hyperbolic conservation laws such as (1.1) do not
in general have smooth solutions, even for smooth initial data. Thus, by a solution
of (1.1) with the initial data (1.2) we mean a weak solution in the distributional
sense with (v, u, γ) ∈ L1

loc(R× [0,∞)) so that

(2.1)

∫∫
R×[0,∞)

(vφt − uφx) dxdt +
∫

R
v0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

(uφt + pφx) dxdt +
∫

R
u0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

γφt dxdt +
∫

R
γ0(x)φ(x, 0) dx = 0,

for all test function φ ∈ C∞0 (R× [0,∞)).
If the specific volume, v, becomes infinite, which corresponds to zero density and

zero pressure, we have vacuum. At vacuum, the properties of the system change
and the methods used here do not apply, therefore we only consider system (1.1)
for v(x, t) < ∞. Furthermore, we assume γ(x, t) > 1.

We write U(x, t) = (v(x, t), u(x, t), γ(x, t)). Often we will work with p instead of
v, and then also write U(x, t) = (p(x, t), u(x, t), γ(x, t)).

For v < ∞, or equivalently, p > 0, system (1.1) is strictly hyperbolic with
eigenvalues

λ1 = −λ, λ2 = 0, λ3 = λ,(2.2)

where λ :=
√
−pv =

√
γv−γ−1, and corresponding eigenvectors

r1 = (1, λ, 0), r2 = (−pγ , 0, pv) , r3 = (−1, λ, 0).(2.3)

Note that the eigenvalues and eigenvectors do not depend on u. The first and the
third family are genuinely nonlinear, while the second family is linearly degenerate.
Moreover, the system does not possess a coordinate system of Riemann invariants,
but γ is a Riemann coordinate for the second family.

Before we turn to solving system (1.1) with general initial data, we need to
solve the Riemann problem for (1.1), that is, when the initial data consists of
two constant states separated by a jump, cf. (2.21). The solution of the Riemann
problem consists of up to three elementary waves, one from each family, and up to
two intermediate constant states separating these waves. Thus, we start by looking
at the wave curves.

2.1. Wave curves. For the genuinely nonlinear families there are two types of
waves; rarefaction waves which are continuous waves of the form U(x, t) = w(x/t)
satisfying

(2.4) ẇ(x/t) = rj(w(x/t)), λj(w(x/t)) = x/t, j = 1, 3,

where λj is increasing along the wave, and shock waves which are solutions

(2.5) U(x, t) =

{
Ul, if x < σjt,
Ur, if x > σjt,

satisfying the Rankine–Hugoniot condition

(2.6) σj(Ur − Ul) = f(Ur)− f(Ul), j = 1, 3,
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for a shock velocity σj . The admissible shock waves are those satisfying the Lax
entropy conditions

(2.7) λj−1(Ul) < σ < λj(Ul), λj(Ur) < σ < λj+1(Ur), j = 1, 3.

For the linearly degenerate family j = 2 there is only one type of waves called
contact discontinuities. These waves are solutions of the form (2.5) which satisfy
the Rankine–Hugoniot condition (2.6) with σ = λ2.

Fix a left state Ul. For each family the wave curve consists of all states U that
can be connected to the given left state by a wave of this family. The rarefaction
solution is of the form

(2.8) U(x, t) =


Ul, if x < λj(Ul)t,
w(x/t), if λj(Ul)t < x < λj(U)t,
U, if x > λj(U)t.

The rarefaction wave curve is the set of all right states U that can be connected to
the left state by a rarefaction wave. For system (1.1) these are

R1(v, Ul) :=
(

v, ul −
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v > vl,

R3(v, Ul) :=
(

v, ul +
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v < vl.

The shock curves of all right states which can be connected to Ul by an admissible
shock wave are

S1(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl

)
, v < vl,

S3(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl,
)

, v > vl,

with the shock velocities

σ1(Ul, U) = −

√
v−γl

l − v−γl

v − vl
= −

√
pl − p

p−1/γl − p
−1/γl

l

,(2.9)

σ3(Ul, U) =

√
v−γl − v−γl

l

vl − v
=

√
p− pl

p
−1/γl

l − p−1/γl

,(2.10)

respectively. Note that the shock velocities do not depend on u. The curve of all
right states that can be connected to Ul by a contact discontinuity is

C2(γ, Ul) : =
(
v

γl/γ
l , ul, γ

)
, γ > 1,

with the velocity σ2 = λ2 = 0.
Note that γ only changes along the contact discontinuities. Furthermore, both u

and p = v−γ are constant along a contact discontinuity, and we therefore choose to
work with p, u and γ. A shock or a rarefaction curve through Ul lies in the plane
γ = γl and is equal to the corresponding wave curve for the p-system (1.3) with
γ = γl. We proceed by defining the wave curves using p, u, and γ, as depicted in
Figure 1,

Φ1(p, Ul) :=

{
(p, ul − r(p, pl, γl), γl) , p < pl,

(p, ul − s(p, pl, γl), γl) , p > pl,
(2.11)

Φ2(γ, Ul) := (pl, ul, γ), γ > 1,(2.12)

Φ3(p, Ul) :=

{
(p, ul + r(p, pl, γl), γl) , p > pl,

(p, ul − s(p, pl, γl), γl) , p < pl,
(2.13)
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where

r(p, pl, γl) :=
2
√

γl

γl − 1

(
p

γl−1
2γl − p

γl−1
2γl

l

)
,(2.14)

s(p, pl, γl) :=
((

p
− 1

γl

l − p
− 1

γl

)
(p− pl)

)1/2

.(2.15)

Recall that if p = 0, we have vacuum, therefore, the wave curves are only well-

1 2 3 4 5 6 7 8 0

1

2

3

4

1.5

2

2.5

3

u

p

γ

Figure 1. The wave curves through two left states with different γ.

defined for p > 0 and pl > 0. All results are for waves contained in

D = {(p, u, γ) | p ∈ [pmin, pmax], |u | < ∞, γ ∈ (1, γ]},(2.16)

where pmin > 0, pmax < ∞ and γ ∈ (1,∞) are constants. For initial data given by
(1.2) we will later establish the upper and lower bound on p and show that

γ := sup
x

(γ0(x)),(2.17)

for all waves. We moreover have an upper bound on the wave speed for all waves
(or fronts) contained in D, and we define

λmax = max
U∈D

{λi, σi} = max
U∈D

{λi},(2.18)

where the last equality is due to the Lax entropy condition (2.7).
Before we discuss some important properties of the wave curves, we mention

the backward wave curves. These are the curves of all left states U that can be
connected to a given right state Ur by a wave of the given family. We denote these
wave curves by Φ̃i. The backward 3-wave curve will be used several times and this
is given by

Φ̃3(p, Ur) :=

{
(p, ur − r(pr, p, γr), γr) , p < pr,

(p, ur + s(pr, p, γr), γr) , p > pr,
(2.19)

where r and s are given by (2.14) and (2.15). We now turn to the properties of the
wave curves.

Lemma 2.1. The wave curves in D have the following properties:
(i) The function Φ1 is strictly decreasing and the function Φ3 is strictly increasing

when considered as functions of p.
(ii) Given two wave curves, Φj(p, U1) and Φj(p, U2) where j ∈ {1, 3}, so that U1

is not on Φj(p, U2) and U2 is not on Φj(p, U1). Then the two wave curves
never intersect.
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(iii) Consider the projections onto the (p, u)-plane of the wave curves through U1 =
(pl, ul, γ1) and U1 = (pl, ul, γ2) where γ1 ≤ γ2. If

∂

∂p
r(pl, pl, γ1) <

∂

∂p
r(pl, pl, γ2),

then the projected wave curves going to the right (with respect to p) will never
intersect, while the projected wave curves going to the left will intersect as p
decreases. If

∂

∂p
r(pl, pl, γ1) >

∂

∂p
r(pl, pl, γ2),

then the projected wave curves going to the right will intersect, while the pro-
jected wave curves going to the left will not. If

∂

∂p
r(pl, pl, γ1) =

∂

∂p
r(pl, pl, γ2),

then none of the projected wave curves will intersect.
(iv) The slope of a rarefaction wave in the plane γ = γl, ∂r/∂p, only depends on p

and γl, not on pl. Furthermore, there exist two constants r′min and r′max only
depending on pmin, pmax and γ so that

r′min ≤
∂

∂p
r(p, pl, γl) ≤ r′max.

(v) The slope of a shock wave in the plane γ = γl, ∂s/∂p, depends on p, γl and
pl. Furthermore, there exist two constants s′min and s′max only depending on
pmin, pmax and γ so that

s′min ≤
∂

∂p
s(p, pl, γl) ≤ s′max.

(vi) The wave curves have a continuous derivative at Ul,

lim
p→pl

∂

∂p
s(p, pl, γl) =

∂

∂p
r(pl, pl, γl).

Furthermore,
∂

∂p
s(p, pl, γl) ≥

∂

∂p
r(p, pl, γl),

for all pl. Hence, a shock wave is always steeper than a rarefaction wave at a
given p 6= pl provided both waves lie in the plane γ = γl.

(vii) Rarefaction waves are additive; if a rarefaction wave connects U1 to U2 and
another rarefaction wave of the same family connects U2 to U3, then the rar-
efaction wave connecting U1 to U3 equals the concatenation of the other two
rarefaction waves.

(viii) Given two 1-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and
assume p1 < p2. Then the shock wave starting at p1 is steeper than the shock
wave starting at p2 at any given point p, that is,

∂

∂p
s(p, p2, γ) <

∂

∂p
s(p, p1, γ),

for all p ≥ p2 > p1.
(ix) Given two 3-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and

assume p1 < p2. Then the shock wave starting at p2 is steeper than the shock
wave starting at p1 at any given point p, that is,

∂

∂p
s(p, p1, γ) <

∂

∂p
s(p, p2, γ),

for all p ≤ p1 < p2.
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Proof. All the properties follows from differentiating the wave curves. �

p

u

γ1

γ2

(pl, ul)

(a) Because ∂
∂p

r(pl, pl, γl) > ∂
∂p

r(pl, pl, γ2),

the projected wave curves going to the
right intersect.

u

p
 

 

γ1

γ2

(pl, ul)

(b) Because ∂
∂p

r(pl, pl, γl) < ∂
∂p

r(pl, pl, γ2),

the projected wave curves going to the
left intersect.

Figure 2. The wave curves through U1 = (pl, ul, γ1) (dotted line)
and U2 = (pl, ul, γ2), where γ1 < γ2, projected onto the (p, u)-
plane.

The projection onto the (p, u)-plane of two wave curves with different γ’s are
shown in Figure 2. Note that the projected wave curves intersect, cf. property (iii),
because the slopes of the projected wave curves depend on γ. The next lemma
gives an estimate on how different two waves with different γ’s are.

Lemma 2.2. Let ε1 and ε2 be 1-waves of the same type such that ε1 connects
(p0, u0, γ1) to (p, u1, γ1) and ε2 connects (p0, u0, γ2) to (p, u2, γ2), or let η1 and η2

be 3-waves of the same type such that η1 connects (p, u1, γ1) to (p0, u0, γ1) and η2

connects (p, u2, γ2) to (p0, u0, γ2). Assume that all waves are contained in D and
furthermore that u1 < u2. Then

u2 − u1 ≤ c2 |p− p0 | |γ2 − γ1 | ,(2.20)

where c2 only depends on pmin, pmax and γ.

Note that for 1-waves we compare two waves where the projected waves start at
the same point in the (p, u)-plane, while we for 3-waves compare two waves where
the projected waves end at the same point. The proof of this lemma is given in [16]
and is based on the techniques used in [28].

2.2. The Riemann Problem. We have the following fundamental definition.

Definition 2.3. The Riemann problem for (1.1) is the Cauchy problem with initial
data

U(x, 0) =

{
Ul, if x < 0,
Ur, if x > 0,

(2.21)

where U = (v, u, γ) and Ul, Ur ∈ R are constants.

Lemma 2.4. The Riemann problem for (1.1) where Ul and Ur are contained in
D, cf. (2.16), has a unique solution without vacuum if

ur − ul < r(pr, 0, γr)− r(0, pl, γl).(2.22)
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Proof. Note that if γl = γr, then the Riemann problem for (1.1) reduces to the
Riemann problem for the p-system (1.3). The solution of this problem is described
in detail in [24, Ch. 17, §A], and it is unique if (2.22) is satisfied with γl = γr.

A 2-wave takes us from one plane, γ = γ1, to another plane, γ = γ2, while p and
u remain constant. Therefore, the Riemann problem has a unique solution if the
projections onto the (p, u)-plane of the 1-wave curve, Φ1(p, Ul), and the backward
3-wave curve, Φ̃3(p, Ur), have a unique intersection point. From property (i) of
Lemma 2.1 we have that the projection of Φ1 is strictly decreasing in p and it
follows that the projection of Φ̃3 is strictly increasing in p. Hence, the projected
curves intersect at most once. The only case where the two curves do not intersect
is if the projection of the backward 3-rarefaction wave from Ur always lies above
the projection of the 1-rarefaction wave from Ul. Thus, if

ur − r(pr, 0, γr) < ul − r(0, pl, γl),

then the projections of Φ̃3(p, Ur) and Φ1(p, Ul) onto the (p, u)-plane have a unique
intersection point, and the Riemann problem has a unique solution. �

The solution of the Riemann problem (Ul, Ur) is constructed as follows: Let
(p̃, ũ) be the unique intersection between the projections of Φ1(p, Ul) and Φ̃3(p, Ur)
onto the (p, u)-plane. We connect Ul = (pl, ul, γl) to Ũ1 = (p̃, ũ, γl) by a 1-curve,
then we go from Ũ1 to Ũ2 = (p̃, ũ, γr) along a contact discontinuity, and finally
connect Ũ2 to Ur = (pr, ur, γr) by a 3-wave.

2.3. Invariant region and vacuum. A region Ω is invariant for the Riemann
problem if for any Riemann problem with initial data in Ω, its solution is also
in Ω. For the p-system we know from [14, Ex. 3.5] that the convex region in the
(v, u)-plane between the integral curves of the eigenvectors is invariant. This region
bounds v from below, but not from above, thus vacuum is included in the invariant
region. In the (p, u)-plane this corresponds to the region bounded by p = 0 and the
two integral curves. Since γ cannot take any other values than those of the initial
data, we find the invariant region for the p-system for each γ and take the union of
these. This gives us an invariant region for (1.1). Moreover, this gives us the upper
bound on p, pmax, which we need, but p is still not bounded away from vacuum.

3. The Cauchy problem

We now turn to the Cauchy problem and use front tracking to obtain a sequence
of approximate solutions. The goal of this section is to show that a subsequence
converges to a weak solution of (1.1). In order to do this, we find a suitable Glimm
functional and show that it decreases in time. This requires detailed analysis of all
possible interactions and most of this section is devoted to this. First of all we need
some notation. We let

ε define a 1-wave, α a 1-shock wave, µ a 1-rarefaction wave,
η a 3-wave, β a 3-shock wave, ν a 3-rarefaction wave,
ζ a 2-wave, θ a 1- or 3-wave,

Furthermore, we define the strength of a 1-wave or a 3-wave as the jump in p across
the wave and the strength of a 2-wave as the jump in γ across the wave. The
strength of a wave or a front is denoted by |θ |. We are now ready to discuss front
tracking and to define fronts. Note that we will use the above notation for fronts as
well as waves. In addition, we will define non-physical fronts which will be denoted
by θnp and the strength of a non-physical front will be defined as its jump in u.
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3.1. Front tracking. The first step of front tracking is to approximate the initial
data (1.2) by a piecewise constant function Uδinit

0 so that

lim
δinit→0

‖Uδinit
0 − U0‖L1 = 0,

where U0 = (p0, u0, γ0) and δinit is the distance between the discontinuities. Fur-
thermore, the approximation has to satisfy (2.22) at every discontinuity so that
all initial Riemann problems have a unique solution. Thus, no vacuum forms at
t = 0+.

We then solve the Riemann problem defined by the discontinuities in Uδinit
0 . All

solutions of Riemann problems in front tracking have to be piecewise constant.
Since shock waves and contact discontinuities are already piecewise constants, we
use an approximate Riemann solver where the continuous rarefaction waves are
approximated. We replace the rarefaction wave from the left state, Ul, to the right
state, Ur, by a step function. Let k := d|pr − pl | /δe. Then we divide the rarefac-
tion wave into k jumps, each with strength δ̂ = |θ | /k ≤ δ. The discontinuities
move with the speed of their left state. Note that the jumps in the approximated
rarefaction wave do not satisfy the Rankine–Hugoniot condition. It is obvious that
this approximate solution of the Riemann problem converges to the exact solution
a.e. when δ tends to zero.

Solving all Riemann problems present initially by the approximate solver, gener-
ates an approximate solution of the Cauchy problem for small t > 0. The solution
is piecewise constant and a front is one discontinuity in the solution. Hence, a
shock wave or a contact discontinuity is one front, while an approximated rarefac-
tion wave consists of k fronts where each front has strength less than or equal to
δ. Note that the two parameters δinit and δ are chosen so that δinit = O(δ). We
denote the approximate solution Uδ.

We track all fronts in Uδ until two or more fronts interact, that is, collide at a
collision point (x, τ). The colliding fronts are called incoming fronts. Then we solve
the Riemann problem defined by the states immediately to the left and right of the
incoming fronts, and the fronts in this approximate solution are called outgoing
fronts and are usually identifiable by a prime. We keep tracking all fronts and
solving Riemann problems each time fronts collide.

In order to ensure that front tracking is well-defined for all times, we follow the
approach of Bressan [4] and introduce non-physical fronts. Thus, an interaction
is either solved by the standard approximate solver as described above, or by a
simplified Riemann solver. Let ρ > 0 be a fixed threshold parameter. Interactions
of the form ζ+

∑
i εi, or the symmetric form

∑
i ηi+ζ, are solved using the simplified

Riemann solver if

(3.1) |ζ |
∑

i

|εi | ≤ ρ, or |ζ |
∑

i

|ηi | ≤ ρ,

respectively, otherwise the approximate Riemann solver is used. All other interac-
tions are always solved using the approximate solver. The simplified Riemann solver
introduces non-physical fronts which we denote θnp. By construction, both p and γ
are constant across a non-physical front and its strength equals the jump in u. In
order to preserve the symmetry property of system (1.1), we introduce non-physical
fronts traveling both to the left and to the right. In either case they travel with
the absolute speed λnp > λmax, hence the name. Note that the Rankine–Hugoniot
condition (2.6) is not satisfied for a non-physical front.

Let us first detail the solution of the interaction between one front and a contact
discontinuity using the simplified solver. The solution consists of two physical fronts
and a non-physical front:

ζ + ε → ε′ + ζ + θnp.
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The outgoing front ε′ has the same strength and type as ε, and connects Ul =
(pl, ul, γl) to Ũ1 = (pr, ũ, γl), as depicted in Figure 3(a). The contact discontinuity
is, as always, unchanged, connecting Ũ1 to Ũ2 = (pr, ũ, γr). The non-physical front
then connects Ũ2 to Ur = (pr, ur, γr). Moreover, the non-physical front has positive
speed traveling to the right. For the symmetric case,

η + ζ → θnp + ζ + η′,

the non-physical front has negative speed.

Ũ2Ũ1

Ul

U1

Ur

ǫ

θnpǫ′

ζ

ζ

(a) Simplified solver for ζ + ε.

U1

Ũ1

Ul Ur

θnpǫ′

∑
i
ǫi

Ũ2 Ũ3

η′ζ

ζ

(b) Simplified solver for ζ +
P

i εi.

Figure 3. The simplified Riemann solver with non-physical fronts
(dashed lines).

The solution we get using the simplified solver when two or more fronts of the
same family interact with a contact discontinuity, consists of one physical front of
each family, in addition to a non-physical front;

ζ +
∑

i

εi → ε′ + ζ + η′ + θnp,

see Figure 3(b). In order to determine the outgoing fronts, we introduce two auxil-
iary fronts, ε and η. These fronts are the solution of the Riemann problem (U1, Ur),
thus, ε connects U1 to the intermediate state U = (p, u, γr), and η connects U to
Ur. Let ε′ be the front that has the same strength and type as ε, but with γ = γl,
that is, connecting Ul to Ũ1 = (p, ũ, γl). The contact discontinuity is unchanged,
connecting Ũ1 to Ũ2 = (p, ũ, γr). Let η′ be η shifted in the u-direction so that η′

connects Ũ2 to Ũ3 = (pr, ur + ũ−u, γr). Finally, the non-physical front connects Ũ3

to Ur. The non-physical front has positive speed and changes only the value of u,
as it is supposed to. This construction of the solution using the simplified Riemann
solver is inspired by the formal tool of splitting an interaction into steps that we will
introduce in the next section. More details on the process of finding the outgoing
fronts using the simplified solver are included in the proof of Lemma 3.11 where we
obtain estimates for these interactions. Note that ε′ + ζ + η′ is the solution of the
Riemann problem (Ul, Ũ3), thus, the Rankine–Hugoniot condition (2.6) is satisfied
for any shock or contact discontinuity. However, it is not satisfied for the non-
physical front or any approximated rarefaction wave. We resolve the symmetric
interaction in a similar manner, and get a non-physical front with negative speed;∑

i

ηi + ζ → θnp + ε′ + ζ + η′.
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β

Ul Ur

θnp

α

β ′ζα′

ζθnp

(a) in the (x, t)-plane.

p

u β ′

α′

β

α

Ur

Ul

θnp

θnp

(b) Projected onto the (p, u)-plane.

Figure 4. The interaction θnp + β + ζ + α → α′ + ζ + β′ + θnp.

Whenever we have an interaction with an incoming non-physical front, as in
Figure 4, we first let the non-physical front pass through with its strength un-
changed. Then we solve the remaining interaction, which is slightly shifted along
the u-direction, using the approximate or simplified solver according to condition
(3.1). Note that all wave curves are invariant in the (p, u) plane under a translation
in u.

Before we turn to the discussion of all possible interactions, we look at the error
introduced using the simplified solver instead of the approximate solver. The lemma
is given for the interactions involving 1-fronts, but we have the same results for the
symmetric interactions involving 3-fronts.

Lemma 3.1. Consider the interaction ζ +
∑n

i εi for n ≥ 1. Let

ζ +
n∑
i

εi → ε̂ + ζ + η̂,

be the solution, with intermediate states Ûi, i = 1, 2, obtained using the approximate
solver, and let

ζ +
n∑
i

εi →

{
ε′ + ζ + θnp, if n = 1,
ε′ + ζ + η′ + θnp, if n > 1,

be the solution obtained using the simplified solver, with intermediate states Ũi,
i = 1, 2 and i = 1, 2, 3, respectively. Then,

|σα̂ − σα′ | = O(1) |θnp | , if ε′ = α′,

|λµ̂ − λµ′ | = 0, if ε′ = µ′,

and, if η̂ is of the same type as η′ for n > 1,∣∣∣σβ̂ − σβ′

∣∣∣ = O(1) |θnp | , if η′ = β′,

|λν̂ − λν′ | = O(1) |θnp | , if η′ = ν′.

Moreover,
∣∣∣Ûi − Ũi

∣∣∣ = O(1) |θnp |, i = 1, 2, and
∣∣∣Ur − Ũj

∣∣∣ = O(1) |θnp | where j = 2
if n = 1 and j = 3 if n > 1.

Proof. First note that p and u are equal for Ũ1 and Ũ2, and for Û1 and Û2, and we
therefore omit the indices. Figure 5 shows the solutions of ζ + ε for both solvers,
and Figure 6 shows the solutions and the auxiliary fronts for an interaction of the
type ζ +

∑
i εi. The rarefaction fronts µ′ and µ̂ have the same left state, and

they therefore have the same speed. Likewise, the left state is the same for α′
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p

u

μ̂

μ′

μ

β̂
Ur

θnp

Ul

Û

Ũ

(a) ζ + µ.

p

u

α′α

α̂

β̂

Ul

Ur

Ũ

Ûθnp

(b) ζ + α.

Figure 5. The interaction (dashed lines) solved by the approxi-
mate solver (dash-dotted lines) and by the simplified solver (solid
lines).

p

u

α̂

α′

α

Ũ3

Ur

Û

Ul

θnp

α2

α3

α5

α4

α6
α7

α1

ν̂

ν

Ũ
ν′

U

(a) When η′ and η̂ are of the same type

p

u α′

α

U

Ũ

ν

Û
α̂

β̂

Ũ3

Ur

Ul

θnp

α3

α4

α5

α7

α1

α2

α6

(b) When η′ and η̂ are not of the same type.

Figure 6. The interaction ζ +
∑7

i=1 αi (dashed lines), with the
auxiliary curves (dotted lines), solved by the approximate solver
(dash-dotted lines) and by the simplified solver (solid lines).

and α̂. However, the speed of a shock-front depends on the value of p at the right
state as well, where p = p̃ for α′ and p = p̂ for α̂. Since this difference in p is
less than a constant times the jump in u across the non-physical front, that is,
|p̃− p̂ | = O(1) |θnp |, we get

|σα̂ − σα′ | = |σ1(pl, p̂)− σ1(pl, p̃) | ≤ |σ′1(pl, p
∗) | |p̃− p̂ | = O(1) |θnp | ,

where σ′1 is the derivative with respect to the second argument and p̂ ≤ p∗ ≤ p̃.
If n > 1 and η′ is of the same type as η̂, as for the interaction depicted in

Figure 6(a), then p = pr at the right state for both fronts. However, at the left
state we have p = p̃ for η′ and p = p̂ for η̂. This is the same difference in p as
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above, thus,∣∣∣σβ̂ − σβ′

∣∣∣ = |σ3(p̂, pr)− σ3(p̃, pr) | ≤ |σ′3(p∗, pr) | |p̃− p̂ | = O(1) |θnp | ,

|λν̂ − λν′ | = |λ(p̂)− λ(p̃) | ≤ |λ′3(p∗) | |p̃− p̂ | = O(1) |θnp | ,

where σ′3 is the derivative with respect to the first argument, λ′3 the derivative with
respect to p, and p̂ ≤ p∗ ≤ p̃.

Moreover, γ is equal for the two solutions and |ũ− û | ≤ |θnp |, thus,
∣∣∣Ûi − Ũi

∣∣∣ =
O(1) |θnp |, i = 1, 2. Finally, let j = 2 for n = 1 and j = 3 for n > 1. Then, p̃j = pr

and |ũj − ur | = |θnp |, hence,
∣∣∣Ur − Ũj

∣∣∣ = O(1) |θnp |. �

In front tracking an interaction is a collision of arbitrarily many fronts at one
point in space-time. However, in order to collide at the same point, their speeds
must decrease from left to right. This observation has the immediate consequence.

Lemma 3.2. All interactions between physical fronts in front tracking for system
(1.1) is of the general form

m∑
i=1

ηi + ζ +
n∑

j=1

εj ,(3.2)

where ηi is a 3-front, ζ is a contact discontinuity, εj is a 1-front, and two adjacent
fronts cannot both be rarefaction-fronts. All interactions with incoming non-physical
fronts are of the same general form with a non-physical front as the leftmost and/or
the rightmost incoming front. Furthermore, all wave families do not need to be
present in an interaction.

This is a major difference between front tracking and the Glimm scheme where
at most four waves can interact. Furthermore, only the case with two interacting
fronts or waves is the same in front tracking and in the Glimm scheme. Still, the
following, simple symmetry property for system (1.1) proved in [16], is useful also
for the interactions in front tracking.

Lemma 3.3. [16, Lemma 3.1] Under the transformation x 7→ −x, a 1-wave con-
necting Ul to Ur becomes a 3-wave connecting Ur to Ul, and vice versa. A 2-wave
is unchanged under this transformation, and a non-physical front becomes a non-
physical front traveling in the opposite direction. Furthermore, the leftmost wave
with respect to x will become the rightmost wave with respect to −x, and so on.

One of our main goals is to show that the approximate solution can be con-
structed at any time in a finite number of steps. Therefore we look at which
interactions increase the number of fronts present. Firstly, recall that the solution
of a Riemann problem consists of up to three waves, one from each family. Hence,
the solution found by the approximate Riemann solver has four or more fronts if,
and only if, a rarefaction wave splits into several fronts. For an interaction between
three or more fronts solved by the approximate solver, the number of fronts can
therefore only increase due to splitting of rarefaction waves.

Furthermore, an outgoing contact discontinuity is only present if there is an
incoming contact discontinuity. Thus, the number of fronts for an interaction be-
tween two fronts, none of which are contact discontinuities, can only increase due
to splitting of rarefaction waves.

Whenever the simplified solver is used for an interaction between two incoming
fronts, we get two outgoing physical waves and one outgoing non-physical front. If
there are three or more incoming fronts, the simplified solver gives three outgoing
physical waves and one non-physical front. Hence, for an interaction solved by the
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simplified solver, the number of physical fronts can increase only due to splitting
of rarefaction waves.

Except for split rarefaction waves, the number of fronts increases only for the
interaction between a contact discontinuity and one other front solved by the ap-
proximate solver. These interactions have at least three outgoing fronts, and we
refer to them as γ-collisions.

Definition 3.4. A γ-collision is the interaction between a contact discontinuity
and a 1- or 3-front.

The four different γ-collisions, where symmetry reduces it to two distinct cases,
are discussed discussed in the proof of Lemma 3.8 in Section 3.2.

If the strength of an outgoing rarefaction wave is larger than δ, it splits into sev-
eral fronts. The interactions where this might happen are either a new rarefaction-
collision or an increasing rarefaction-collision as defined below.

Definition 3.5. A new rarefaction-collision is an interaction where there is an
outgoing rarefaction wave of a family in which there are no incoming rarefaction-
fronts.

Definition 3.6. An increasing rarefaction-collision is an interaction where the
strength of an outgoing rarefaction wave is greater than the sum of the strengths
of the incoming rarefaction-fronts of the same family.

Note that a γ-collision can also be a new rarefaction-collision, an increasing
rarefaction-collision, or even both.

Summing up the front tracking construction, we have defined a piecewise con-
stant function Uδ, so that for all fixed t, Uδ(·, t) is a piecewise constant function.
Furthermore the construction gives a sequence of collision times τ1 < τ2 < . . . , and
Uδ(·, t) is defined for all t ≤ limn→∞ τn. We shall show that either {τn} is a finite
sequence or limn τn = ∞, i.e., that Uδ(·, t) can be constructed for any t > 0.

3.2. The decreasing Glimm functional. Set tn = (τn +τn+1)/2, where we have
defined τ0 = 0, and define the functional

G(tn) := F (tn) + 3C1(γ − 1)Q1(tn) + 3C2Q2(tn),(3.3)

where C1 is the constant appearing in the estimates given by (3.16) for the inter-
action of Type Bbii, cf. the proof of Lemma 3.8,

C2 :=
c2

min{r′min, s′min}
= kc2,(3.4)

where c2 is the constant from Lemma 2.2 and

k :=
1

min{r′min, s′min}
.(3.5)

Note that both C1 and C2 are constants only depending on pmin, pmax and γ. This
is the same functional as the Glimm functional defined in [16], and the two first
terms are similar to the Glimm functional used in [21]. The linear functional F and
the two quadratic functionals Q1 and Q2 are defined by

F (tn) :=
∑

{|θ | | all shock-fronts θ at t = tn},(3.6)

Q1(tn) :=
∑

{|α | |β | | all approaching 1- and 3-shock-fronts at t = tn},(3.7)

Q2(tn) :=
∑

{|ζ | |θ | | all approaching pairs of ζ and θ at t = tn},(3.8)

where two fronts of different families are approaching if the front of the lowest
family is to the right of the other. Note that F and Q1 only sum over shock-fronts,
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while Q2 also sums over rarefaction-fronts. Furthermore, none of the terms involve
the strength of non-physical fronts.

We call the lines t = tn time lines. The only difference between the functionals
above and the functionals used for the Glimm scheme in [16] is that the above ones
are defined on time lines, while the functionals in [16] are defined on mesh curves.

We need two more functionals, one summing over all shock- and rarefaction-
fronts at t = tn and one summing over the contact discontinuities at t = tn. Note
that the sum of all contact discontinuities is constant for all time lines. We define

L(tn) :=
∑

{|θ | | all θ at t = tn},(3.9)

Fγ :=
∑

{|ζ | | all ζ}.(3.10)

We will show that G is a decreasing functional in time. Let

(3.11) C = min{C̃, 1},

where the minimum is taken over all the constants C̃ appearing in the estimates for
interactions of Type Ba discussed in the proof of Lemma 3.8. Note that 0 < C ≤ 1
depends only on pmin, pmax and γ. The rest of this subsection will be devoted to
proving the following result:

Proposition 3.7. If

3C1(γ − 1)L(t0) ≤
C

3
and 3C2Fγ ≤

C

3
.(3.12)

then G defined by (3.3) is decreasing and F (tn) ≤ 5
3L(t0). In particular, G decreases

by at least 2
3q across an increasing rarefaction-collision where the strength of the

rarefaction wave increases by q > 0, by at least 2
3 |θ

′ | across a new rarefaction-
collision where θ′ denotes the new outgoing rarefaction wave, and by at least 3k |θnp |
for an interaction where a non-physical front is generated.

We prove this proposition through a series of lemmas where we start by consid-
ering interactions between two fronts, then gradually build up to interactions of the
general form given by (3.2), including incoming non-physical fronts. For all possible
interactions in front tracking we show that G is decreasing and, in particular, we
identify all new or increasing rarefaction-collisions and all interactions generating
a non-physical front.

Before we state and prove the different lemmas, we present the general idea
based on induction on successive time lines: First we show that G(t1)−G(t0) ≤ 0.
Then we assume G(tn) ≤ G(tn−1) ≤ · · · ≤ G(t0). The induction step is to show
that ∆G := G(tn+1) − G(tn) ≤ 0. Note that if G is decreasing up to t = tn, then
we have

F (tn) ≤ G(tn) ≤ · · · ≤ G(t0) = F (t0) + 3C1(γ − 1)Q1(t0) + 3C2Q2(t0)

≤ F (t0) + 3C1(γ − 1)(F (t0))2 + 3C2L(t0)Fγ

≤ (1 + 3C1(γ − 1)F (t0) + 3C2Fγ)L(t0)

≤ (1 + 3C1(γ − 1)L(t0) + 3C2Fγ)L(t0)

≤
(

1 +
C

3
+

C

3

)
L(t0) ≤

5
3
L(t0).

(3.13)

We only give the estimates for ∆G here. Estimating G(t1)−G(t0) is very similar,
giving terms involving F (t0) where the estimate for ∆G has terms involving F (tn).

For the more involved interactions we use a computational trick where we divide
the interaction into steps where only a part of the fronts interact at each step. It is
important to note that in the front tracking algorithm all fronts in an interaction
meet at the same point and that no speeds are altered. It is just in the estimation
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of ∆G we do this step procedure as a formal trick to go from the incoming fronts
to a set of fronts which are comparable to the outgoing fronts. Note also that
the outgoing fronts are not altered in this process. This method corresponds to
the use of inner diamonds for the Glimm scheme in [16]. DiPerna [10] constructs
the outgoing solution by resolving the interaction into a composition of binary
interactions. This method of decomposition is similar to our formal method of
dividing an interaction into steps.

Thus, we divide the interaction into l steps where only some of the fronts interact
at each step, the rest is left unchanged. As long as the interaction at one step is
an interaction already analyzed, we know that G decreases across that step. We
continue this until we at some point directly can show that G is decreasing across
the last step, where the last step is going from some collection of fronts to the
outgoing fronts. Formally, the steps are obtained by shifting the speeds of the
incoming fronts slightly, so that only the intended fronts meet at a shifted collision
point. This is done for each step and we introduce intermediate time lines, t = t∗i ,
so that the interaction at the ith step lies between t∗i−1 and t∗i where t∗0 = tn and
t∗l = tn+1. As long as we have ∆Gi := G(t∗i ) − G(t∗i−1) ≤ 0 for i = 1, . . . , l, it
follows that ∆G ≤ 0. Note again that this step procedure is only a computational
trick, and that the front-tracking algorithm as such involves no shifting of speeds.

t = tn

t = tn+1

(a) The original interaction.

t = t
∗

1

t = t
n

t = t
n+1

t = t
∗

2

(b) The interaction divided into steps.

Figure 7. A typical interaction of the form
∑

i ηi +
∑

j εj .

Figure 7 shows how a typical interaction of the type
∑

i ηi +
∑

j εj is divided into
two additional steps. First we let all 3-fronts interact at one collision point whereas
all 1-fronts interact at a different point. Both interactions result in a 1-wave and a
3-wave. At the second step we let the approaching 3- and 1-wave interact. Thus,
at t = t∗2 we have a collection of four waves and we compare these to the outgoing
fronts. Note that we have not shifted or altered the outgoing fronts at any point in
this step procedure.

For some cases we use an additional trick to avoid getting too many steps.
Instead of letting some fronts interact at a shifted collision point, we replace the
fronts with new fronts connecting the same left and right state. Since this is not a
valid interaction, we need to show that ∆Gi ≤ 0 for this step, and we do that by
comparing the new fronts with the replaced fronts. Still this is just a formal trick
and the outgoing fronts are not altered.

In Lemma 3.8 through Lemma 3.14 we cover all possible interactions, and we
start by the cases with two interacting fronts. Recall that these are the same
interactions as for the Glimm scheme, cf. [16], and they are labeled in the same
manner as in [16].
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Lemma 3.8. For all interactions between two fronts we have ∆G ≤ 0. In par-
ticular, ∆G ≤ − 2

3q for all increasing rarefaction-collisions where the strength of
the rarefaction wave has increased by q > 0 and ∆G ≤ −2

3 |θ
′ | for new rarefaction-

collisions where θ′ denotes the new rarefaction wave. Moreover, ∆G ≤ −1
9C2 |ζ | |θ |

for all γ-collisions where θ is the incoming front, and ∆G ≤ −3k |θnp | for interac-
tions generating a non-physical front.

Proof. The possible interactions between two fronts are the same as the interactions
of Type B considered when using the Glimm scheme, cf. [16]. Therefore, we here
give the estimates without proofs. All the estimates for interactions without a
contact discontinuity are obtained from the estimates by Nishida and Smoller in
[21], while the estimates for interactions with a contact discontinuity are found using
Lemma 2.2. The estimates for the interactions between a contact discontinuity and
another front solved by the simplified solver are also obtained using Lemma 2.2.

Type Ba: Two waves of the same family.
(i) α1 +α2 → α′+ ν′, symmetric to β1 +β2 → µ′+β′: This is a new rarefaction-

collision and we have

|α′ | − |α1 | − |α2 | = − |ν′ | ⇒ ∆G ≤ −2
3
|ν′ | .

p

u

Ur

ν′

α′

α1

α2

Ul

Figure 8. The interaction α1 + α2 → α′ + ν′.

(ii) α + µ, symmetric to ν + β. There are two possible outcomes:
• α + µ → µ′ + β′: For this case we have

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.

• α + µ → α′ + β′: We have

|α′ |+ |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.

(iii) µ + α, symmetric to β + ν: There are two possible outcomes:
• µ + α → µ′ + β′: For this case

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.

• µ + α → α′ + β′. In this case, the interaction is replaced by a new one,

(3.14) µ + α
∆G1−−−→ β + α

∆G2−−−→ α′ + β′,

for which we have the estimate

|α |+
∣∣β ∣∣− |α | ≤ −C̃

∣∣β ∣∣ ⇒ ∆G1 ≤ 0.
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(a) α + µ→ µ′ + β′.
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(b) α + µ→ α′ + β′.

Figure 9. The interaction α + µ.
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(a) µ + α→ µ′ + β′.
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(b) µ + α→ α′ + β′.

Figure 10. The interaction µ + α.

Furthermore, we have ∆G2 ≤ 0 by estimate (3.16) for β + α below,
cf. Type Bbii. Hence, ∆G ≤ 0.

Type Bb: Different families, no contact discontinuity.
(i) ν + µ → ν′ + µ′. None of the rarefaction-fronts increase, and we have

(3.15) |µ′ | ≤ |µ | , |ν′ | ≤ |ν | ⇒ ∆G1 ≤ 0.

(ii) β + α → α′ + β′. We have

(3.16) |α′ | − |α | ≤ (γ − 1)C1 |α | |β | , |β′ | − |β | ≤ (γ − 1)C1 |α | |β | ,
thus

∆G ≤ −1
9
(γ − 1)C1 |α | |β | .

(iii) ν + α → α′ + ν′, symmetric to β + µ → µ′ + β′. This is an increasing
rarefaction-collision where we for q > 0 have

|α′ | − |α | = −q, |ν′ | − |ν | = q ⇒ ∆G ≤ −2
3
q.
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(c) ν + α→ α′ + ν′.

Figure 11. The interactions of Type Bb

Type Bc: With a contact discontinuity: These are the four possible γ-collisions.
(i) ζ+µ, symmetric to ν+ζ: There are two possible outcomes for this γ-collision,

and, in addition, we have the case where the simplified Riemann solver is used,
introducing a non-physical front.
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Figure 12. The interaction ζ + µ.

• ζ + µ → µ′ + ζ + ν′: This interaction is a new rarefaction-collision and
an increasing rarefaction-collision with q = |ν′ |. We have

|µ′ | − |µ | = |ν′ | ≤ C2 |µ | |ζ | ,
from which we find

∆G ≤ −8
3
C2 |µ | |ζ | ≤ −2

3
|ν′ | − 2

3
q.

• ζ + µ → µ′ + ζ + β′: The rarefaction-front does not increase and

|µ′ | − |µ | ≤ 0, |β′ | ≤ C2 |µ | |ζ | ⇒ ∆G ≤ −10
9

C2 |µ | |ζ | .

• ζ + µ → µ′ + ζ + θnp: By construction, |µ′ | = |µ |. Using Lemma 2.2,
we find

(3.17) |θnp | ≤ c2 |µ | |ζ | ,
from which we get

∆G ≤ −3C2 |µ | |ζ | ≤ −3k |θnp | ,
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where k given by (3.5) depends only on pmin, pmax and γ.
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(b) ζ + α→ α′ + ζ + θnp.

Figure 13. The interaction ζ + ε solved using the simplified solver.

(ii) ζ + α, symmetric to β + ζ. This γ-collision has two possible outcomes, in
addition to the case with a non-physical front.
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Figure 14. The interaction ζ + α.

• ζ + α → α′ + ζ + ν′: For this new rarefaction-collision we have

|α′ | − |α | ≤ 0, |ν′ | ≤ C2 |α | |ζ | ,

thus,

∆G ≤ −2
3
C2 |α | |ζ | ≤ −2

3
|ν′ | .

• ζ + α → α′ + ζ + β′: For this case we have

|α′ | − |α | = |β′ | ≤ C2 |α | |ζ | ⇒ ∆G ≤ −1
9
C2 |ζ | |β | .

• ζ + α → α′ + ζ + θnp: By construction, |α′ | = |α | and by Lemma 2.2

(3.18) |θnp | ≤ c2 |µ | |ζ | .
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Thus,
∆G ≤ −3C2 |α | |ζ | ≤ −3k |θnp | ,

where k only depends on pmin, pmax and γ.
�

With the basic interactions between two fronts covered, we are able to consider
more involved interactions. First interactions between arbitrary many fronts of the
same family are studied. Two interactions of this kind are given in Figure 15, see
also Example 3.10 below. Note that no interaction of this form can be an increasing
rarefaction-collision.
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(b) µ1 + α2 + µ3 + α4 → µ′ + β′.

Figure 15. Some interactions of the form (3.19).

Lemma 3.9. For all interactions between arbitrary many fronts of the same family
where two adjacent fronts cannot both be rarefaction-fronts, we have ∆G ≤ 0, and
in particular, ∆G ≤ − 2

3 |θ
′ | for new rarefaction-collisions where θ′ denotes the

new rarefaction wave. Furthermore, there are three possible outcomes for these
interactions;

(3.19)
n∑

i=1

εi →


µ′ + β′,

α′ + ν′,

α′ + β′,

symmetric to
n∑

i=1

ηi →


α′ + ν′,

µ′ + β′,

α′ + β′.

Proof. We prove the lemma for interactions between three or more 1-fronts, the
interactions with n = 2 are already covered by Lemma 3.8. None of the interactions
can have two rarefaction waves as outgoing waves due to property (i) of Lemma 2.1.
Recall also that p increases along a 1-shock wave and decreases along a 1-rarefaction
wave.

Consider first the case α′+ν′. Then the interaction is a new rarefaction-collision
where Ur is to the right of Ul and above the 1-shock wave starting at Ul. Since
only the αi-fronts among the incoming fronts bring us to the right, we have

|α′ | −
n∑

i=1

|αi | ≤ − |ν′ | ⇒ ∆G ≤ −2
3
|ν′ | .

For the case µ′ + β′, Ur is to the left of Ul. The only incoming fronts bringing
us to the left are the µi-fronts, thus

|µ′ | ≤
n∑

i=1

|µi | .
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Hence, no interaction between fronts of the same family is an increasing rarefaction-
collision.

Therefore we consider the last two cases together, that is, ε′ + β′ where ε′ is
either a shock or a rarefaction wave. We divide the interaction into several steps
where two fronts interact at each step, hence, ∆Gj ≤ 0 by Lemma 3.8. Recall
that two adjacent fronts in the interaction cannot both be rarefaction-fronts. The
strategy is as follows: Start with the rightmost front and search for the first place
where two adjacent fronts are of different types, i.e., αi + µi+1 or µi + αi+1. Let
these fronts interact with outcome ε̃k + β̃k. Whenever there is a 1-shock to the
right of β̃k, we proceed by letting them interact; β̃k + α → α̃k+1 + β̃k+1, and we
repeat this as long as there is a 1-shock to the right of the 3-shock. Thus, we end
up with a collection of β-waves as the rightmost waves. Furthermore, whenever
this process results in two adjacent rarefaction waves, we recall from property (vii)
of Lemma 2.1 that rarefaction waves (and fronts) are additive and we add them up
to a new rarefaction wave. We continue this process until all 1-fronts of different
types have interacted, and we are left with either µ̃ +

∑
β̃k or

∑
α̃k +

∑
β̃k. For

the first case we have

(3.20)
n∑

i=1

εi
∆G1−−−→ µ̃ +

∑
k

β̃k
∆G2−−−→ µ′ + β′,

where we already know that ∆G1 ≤ 0. By property (ix) of Lemma 2.1 it follows
that

∑
k

∣∣∣β̃k

∣∣∣ > |β′ |, thus, there is a q > 0 so that

|µ′ | − |µ̃ | = q, |β′ | −
∑

k

∣∣∣β̃k

∣∣∣ = −q ⇒ ∆G2 ≤ 0.

For the latter case we have
n∑

i=1

εi
∆G1−−−→

∑
k

α̃k +
∑

k

β̃k
∆G2−−−→ α′ + β′,

where we already know that ∆G1 ≤ 0. Furthermore, it follows from the properties
(viii) and (ix) of Lemma 2.1 that

|α′ | −
∑

k

|α̃k | ≤ 0, |β′ | −
∑

k

∣∣∣β̃k

∣∣∣ ≤ 0 ⇒ ∆G2 ≤ 0.

This proves the lemma for the interaction
∑

i εi, and the results for
∑

i ηi follows
by symmetry. However, we include another estimate for the last case discussed
above, which will prove useful later. The number of α̃k-fronts is less than or equal
to the number of incoming αi-fronts. Going carefully through each steps, we find
that each α̃k has a corresponding incoming αi so that

(3.21) |α̃k | ≤
∏
j 6=i

(1 + C1(γ − 1) |εj |) |αi | ≤
4
3
|αi | ,

because ∏
j 6=i

(1 + C1(γ − 1) |εj |) ≤ 1 +
3
2

∑
j

C1(γ − 1) |εj |

≤ 1 +
3
2
C1(γ − 1)F (tn−1)

≤ 1 +
3
2
C1(γ − 1)

5
3
L(t0) ≤

4
3
.
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Here we have used that∏
i

(1 + xi) ≤ exp

(∑
i

xi

)
≤ 1 +

3
2

∑
i

xi, for
∑

i

xi ≤
1
2
.

�

Before we continue to the more complicated interactions, we give an example to
illustrate how we divide an interaction of the form (3.19) into smaller steps.

Example 3.10. Consider the interaction µ1 + α2 + µ3 + α4 → α′ + β′ as depicted
in Figure 16(a). Dividing this interaction according to the strategy we discussed in
the previous proof, see Figure 16(b), we get

µ1 + α2 + [µ3 + α4]
∆G1−−−→ [µ1 + α2] + α̃1 + β̃1

∆G2−−−→ α̃2 + [β̃2 + α̃1] + β̃1

∆G3−−−→ α̃2 + α̃3 + β̃3 + β̃1
∆G4−−−→ α′ + β′,

where ∆Gi ≤ 0, i = 1, 2, 3, by Lemma 3.8. By the properties of shock waves, we
have

|α′ | − |α̃2 | − |α̃3 | ≤ 0, |β′ | −
∣∣∣β̃1

∣∣∣− ∣∣∣β̃3

∣∣∣ ≤ 0, ⇒ ∆G4 ≤ 0.

Note that µ+α as above is the second case of the interaction of Type Baiii discussed
in Lemma 3.8, where we introduced an extra step to solve it. This is given in (3.14)
where

∣∣β ∣∣ ≤ |µ | and |α | ≤ |α |. Using this, and the estimates given by (3.16) for
β + α, we find

|α̃2 | ≤ (1 + (γ − 1)C1

∣∣β2

∣∣) |α2 | ≤ (1 + (γ − 1)C1 |µ1 |) |α2 | ,

|α̃3 | ≤ (1 + (γ − 1)C1

∣∣∣β̃2

∣∣∣) |α̃1 |

≤ (1 + (γ − 1)C1(1 + (γ − 1)C1 |α2 |)
∣∣β2

∣∣)(1 + (γ − 1)C1

∣∣β1

∣∣) |α2 |
≤ (1 + (γ − 1)C1 |µ1 |)(1 + (γ − 1)C1 |α2 |)(1 + (γ − 1)C1 |µ3 |) |α4 | ,

showing that estimate (3.21) holds for α̃2 and α̃3.

Using Lemma 3.9 we are now able to divide the more involved interactions into
smaller steps and through this show that G decreases. We start by adding a contact
discontinuity to the interactions.

Lemma 3.11. The functional G decreases for all interactions of the form

(3.22) ζ +
n∑

i=1

εi and the symmetric form
n∑

i=1

ηi + ζ.

Furthermore, ∆G ≤ −2
3 |θ

′ | for new rarefaction-collisions where θ′ is the new wave,
∆G ≤ −2

3q for increasing rarefaction-collisions where the strength of the rarefaction
wave increases by q > 0, and ∆G ≤ −3k |θnp | for interactions generating a non-
physical front.

Proof. Let us first consider when |ζ |
∑

i |ε | > ρ, so that the approximate solver is
used. We then divide interaction ζ +

∑n
i=1 εi into two steps where we let

∑n
i=1 εi

interact at the first step. By Lemma 3.9 we know that G is decreasing for this
interaction and that there are three possible cases. We write this

ζ +
n∑

i=1

εi
∆G1−−−→ ζ +


µ + β

α + ν

α + β

∆G2−−−→ ε′ + ζ + η′,

where ∆G1 ≤ 0. At the second step there are three possible interactions of the form
ζ + ε + η → ε′ + ζ + η′. The outgoing 1-wave is of the same type as the incoming
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Figure 16. The interaction µ1 + α2 + µ3 + α4 → α′ + β′ of Example 3.10.

1-wave for all of these interactions, while the type of the 3-wave depends on the
different γ-values, giving two possible cases for each interaction.

Consider first the case where the incoming and outgoing 3-waves are of the same
type. If the intersection between ε′ and η′ is below the intersection between ε and
η when viewed in the (p, u)-plane, we have

|µ′ | − |µ | = q, |β′ | − |β | = −q ⇒ ∆G2 ≤ −2
3
|µ′ | ,

|α′ | − |α | = −q, |ν′ | − |ν | = q ⇒ ∆G2 ≤ −2
3
|ν′ | ,

|α′ | − |α | ≤ 0, |β′ | − |β | ≤ 0 ⇒ ∆G2 ≤ 0,

for the three interactions, respectively. The two first are increasing rarefaction-
collisions, however, the overall interactions are not increasing rarefaction-collisions
because property (i) of Lemma 2.1 yields that |ε′ | is less than the sum of the
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strengths of the incoming 1-fronts of the same type. If the intersection in the
(p, u)-plane between ε′ and η′ is above the intersection between ε and η, we apply
Lemma 2.2 to ε and ε′ and find that

0 ≤ |β′ | − |β | ≤ |µ | − |µ′ | ≤ C2 |µ′ | |ζ | ≤ C2 |µ | |ζ | ⇒ ∆G2 ≤ 0,

|α′ | − |α | ≤ C2 |α | |ζ | , |ν′ | − |ν | ≤ 0 ⇒ ∆G2 ≤ 0,

|β′ | − |β | = |α′ | − |α | ≤ C2 |α | |ζ | ⇒ ∆G2 ≤ 0,

for the three interactions, respectively.
Consider now the case where the 3-waves are of different types. The interactions

with η′ = ν′ are new rarefaction-collisions, and the interaction with ε′ = µ′ is
also an increasing rarefaction-collision with |ν′ | ≤ |µ′ | − |µ | = q. We obtain the
following estimates;

|ν′ | ≤ q = |µ′ | − |µ | ≤ C2 |µ | |ζ | ⇒ ∆G2 ≤ −2
3
|ν′ | − 2

3
q,

|β′ | − |β | = |α′ | − |α | ≤ C2 |α | |ζ | ⇒ ∆G2 ≤ 0,

|α′ | − |α | = − |ν′ | − |β | ≤ − |ν′ | ⇒ ∆G2 ≤ −2
3
|ν′ | ,

where we used Lemma 2.2 on ε and ε′ for the two first interactions.
Next, we consider the case where the simplified solver is used to solve ζ+

∑n
j=1 εj

with n ≥ 2. The construction of the solution, as described in Section 3.1, can be
viewed as dividing the interaction into three steps. First we let

∑
i εi interact,

resulting in ε + η, then we solve the interaction between ζ + ε using the simplified
solver. Finally, the non-physical front interact with η. Since the non-physical
front just passes through without changing its strength, η′ is just η shifted in the
u-direction. We write this

ζ +
n∑

j=1

εj
∆G1−−−→


[ζ + µ] + β

∆G2−−−→ µ′ + ζ + [θnp + β] ∆G3−−−→ µ′ + ζ + β′ + θnp,

[ζ + α] + ν
∆G2−−−→ α′ + ζ + [θnp + ν] ∆G3−−−→ α′ + ζ + ν′ + θnp,

[ζ + α] + β
∆G2−−−→ α′ + ζ + [θnp + β] ∆G3−−−→ α′ + ζ + β′ + θnp.

Figure 6 shows the intermediate fronts for the second interaction, in addition to
the solution using the approximate solver. For the first step we have ∆G1 ≤ 0 by
Lemma 3.9, and, from the proof of the lemma, we have

|µ | ≤
∑

i

|µi | , |α | ≤
∑

i

|αi | , |α | ≤
∑

k

|α̃k | ≤
4
3

∑
i

|αi | ,

respectively, where the last inequality follows from estimate (3.21). For the second
step, we have from the proof of Lemma 3.8 and the above estimate that

(3.23) |θnp | ≤ c2 |ε | |ζ | ≤
4
3
c2 |ζ |

∑
i

|εi | , and ∆G2 ≤ −3k |θnp | .

Finally, since |η | = |η′ |, it follows that ∆G3 = 0. Hence, ∆G ≤ ∆G1 + ∆G2 +
∆G3 ≤ −3k |θnp |, and we have covered the case where non-physical fronts are
generated.

Thus, G decreases for all interactions of the form ζ +
∑n

j=1 εj where the case
n = 1 is covered by Lemma 3.8. The result for

∑n
i=1 ηi+ζ follows by symmetry. �

Next, we consider interactions between arbitrary many fronts of the first and
third family.
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Lemma 3.12. The functional G is decreasing for all interactions of the form
n∑

i=1

ηi +
m∑

j=1

εj .(3.24)

Furthermore, ∆G ≤ − 2
3q for increasing rarefaction-collisions where q > 0 is

the increase in the strength of the rarefaction wave, and ∆G ≤ −2
3 |θ

′ | for new
rarefaction-collisions where θ′ is the new rarefaction wave.

Proof. If n > 1 and m > 1, we divide these interactions into steps as follows;

n∑
i=1

ηi +
m∑

j=1

εj
∆G1−−−→


µ1 + β1

α1 + ν1

α1 + β1

+


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + η′,

where ∆G1 ≤ 0 by Lemma 3.9. There are nine possible interactions at the third
step, but three of these are symmetric to one of the other, leaving us with six
interactions to consider. If n = 1 and m > 1 (symmetric to n > 1 and m = 1), the
interactions are divided as follows;

η +
n∑

j=1

εj
∆G1−−−→

{
β1

ν1

+


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + η′,

where ∆G1 ≤ 0 by Lemma 3.9. This gives us six interactions to consider for the
second step. The interactions with n = m = 1 are already covered by Lemma 3.8.

We consider first the interactions with only one combination of outgoing waves,
that is,

α1 + β1 + α2 + β2 → α′ + β′ and µ1 + β1 + µ2 + β2 → µ′ + β′,

where the last one is symmetric to α1 + ν1 + α2 + ν2 → α′ + ν′. We divide these
into one extra step;

ε1 + [β1 + ε2] + β2
∆G2−−−→ ε1 + ε + β + β2

∆G3−−−→ ε′ + β′,

where all ε-fronts are of the same type. From Lemma 3.8 we have the necessary
estimate on ∆G2. For the interactions at the last step, the latter one being an
increasing rarefaction-collision, we obtain from the properties of the shock waves
that

|α′ | − |α1 | − |α | ≤ 0, |β′ | − |β2 | −
∣∣β ∣∣ ≤ 0 ⇒ ∆G3 ≤ 0,

|µ′ | − |µ1 | − |µ | = q3, |β′ | − |β2 | −
∣∣β ∣∣ = −q3 ⇒ ∆G3 ≤ −2

3
q3,

for a q3 ≥ 0. This also applies to the interactions β1 + α2 + β2, β1 + µ2 + β2 and
ν1 + α2 + ν2 which all have only one combination of outgoing waves and where the
last two are increasing rarefaction-collisions.

We now turn to the interactions

α1 + β + α2 + ν, which is symmetric to µ + β1 + α + β2,

α1 + ν + α2 + β, which is symmetric to α + β1 + µ + β2.

These have two combination of outgoing waves, α′+ν′ and α′+β′, and are divided
into smaller steps;

α1 + [η1 + α2] + η2
∆G2−−−→ α1 + α + [η1 + η2]
∆G3−−−→ α1 + α + α̃ + η̃

∆G4−−−→ α′ + η′,
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where η1 and η1 are of the same type, whereas η2 is not, and where η̃ and η′ are of
the same type. From Lemma 3.8 we have the needed estimates on ∆G2 and ∆G3.
Due to property (viii) of Lemma 2.1 we find for q4 > 0 that

|α′ | − |α̃ | − |α | − |α1 | = −q4, |ν′ | − |ν̃ | ≤ q4 ⇒ ∆G4 ≤ −2
3
q4,

|α′ | − |α̃ | − |α | − |α1 | ≤ 0, |β′ | −
∣∣∣β̃ ∣∣∣ ≤ 0 ⇒ ∆G4 ≤ 0.

This also covers the special cases β1+α2+ν2 and ν1+α2+β2. Note that if η1 = β1,
then |ν′ | ≤ |ν | by construction, so these interactions are actually not increasing
rarefaction-collisions.

Then we are left with two interactions, each having four subcases,

µ + β + α + ν, and α + µ + ν + β.

In the case with µ′ + ν′ we divide the first interaction into smaller steps

α + [ν + µ] + β
∆G2−−−→ α + µ + ν + β

∆G3−−−→ µ′ + ν′,

where ∆G2 ≤ 0 by Lemma 3.8 and

|µ′ | ≤ |µ | ≤ |µ | , |ν′ | ≤ |ν | ≤ |ν | ⇒ ∆G3 ≤ 0,

follows from the properties of wave curves and estimate (3.15). For the second
interaction it follows by construction that

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ 0, ⇒ ∆G ≤ 0.

In the case with α′ + ν′, it follows by construction that the first interaction is an
increasing rarefaction-collision where

|α′ | − |α | = −q, |ν′ | − |ν | ≤ q ⇒ ∆G ≤ −2
3
q.

For the second interaction we have |ν′ | ≤ |ν |. We divide the interaction into smaller
steps,

µ + [β + α] + ν
∆G2−−−→ [µ + α] + β + ν

∆G3−−−→ α̃ + [β̃ + β + ν]
∆G4−−−→ α̃ + α̂ + ν̂

∆G5−−−→ α′ + ν′,

where we have the necessary estimates on ∆G2 and ∆G3 from Lemma 3.8 and for
∆G4 by Lemma 3.9. By property (viii) of Lemma 2.1 we find for a q > 0 that

|α′ | − |α̃ | − |α̂ | = −q, |ν′ | − |ν̂ | = q ⇒ ∆G5 ≤ 0.

The last two cases can be considered together. Note that for either interaction we
obtain |ν′ | ≤ |ν | so that none of them are increasing rarefaction-collisions. We
divide the interactions as follows;

ε1 + [η1 + ε2] + η2
∆G2−−−→ ε1 + ε + [η + η2]

∆G3−−−→ [ε1 + ε + α̃] + β̃

∆G4−−−→ ε̂ + β̂ + β̃
∆G5−−−→ ε′ + β′,

where ε is of the same type as ε2, η of same type as η1, and ε̂ of the same type as
ε′. From Lemma 3.8 and Lemma 3.9 we have estimates on ∆G2, ∆G3 and ∆G4,
and by properties (viii) and (ix) of Lemma 2.1 we find

|µ′ | − |µ̂ | = q, |β′ | −
∣∣∣β̂ ∣∣∣− ∣∣∣β̃ ∣∣∣ = −q ⇒ ∆G ≤ 0,

|α′ | − |α̂ | ≤ 0, |β′ | −
∣∣∣β̂ ∣∣∣− ∣∣∣β̃ ∣∣∣ ≤ 0 ⇒ ∆G ≤ 0.
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The interaction ν1 +α2 +β2 has also four cases, and for all but one case, the above
analysis apply. In the case α′ + ν′, β2 must cross ν, and therefore there exist a ν̂

and a β̂ so that ν̂ + β̂ connects Ul to Ur and

(3.25) |ν̂ | ≤ |ν | ,
∣∣∣β̂ ∣∣∣ ≤ |β | .

Then the interaction can be divided into the following steps,

ν1 + µ2 + β2
∆G2−−−→ [ν̂ + β̂] ∆G3−−−→ α′ + ν′,

where ∆G2 ≤ 0 follows from (3.25) and ∆G3 ≤ 0 from Lemma 3.8. Note that
|ν′ | ≤ |ν | by construction, so this is not an increasing rarefaction-collision.

This completes the discussion of all possible interactions at the second step, and
thereby completes the proof. �

Lemma 3.13. The functional G decreases for all interactions of the form
n∑

i=1

ηi + ζ +
m∑

i=1

εi.(3.26)

Furthermore, ∆G ≤ −2
3q for all increasing rarefaction-collisions where the strength

of the outgoing rarefaction wave increases by q > 0, and ∆G ≤ − 2
3 |θ

′ | for new
rarefaction-collisions where θ′ denotes the new outgoing rarefaction wave.

Proof. This is the general form for interactions possible in front tracking. All inter-
actions without ζ are already covered by Lemma 3.12. Furthermore, Lemma 3.11
covers the interaction where m = 0 (or n = 0).

If n > 1 and m > 1, then we divide the interactions into smaller steps as follows

(3.27)
n∑

i=1

ηi + ζ +
m∑

j=1

εj
∆G1−−−→


µ1 + β1

α1 + ν1

α1 + β1

+ ζ +


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + ζ + η′,

where three of the nine possible combinations at the last step are symmetric to
one of the other, thus, we have six different interactions to consider. If n = 1 and
m > 1 (symmetric to n > 1 and m = 1), we get

(3.28) η1 + ζ +
m∑

j=1

εj
∆G1−−−→ η1 + ζ +


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + ζ + η′,

with six different interactions at the second step. In addition, we have the four
interactions where m = n = 1,

(3.29) η1 + ζ + ε2
∆Gn−−−→ ε′ + ζ + η′,

where one is symmetric to one of the others.
An interaction that is symmetric to itself is referred to as a self-symmetric in-

teraction. Three of the interactions given by (3.27) are self-symmetric. The other
interactions have a symmetric interaction, and we choose to discuss the interac-
tions starting with α1 + ν1 over the ones starting with ε1 + β1, and the interaction
starting with α1 + β1 over the one starting with µ1 + β1. None of the interactions
given by (3.28) are symmetric to itself or to one of the other interactions. For the
two interactions of the form ε + ζ + µ2 + β2, we will throughout this proof consider
their symmetric interactions, α1 +ν1 +ζ +η2 instead. There are two self-symmetric
interactions given by (3.29). The remaining two interactions are symmetric, and
we choose to discuss the one with η1 = ν1.
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We write the six interactions given by (3.27) of the general form

(3.30) ε1 + η1 + ζ + ε2 + η2
∆Gn−−−→ ε′ + ζ + η′.

If ε1 is of the same type as ε2 and η1 is of the same type as η2, then the interaction
has only three possible combinations of outgoing fronts. Thus, two of the interac-
tions given by (3.30) have three possible combination of outgoing fronts, while the
remaining four interactions have four possible combination of outgoing waves

First, we consider the case where the outgoing fronts are µ′+ ζ + ν′. This is not
a case for the interaction where all incoming fronts are shock-fronts. For the two
interactions where ε1 + η1 is not equal to α1 + ν1, one of the following estimates
holds;

(3.31)

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ 0 ⇒ ∆G ≤ 0,

|µ′ | − |µ | ≤ |β | = q, |ν′ | − |ν | ≤ 0 ⇒ ∆G ≤ −2
3
q,

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ |α | = q ⇒ ∆G ≤ −2
3
q.

For the three interactions where ε1+η1 = α1+ν1, we need to divide the interactions
into smaller steps;

(3.32)
+ε2 + η2

∆G2−−−→ ε + ζ + [ν + ε2] + η2
∆G3−−−→ ε + [ζ + ε̃ + ν̃] + η2

∆G4−−−→ ε + ε̂ + ζ + ν̂ + η2
∆G5−−−→ µ′ + ζ + ν′,

where ε̃ and ε̂ are of the same type as ε2. If ε2 is a shock-front, then ε is a rarefaction-
front, otherwise, ε can be of either type. From Lemma 3.8 and Lemma 3.9 we have
estimates for ∆Gi for i = 2, 3, 4. Furthermore, we have

|µ′ | − |µ | − |µ̂ | ≤ 0, |ν′ | − |ν̂ | ≤ 0 ⇒ ∆G5 ≤ 0,

where |µ | is only included if ε is a rarefaction-front, and |ν̂ | only if ε̂ is a rarefaction-
front.

Next, we consider interactions given by (3.28) and (3.29). If all incoming fronts
are shock-fronts, then µ′ + ζ + ν′ is not a possible combination of outgoing fronts.
All interactions with η1 = ν1 can be divided into smaller steps similar to (3.32),
giving us the the same estimates for the last step. For the interactions with η1 = β1,
one of the estimates given by (3.31) holds. Hence, the case µ′ + ζ + ν′ is covered
for all interactions given by (3.28) and (3.29).

Let us now consider the case where the outgoing waves are µ′ + ζ + β′. This
combination is not possible for the interaction where the incoming 1-fronts are
shock-fronts and the 3-fronts are rarefaction-fronts. The other three interactions
where the incoming 1-fronts are shock-fronts, have at least one incoming 3-shock
and we have

(3.33) |β′ | −
∑
η=β

|ηi | ≤ − |µ′ | ⇒ ∆G ≤ 0,

where we sum over the strength of the incoming 3-shocks. Thus, we are left with
the interactions α + ν + ζ + µ + β and µ + β + ζ + α + ν. First, note that if neither
α nor µ′ intersects µ for the first interaction, or if ν or β′ does intersect β for the
second, we have for a q > 0 that

|µ′ | − |µ | ≤ q, |β′ | − |β | = −q ⇒ ∆G ≤ −2
3
q.

If α intersects µ for the first interaction, we can replace the interaction with a new
one, still connecting the left state to the right state, as follows;

α + ν + ζ + µ + β
∆G2−−−→ α̂ + [ζ + µ̂ + β] ∆G3−−−→ α̂ + µ + ζ + β
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∆G4−−−→ µ̃ + ζ + β̃ + β
∆G5−−−→ µ′ + ζ + β′.

From Lemma 3.9 we have estimates for ∆G3 and ∆G4. Moreover, we have for a
q5 > 0 that

|α̂ | − |α | ≤ 0, |µ̂ | − |µ | ≤ 0 ⇒ ∆G2 ≤ 0,

|µ′ | − |µ̃ | ≤ q5, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ = −q5 ⇒ ∆G5 ≤ −2

3
q5.

If µ′ intersects µ, we use a similar approach and replace the interaction with a new
one,

α + ν + ζ + µ + β
∆G2−−−→ µ̂1 + [ζ + µ̂2 + β]
∆G3−−−→ µ̂1 + µ + ζ + β

∆G4−−−→ µ′ + ζ + β′,

where we have estimate for ∆G3 due to Lemma 3.9. Moreover,

|µ̂1 |+ |µ̂2 | − |µ | ≤ 0 ⇒ ∆G2 ≤ 0,

|µ′ | − |µ | − |µ̂1 | = 0, |β′ | −
∣∣β ∣∣ = 0 ⇒ ∆G5 ≤ 0.

If no fronts intersect for the second interaction, we cannot apply a clever replace-
ment. Thus, we divide the interaction into several smaller steps,

[µ + β + ζ] + α + ν
∆G2−−−→ µ + ζ + [β + α] + ν

∆G3−−−→ µ + [ζ + α̃ + β̃] + ν

∆G4−−−→ µ + α̂ + [ζ + β̂ + ν] ∆G5−−−→ [µ + α̂ + α + ζ] + β

∆G6−−−→ µ̌ + ζ + β̌ + β
∆G7−−−→ µ′ + ζ + β′,

where we have estimates for ∆Gi, i = 2, . . . , 6, from Lemma 3.8 and Lemma 3.9.
Furthermore, we have for a q7 > 0 that

|µ′ | − |µ̌ | ≤ q7, |β′ | −
∣∣β̌ ∣∣− ∣∣∣β ∣∣∣ = q7 ⇒ ∆G7 ≤ −2

3
q7.

Similarly, µ′+ ζ ′+β′ is not a case for interactions given by (3.28) and (3.29) where
the incoming 1-fronts are shock-fronts and the incoming 3-fronts are rarefaction-
fronts. Moreover, all interactions where ε2 = α2 have estimate given by (3.33). The
remaining two interactions are special cases of α1 + ν1 + ζ + µ2 + β2 where either
α1 or β2 is missing, and they are covered by the above discussion.

Observe that for the self-symmetric interactions the case where the outgoing
waves are µ′+ζ+β′ is symmetric to the case where the outgoing waves are α′+ζ+ν′.
Thus, only one case is left for these three interactions, the case where we have
α′ + ζ + β′. Some configurations of fronts gives us

|α′ | − |α | ≤ 0, |β′ | − |β | ≤ 0 ⇒ ∆G ≤ 0,

directly. Otherwise, we have to divide the interactions into smaller steps as follows

ε1 + η1 + [ζ + ε2 + η2]
∆G2−−−→ ε1 + [η1 + ε] + ζ + η

∆G3−−−→ ε1 + [ε̃ + η̃ + ζ] + η

∆G4−−−→ [ε1 + ε̂ + ζ] + η̂ + η
∆G5−−−→ α + [ζ + η + η̂ + η]

∆G6−−−→ α + ε̌ + ζ + β̌
∆G7−−−→ α′ + ζ + β′,

where ε and ε̃ are of the same type as ε2, and η̃ is of the same type as η1. If η1 is a
rarefaction-front, then η is a shock-front, ε̂ can be of either type, and η will be of the
opposite type of ε̂. If η1 is a shock-front, then η can be of either type, ε̂ = α̂, and η is
of the opposite type as ε1. Moreover, if η and η̂ are both rarefaction-fronts, we add
them together to one 3-rarefaction wave according to property (i) of Lemma 2.1.
If all 3-fronts at step six are shock-fronts, then ε̌ = µ̌ and does not take part in the
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estimate below, otherwise ε̌ = α̌. We have estimates for ∆Gi, i = 2, . . . , 6, due to
Lemma 3.8 and 3.9. Moreover,

|α′ | −
∣∣α ∣∣− |α̌ | ≤ 0, |β′ | −

∣∣β̌ ∣∣ ≤ 0 ⇒ ∆G7 ≤ 0.

None of the interactions given by (3.28) are self-symmetric. For interactions given
by (3.29), one of the self-symmetric interactions involve only rarefaction-fronts and
α′ + ζ + β′ is therefore not a possible case. The other self-symmetric interaction,
β + ζ + α, can be divided into smaller steps as above and is thus covered by the
estimates just given. Here, step four is redundant.

Finally, we consider the last two cases, when the outgoing waves are α′+ζ+ν′ or
α′+ζ+β′, for the three interactions that are not self-symmetric. These interactions
all have two incoming shock-fronts of the first family, and we observe that

if |α′ | − |α1 | − |α2 | = −q ≤ 0, then

{
|ν′ | − |ν | ≤ q ⇒ ∆G ≤ −2

3q,

|β′ | − |β | ≤ 0 ⇒ ∆G ≤ 0.

If this condition of the 1-shocks does not hold, we divide the interactions into
smaller steps as follows;

α1 + η1 + [ζ + α2 + η2]
∆G2−−−→ α1 + [η1 + α] + ζ + η

∆G3−−−→ α1 + [α̃ + η̃ + ζ] + η

∆G4−−−→ [α1 + ε̂ + ζ] + η̂ + η
∆G5−−−→ α + [ζ + η + η̂ + η]

∆G6−−−→ α + α̌ + ζ + η̌
∆G7−−−→ α′ + ζ + η′,

where η̃ and η̂ are of the same type as η1, and η̌ is of the same type as η′. Fur-
thermore, if η1 and η2 are rarefaction-fronts and η′ is a shock-front, then η is also
a shock-front. If η2 and η′ are of the same type, while η1 is not, then η is of the
same type as η2. Otherwise, η can be of either type. Likewise, ε̂ can be of either
type, and we therefore have to include step five, where η is not of the same type
as ε̂. Moreover, if at some point, two adjacent 3-fronts are both rarefaction-fronts,
then we add them together to one 3-rarefaction wave according to property (i) of
Lemma 2.1. Finally, if all 3-fronts at step six, that is, η, η̂ and η, are all of the
same type as η′, then we skip step six and replace the strength of η̌ in the estimates
below by the sum of the strength of these 3-fronts. From Lemma 3.8 and 3.9 we
have estimates for ∆Gi, i = 2, . . . , 6. Finally, we have

|α′ | −
∣∣α ∣∣− |α̌ | = q7, |ν′ | − |ν̌ | ≤ q7 ⇒ ∆G7 ≤ −2

3
q7,

|α′ | −
∣∣α ∣∣− |α̌ | ≤ 0, |β′ | −

∣∣β̌ ∣∣ ≤ 0 ⇒ ∆G7 ≤ 0,

for the two cases, respectively.
The interactions given by (3.28) and (3.29) can be divided into smaller steps in

the same way. For interactions with no ε1, we in general only need six steps because
step four is not needed. However, if ε̂ = µ̂, we may have to interchange step four
and five, so that we still have seven steps. Moreover, if

|α′ | − |α | ≤ − |ν′ | , then ∆G ≤ 0,

without dividing the interaction into smaller steps.
All cases for all interactions are now considered, thus, we have proved the lemma.

�

This concludes the discussion of all interactions between physical fronts. For
interactions generating non-physical fronts and interactions where one of the in-
coming fronts is non-physical, we have:
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Lemma 3.14. For an interaction where a non-physical front is generated, we have

(3.34) ∆G ≤ −3k |θnp | , and |θnp | ≤ 4
3
c2ρ,

where the positive constants k and c2 depend only on pmin, pmax, and γ. Moreover,
∆G ≤ 0 for all interactions with incoming non-physical fronts, and the strength of
a non-physical front does not change in interactions.

Proof. The simplified Riemann solver is used for interactions of the type ζ +∑n
i=1 εi, and the symmetric interactions, where condition (3.1) holds, that is, where

|ζ |
∑

i |εi | ≤ ρ. Since non-physical fronts cannot be generated in any other inter-
actions, it follows from Lemma 3.8 and Lemma 3.11 that ∆G ≤ −3k |θnp |. By
estimates (3.17), (3.18), and (3.23) established in the proofs of these lemmas, we
have

|θnp | ≤ 4
3
c2 |ζ |

∑
i

|εi | ≤
4
3
c2ρ.

Whenever a non-physical front is involved in an interaction, we let the non-
physical front pass through the interaction without changing its strength. Then we
solve the remaining interaction. The non-physical front only introduces a shift in
the u-variable, and since all wave curves are invariant under a transformation in u,
the interaction and all its estimates are the same as if it was not shifted. Hence,
by Lemma 3.8 through Lemma 3.13, and the fact that the non-physical front plays
no role in G, we have ∆G ≤ 0 for all interactions with an incoming non-physical
front. This also applies to interactions having two incoming non-physical fronts,
one with negative and one with positive speed. In particular we have ∆G = 0 when
a non-physical front collides with one other front, physical or non-physical; they
just pass through each other, continuing with the same strength. �

We have now established that ∆G ≤ 0 for all possible interactions and can finally
prove that G is decreasing in time.

Proof of Proposition 3.7. By Lemma 3.8 through Lemma 3.14 it follows that G
decreases for all possible interactions, and, in particular, that ∆G ≤ − 2

3q for all
increasing rarefaction-collisions where the strength of the rarefaction wave increases
by q, ∆G ≤ − 2

3 |θ
′ | for all new rarefaction-collisions where θ′ denotes the new

rarefaction wave, and ∆G ≤ −3k |θnp | for all interactions generating a non-physical
front. Finally, since G decreases, it follows from (3.13) that F (tn) ≤ 5

3L(t0). �

3.3. Finite number of interactions. The next step is to show that the front-
tracking algorithm generates an approximate solution in a finite number of steps.
We do this by proving that there is a finite number of physical and non-physical
fronts, and, hence, a finite number of interactions.

As discussed in Subsection 3.1, the number of fronts increases when we have
a γ-collision solved by the approximate solver, or when a rarefaction wave splits.
Moreover, splitting of rarefaction waves can only be caused by new rarefaction-
collisions or increasing rarefaction-collisions, and we now show that the number of
such interactions is finite.

Lemma 3.15. For a fixed δ, there is only a finite number of new rarefaction-
collisions where the new rarefaction wave splits into two or more fronts.

Proof. From Proposition 3.7 we have ∆G ≤ −2
3 |θ | for all new rarefaction-collisions,

where θ is the new outgoing rarefaction wave. This was proved in Subsection 3.2
where all interactions of this type were identified. The new rarefaction wave splits
into two or more fronts only if its strength, |θ |, is larger than δ. Hence, ∆G ≤ −2

3δ
across a new rarefaction-collision where the new rarefaction wave splits. Since
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G is a decreasing, non-negative functional, there can only be a finite number of
interactions where G decreases by at least 2

3δ. This proves the lemma. �

We next consider the increasing rarefaction-collisions and look at the change
in G from a split rarefaction-front appears until it has gained enough strength to
split again. That is, consider an increasing rarefaction-collision at t = τ1 where
the outgoing rarefaction wave splits into several fronts. Let τn be the collision
time when the first of the split rarefaction-fronts splits again after gaining strength
through increasing rarefaction-collisions. Fix two time lines, ti and tj , so that
ti < τ1 < τn < tj . Assume that the only rarefaction-front crossing t = ti that
results in a split rarefaction wave (through increasing rarefaction-collisions) before
t = tj , is the rarefaction-front colliding at t = τ1. Define ∆Gsplit := G(tj)−G(ti).

Lemma 3.16. Let ti < τ1 < τn < tj and ∆Gsplit be as defined above. Then, for a
fixed δ,

(3.35) ∆Gsplit ≤ −1
3
δ.

Furthermore, there is only a finite number of increasing rarefaction-collisions where
the increasing rarefaction wave splits into two or more fronts.

Proof. From Proposition 3.7 we have ∆G ≤ − 2
3q for all increasing rarefaction-

collisions where q > 0 bounds the increase of the strength of the rarefaction wave,
that is, the strength of the outgoing rarefaction wave is less than or equal to q plus
(the sum of) the strength(s) of the incoming rarefaction-front(s) of the same family.

Let θ′ be the outgoing rarefaction wave of the increasing rarefaction collision at
t = τ1, thus, θ′ splits, and let furthermore θ0 be the incoming rarefaction-front of
the same family. By the assumptions, |θ0 | = aδ for 0 < a ≤ 1, and

δ < |θ′ | ≤ |θ0 |+ q1.

Furthermore, ∆G1 ≤ − 2
3q1 across this interaction. Let m be the number of fronts

θ′ splits into and let furthermore θ1 denote the first of these split fronts that gain
enough strength to split again. Thus,

|θ1 | =
1
m
|θ′ | ≤ |θ0 |+ q1

m
=

aδ + q1

m
.

We follow this rarefaction-front until it splits again after an interaction at t = τn,

θn

t = tj
t = τn

t = τ1

t = ti

θ1

θ0

Figure 17. An illustration of several increasing rarefaction-
collision where a rarefaction wave splits at t = τ1 and t = τn.

and in Figure 17, where m = 2, this front is drawn by dashed lines. The only way for
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the rarefaction-front to gain strength is through increasing rarefaction-collisions, all
other interactions only weaken the rarefaction-front. We can therefore assume that
the rarefaction-front we follow is only involved in increasing rarefaction-collisions
up to t = tj . For each interaction the strength of the rarefaction-front increases by
at most qi, thus,

(3.36) |θn | ≤ |θn−1 |+ qn ≤ |θ1 |+
n∑
2

qk ≤
aδ + q1

m
+

n∑
2

qk ≤
a

m
δ +

n∑
1

qk,

and ∆Gk ≤ −2
3qk for k = 1, . . . , n. By definition, τn is the first collision time after

τ1 where a rarefaction wave splits, thus,

(3.37) |θn−1 | ≤ δ < |θn | .

All interactions taking place between ti and tj have ∆G ≤ 0 by Proposition 3.7.
Combining (3.36) and (3.37) we get

∆Gsplit =
∑
τk

∆G(τk) +
∑
τ 6=τk

∆G(τ) ≤
∑
τk

∆G(τk)

≤
n∑

i=1

−2
3
qk ≤ −2

3

(
1− a

m

)
δ ≤ −1

3
δ,

where we have used that 0 < a ≤ 1 and m ≥ 2. This proves (3.35).
Furthermore, G is non-negative and decreases by at least 1

3δ from the time when a
rarefaction wave splits due to an increasing rarefaction-collision until the time when
the first of the split fronts has gained enough strength to split again. Hence, this
can only happen a finite number of times, and therefore, there can only be a finite
number of increasing rarefaction-collisions where the rarefaction wave splits. �

Thus, by Lemma 3.15 and Lemma 3.16, there is a finite number of interactions
resulting in split rarefaction waves. That is, there is only a finite number of inter-
actions with more than one outgoing front of each family.

The only other interactions with more outgoing physical fronts than incoming
fronts, are γ-collisions solved by the approximate solver. These interaction are
solved by the approximate solver if |θ | |ζ | > ρ, where θ is the incoming 1- or 3-
front. By Proposition 3.7, G decreases and, and in particular, ∆G ≤ 0 for all
interactions. Therefore,

0 < G(tn) ≤ G(t0) +
∑
τ<tn

∆G(τ) ≤ G(t0) +
∑

τγ<tn

∆G(τγ),

where τ is any collision time and τγ is the collision time of a γ-collision solved by
the approximate solver. Furthermore, Lemma 3.8 states that ∆G ≤ − 1

9 |θ | |ζ | for
all γ-collisions, thus, ∑

τγ<tn

|θ | |ζ | ≤ −9
∑

τγ<tn

∆G(τγ) ≤ 9G(t0).

This estimate is true for all tn < ∞, hence, there is at most 9G(t0)/ρ number of γ-
collisions where |θ | |ζ | > ρ, that is, where a γ-collision is solved by the approximate
solver. These are the only interactions creating more physical fronts in addition to
the finite number of split rarefaction waves. Thus, the number of physical fronts
remains finite for all times. Moreover, non-physical fronts are only generated when
physical fronts interact with a contact discontinuity. Each physical front can only
interact once with a given contact discontinuity, and there is a finite number of
contact discontinuities, hence, there is a finite number of interactions generating
non-physical fronts.
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In other words, there is a finite number of physical and non-physical fronts for
any given time, and these fronts can only interact a finite number of times. Thus,
front tracking gives us an approximate solution in a finite number of steps for any
t ∈ (0,∞).

3.4. The total amount of non-physical fronts. In order to prove that the se-
quence of approximate solutions converges to a weak solution, we need to estimate
the total amount of non-physical fronts introduced. First of all, we assign a gener-
ation to all fronts except the contact discontinuities.

All initial 1- and 3-fronts are of generation one. The outgoing front of an inter-
action has the lowest generation of the incoming fronts of the same family. If there
is no incoming front of the same family, the outgoing front has a generation one
higher than the highest generation of the incoming fronts. If there is a non-physical
front generated in an interaction, its generation is also one higher than the highest
generation of the incoming fronts. If an interaction has an incoming non-physical
front, the outgoing non-physical front has the same generation as the incoming,
thus, the generation of a non-physical front never changes once it is created. Fur-
thermore, all fronts part of a split rarefaction wave have the same generation as the
rarefaction wave.

From the results in Proposition 3.7 we have

0 < G(tn) = G(t0) +
∑
τ≤tn

∆G(τ) ≤ G(t0) +
∑

τnp≤tn

∆G(τnp),

where τnp is a collision time when a non-physical front is generated. Moreover, by
Lemma 3.14 we have ∆G ≤ −3k |θnp | for all interactions where a non-physical front
is generated. Let θnp

i denote a non-physical front of generation i. Since neither the
strength of a non-physical front, nor its generation, changes due to interactions, we
get ∑

i

∑
t=tn

|θnp
i | =

∑
τnp≤tn

|θnp | ≤ − 1
3k

∑
τnp≤tn

∆G(τnp) ≤ G(t0)
3k

.(3.38)

Thus, there exists a j so that∑
i>j

∑
t=tn

|θnp
i | = O(1) δinit.(3.39)

Let Nj be the number of fronts of generation less than or equal to j. From the
previous section we know that Nj is finite. and according to [4, Ch. 7.3],

Nj ≤ Pj(N0, δ
−1),

where Pj is a polynomial function of δ−1 and the number of initial fronts, N0. Using
this, we can now prove the following:

Lemma 3.17. For any given δinit > 0 there exists a ρ > 0 so that∑
t=tn

|θnp | = O (δinit) .

Proof. Fix a j = j0 so that (3.39) holds. The number of non-physical fronts of
generation less than or equal to j0 is less than Nj0 , which again is bounded by
Pj0(N0, δ

−1). We therefore get∑
t=tn

|θnp | ≤
∑
i≤j0

∑
t=tn

|θnp
i |+

∑
i>j0

∑
t=tn

|θnp
i |

≤ 4
3
c2ρPj0(N0, δ

−1) +O(1)δinit = O (δinit) ,

by choosing ρ so that 4
3c2ρPj0(N0, δ

−1) = O(δinit)t. �
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Recall that δinit = O(δ), so that δinit → 0 when δ → 0.

3.5. Bounded total variation. We have established that if condition (3.12) is
satisfied, then G is decreasing and Uδ can be defined up to any time. The next
step is to bound the total variation of Uδ.

From Section 3.2 we recall that C1 is the constant appearing in estimate (3.16),
C2 is given by (3.4), k by (3.5), and C by (3.11). Define the constant

κ := 1 +
10
9

(3s′maxk + 1) ,

where s′max is the upper bound of ∂s/∂p, cf. property (v) of Lemma 2.1. Given
these constants, that only depend on pmin, pmax and γ, we can state the following
result.

Lemma 3.18. If the initial data satisfy

(3.40) (γ − 1)T.V.(p0, u0) ≤
C

9kC1
and T.V.(γ0) ≤

C

9C2
,

and the approximate solution Uδ(x, t) = (pδ(x, t), uδ(x, t), γδ(x, t)) obtained using
front tracking is bounded away from vacuum, then

T.V.(pδ( · , t), uδ( · , t)) ≤ 2κkT.V.(p0, u0),(3.41)

T.V.(γδ( · , t)) ≤ T.V.(γ0).(3.42)

Proof. First, (3.42) is obvious since γ only changes along contact discontinuities,
thus,

T.V.(γδ( · , tn)) = Fγ = T.V.(γδ(·, 0)) ≤ T.V.(γ0),
for any time line t = tn. Furthermore,

L(t0) ≤ T.V.(pδ( · , 0)) + kT.V.(uδ( · , 0)) ≤ kT.V.(pδ( · , 0), uδ( · , 0)),

for t0 = 0+. Whenever (3.40) is satisfied, we therefore have

L(t0) ≤ kT.V.(pδ( · , 0), uδ( · , 0)) ≤ kT.V.(p0, u0) ≤
C

9C1(γ − 1)
,

Fγ = T.V.(γδ( · , 0)) ≤ T.V.(γ0) ≤
C

9C2
,

thus, by Proposition 3.7 the Glimm functional is decreasing and F (tn) ≤ 5
3L(t0).

We use this to bound T.V.(uδ( · , tn)). If there were no non-physical fronts, we
would have ∑

rf

[[u]] =
∑
shock

[[u]] + u(∞, · )− u(−∞, · ),

because u is increasing along all rarefaction waves and decreasing along all shock
waves. Here [[u]] := |ur − ul | for a wave connecting Ul to Ur, and rf is short for
rarefaction wave. Let u± = u0(±∞) and define

(3.43) c0 := |u(∞, · )− u(−∞, · ) | = |u+ − u− | ,
since u(±∞, · ) = u0(±∞). Including the non-physical fronts, we have∑

rf

[[u]] ≤
∑
shock

[[u]] +
∑
np

[[u]] + c0,

where “np” is short for non-physical front. Thus,

T.V.(uδ( · , tn)) =
∑
rf

[[u]] +
∑
shock

[[u]] +
∑
np

[[u]] ≤ 2
∑
shock

[[u]] + 2
∑
np

[[u]] + c0

≤ 2
∑
shock

|s′(p̃, pl, γl) | [[p]] +
2
3k

G(t0) + c0
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≤ 2s′max

∑
shock

[[p]] +
10
9k

L(t0) + c0 = 2s′maxF (tn) +
10
9k

L(t0) + c0

≤ 2s′max

5
3
L(t0) +

10
9k

L(t0) + c0 ≤
10
9

(3s′maxk + 1) T.V.(p0, u0) + c0

≤ κT.V.(p0, u0),

where we have used that c0 ≤ T.V.(u0) and
∑

np[[u]] =
∑
|θnp | ≤ G(t0)/3k,

cf. (3.38). For T.V.(pδ( · , tn)) we find

T.V.(pδ( · , tn)) =
∑
rf

[[p]] +
∑
shock

[[p]] ≤ k

(∑
rf

[[u]] +
∑
shock

[[u]]

)
≤ kT.V.(uδ( · , tn)) ≤ κkT.V.(p0, u0).

This proves (3.41) because

T.V.(pδ( · , tn), uδ( · , tn)) = T.V.(pδ( · , tn)) + T.V.(uδ( · , tn))

≤ 2κkT.V.(p0, u0).

�

We also have to bound the approximate solution away from vacuum. From

sup(y) ≤ |y(∞) |+ |y(−∞) |+ T.V.(y),

and the fact that pδ(±∞, · ) = p0(±∞) := p±, it follows that

sup(pδ − p+) ≤
∣∣pδ(∞)− p+

∣∣+ ∣∣pδ(−∞)− p+)
∣∣+ T.V.(pδ)

= |p+ − p−) |+ T.V.(pδ)

≤ 2T.V.(pδ) ≤ 2κkT.V.(p0, u0).

Similarly, we obtain

sup(pδ − p−) ≤ 2κkT.V.(p0, u0),

sup(uδ − u+) ≤ 2κT.V.(p0, u0),

sup(uδ − u−) ≤ 2κT.V.(p0, u0).

Furthermore, γδ( · , t) always lies between 1 and γ. Thus, the approximate solution
obtained by front tracking will always be contained in the domain

(3.44)
U =

{
(p, u, γ) |max{|p− p− | , |p− p+ |} ≤ 2κkT.V.(p0, u0),

max{|u− u− | , |u− u+ |} ≤ 2κT.V.(p0, u0), γ ∈ (1, γ]
}

,

where p± = p0(±∞) and u± = u0(±∞). We are now able to bound Uδ away from
vacuum.

Lemma 3.19. If the initial data satisfy

(3.45) 2κkT.V.(p0, u0) ≤ p̃− pmin,

for a pmin > 0 and p̃ = max{p−, p+}, or the stronger condition

(3.46) (γ − 1)T.V.(p0, u0) ≤ C3,

where

(3.47) C3 :=
γ1/2

κkr′max

(
p̃(γ−1)/(2γ) − p

(γ−1)/(2γ)
min

)
,

then p ≥ pmin for all U ∈ U . Moreover, the approximate solution obtained using
front tracking is bounded and, in particular, satisfies 0 < pmin ≤ pδ(x, t) ≤ pmax.
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Proof. For a p < min(p0(x)) we have

max{|p− p(∞, · ) | , |p− p(−∞, · ) |} = max{p−, p+} − p = p̃− p,

hence, p is in U if p̃− p ≤ 2κkT.V.(p0, u0). Thus, if

2κkT.V.(p0, u0) ≤ p̃− pmin,

for a given pmin so that 0 < pmin ≤ min(p0), then p ≥ pmin for all U ∈ U .
Since condition (3.40) imposes a restriction on (γ−1)T.V.(p0, u0), we reformulate

condition (3.45) to do the same. For a p∗ ≥ p̃ ≥ pmin there is a constant u∗ so that
we can write

u(p) = u∗ − r(p, p∗, γ).

From the mean value theorem we get that

|p̃− pmin | =
1

|u′(p̂) |
|u(p̃)− u(pmin) | ≥ 1

r′max

(u(pmin)− u(p̃)),

for pmin ≤ p̂ ≤ p̃. Furthermore,

u(pmin)− u(p̃) = u∗ −
2γ

1
2

γ − 1

(
p

γ−1
2γ

min − p
γ−1
2γ
∗

)
− u∗ +

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ
∗

)
=

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,

so that

p̃− pmin ≥
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
.

Therefore, we have that p ≥ pmin > 0 for all p ∈ U if

2κkT.V.(p0, u0) ≤
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,

which proves the lemma. �

3.6. Convergence to a weak solution. The approximate solution, Uδ, is bounded
and, in particular, bounded away from vacuum. Furthermore, the total variation of
Uδ is bounded independent of δ, as shown in the previous section. Since v = p−1/γ ,
we furthermore have that vδ is bounded and have bounded total variation inde-
pendent of δ. Thus, the approximate solution given in the conservative variables,
Ũδ = (vδ, uδ, γδ), is bounded, and

(3.48) T.V.(Ũδ( · , t)) ≤ M0,

for a constant M0 independent of δ.
We first use Kolmogorov’s compactness theorem [15, Thm. A.5] to show that

there is a subsequence of {Ũδ}δ>0 that converges in L1
loc(R × [0, T ]). To that end

we observe that

(3.49)
∫

R

∣∣∣Ũδ(x + ω, t)− Ũδ(x, t)
∣∣∣ dx ≤ ωT.V.(Ũδ(·, t)) ≤ M0ω.

Thus, it remains to show that for any R > 0,

(3.50)
∫ R

−R

∣∣∣Ũδ(x, t)− Ũδ(x, s)
∣∣∣ dx ≤ M1(t− s),

where t ≥ s ≥ 0 and M1 is independent of δ. See Theorem A.8 in [15] for a detailed
proof of why (3.48)-(3.50) yield a convergent subsequence using Kolmogorov’s com-
pactness theorem. Here we proceed by showing that (3.50) holds for our system.
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For t ∈ (τj , τj+1], where τj and τj+1 are two consecutive collision times, we can
write Ũδ as

Ũδ(x, t) =
Nτj∑
k=1

(U j
k−1 − U j

k)H(x− xj
k(t)) + UNτj ,

where xj
k is the position of the kth front from the left, H is the Heaviside function,

Nτj is the number of fronts after the collision at τj , and Ũδ(x, t) = U j
k for x ∈

(xj
k, xj

k+1). Assume now that t ∈ [τj , τj+1] and s ∈ [τj , τj+1] where j ≤ i and s ≤ t.
Then∫

R

∣∣∣Ũδ(x, t)− Ũδ(x, τj)
∣∣∣dx =

∫
R

∣∣∣∣∣
∫ t

τj

d
dt̂

Ũδ(x, t̂)dt̂

∣∣∣∣∣ dx

≤
∫

R

∫ t

τj

Nτj∑
k=1

∣∣∣U j
k−1 − U j

k

∣∣∣ ∣∣∣∣ d
dt̂

xj
k(t̂)

∣∣∣∣ ∣∣∣H ′(x− xj
k(t̂))

∣∣∣ dt̂dx

≤ λnp

∫ t

τj

Nτj∑
k=1

∣∣∣U j
k−1 − U j

k

∣∣∣ ∫
R

∣∣∣H ′(x− xj
k(t̂))

∣∣∣ dxdt̂

≤ λnp(t− τj)T.V.(Ũδ(·, t)) ≤ λnpM0(t− τj),

where we have used that
∣∣∣ d
dt̂

xj
k(t̂ )

∣∣∣ ≤ λnp. By similar arguments we get∫
R

∣∣∣Ũδ(x, τj)− Ũδ(x, τj+1)
∣∣∣ dx ≤ λnpM0(τj − τj+1), if j + 1 < i,∫

R

∣∣∣Ũδ(x, τj+1)− Ũδ(x, s)
∣∣∣ dx ≤ λnpM0(τj+1 − s).

Hence,∫
R

∣∣∣Ũδ(x, t)− Ũδ(x, s)
∣∣∣ dx ≤

∫
R

∣∣∣Ũδ(x, t)− Ũδ(x, τj)
∣∣∣ dx

+
∫

R

∣∣∣Ũδ(x, τj)− Ũδ(x, τj+1)
∣∣∣ dx +

∫
R

∣∣∣Ũδ(x, τj+1)− Ũδ(x, s)
∣∣∣ dx

≤ λnpM0(t− s),

where the middle integral is only included if j + 1 < i. Since λnpM0 is a constant
independent of δ, we have now established (3.50). Hence, there exists a function
U(x, t) and a subsequence {δj} ⊂ {δ} so that Ũδj → U in L1

loc(R×[0, T ]) as j →∞.
We still have to show that the limit is a weak solution. Recall from equation

(2.1) that U = (v, u, γ) is a weak solution on a strip [t, s] if

Is
t (U) :=

∫ s

t

∫
R

Uφt + f(U)φxdxdt(3.51)

−
∫

R
U(x, s)φ(x, s)dx +

∫
R

U(x, t)φ(x, t)dx = 0,

for all test functions φ. Fix two successive collision times, τj and τj+1, and let Ũδ

be the approximate solution found using front tracking. The approximate solution
Ũδ is not a weak solution because we have introduced non-physical fronts and
approximate rarefaction waves. Therefore, we need to estimate how far Ũδ is from
the weak solution.

Let s1 = τj and let Vi(x, s) be the weak solution of

(3.52) Vt + f(V )x = 0, V (x, si) = Ũδ(x, si).
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We find V1 fot t close to s1 by solving exactly the Riemann problems at the jumps
of Ũδ(x, s1). This solution is defined up to the time s2 > s1 when the first waves
interact. If no waves in V1 collide before τj+1, we have s2 = τj+1. Otherwise,
we let V2 be the solution for s ≥ s2 of (3.52) with i = 2 and Ũδ(x, s2) as initial
data. In this way we fill [τj , τj+1) with small strips [si, si+1) on which we have
defined Vi. Let V denote the function that equals Vi at each interval [si, si+1),
thus, V (x, si) = Ũδ(x, si) for each i. Figure 18(a) shows this construction when a
non-physical front is present in Ũδ, while Figure 18(b) shows the first steps in the
construction when a rarefaction front interacts with a front of the same family at
τj+1.

τi

s1

s3

τi+1

(a) When Ũδ contains a non-physical front

s4

τi = s1

τi+1

s3

s2

(b) The first steps when a rarefaction front inter-
acts with a front of the same family at τj+1.

Figure 18. The approximate solution Ũδ (solid lines) and the
exact solution Vi (dashed line) at each interval [si, si+1).

Let furthermore V δ be the approximation of V found by solving (3.52) using
front tracking without non-physical fronts. That is, we solve all Riemann problems
using the approximate solver and never use the simplified solver. No front in V δ will
interact in one strip, thus, V δ only differs from V for rarefaction waves. From the
approximation of rarefaction waves by fronts, we have that

∣∣Vi(x, t)− V δ(x, t)
∣∣ =

O(δ) for (x, t) in a rarefaction fan. Thus, for t ∈ [si, si+1] the integral∫
R

∣∣V (x, t)− V δ(x, t)
∣∣ dx,

will be the sum of the integrals across the rarefaction fans of V . Let Vl and Vr be
the left and right state of such a fan. The integral over this fan will be the sum of
the integrals across each step in V δ, and there are |pr − pl | /O(δ) steps, each with
the width (t−si)∆λ = (t−si)O(δ), where ∆λ is the difference in the characteristic
speed across a rarefaction-front in V δ. We sum over j, that is, over all rarefaction
fans in V , and find that

(3.53)

∫
R

∣∣V (x, t)− V δ(x, t)
∣∣ dx =

∑
j

∣∣∣pj
r − pj

l

∣∣∣
O(δ)

O(δ)(t− si)O(δ)

≤ (t− si)T.V.(pδ)O(δ) ≤ (t− si)O(δ),

since
∑

j

∣∣∣pj
r − pj

l

∣∣∣ ≤ T.V.(pδ) ≤ M0.

Next, we compare V δ to Uδ. Since Uδ(x, si) is used as initial data solving (3.52)
for each strip, the two solutions only differs where Uδ have Riemann problems
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solved by the simplified solver. Thus, in order to estimate the integral∫
R

∣∣Uδ(x, t)− V δ(x, t)
∣∣ dx,(3.54)

for a t ∈ [si, si+1), we need to take a closer look at the approximation done using
the simplified Riemann solver defined in Section 3.1. Consider the interaction
ζ +

∑n
i εi and note that the arguments are similar for the symmetric case. As in

Lemma 3.1, we let ε̂+ζ+η̂ with intermediate states Ûi, i = 1, 2, be the solution using
the approximate solver, and ε′ + ζ + θnp and ε′ + ζ + η′ + θnp with intermediate
states Ũi, i = 1, 2 and i = 1, 2, 3, be the solution using the simplified solver for
n = 1 and n > 1, respectively. If ε′ is a shock-front, then α′ and α̂ have slightly
different speeds giving rise to a jump in

∣∣Uδ − V δ
∣∣ of the width |σα̂ − σα′ | (t−si) =

O(1) |θnp | (t− si), cf. Lemma 3.1. If ε′ is a rarefaction-front, the speeds are equal.
If n > 1 and η̂ is of the same type as η′, we also get a jump in

∣∣Uδ − V δ
∣∣ due to

different speeds. The width of this jump is |ση̂ − ση′ | (t− si) = O(1) |θnp | (t− si),
where we let σ denote the speed for both shock- and rarefaction-fronts. If η̂ and
η′ are of different types, the height of the jump due to different speeds is less than∣∣∣Ur − Ũ3

∣∣∣. The remaining jumps in
∣∣Uδ − V δ

∣∣ over this interaction are
∣∣∣Û1 − Ũ1

∣∣∣,∣∣∣Û2 − Ũ2

∣∣∣, and
∣∣∣Ur − Ũj

∣∣∣ where j = 2 if n = 1, and j = 3 if n > 1. From Lemma 3.1
we have that the heights of these jumps are all bounded by O(1) |θnp |. Thus,

(3.55)
∫

R

∣∣Uδ(x, t)− V δ(x, t)
∣∣ dx ≤

∑
np

O(1) |θnp | (t− si) = O(δ)(t− si),

using that
∑
|θnp | ≤ O(1)δinit = O(δ) according to Lemma 3.17.

Combining (3.53) and (3.55), we finally get∫
R

∣∣Uδ(x, t)− V (x, t)
∣∣ dx ≤

∫
R

∣∣Uδ(x, t)− V δ(x, t)
∣∣+ ∫

R

∣∣V (x, t)− V δ(x, t)
∣∣

= O(δ)(t− si).

Our goal is to show that
∣∣IT

0 (U)
∣∣ = 0 where U(x, t) is the limit of Ũδj (x, t). We

start by estimating
∣∣∣Isi+1

si (Ũδ)
∣∣∣. Recall that Vi(x, si) = Ũδ(x, si) and that Vi is a

weak solution on each strip, thus, Isi+1
si (Vi) = 0. We start with vδ;∣∣Isi+1

si
(vδ)

∣∣ = ∣∣Isi+1
si

(vδ)− Isi+1
si

(vi)
∣∣

=
∣∣∣∣ ∫ si+1

si

∫
R
(vδ − vi)φt + (−uδ + ui)φxdxdt

−
∫

R
(vδ(x, si+1)− vi(x, si+1))φ(x, si+1)dx

∣∣∣∣
≤ M2

(∫ si+1

si

∫
R

∣∣vδ − vi

∣∣+ ∣∣uδ − ui

∣∣ dxdt

+
∫

R

∣∣vδ(x, si+1)− vi(x, si+1)
∣∣ dx

)
≤ O(δ)

(
(si+1 − si)2 + (si+1 − si)

)
,

where M2 bounds |φx | and |φt |. For uδ we get∣∣Isi+1
si

(uδ)
∣∣ = ∣∣Isi+1

si
(uδ)− Isi+1

si
(ui)

∣∣
=
∣∣∣∣ ∫ si+1

si

∫
R
(uδ − ui)φt + (pδ − pi)φxdxdt
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−
∫

R
(uδ(x, si+1)− ui(x, si+1))φ(x, si+1)dx

∣∣∣∣
≤ M2

(∫ si+1

si

∫
R

∣∣uδ − ui

∣∣+ ∣∣pδ − pi

∣∣ dxdt

+
∫

R

∣∣uδ(x, si+1)− ui(x, si+1)
∣∣ dx

)
≤ O(δ)

(
(si+1 − si)2 + (si+1 − si)

)
,

where we have used that∫
R

∣∣pi(x, t)− pδ(x, t)
∣∣ dx ≤ (t− si)O(δ),

by the same arguments as above. Since γ only changes along contact discontinuities
and these are solved exactly both by the approximate and the simplified solver, we
actually have γi(x, t) = γδ(x, t), thus∣∣Isi+1

si
(γδ)

∣∣ = ∣∣Isi+1
si

(γi)
∣∣ = 0.

Let τj and τj+1 still be two successive collision times and recall that τj+1 − τj =∑∞
i=1(si+1 − si). Thus,∣∣∣Iτj+1

τj
(Ũδ)

∣∣∣ ≤ ∞∑
i=1

∣∣∣Isi+1
si

(Ũδ)
∣∣∣

≤
∞∑

i=1

O(δ)
(
(si+1 − si)2 + (si+1 − si)

)
≤ O(δ)

(
(τj+1 − τj)2 + (τj+1 − τj)

)
.

Since Ũδ is bounded and Ũδj (x, t) → U(x, t) in L1
loc where U = (v, u, γ), pδ will

converge to p = v−1/γ in L1
loc. Thus, for any time T < ∞,∣∣IT

0 (U)
∣∣ = lim

δ→0

∣∣∣IT
0 (Ũδ)

∣∣∣ = lim
δ→0

∑
j

∣∣∣Iτj+1
τj

(Ũδ)
∣∣∣

= lim
δ→0

∑
j

O(δ)
(
(τj+1 − τj)2 + (τj+1 − τj)

)
≤ lim

δ→0
O(δ)(T + T 2) = 0,

which proves that Ũδ converges to a weak solution of (1.1) as δ → 0.
Thus, we have finally proved the main theorem:

Theorem 3.20. Consider the Cauchy problem for system (1.1) with initial data
(1.2) where inf(p0(x)) > 0 and 1 ≤ γ0(x) ≤ γ. Assume that the initial data (u0, p0)
and γ(x) satisfy

(γ − 1)T.V.(p0, u0) ≤ min
{

C

9kC1
, C3

}
,(3.56)

T.V.(γ(x)) ≤ C

9C2
.(3.57)

Then the front tracking algorithm produces a sequence of approximate solutions
which converges to a global weak solution of the system (1.1).

Note that all constants only depend on pmin, pmax and γ. Thus, by reducing γ,
we may allow arbitrary large total variation for p0 and u0.
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By the results of Wagner [27], there is a one-to-one correspondence between a
weak solution of (1.1) and a weak solution of the system given in Eulerian coordi-
nates,

(3.58)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ, γ))x = 0,

(ργ)t + (ρuγ)x = 0,

where x ∈ R is the physical space variable and t ∈ (0,∞) denotes time.

4. Numerical examples

We have implemented an approximate and a simplified Riemann solver as de-
scribed in Subsection 3.1 using matlab. These are used together with the front-
tracking code at the web page of [15]1. The threshold parameter ρ, which determines
when to invoke the simplified Riemann solver, is set to δ3 for all examples. Fur-
thermore, we let λnp = 2dλmaxe. The front-tracking code is slightly adjusted so
that G(t) is computed for all times.

We find pmax as described in Subsection 2.3. Instead of using (3.46) to find pmin,
we choose a suitable candidate for pmin and then check that this candidate indeed
satisfies pmin ≤ pδ(x, t) for all x and t. For the two first examples

pmin = min(p0(x))− (pmax −max(p0(x))),(4.1)

is used as our candidate.

Example 4.1. The initial data in this example are piecewise constant and sym-
metric. We have one gas with p = 1.26, u = 3.00 and γ = 1.051 which initially is
trapped by another gas with p = 1.30, u = 2.99 and γ = 1.010. This is the same
initial data as used in Example 1 in [16] where we solved the problem using the
Glimm scheme. The constants calculated for this example are listed in Table 1,

pmax pmin γ C1 C2 C k
1.3067 1.2534 1.051 15.9703 1.3309 1 1.3309

Table 1. The constants for Example 4.1.

and (3.40) is satisfied since

T.V.(p0, u0) = 0.1 ≤ 0.1025 = C/(9kC1(γ − 1)),(4.2)

T.V.(γ0) = 0.082 ≤ 0.0835 = C/(9C2).(4.3)

Figure 19 shows Uδ( · , t) at some different times. In Figure 20 the solution is
compared with the solution found using the Glimm scheme, cf. [16]. The solution
obtained using the two methods are very similar, except that the contact disconti-
nuities move back and forth due to the randomness of the Glimm scheme whereas
they in front tracking always stay at ±1. Note that no non-physical fronts has been
generated at this point.

The front-tracking solution in the (x, t)-plane is shown in Figure 21. Here
δ = 0.0005, thus, the rarefaction fronts are very close and look like rarefaction
fans. Note furthermore that one front is one line regardless of its strength, thus, in
Figure 21 one does not distinguish between strong and weak shock-fronts. There-
fore, Figure 21 picks up the interaction of small fronts which is very hard to do
using the Glimm scheme, cf. [16]. In this example we see that after some time, one
non-physical front is generated, and from then on, there is no more interactions
with a contact discontinuity. Finally, Figure 22 shows G(t) for this example.

1http://www.math.ntnu.no/~holden/FrontBook/matlabcode.html
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Figure 19. The solution Uδ( · , t) at different times t for Example 4.1.
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Figure 20. The solution of Example 4.1 at t = 4.002 using front
tracking (dotted line) and the Glimm scheme (solid line).
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Figure 21. The solution Uδ(x, t) in the (x, t)-plane for Example 4.1.

0 1 2 3 4 5 6 7 8 9 10
0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

t

G

Figure 22. G(t) for Example 4.1.



FRONT TRACKING FOR A MIXTURE OF GASES 47

Example 4.2. The initial data in this example are also piecewise constant. For
−1 < x < 1 we have p = 2.5 and u = 3.0, while we outside the unit interval have
p = 1.5 and u = 2.0. Furthermore, γ = 1.5 for x < −1 and 0 < x < 1 while γ = 2.0
for −1 < x < 0 and x > 1.

These initial data are far from satisfying condition (3.40), and are therefore not
covered by Theorem 3.20. However, as shown in Figure 25, G(t) does decrease for
this example, which is enough to ensure convergence to a weak solution.

In Figure 23 we see Uδ( · , t) at some different times, while Figure 24 shows
the solution in the (x, t)-plane. The split rarefaction waves are more visible here,
because we have used δ = 0.1. Initially we have three Riemann problems. The
solution of the one situated at x = −1 is a 1-shock wave, a contact discontinuity
and a 3-rarefaction wave, the one situated at x = 1 is almost symmetric with a
solution consisting of a 1-rarefaction wave, a contact discontinuity and a 3-shock
wave, while at x = 0 we have only a jump in γ, hence, the solution is a single
contact discontinuity. We see that the first non-physical fronts are generated when
reflected fronts of a γ-collision interacts with another contact discontinuity. The
reflected fronts become weaker for each γ-collision, thus, after some time, all fronts
present between the contact discontinuities are non-physical fronts. These non-
physical fronts just pass through the contact discontinuities without generating
more reflected fronts. Recall that p and γ are constant across non-physical fronts,
thus, comparing the plots for p and u in Figure 23 we see that the non-physical
fronts are small compared to the physical fronts.

Example 4.3. In this example γ0 is a continuous function where γ0 = 1.7406 for
x ≤ −0.4, γ0 = 2.6994 for x ≥ 0.6 and increases smoothly from 1.7406 to 2.6994
by a sine function in the region −0.4 ≤ x ≤ 0.6. In the same region we have a high
initial pressure, p0 = 8, while p0 = 3 outside. The velocity is piecewise constant and
decaying; u0 = 3 for x ≤ −0.4, u0 = 2 for −0.4 ≤ x ≤ 0.6 and u0 = 1 for x ≥ 0.6.
The initial data are made piecewise constant with δinit = ∆x = 0.2. Furthermore,
we have chosen δ = 0.2.

These initial data are far from satisfying condition (3.40), but G is still decreasing
as shown in in Figure 28. For this example we have that pδ(x, t) ≥ 3, and therefore
pmin is set to 3.

In Figure 26 we see Uδ(·, t) at some different times, while Figure 27 shows the
solution in the (x, t)-plane. In Figure 27 we observe many fronts interacting, but
Figure 26 reveals that after a short time, all fronts except the leftmost and rightmost
shocks are very weak fronts, including the non-physical fronts. This is also in
accordance with Figure 28 where we after a short time have only very small changes
in G.
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