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Convergent finite element methods for compressible
barotropic Stokes systems

Kenneth H. Karlsen and Trygve K. Karper

Abstract. We propose finite element methods for compressible barotropic

Stokes systems. We state convergence results for these methods and outline

their proofs. The principal tools of the proofs are higher integrability estimates
for the discrete density, equations for the discrete effective viscous flux, and

renormalized formulations of the numerical method for the density equation.

1. Introduction

In this contribution we consider mixed type systems of the form

∂t% + div(%u) = 0, in (0, T )× Ω,(1.1)

−µ∆u− λD div u + Dp(%) = f , in (0, T )× Ω,(1.2)

with initial data

%|t=0 = %0, on Ω.(1.3)

Here Ω is a simply connected, bounded, open, polygonal domain in RN (N = 2, 3),
with Lipschitz boundary ∂Ω, and T > 0 is a final time. The unknowns are the
density % = %(t,x) ≥ 0 and the velocity u = u(t, x) ∈ RN , with t ∈ (0, T ) and
x ∈ Ω. We denote by div and D the usual spatial divergence and gradient operators
and by ∆ the Laplace operator.

The pressure p(%) is governed by the equation of state p(%) = a%γ , a > 0
(Boyle’s law). Typical values of γ range from a maximum of 5

3 for monoatomic gases,
through 7

5 for diatomic gases including air, to lower values close to 1 for polyatomic
gases at high temperatures. We will assume that γ ≥ 1. Furthermore, the viscosity
coefficients µ, λ are assumed to be constant and to satisfy µ > 0, Nλ + 2µ ≥ 0.

At the boundary ∂Ω, the system (1.1)–(1.2) is supplemented either with the
homogenous Dirichlet condition

(1.4) u = 0, on (0, T )× ∂Ω,
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or with the Navier–slip condition

(1.5) u · ν = 0, curlu× ν = 0, on (0, T )× ∂Ω.

System (1.1)–(1.2) can be motivated in several ways. Firstly, it can be used as
a model equation for the barotropic compressible Navier–Stokes equations. This is
a reasonable approximation for strongly viscous fluids for which convection can be
neglected. Secondly, in [7, Section 5.2, Remark 5.8], Lions construct solutions to
the barotropic compressible Navier–Stokes equations using solutions of the system
(1.1)–(1.2). Finally, by setting γ = 1, f = 0, and µ = 0, the system (1.1)–(1.2) is
exactly on the same form as the model derived in [8] for the dynamics of vortices
in Ginzburg–Landau theories in superconductivity.

Among many others, the semi–stationary system (1.1)–(1.3) has been studied
by Lions in [7, Section 8.2] where he proves the existence of weak solutions and
some higher regularity results.

The plan of this contribution is to summarize some results [4, 5, 6] from an
ongoing project to develop convergent numerical methods for multi-dimensional
compressible viscous flow models. We construct numerical methods that comply
with the mathematical framework developed for the compressible Navier–Stokes
equations by Lions [7] and Feireisl [3]. Over the years, several numerical methods
appropriate for compressible viscous gas flow have been proposed. Except for some
one-dimensional situations (cf. Zhao and Hoff [9, 10]), it is not known, however,
that these methods converge to a weak solution as the discretization parameters
tend to zero. Convergence analysis for the compressible Navier–Stokes system is
made difficult by the non–linearities in the convection and pressure terms and
their interaction. As a first step towards establishing convergence of numerical
methods for the full system, we consider simplified systems that contain some of
the difficulties but not all. In that respect (1.1)–(1.2) provides an example.

The finite element methods presented here are designed to satisfy the properties
needed to apply the weak convergence techniques used in the global existence the-
ory for the compressible Navier–Stokes equations. Although the simplified system
(1.1)–(1.2) contain additional structures rendering the solutions more regular than
those of the full Navier–Stokes system, we strive to employ techniques that can po-
tentially be extended to the full system. More specifically, our finite element meth-
ods are designed such that Hodge decompositions of the velocity, u = curl ξ + Dz,
can be achieved and described at the discrete level. This is important since then
a discrete equation for the effective viscous flux, (λ + µ) div u − p(%), can easily
be extracted from the numerical scheme. It is the properties of this quantity that
leads to strong convergence of the numerical density function; the major obstacle
to proving convergence of a numerical method. Formally, multiplying the equation
(1.2) with u, integrating by parts, and using the continuity equation multiplied
with 1

γ−1p′(%) one obtains the energy relation

d

dt

∫
Ω

p(%)
γ − 1

dx +
∫

Ω

µ|Du|2 + λ|div u|2 dx =
∫

Ω

fu dx.

A similar relation holds for our finite element methods, which reveals the rather
weak a priori estimates that are available to us. Indeed, it is now clear that a major
obstacle is to obtain enough compactness on the numerical density %h to conclude
that p(%h) ⇀ p(%); of course, this is equivalent to %h → % almost everywhere.
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The remaining part of this contribution is organized as follows: We collect
some preliminary material, including the notion of weak solutions, in Section 2.
In Section 3 we present a finite element method for the semi–stationary Stokes
system in primitive variables. We state a convergence result for this method and
comment on its proof. This method is fully developed and analyzed in [5]. In
Section 4, we present and analyze an alternative finite element method [4] for the
same system. This method is, however, restricted to the case of the Navier–slip
boundary condition (1.5). Finally, we conclude this contribution by presenting a
convergent finite element method for the Stokes approximation equations, which
generalizes the system (1.1)–(1.2) by adding an additional time derivative term ∂tu
to the equation for the velocity.

2. Preliminary material

Throughout the text we make frequent use of the divergence and curl operators
and denote these by div and curl, respectively. In the 2D case we denote both the
rotation operator taking scalars into vectors and the curl operator taking vectors
into scalars by curl. We make use of the spaces

W div,2(Ω) =
{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
,

W curl,2(Ω) =
{
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
,

where ν denotes the unit outward pointing normal vector on ∂Ω. If v ∈ W div,2(Ω)
satisfies v · ν|∂Ω = 0, we write v ∈ W div,2

0 (Ω). Similarly, v ∈ W curl,2
0 (Ω) means

v ∈ W div,2(Ω) and v × ν|∂Ω = 0. In two dimensions, w is a scalar function and
the space W curl,2

0 (Ω) is to be understood as W 1,2
0 (Ω). To define weak solutions, we

shall use the space

W =
{
v ∈ L2(Ω) : div v ∈ L2(Ω), curlv ∈ L2(Ω),v · ν|∂Ω = 0

}
,

which coincides with W div,2
0 (Ω) ∩W curl,2(Ω). The space W is equipped with the

norm ‖v‖2W = ‖v‖2L2(Ω) + ‖div v‖2L2(Ω) + ‖curlv‖2L2(Ω). It is known that ‖·‖W is
equivalent to the H1 norm on the space

{
v ∈ H1(Ω) : v · ν|∂Ω = 0

}
.

Next we introduce the notion of weak solutions.

Definition 2.1 (Weak solutions). A pair (%,u) of functions constitutes a weak
solution of the semi-stationary compressible Stokes system (1.1)–(1.2) with initial
data (1.3) provided that:

(1) (%,u) ∈ L∞(0, T ;Lγ(Ω))× L2(0, T ;W(Ω)),
(2) ∂t% + div(%u) = 0 in the weak sense, i.e, ∀φ ∈ C∞([0, T )× Ω),

(2.1)
∫ T

0

∫
Ω

% (φt + uDφ) dxdt +
∫

Ω

%0φ|t=0 dx = 0;

(3) −µ∆u−λD div u+Dp(%) = f in the weak sense, i.e, ∀φ ∈ C∞([0, T )×Ω)
for which φ · ν = 0 on (0, T )× ∂Ω,

(2.2)
∫ T

0

∫
Ω

µ curlu curlφ + [(µ + λ) div u− p(%)] div φ dxdt =
∫ T

0

∫
Ω

fφ dxdt,

Whenever the Dirichlet boundary condition (1.4) is part of the problem, we
require that u× ν = 0 on (0, T )× ∂Ω in (1) and moreover that (2.2) holds for test
functions satisfying φ = 0 on (0, T )× ∂Ω.
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3. A non–conforming finite element method

Following [5], in this section we present a finite element method for the system
(1.1)–(1.2) appropriate for both the Dirichlet boundary condition (1.4) and the
Navier–slip boundary condition (1.5).

For discretization of the velocity we will use the Crouzeix–Raviart element
space. Consequently, the finite element method is non–conforming in the sense that
the velocity approximation space is not a subspace of the corresponding continuous
space, W 1,2(Ω). Moreover, we will use a non–standard finite element formulation.
More precisely, the formulation implicitly use the identity

(3.1)
∫

Ω

DuDv dx =
∫

Ω

curlu curlv + div u div v dx,

valid for all u ∈ W(Ω) satisfying any of the two boundary conditions (1.5) and (1.4).
However, as the method is non–conforming, this identity does not hold discretely
(as a sum over elements). Still, at the discrete level, the form on the right-hand side
of (3.1) is used. In contrast to the standard situation where the form on the left–
hand side of (3.1) is used, this discretization does not converge unless additional
terms controlling the discontinuities of the velocity are added [1]:

∑
Γ∈Γh

1
|Γ|

∫
Γ

Ju · νKΓJv · νKΓ + Ju× νKΓJv × νKΓ dS(x),

where Γh is the set of faces and J·KΓ denotes the jump over the edge Γ.
The advantage with this formulation is that it enables Hodge decompositions

of the numerical velocity field. By writing u = curl ξ + Dz the Laplace operator
can be split into a curl part and a divergence part plus certain jump terms. This
is very convenient in the convergence analysis of the method. A discrete equation
for the effective viscous flux can then be easily obtained. The reader is encouraged
to consult [5] for the details

Given a time step ∆t > 0, we discretize the time interval [0, T ] in terms of the
points tm = m∆t, m = 0, . . . ,M , where we assume that M∆t = T . Regarding the
spatial discretization, we let {Eh}h be a shape regular family of tetrahedral meshes
of Ω, where h is the maximal diameter. It will be a standing assumption that h and
∆t are related such that ∆t = ch, for some constant c. For each h, let Γh denote
the set of faces in Eh.

We need to introduce some additional notation for discontinuous Galerkin
schemes. Concerning the boundary ∂E of an element E, we write f+ for the
trace of the function f achieved from within the element E and f− for the trace
of f achieved from outside E. Concerning an edge Γ that is shared between two
elements E− and E+, we will write f+ for the trace of f achieved from within E+

and f− for the trace of f achieved from within E−. Here E− and E+ are defined
such that ν points from E− to E+, where ν is fixed (throughout) as one of the
two possible normal components on each edge Γ throughout the discretization. We
also write JfKΓ = f+ − f− for the jump of f across the edge Γ, while forward
time-differencing of f is denoted by JfmK = fm+1 − fm and dh

t [fm] = JfmK
∆t .

We will approximate the density in the space of piecewise constants on Eh and
we denote this space by Qh(Ω). For approximation of the velocity we will use the
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Crouzeix–Raviart [2] element space

Vh(Ω) =
{

vh;vh|E ∈ PN
1 (E), ∀E ∈ Eh,

∫
Γ

JvhK dS(x) = 0, ∀Γ ∈ Γh

}
.

To incorporate boundary conditions, we let degrees of freedom of Vh(Ω) vanish at
the boundary. That is, for Navier boundary condition (1.5) we require∫

Γ

vh · ν dS(x) = 0, ∀Γ ∈ Γh ∩ ∂Ω, ∀vh ∈ Vh,

and for the Dirichlet boundary condition (1.4),∫
Γ

vh dS(x) = 0, ∀Γ ∈ Γh ∩ ∂Ω, ∀vh ∈ Vh.

To the space Vh(Ω) we associate the semi–norm

|vh|2Vh(Ω) = ‖ curlh vh‖2L2(Ω) + ‖divh vh‖2L2(Ω)

+
hε

|Γ|
∑

Γ∈Γh

‖Jvh · νK‖2L2(Γ) + ‖Jvh × νK‖2L2(Γ),

and the corresponding norm

‖vh‖2Vh(Ω) = ‖vh‖2L2(Ω) + |vh|2Vh(Ω).

Here, curlh and divh denotes the curl and divergence operators, respectively, taken
inside each element. The scaling parameter ε > 0 is required to prove convergence
of the finite element method. The size of ε will affect the accuracy of the method
and it should therefore be fixed very small in practical computations [5].

Before stating the finite element method, we recall from [5] the following basic
compactness result for approximations in Vh(Ω).

Lemma 3.1. There exists a constant C > 0, depending only on the shape regu-
larity of Eh and the size of Ω, such that for any ξ ∈ R2

‖vh(·)− vh(· − ξ)‖L2(Ω) ≤ C|ξ| 12− ε
4 |vh|Vh(Ω), ∀vh ∈ Vh(Ω),

and ‖vh‖L2(Ω) ≤ C|vh|Vh(Ω), ∀vh ∈ Vh(Ω).

Definition 3.2 (Finite element method). Let
{
%0

h(x)
}

h>0
be a sequence (of

piecewise constant functions) in Qh(Ω) that satisfies %0
h > 0 for each fixed h > 0 and

%0
h → %0 a.e. in Ω and in L1(Ω) as h → 0. Set fh := ΠQ

h f , where it is understood
that ΠQ

h f projects f(t, x) onto constants both in time t and space x; for notational
convenience we set fm

h := fh(tm, ·) ∈ Qh(Ω) for any m = 0, . . . ,M .
Now, determine functions (%m

h ,um
h ) ∈ Qh(Ω)×Vh(Ω), m = 1, . . . ,M , such that

for all φh ∈ Qh(Ω),

∫
Ω

dh
t [%m

h ]φh dx−∆t
∑

Γ∈Γh

∫
Γ

(
%m
− (um

h · ν)+ + %m
+ (um

h · ν)−
)
JφhKΓ dS(x) = 0.

(3.2)

and for all vh ∈ Vh(Ω),∫
Ω

µ curlh um
h curlh vh + [(µ + λ) divh um

h − p(%m
h )] divh vh dx

+
∑

Γ∈Γh

hε

|Γ|

∫
Γ

Jum
h · νKJvh · νK + Jum

h × νKJvh × νK dS(x) =
∫

Ω

fm
h vh dx,

(3.3)
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In (3.2), (uh · ν)+(x) = max
{

1
|Γ|

∫
Γ

uh · ν dS(x), 0
}

and

(uh · ν)−(x) = min
{

1
|Γ|

∫
Γ

uh · ν dS(x), 0
}

for x ∈ Γ and all Γ ∈ Γh.

The existence of a solution to the discrete equations (3.2)–(3.3) is proved in
[5] by using a topological degree argument. In [5] it is also shown that the scheme
preserves the total mass and that the density remains strictly positive provided
that the initial density is strictly positive. Moreover, for any m = 1, . . . ,M ,∫

Ω

P (%m
h ) dx + C

m∑
k=1

∆t‖uk
h‖2Vh(Ω)

+
m∑

k=1

∫
Ω

P ′′(%k
††)J%

k−1
h K2 dx +

m∑
k=1

∑
Γ∈Γh

∆t

∫
Γ

P ′′(%k
† )J%

k
hK2Γ|uk

h · ν| dx

≤
∫

Ω

P (%0) dx +
1

4C

m∑
k=1

∆t‖fk
h‖2L2(Ω),

where P (%) = p(%)
γ−1 if γ > 1 and P (%) = % log % if γ = 1. Moreover, %k

†† ∈ [%k−1
h , %k

h]
and %k

† ∈ [%k
+, %k

−].
Next, for each fixed h > 0, we extend the numerical solution {(%m

h ,um
h )}M

m=0
to the whole of (0, T )× Ω by setting

(3.4) (%h,uh)(t) = (%m
h ,um

h ), t ∈ (tm−1, tm), m = 1, . . . ,M.

In addition, we set %h(0) = %0
h.

The main result of [5] is that the approximate solutions (3.4) converge to a
weak solution of the semi–stationary Stokes system (1.1)–(1.2).

Theorem 3.3. Suppose f ∈ L2((0, T ) × Ω) and %0 ∈ Lγ(Ω), if γ > 1, and
%0 log %0 ∈ L1(Ω), if γ = 1. Let {(%h,uh)}h>0 be a sequence of numerical solutions
constructed according to (3.4) and Definition 3.2. Then, passing if necessary to a
subsequence as h → 0, uh ⇀ u in L2(0, T ;L2(Ω)), %huh ⇀ %u in the sense of
distributions on (0, T ) × Ω, and %h → % a.e. in (0, T ) × Ω, where the limit pair
(%,u) is a weak solution as stated in Definition 2.1.

Comments on the proof of Theorem 3.3. In proving convergence to a weak
solution of the continuity equation (1.1) the main step is to obtain convergence of
the product %huh ⇀ %u in the sense of distributions; this follows from an Aubin–
Lions argument using the spatial compactness of the velocity established in Lemma
4.1 combined with the fact that dh

t [%h] ∈b L1(0, T ;W−1,1(Ω)).
To conclude convergence to a weak solution of the velocity equation (1.2), we

need a higher integrability estimate for the numerical density. We achieve this
by utilizing test functions vh ∈ Vh(Ω) satisfying div vh = p(%h), thereby obtain-
ing p(%h) ∈b L2(0, T ;L2(Ω)). Next, we establish strong convergence of the den-
sity. This is obtained by first proving weak sequential continuity of the effective
viscous flux. That is, first we establish that limh→0 [(λ + µ) div uh − p(%h)] %h =
(µ + λ) div u− p(%)%, where the overbar denotes the weak limit. In this step, the
div–curl structure of the scheme is utilized. In particular, we employ test functions
vh ∈ Vh(Ω) that satisfies div vh = %h and curl vh = 0 on elements away from the
boundary. Finally, using this and a renormalized version of the continuity scheme
(3.2), we obtain strong convergence of the density.
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4. A mixed finite element method

Following [4], we present an alternative finite element method appropriate for
the Navier–slip boundary condition (1.5). The method is derived by introducing
the vorticity w = curl u as an auxiliary variable and recasting (1.2) as

µ curlw − (λ + µ)D div u + Dp(%) = f ,

where also the identity −∆ = curl curl−D div is used. This leads naturally to the
following mixed formulation: Determine functions

(w,u) ∈ L2(0, T ;W curl,2
0 (Ω))× L2(0, T ;W div,2

0 (Ω))

such that∫ T

0

∫
Ω

µ curlwv + [(µ + λ) div u− p(%)] div v dxdt =
∫ T

0

∫
Ω

fv dxdt,∫ T

0

∫
Ω

wη − curlηu dxdt = 0,

(4.1)

for all (η, v) ∈ L2(0, T ;W curl,2
0 (Ω)) × L2(0, T ;W div,2

0 (Ω)). We make clear that if
(%,w,u) is a triple satisfying (2.1) and (4.1), then the pair (%,u) is also a weak
solution according to Definition 2.1.

To obtain a stable numerical method, the mixed finite element formulation of
(4.1) is posed with the velocity vh in a div–conforming space Vh(Ω) ⊂ W div,2

0 (Ω)
and vorticity wh in a curl–conforming space Wh(Ω) ⊂ W curl,2

0 (Ω). There exists
several such spaces, however here we will use the Nedelec spaces of first order
and first kind. We choose these spaces for their simplicity and since the most
natural choice of approximation space for the density is then the space of piecewise
constants. We will continue to denote this space by Qh(Ω).

This choice of finite element spaces is also very convenient since they can be
related through the exact de Rham sequence

0 ⊂−−−−→ Sh
grad−−−−→ Wh

curl−−−−→ Vh
div−−−−→ Qh −−−−→ 0.

Thus, we can use spaces orthogonal to the range of the previous operator, i.e.,

W 0,⊥
h := {wh ∈ Wh; curlwh = 0}⊥ ∩Wh, V 0,⊥

h := {vh ∈ Vh; div vh = 0}⊥ ∩Vh,

to deduce the decompositions

Wh = DSh + W 0,⊥
h , Vh = curl Wh + V 0,⊥

h ,

together with the discrete Poincaré inequalities

‖vh‖L2(Ω) ≤ C ‖div vh‖L2(Ω) , ‖wh‖L2(Ω) ≤ C ‖curlwh‖L2(Ω) ,

Consequently, as with the previous method, the mixed finite element method also
admits Hodge decompositions, which in turn implies that a discrete equation for
the effective viscous flux can be derived.

We need the following compactness property of the space V 0,⊥
h . The proof is

given in [4, Appendix A].

Lemma 4.1. Let {vh}h>0 be a sequence in V 0,⊥
h such that ‖div vh‖L2(Ω) ≤ C,

where the constant C > 0 is independent of h. Then, for any ξ ∈ RN ,

‖vh(x)− vh(x− ξ)‖L2(Ω) ≤ C(|ξ|
4−N

2 + |ξ|2) 1
2 ‖div vh‖L2(Ω),

where the constant C > 0 is independent of both h and ξ.
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Definition 4.2 (Mixed finite element method). Let %0
h and fm

h be as given in
Definition 3.2. Determine functions

(%m
h ,wm

h ,um
h ) ∈ Qh(Ω)×Wh(Ω)× Vh(Ω), m = 1, . . . ,M,

such that for all φh ∈ Qh(Ω),

∫
Ω

dh
t [%m

h ]φh dx−∆t
∑

Γ∈Γh

∫
Γ

(
%m
− (um

h · ν)+ + %m
+ (um

h · ν)−
)
[φh]Γ dS(x) = 0,

(4.2)

and for all (ηh,vh) ∈ Wh(Ω)× Vh(Ω),∫
Ω

µ curlwm
h vh + [(µ + λ) div um

h − p(%m
h )] div vh dx =

∫
Ω

fm
h vh dx,∫

Ω

wm
h ηh − um

h curlηh dx = 0.

(4.3)

In (4.2), (uh · ν)+ = max{uh · ν, 0} and (uh · ν)− = min{uh · ν, 0}.

The existence of a solution to the discrete equations (4.2)–(4.3) is proved in
[4]. Moreover, for any m = 1, . . . ,M ,∫

Ω

P (%m
h ) dx +

m∑
k=1

∆t‖uk
h‖2W div,2(Ω) +

m∑
k=1

∆t‖wk
h‖2W curl,2(Ω)

+
m∑

k=1

∫
Ω

P ′′(%k
††)J%

k−1
h K2 dx +

m∑
k=1

∑
Γ∈Γh

∆t

∫
Γ

P ′′(%k
† )J%

k
hK2Γ|uk

h · ν| dx

≤
∫

Ω

P (%0) dx + C
m∑

k=1

∆t‖fk
h‖2L2(Ω),

where %k
†† ∈ [%k−1

h , %k
h] and %k

† ∈ [%k
+, %k

−].
For each fixed h > 0, the numerical solution {(%m

h ,wm
h ,um

h )}M
m=0 is extended

to the whole of (0, T )× Ω by setting

(4.4) (%h,wh,uh)(t) = (%m
h ,wm

h ,um
h ), t ∈ (tm−1, tm), m = 1, . . . ,M.

In addition, we set %h(0) = %0
h. The main result in [4] is that the sequence

{%h,wh,uh}h>0 converges to a weak solution in the sense of Definition 2.1.

Theorem 4.3. Suppose f ∈ L2((0, T ) × Ω), %0 ∈ Lγ(Ω) if γ > 1, and
%0 log %0 ∈ L1(Ω) if γ = 1. Let {(%h,wh,uh)}h>0 be a sequence of numerical
solutions constructed according to (4.4) and Definition 4.2. Then, passing if nec-
essary to a subsequence as h → 0, wh ⇀ w in L2(0, T ;W curl,2

0 (Ω)), uh ⇀ u in
L2(0, T ;W div,2

0 (Ω)), %huh ⇀ %u in the sense of distributions on (0, T ) × Ω, and
%h → % a.e. in (0, T )× Ω, where the limit triplet (%,w,u) satisfies the mixed form
(4.1), and consequently (%,u) is a weak solution as stated in Definition 2.1.

Comments on the proof of Theorem 4.3. The proof of convergence to a weak
solution of the continuity equation (1.1) is similar to the corresponding step in
the proof of Theorem 3.3. The difference is that the compactness of the velocity
approximation now requires a different argument. In particular, Lemma 4.1 must
be employed. The proof of convergence to a weak solution of the velocity equation
(1.2) is also similar to the proof of Theorem 3.3. However, a difference is that
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the weak sequential continuity of the effective viscous flux can now be obtained by
using test functions in V 0,⊥

h (Ω) satisfying div vh = %h. Strong convergence of the
density is then obtained as in the proof of Theorem 3.3.

5. Extension to the Stokes approximation equations.

In this final section we present an extension of the previous finite element
method to the following system

∂t% + div(%u) = 0, in (0, T )× Ω(5.1)

%∂tu− µ∆u− λD div u + Dp(%) = 0, in (0, T )× Ω,(5.2)

where % = 1
|Ω|

∫
Ω

%0 dx denotes the average initial density. The equations (5.1)–(5.2)
is known in the literature as the Stokes approximation equations. The system is
almost identical to the compressible Stokes system (1.1)–(1.2), the difference being
the inclusion of the time derivative term in (5.2).

The finite element method is similar to the mixed method of Section 4, and
as such it is only applicable to the case of Navier–slip boundary conditions (1.5).
Furthermore, for technical reasons, convergence is proved only in the case γ > N

2 .
The method is constructed and analyzed in [6].

Definition 5.1 (Numerical scheme). Let %0
h be as given in Definition 3.2.

Determine functions

(%m
h ,wm

h ,um
h ) ∈ Qh(Ω)×Wh(Ω)× Vh(Ω), m = 1, . . . ,M,

such that for all φh ∈ Qh(Ω),

∫
Ω

dh
t [%m

h ]φh dx−∆t
∑

Γ∈Γh

∫
Γ

(
%m
− (um

h · ν)+ + %m
+ (um

h · ν)−
)
JφhKΓ dS(x) = 0,

(5.3)

and for all (ηh,vh) ∈ Wh(Ω)× Vh(Ω),∫
Ω

dh
t [um

h ]vh + µ curlwm
h vh + [(µ + λ) div um

h − p(%m
h )] div vh dx = 0,∫

Ω

wm
h ηh − um

h curlηh dx = 0,
(5.4)

for m = 1, . . . ,M .

Existence of a numerical solution and various properties of these solutions hold
as in the previous section with only minor modifications. We extend {%k

h,wk
h,uk

h}h>0

for k = 1, . . . ,M to functions {(%h,wh,uh)}h>0 defined on all of (0, T ) × Ω as in
(4.4). The main result in [6] is that the sequence {(%h,wh,uh)}h>0 converges to a
weak solution of the Stokes approximation equations (5.1)–(5.2). The notion of a
weak solution is similar to that in Definition 2.1.

Theorem 5.2. Suppose γ > N
2 and %0 ∈ Lγ(Ω) . Let {(%h,wh,uh)}h>0 be

a sequence of numerical solutions constructed according to Definition 5.1. Then,
passing if necessary to a subsequence as h → 0, wh ⇀ w in L2(0, T ;W curl,2

0 (Ω)),
uh ⇀ u in L2(0, T ;W div,2

0 (Ω)), %huh ⇀ %u in the sense of distributions, and
%h → % a.e. in (0, T )×Ω, where the limit triplet (%,w,u) is a weak solution to the
Stokes approximation equations (5.1)–(5.2).
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Comments to the proof of Theorem 5.2. The proof of convergence is similar
to the proof of Theorem 3.3. However, the proof of higher integrability on the
density and the proof of weak sequential continuity of the effective viscous flux now
requires additional arguments in order to handle the time derivative in (5.4). In
particular, the continuity scheme (5.3) needs to be used to handle the term uvt,
where vt ∈ V 0,⊥(Ω) satisfies div vt = %t. For technical reasons, we must then
require γ > N

2 . Moreover, the higher integrability estimate for the density now
gives p(%h)%h ∈b L1(0, T ;L1(Ω)). In addition, in this case we need in fact strong
convergence of the velocity, uh → u. This is obtained through an Aubin–Lions
argument using the spatial compactness on the velocity together with weak control
of dh

t [uh]. Due to space limitations we refer the reader to [6] for details.
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