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Abstract

We study a 2×2 system of balance laws that describes the evolution of a granular material
(avalanche) flowing downhill. The original model was proposed by Hadeler and Kuttler [13].
The Cauchy problem for this system is studied by the authors in the recent papers [2, 16].

In this paper, we first consider an initial-boundary value problem. The boundary con-
dition is given by the flow of the incoming material. For this problem we prove the global
existence of BV solutions for a suitable class of data, with bounded by possibly large total
variations.

We then study the “slow erosion (or deposition) limit”. We show that, if the thickness
of the moving layer remains small, then the profile of the standing layer depends only on
the total mass of the avalanche flowing downhill, not on the time-law describing at which
rate the material slides down. More precisely, in the limit as the thickness of the moving
layer tends to zero, the slope of the mountain is provided by an entropy solution to a scalar
integro-differential conservation law.

1 Introduction and main results

We consider a model for the flow of granular material, such as sand or gravel, which was proposed
in [13]. The material is divided in two parts: a moving layer on top and a standing layer at the
bottom. We denote by h the thickness of the moving layer, and by u the height of the standing
layer. The normalized model in [13] takes the following form in space dimension ≤ 2,{

ht = div(h∇u)− (1− |∇u|)h ,
ut =

(
1− |∇u|)h .

Throughout the following, we study the case of one space dimension, and assume ux ≥ 0
(i.e., the slope of the mountain profile does not change sign). In terms of the variables h ≥ 0,
p
.= ux > 0 the system reads as{

ht − (hp)x = (p− 1)h ,
pt +

(
(p− 1)h

)
x

= 0 . (1.1)

According to (1.1), the moving layer slides downhill, with speed equal to the slope of the
standing layer. There is a critical slope, which in this normalized model is p = 1, with the

1



following property. If p > 1 then grains initially at rest are hit by rolling grains of the moving
layer and start moving as well. Hence the moving layer gets bigger. On the other hand, if p < 1,
grains which are rolling can be deposited on the bed. Hence the moving layer becomes smaller.

A simple calculation shows that this system is strictly hyperbolic on the domain

Ω = {(h, p) : h ≥ 0 , p > 0} ,

while at (h, p) = (0, 0) the two characteristic eigenvalues coincide. For a suitable class of initial
data, in [16] one of the authors established the global existence of smooth solutions. In the
recent work [2] we proved the global existence of large BV solutions to the Cauchy problem, for
a class of initial data with bounded but possibly large total variation.

The purpose of the present paper is to study the “slow erosion (or deposition) limit”, in the
following sense: we wish to describe how the mountain profile evolves when the thickness of
the moving layer approaches zero, but the total mass of sliding material remains positive and
bounded. We will show that if the thickness of the moving layer remains small, then the profile
of the standing layer depends only on the total mass of the avalanche flowing downhill, not on
the time-law describing at which rate the material slides down.

The result stated in this paper is best formulated in connection with an initial-boundary
value problem. Fix any point x̄ ∈ R. By a translation of coordinates, it is not restrictive to
assume x̄ = 0. On the domain R−

.= {x < 0}, consider the initial-boundary value problem for
(1.1), with initial data

h(0, x) = h̄(x) , p(0, x) = p̄(x) , x < 0 (1.2)

and boundary conditions at x = 0

p(t, 0)h(t, 0) = F (t) . (1.3)

Notice that here we are prescribing the incoming flux F (t) of granular material, through the
point x = 0. We shall assume that h̄, p̄ : R− 7→ R∗+

.= {x ≥ 0} are non-negative functions with
bounded variation, such that

Tot.Var.{h̄} ≤M , ‖h̄‖L1(R−) ≤M , (1.4)

and
Tot.Var.{p̄} ≤M , ‖p̄− 1‖L1(R−) ≤M , p̄(x) ≥ p0 > 0 , (1.5)

for some bounded positive constants M (possibly large) and p0, and also that

F (t) ≥ 0 , Tot.Var.{F} ≤M ,

∫ ∞
0

F (τ) dτ ≤M . (1.6)

Our first result is on the global existence of large BV solutions for the initial boundary value
problem, for sufficiently small ‖h̄‖L∞ and ‖F‖L∞ .

Theorem 1 (global existence for the initial-boundary value problem). Given M , p0 >
0, there exists δ > 0 such that the assumptions (1.4), (1.5) and (1.6), together with

‖h̄‖L∞ ≤ δ , ‖F‖L∞ ≤ δ (1.7)

imply that the initial-boundary value problem (1.1), (1.2), (1.3) has a global weak solution
(h, p)(t, ·), with uniformly bounded total variation for all t ≥ 0.
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For the definition of weak solution to problem (1.1)–(1.3), see Def. 1 in Sect. 2. Note that, since
(h, p)(t, ·) has bounded variation, the limit as x → 0 is well defined for all t. The boundary
condition (1.3) is here intended to be satisfied for all t > 0, except at most countably many.

Theorem 1 is similar to the main result in [2], where the global existence of large BV solution
was established for the Cauchy problem. This Theorem can therefore be proved in a similar
fashion as in [2], taking into additional account of the boundary effect. Here one must take care
of the reflecting waves and newly generated incoming waves at the boundary. Furthermore, since
the second characteristic speed is not bounded away from 0 (i.e., the speed of the boundary), one
must justify that the boundary condition is satisfied in the limit by the approximate solutions.

Note that the characteristic speeds λi satisfy λ1 < 0 ≤ λ2. This indicates that the char-
acteristics of the first family strictly enters the domain x < 0. Therefore, the scalar boundary
condition (1.3) is sufficient for this problem. See also [12, 14, 1, 3, 10, 17] for existence and
stability results in case of small BV data.

Our main interests in the present paper is to study the limiting behavior of the slope p(·),
when the above L∞ norms approach zero. This is of practical interest, because it describes how
the mountain profile evolves, when the granular material pours down at a very slow rate. We
thus consider a sequence of initial and boundary data, of the form

t = 0 , x < 0 : hν(0, x) = h̄ν(x), pν(0, x) = p̄(x)
x = 0 : pν(t, 0)hν(t, 0) = Fν(t) , (1.8)

with ‖h̄ν‖L∞ → 0 and ‖Fν‖L∞ → 0 as ν →∞, and assume that

0 < M ′ <

∫ ∞
0

Fν(τ) dτ ≤M (1.9)

for some positive constant M ′. Notice that for p we are always considering the same initial data.
To obtain a well defined limit, let us re-parametrize time in terms of the total amount of mass
flowing downstream across the point x = 0. This is achieved by setting

µν(t) =
∫ t

0
Fν(τ) dτ . (1.10)

The map t 7→ µν(t) is continuous and non-decreasing, hence it has a generalized inverse:

tν(µ) = min {τ ≥ 0 ; µν(τ) = µ} . (1.11)

Because of (1.6), the above mapping is well defined for µ ∈ [0,M ′]. Let now hν(t, x), pν(t, x) be
the solution of the initial-boundary value problems (1.1), (1.8) given by Theorem 1 and define

p̃ν(µ, x) .= pν(tν(µ), x) . (1.12)

In the above setting, our second main result reads

Theorem 2 (slow erosion/deposition limit). Consider a family of initial and boundary
data h̄ν , p̄, and Fν , satisfying (1.4), (1.5), (1.6) and (1.9) with the same constants M , M ′, p0

for every ν ∈ N. Assume that

‖h̄ν‖L∞ → 0 , ‖Fν‖L∞ → 0 as ν →∞ . (1.13)
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For every ν sufficiently large, let (hν , pν) be an entropy weak solutions of the initial-boundary
value problem (1.1), (1.8) as from Theorem 1.

Then the re-parametrized solutions p̃ν(µ, x), defined as in (1.10)–(1.12), converge to a limit
function p̃(µ, x) in the distance of L∞

(
[0,M ′] ; L1(R−)

)
. The function p̃ provides a weak entropy

solution to the scalar integro-differential conservation law

pµ +
(
p− 1
p
· exp

∫ 0

x

p(µ, y)− 1
p(µ, y)

dy

)
x

= 0 , (1.14)

with initial data
p̃(0, x) = p̄(x) x < 0 . (1.15)

Notice that for the initial-boundary value problem (1.14), (1.15) we are not specifying any
boundary condition at x = 0. This is appropriate, because the characteristic speed is non-
negative, and there is no incoming characteristic. Notice also that the initial data h̄ν play no
role in the limit. Indeed, h̄ν → 0 uniformly.

Intuitively, the formula (1.14) can be explained as follows. Consider a small amount of mass
∆µ pouring down initially from the point x = 0. Call ∆µ(t) the size of this small avalanche and
let x(t) be its location, at time t. These satisfy the equations

d

dt
∆µ(x(t)) = (p− 1) ∆µ ,

d

dt
x(t) = −p .

We assume here that the slope p of the mountain varies very slowly in time. Calling ∆µ(x) the
size of the avalanche when it reaches the point x < 0, from the above equations we obtain

∂

∂x
∆µ(x) =

dt

dx
· ∂
∂t

∆µ(x(t)) =
1

−p(x)
· (p(x)− 1)∆µ(x) .

Hence, solve this ODE for ∆µ(x), we get

∆µ(x) =
(

exp
∫ 0

x

p(y)− 1
p(y)

dy

)
∆µ(0) , x < 0 .

In turn, when this avalanche crosses the point x, it produces a change in the height of the
mountain (i.e., in the height of the standing layer u) measured by

∆u(x) =
(p− 1)∆µ(x)

−p
= −

(
p(x)− 1
p(x)

· exp
∫ 0

x

p(y)− 1
p(y)

dy

)
∆µ(0) .

This formally gives a partial derivative

∂u

∂µ
= −

(
p(x)− 1
p(x)

· exp
∫ 0

x

p(y)− 1
p(y)

dy

)
.

Differentiating the above equation w.r.t. x, and recalling p = ux, we formally obtain (1.14).

Since the main technicality in [2] is similar to the proof of Theorem 1 in the current paper,
we explain in some details of [2]. The system (1.1) is weakly linearly degenerate at the point
(h, p) = (0, 1). This means that the first characteristic field is genuinely nonlinear away from the

4



line p = 1, but linearly degenerate along p = 1; similarly the second field is genuinely nonlinear
away from the line h = 0, but linearly degenerate along h = 0.

Global existence of large BV solutions are established through global a priori bounds on the
total variations of approximate solutions, where the wave interaction estimates are crucial. By
measuring the wave strength in terms of the Riemann coordinates, sharper interaction estimates
can be achieved. In more detail, at an interaction let σ1 and σ2 be the strengths of the incoming
waves of family 1 and 2, respectively, and let σ′1 and σ′2 be the outgoing ones. One then has a
cubic interaction estimate of the form

|σ′1 − σ1|+ |σ′2 − σ2| = O(1) · |σ1| · |σ2| · (|σ1|+ |σ2|) . (1.16)

Assuming that the height of the moving layer h is sufficiently small, (1.16) can be much improved.
Recall that the system is linearly degenerate along the straight line h = 0. In the region where
h > 0 is very small, the second field of the system is “almost-Temple class”. Rarefaction curve
and shock curve through the same point are very close to each other. More precisely, let Uo be
a point on the rarefaction curve of the second family through the point U = (h, p). Then, there
exists a point U∗ on the 2-shock curve through U , which is very close to Uo, such that

|U∗ − Uo| = O(1) · h2.

This allows us to replace the estimate (1.16) with

|σ′1 − σ1|+ |σ′2 − σ2| = O(1) · |σ1| · |σ2| · ‖h‖L∞ . (1.17)

Besides (1.17), interaction estimates of waves from the same family are also improved as follows.
If two 2-waves of strength σ2 and σ̃2 interact, then the strengths σ+

1 and σ+
2 of the outgoing

waves satisfy
|σ+

1 |+
∣∣σ+

2 − (σ2 + σ̃2)
∣∣ = O(1) · hl · |σ2 σ̃2| . (1.18)

If two 1-waves of size σ1 and σ̃1 interact, then the strengths σ+
1 and σ+

2 of the outgoing waves
satisfy ∣∣σ+

1 − (σ1 + σ̃1)
∣∣+ |σ+

2 | = O(1) · |pl − 1| (|σ1|+ |σ̃1|) · |σ1 σ̃1| . (1.19)

Here hl and pl denote the left state of interaction. Since |σ1|+|σ̃1| is of order ‖h‖L∞ , we note that
all three estimates (1.17)–(1.19) contain an additional factor ‖h‖L∞ , which is arbitrary small.
Therefore we can assume that the total strength of all new waves produced by interactions is
as small as we like. In essence, the change in the total variation is thus determined only by the
source terms.

Furthermore, the source term involves the quadratic form h(p−1). Here the quantities h and
p− 1 have large, but bounded L1 norms. Moreover, they are transported with strictly different
speeds. The total strength of the source term is thus expected to be O(1) · ‖h‖L1 · ‖p − 1‖L1 .
In addition, since h itself is a factor in the source term, one can obtain a uniform bound on the
norm ‖h‖L∞ , valid for all times t ≥ 0. By choosing weights which take into account the mass
to be crossed in future, one can define suitable weighted functionals that are non-increasing in
time, achieving the desired estimates, which lead to the global existence of large BV solutions.

The remainder of the paper is organized as follows. In Section 2 we prove the boundary
estimates. These are used in the proof of Theorem 1, the global existence of large BV solutions
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for the initial boundary value problems, which is worked out in Section 3. In Section 4 we prove
Theorem 2, showing that the slow erosion limit leads to a scalar integro-differential equation.

Besides the paper [13], we refer to [5], [11], [15] for other models of granular flow. Other
examples of conservation laws with non-local flux can be found in [8] and references therein.

2 Boundary estimates

Writing the system of balance laws (1.1) in quasilinear form, the corresponding Jacobian matrix
is

A(h, p) =
(
−p −h
p− 1 h

)
. (2.1)

In the domain Ω where h ≥ 0 and p > 0, the system is strictly hyperbolic with two real distinct
eigenvalues λ1 < λ2, namely

λ1,2 =
1
2

[
h− p±

√
(p− h)2 + 4h

]
.

The corresponding eigenvectors have the form

r1(h, p) =

 1

−λ1 + 1
λ1

 , r2(h, p) =

 − λ2

λ2 + 1

1

 , (2.2)

and the directional derivatives are

r1 • λ1 = − 2(λ1 + 1)
λ2 − λ1

∼ 2(p− 1)
p

, r2 • λ2 = − 2λ2

λ2 − λ1
∼ − 2

h

p2

as h → 0. We see that the first characteristic field is genuinely nonlinear away from the line
p = 1 and the second field is genuinely nonlinear away from the line h = 0. So the system is
weakly linearly degenerate at the point (h, p) = (0, 1).

We give now the definition of weak solution of the initial-boundary value problem (1.1)–(1.3),
with initial data (h̄, p̄) ∈ BV (R−) and boundary data F ∈ BV (R+).

Definition 1 We say that (h, p) : [0,∞)× (−∞, 0)→ R2 is a weak solution to (1.1)–(1.3) if

(i) the map t 7→ (h, p)(t, ·) ∈ L1
loc(R−) is continuous, and satisfies (1.2) at t = 0;

(ii) (h, p) satisfies (1.1) in the sense of distibutions on the domain {(t, x) : t > 0, x < 0};

(iii) for all t > 0 except at most countably many, one has that

lim
x→0−

h(t, x)p(t, x) = F (t) .

Approximate solutions to the initial-boundary value problem (1.1)–(1.3) are defined through
an operator splitting method. Fix a time step ∆t ≥ 0 and consider the sequence of times
tk = k∆t. Let (h∆, p∆) be an approximate solution, constructed as follows. Boundary condi-
tion is approximated by piecewise constant inflow flux F on every interval (tk−1, tk). On each
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subinterval [tk−1 , tk[ the functions (h∆, p∆) provide an approximate solution to the system of
conservation laws {

ht − (hp)x = 0 ,
pt +

(
(p− 1)h

)
x

= 0 , (2.3)

constructed by a wave-front tracking algorithm [6, 4, 7] for 2 × 2 systems. Moreover, in order
to account for the source term, at each time tk the functions are redefined in the following time
step {

h∆(tk) = h∆(tk−) + ∆t
[
p∆(tk−)− 1

]
h∆(tk−) ,

p∆(tk) = p∆(tk−) .
(2.4)

As in [2], we introduce Riemann coordinates for this system and use them to measure the
wave strengths. Given a point (h, p) ∈ R+×R+ , let (H, 0) be the point on the h-axis connected
with (h, p) by a 2-characteristic curve, and let (0, P ) be the point on the p-axis connected to
(h, p) by a 1-characteristic curve. Then the functions (H,P ) form a coordinate systems of
Riemann invariants of the point (h, p). The wave strengths are measured by the jumps between
the corresponding Riemann coordinates of the left and right states (H for the 1st family and P
for the 2nd).

In the remainder of this section we study how the strength of waves changes at the boundary
x = 0 when waves are reflected or generated for the boundary value problem.

Note that the boundary condition (1.3) assigns a data to the flux of the first equation in
(1.1), which satisfies

∇(hp) · r1(h, p) 6= 0

on Ω. This is an injectivity condition that is usually required for non-characteristic boundary
value problems (see for instance [12]). In fact, it is used for having the unique solvability of the
boundary Riemann problem and Lipschitz dependence on the boundary data, see the Lemma
below.

Lemma 1 (Boundary estimates).
(i) At a time τ where the flux F has a jump, a front of the first family is created. Its strength
|σ+
h | satisfies

|σ+
h | = O(1) · |F (τ+)− F (τ−)| . (2.5)

(ii) At a time τ where a p-front of strength σp hits the boundary at x = 0, a new reflected front
of the first family is created. Calling hl the state to the left of the jump σp and σ+

h the size of
the new jump, one has the estimate

|σ+
h | = O(1) · hl |σp| . (2.6)

(iii) At each time tk where the inductive step (2.4) is performed, a new h-wave σ+
h is created at

x = 0. Calling (h, p) the state before the time step, one has the estimate

|σ+
h | = O(1) ·∆t · h · |p− 1| . (2.7)

Note that all the estimates in Lemma 1 contain either the factor ‖h‖L∞ or ‖F‖L∞ , which
are both bounded by δ. This means the reflecting waves and the newly generated waves at the
boundary are both arbitrary small.
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Proof. Denote by ϕ the flux function hp. Consider a h-rarefaction curve; we see that ϕ = hp
is monotone along this curve; indeed, recalling (2.1) and (2.2), one has

∇(h,p)ϕ · r1 = −λ1 ,

which is positive for all (h, p) ∈ Ω.
Consider now a h-shock curve (h, p(h)) through (ho, po). By Rankine-Hugoniot conditions,

we have
−(hp− hopo) = s(h− ho), (hp− hopo)− (h− ho) = s(p− po) .

By simple computation we obtain the shock curve of the 1st family with left state (ho, po),
parametrized by h,

p(h) = po −
s1 + 1
s1

(h− h0) , s1 = λ1(h, po) .

Computing the flux along this shock curve, we get

ϕ(h, p(h)) = hp(h) = hopo − λ1(h, po)(h− ho) .

Then, the change of flux along this shock curve is

d

dh
ϕ = −∂hλ1(h, po) · (h− ho)− λ1(h, po) .

We claim that d
dhϕ > 0. Indeed, if po > 1, then h < ho and the quantity ∂hλ1 is positive, so we

have

d

dh
ϕ ≥ −λ1(h, po) > 0 . (2.8)

Otherwise, if po < 1, then h > ho and ∂hλ1(h, po) < 0, so that (2.8) still holds. Finally, if po = 1
then p = 1 is the shock curve, and d

dhϕ = 1 > 0 is obvious.
We conclude that ϕ is monotone along h-shock/rarefaction curve. Then, by continuity and

the fact that ∂Hh > 0, one can use ϕ to parameterize the h-shock/rarefaction curve, and this
change of parameterization (w.r.t. the parametrization by H) is locally bi-Lipschitz. Moreover,
ϕ ranges from 0 to +∞ along a h-shock/rarefaction curve.
(i) Since wave strength is measured in Riemann coordinate, (2.5) follows from the equivalence
of two parameterizations, between H and ϕ.
(ii) The strength of the reflected h-wave is a function of hl and σp, denote it as σ+

h
.= Φ(hl, σp).

We claim this mapping is well-defined for hl ≥ 0. Indeed, if hl = 0, we obviously have Φ(0, σp) =
0. If hl > 0, let (hl, pl) and (hr, pr) be the state on the left and right (respectively) of the incoming
p-wave, and let (hl, pl) and (h+

r , p
+
r ) be those for the reflected h-wave. Since the flux is continuous

along the boundary, we have ϕ(hr, pr) = ϕ(h+
r , p

+
r ). Then along the h-shock/rarefaction curve

issued at (hl, pl), there is a unique state (h+
r , p

+
r ) such that ϕ(h+

r , p
+
r ) = ϕ(hr, pr). So the

mapping Φ(hl, σp) is well-defined. We also have Φ(hl, 0) = 0. By the continuity of the mapping
Φ and the obvious identity Φ(0, σp) = 0, we get (2.6).
(iii) Let (h, p), (h+, p+) be the state before and after the time step (2.4), respectively. From
(2.4) we have h+ = h (1 + ∆t(p− 1)) and p+ = p. The strength of the new h-wave is a function
of h, p, h+. Let’s denote it again by σ+

h
.= Φ(h, h+; p). Again this mapping is well-defined and

continuous. By the identity Φ(h, h; p) = 0 we get σ+
h = O(1)(h+ − h) = O(1)∆t h (p − 1) and

hence (2.7).
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3 Global existence of large BV solutions for the initial boundary
value problem; Proof of Theorem 1

In this section we study the global existence of solutions to the initial-boundary value problem
for the system (1.1) on the half line {x < 0}, with initial data (1.2) at t = 0, and boundary data
(1.3) at x = 0, proving Theorem 1.

We remark that as long as p remains strictly positive, the characteristic speeds satisfy λ1 <
0 ≤ λ2, therefore the problem is locally well posed.

The main steps in the proof of Theorem 1 are very similar to those for Theorem 1 in [2].
We approximate the initial data and the boundary data with piecewise constant functions. The
flux on the boundary is approximated by a piecewise constant function, constant on the time
interval (tk−1, tk). On the time intervals (tk−1, tk) an approximate solution of the conservation
laws (2.3) is constructed by front tracking, with constant flow at the boundary x = 0. At time
t = tk the solution is updated by means of (2.4).

The following global a priori estimates will be derived for the approximate solutions:

• the norms ‖h(t, ·)‖L1 and ‖p(t, ·)− 1‖L1 ;

• the lower bound on p, i.e., the quantity infx p(t, x) ;

• the uniform bounds on h and p, i.e., the quantities ‖h(t, ·)‖L∞ and ‖p(t, ·)‖L∞ ;

• the total variations Tot.Var.{h(t, ·)} and Tot.Var.{p(t, ·)} .

These will be established in Sections 3.1-3.4. At the end, we will put them together in Section
3.5 to prove Theorem 1. Since the proof is an extension of that in [2], we will make it rather
brief, describing mainly the needed modifications.

3.1 The L1 bound on p(t, ·)− 1 and h(t, ·).

This estimate follows the one in Section 4.1 in [2]. By the second conservation equation, the
estimate

‖p(t, ·)− 1‖L1(R−) ≤ ‖p̄− 1‖L1(R−) for all t ≥ 0 (3.1)

remains valid. To estimate the L1 norm of h(t, ·), we define the weight W ,

W (t, x) .= exp
{∫ x

−∞
|p(t, y)− 1| dy

}
= exp

{∫ x

−∞
|q(t, y)| dy

}
. (3.2)

This weight accounts for the mass of (p− 1) to be encountered at the point x. Note that, using
the second equation in (1.1), the Lipschitz function W satisfies the inequality

Wt + hWx ≤ 0 , (3.3)

and the following inequality holds in the sense of distributions

(Wh)t − (Whp)x ≤ 0 . (3.4)

Now define the weighted functional

Îh(t) .=
∫ 0

−∞
W (t, x)h(t, x) dx+

∫ ∞
t

W (τ, 0)F (τ) dτ .
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From (3.4) we get that

d

dt
Îh(t) =

d

dt

(∫ 0

−∞
W (t, x)h(t, x) dx

)
− W (t, 0)F (t)

≤ (Wph) (t, 0) − W (t, 0)F (t) = 0 ,

hence the above functional Îh is non-increasing in time. Therefore, using also (3.1), we have the
following a priori estimate

‖h(t, ·)‖L1 ≤ exp {‖p̄− 1‖L1} ·
(
‖h̄‖L1 + ‖F‖L1

)
. (3.5)

3.2 The lower bound on p and the L∞ bounds on h and p.

These estimates can be derived in a similar way as in Section 4.2 and 4.3 in [2]. We first
observe that, if all wave strengths are measured in terms of Riemann coordinates, then all the
interaction estimates (1.17)–(1.19) and the boundary estimates (2.5)–(2.7) contain the additional
factor ‖h‖L∞ . Therefore, if the norm ‖h‖L∞ remains sufficiently small, we can assume that the
total strength of all new waves produced by interactions is as small as we like. In essence, the
change in the total variation and in the L∞ norms of h, p is thus determined only by the source
term in the first equation (1.1).

To achieve a lower bound on p, we define

Pinf(t)
.= ess- inf

x
P (t, x) .

For any smooth solutions of (1.1), ignore interaction effects, and consider a 2-characteristic, say
t 7→ x2(t), with ẋ2(t) = λ2(t) ≥ 0. Since the 2-characteristics go out of the domain at x = 0,
the boundary condition plays no role here. Then we have

d

dt
P (t, x2(t)) =

∂P

∂h
· (p− 1)h ≥ 0 .

Indeed, the geometry of the wave curves implies ∂P/∂h < 0 when p < 1 and ∂P/∂h > 0 when
p > 1. This shows that the quantity Pinf is non-decreasing in time if the solution is smooth.

For the bound on the L∞ norm and the total variation of the solution, we define the weight
V h

V h(t, x) .= exp
(
κ1 ·

∫ x

−∞
|p(t, y)− 1| dy

)
= W (t, x)κ1 , (3.6)

and the weight V̂ p

V̂ p(t, x) .= exp
(
κ2 ·

∫ 0

x
W (t, y)h(t, y) dy + κ2 ·

∫ ∞
t

W (τ, 0)F (τ) dτ
)
. (3.7)

From the analysis in Section 3.1, the quantities V h, V̂ p are a priori bounded. The estimate for
‖h(t, ·)‖∞ follows in a similar way as in [2, Section 4.3], provided that the constant κ1 is chosen
large enough. For the bound on the quantity ‖p(t, ·)‖∞, note that by (3.4) we have

d

dt

(∫ 0

x(t)
W (t, y)h(t, y) dy +

∫ ∞
t

W (τ, 0)F (τ) dτ

)
≤
(
Whp(t, 0)−Whp(t, x)

)
− Wh(t, x)ẋ−W (t, 0)hp(t, 0)
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and hence

d

dt
V̂ p(t, x(t)) ≤ −κ2V̂

pW h (p+ ẋ) . (3.8)

Therefore, along a 2-characteristics x2(t), and for κ2 large enough, one has

d

dt

(
V̂ pP

)
(t, x2(t)) ≤ −κ2V̂

p · (p+ λ2) ·W h · P + V̂ p · ∂P
∂h

(p− 1)h ≤ 0 .

This leads to a uniform, a priori bound on ‖p(t, ·)‖∞.

3.3 Wave front interactions with no source term

This is the counter part for Section 4.4 in [2]. However, in the study of the effect of wave-front
interactions for the initial boundary value problem, we also need to consider the case of reflecting
waves from the boundary x = 0. This is the case when a 2-wave of strength σp hits the boundary
and travels out of the domain x ≤ 0, and a 1-wave will be reflected into the domain x ≤ 0. It
is not restrictive to assume that no 2-waves would hit the boundary x = 0 at exactly t = tk for
any k (this can be achieved by an arbitrary small perturbation). Thanks to Lemma 1, the new
1-wave is small, whose strength is of order O(1) · hl|σp|.

In order to handle the incoming wave at the boundary due to the jump in F , we define the
total wave strength V as

V
.=
∑
α

|σα|+ C0 Tot.Var.{F ; [t,∞[ } .

The interaction potential Q are defined in the same way as in Section 4.4 in [2], with

Q(u) = Qhh +Qpp +Qph .

Here the interaction potential of waves of the first family is defined as

Qhh =
∑

iα=iβ=1, xα<xβ

wα,β |σα| |σβ| .

Since this first characteristic field is not genuinely nonlinear along the line {p = 1}, we insert
here the factor wα,β defined as follows. If σα and σβ are two shocks, on the same side of the line
p = 1, then we set

wα,β = δ0 ·min
{
|Pαl − 1| , |P βl − 1|

}
where Pαl = P (xα−), P βl = P (xβ−) are the left limits of P (Riemann coordinate) at xα, xβ
respectively, and δ0 > 0 is a small constant to be determined. In all other cases, we set wα,β = 0.

The other parts of the interaction potential are defined as usual:

Qpp =
∑

(α,β)∈A2

|σα| |σβ| (3.9)

is the interaction potential of waves of the second family. Here A2 denotes the set of couples of
waves of the second family, with xα < xβ, at least one of which is a shock. Finally,

Qph =
∑

iα=2, iβ=1, xα<xβ

|σα| |σβ| (3.10)
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is the interaction potential among waves of different families. We then introduce the functional

S .= V + cQ ,

for some positive constant c.
At an interaction point, analysis in [2] Section 4.4 shows that S is decreasing if we choose

‖h‖L∞ sufficiently small. We claim that the same is true at a reflection point and at where the
boundary flux F (t) has a jump.

Indeed, at a reflection point, we see that V decreases because the new generated 1-wave is
of much smaller strength than the old 2-wave. Let ∆V be the change in V due to the reflection.
Using (2.6), the change can be estimated by

∆V = −|σp|+O(1) · ‖h‖L∞ · |σp| .

For the corresponding change inQ, we see thatQhh may increase by the amountO(1)·‖h‖L∞ |σp|,
and Qph may also increase by the same amount because the newly created 1-wave will be
approaching all the 2-waves. The term Qpp will decrease, because the 2-wave travels out of the
domain. In summary, the change in S(t) = V (t) + cQ(t) is estimated as

∆S ≤ − |σp| + O(1) · ‖h‖L∞ · |σp| + cO(1) · ‖h‖L∞ |σp| ≤ − |σp|
2

(3.11)

if ‖h‖L∞ is assumed small enough.
For the case where the boundary flux F has a jump at time τ , by (2.5) in Lemma 1 the

change in V can be estimated as

∆V = O(1)|∆F | − C0|∆F | ≤ −
C0

2
|∆F |

for C0 large enough. For the corresponding change in Q, we see that Qpp = 0 while Qhh +Qph
may increase by the amount O(1) · |∆F |; however, this increase is balanced with the decrease
of V , for C0 large enough with respect to the constant c in the definition of S.

We can conclude that the function S(t) is decreasing at every interaction and reflection point,
and at the point where the boundary flux has a discontinuity.

3.4 New wave functionals for the system with the source term.

This is the counter part of Section 4.5 and 4.6 in [2]. To derive a-priori bounds on the total
variation, we introduce the functional

Z(t, x) .= V h(t, x) · V̂ p(t, x) . (3.12)

Recall that V h and V̂ p are defined in (3.6) and (3.7) respectively. Along a discontinuity x(t),
using (3.3) we get

d

dt
V h(t, x(t)) ≤ −κ1V

h · |pl − 1| · (hl − ẋ) .

Then by (3.8), we get

d

dt
Z(t, x(t)) ≤ −Z(t, x(t))

{
κ1(hl − ẋ)|pl − 1| + κ2(pr + ẋ)W (t, x(t))hr

}
. (3.13)

12



In particular, Z(t, 0) is decreasing in time:

d

dt
Z(t, 0) ≤ −Z(t, 0)

{
κ1 h(t, 0) |p(t, 0)− 1| + κ2 (hp)(t, 0)W (t, 0)

}
≤ 0 . (3.14)

For the total wave strength and interaction potential, we introduce the functionals

Ŝ = V̂ + c Q̂ , (3.15)

where

V̂ (t) =
∑
α

Z(t, xα) |σα| + C0 Z(t, 0)
(

1 + Tot.Var.{F ; [t,∞[ }
)
, (3.16)

Q̂(t) = Q̂hh(t) + Q̂pp(t) + Q̂ph(t)

+ C0 ·

(∑
α

Z(t, xα)|σα|

)
· Z(t, 0)

(
1 + Tot.Var.{F ; [t,∞[ }

)
, (3.17)

and

Q̂hh(t) =
∑

iα=iβ=1, xα<xβ

wα,βZ(t, xα)|σα|Z(t, xβ)|σβ| ,

Q̂pp(t) =
∑

(α,β)∈Ap

Z(t, xα)|σα|Z(t, xβ)|σβ| ,

Q̂ph(t) =
∑

iα=2,iβ=1, xα<xβ

Z(t, xβ)|σα|Z(t, xβ)|σβ| .

Here all summations range over wave fronts σα of the functions (h, p) at time t. Notice that
now we have an explicit dependence on time, because of the boundary condition F (·).

We remark that, at times of interaction of two wave fronts or reflection at the boundary, the
same arguments as in Section 3.3 would lead to the conclusion of a decreasing Ŝ. Indeed, the
presence of the weights Z(xα) may only increase the sizes of the coefficients O(1) in the various
estimates. This can be counter-balanced by choosing ‖h‖L∞ sufficiently small. We omit the
details.

Now we show that the newly defined functional Ŝ is non increasing from time tk−1 to tk.

The change in V̂ from tk−1 to tk. First we notice that the first term in (3.16) will decrease
if we don’t consider the boundary condition. The change in V̂ can be written

∆V̂ = (∆V̂ )1 + (∆V̂ )2 .

Here the first term (∆V̂ )1 is the change in the first term in (3.16) without taking into account
the boundary terms. This is estimated in [2]:

(∆V̂ )1 ≤ − c1∆t
∑

α, iα=1

Z(xα(tk−1))|σα||pαl − 1| − c2∆t
∑

β, iβ=2

Z(xβ(tk−1))|σβ|hβr . (3.18)

The second term (∆V̂ )2 is caused by the boundary condition. At time tk, a 1-wave is generated
and it propagates into the domain x ≤ 0. This new wave will increase the first term in (3.16).
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However, the second term will decrease. Denote by σ̄0 the strength of the new wave. By (2.5)
and (2.7), the strength σ̄0 can be bounded as

|σ̄0| ≤ O(1) · |F (tk)− F (tk−1)|+O(1) ·∆t · h(tk−1) .

By the lower bound on p and the definition of the flux F = hp, this is equivalent to

|σ̄0| ≤ O(1) ·
{
|F (tk)− F (tk−1)|+ ∆t · F (tk−1)

}
. (3.19)

Now, define Zk=̇Z(tk, 0) and Zk−1=̇Z(tk−1, 0), we have

(∆V̂ )2 = Zk|σ̄0| + C0Iv

where

Iv = (Zk − Zk−1) + (Zk Tot.Var.{F ; [tk,∞[ } − Zk−1 Tot.Var.{F ; [tk−1,∞[ }) . (3.20)

Let’s estimate the first term in (3.20). Note that by (3.14) we have Zk ≤ Zk−1. Furthermore,
recalling that W ≥ 1, κ2 > 1, we have from (3.14)

d

dt
Z(t, 0) ≤ −Z(tk−1)(hp)(tk−1, 0) = −Zk−1F (tk−1)

on the time interval t ∈ (tk−1, tk), since F is constant on the interval. This gives the following
estimate

Zk − Zk−1 ≤ −∆t · Zk−1F (tk−1) ≤ 0 . (3.21)

For the last term in (3.20), we have

Zk Tot.Var.{F ; [tk,∞[ } − Zk−1 Tot.Var.{F ; [tk−1,∞[ }

≤ Zk−1

[
Tot.Var.{F ; [tk,∞[ } − Tot.Var.{F ; [tk−1,∞[ }

]
≤ −Zk−1 |F (tk)− F (tk−1)| .

Hence we obtain an estimate for Iv:

Iv ≤ −Zk−1 {∆t F (tk−1) + |F (tk)− F (tk−1)|} . (3.22)

Together with (3.19) and (3.21), we get an estimate for (∆V̂ )2

(∆V̂ )2 ≤ Zk−1 {∆t F (tk−1) + |F (tk)− F (tk−1)|}
{
O(1) − C0

}
. (3.23)

By choosing C0 sufficiently large, we conclude that (∆V̂ )2 ≤ 0, therefore ∆V̂ ≤ (∆V̂ )1 which
can be bounded as in (3.18).

The change in Q̂ from tk−1 to tk. Similarly, the change in Q̂ consists of two parts:

∆Q̂ = (∆Q̂)1 + (∆Q̂)2 ,

14



where (∆Q̂)1 is the part without considering the boundary effects, which is estimated in [2]:

(∆Q̂)1 ≤ O(1)∆t

∑
iα=1

Zα|σα||pαl − 1|+
∑
iβ=2

Zβ|σβ|hβl

 ·
{∑

α

Zα|σα|

}
, (3.24)

and (∆Q̂)2 is caused by the boundary conditions. Let’s consider the term (∆Q̂)2. We see that
the incoming 1-wave σ̄0 at the boundary at tk will make Q̂hh and Q̂ph increase, however the last
term in Q̂ will decrease. This incoming wave does not affect the term Q̂pp. The total change
can be estimated as

(∆Q̂)2 = Zk |σ̄0|

{∑
iα=1

w0,α Z(tk, xα)|σα|+
∑
iα=2

Z(tk, xα)|σα|

}
+ C0

{∑
α

Z(tk, xα)|σα|

}
Iv

where Iv is given by (3.20). Now, using (3.21), (3.19) and (3.22), we get

(∆Q̂)2 ≤ Zk−1 |σ̄0| O(1)

{∑
α

Z(tk, xα)|σα|

}
+ C0

{∑
α

Z(tk, xα)|σα|

}
Iv

≤

{∑
α

Z(tk, xα)|σα|

}
·
{
O(1)Zk−1 |σ̄0|+ C0Iv

}
≤ 0

for C0 sufficiently large.
We conclude that (∆Q̂)2 ≤ 0 so ∆Q̂ ≤ (∆Q̂)1 which is estimated by (3.24).

3.5 Putting things together to complete the proof.

The proof follows in a similar way as in [2] Section 5, where one goes through all the a priori
estimates, and justify that the errors we neglected such as interactions, discretizations are van-
ishingly small. Therefore all the a priori estimates hold, and convergence follows. Here, however,
care must be taken for the issues coming from the boundary condition, which we discuss below.

The extra error terms that we neglected in this proof is the incoming 1-wave from the
boundary due to a jump in the flux F , and the reflecting 1-waves from the boundary.

For the lower bound of p, the incoming 1-wave caused by a jump in F has strength of order
O(1) ·∆F , thanks to the estimate (2.5). Then the change in P caused by this wave is of order
O(1) · (∆F )2. Summing over all time steps, the total change in P is of order

O(1) ·
∑
j

∆F (tj)2 ≤ O(1) · ‖F‖L∞Tot.Var.{F} .

Thanks to assumption (1.7), this change is of order O(1)δ, which is as small as we like. Fur-
thermore, the discretization will introduce an error of order O(1) ·∆t · ‖h‖L∞ in P .

The extra error term caused by the reflecting 1-waves from the boundary is of order O(1) ·
‖h‖L∞ |∆Ŝ|, thanks to (2.6) and (3.11), and therefore the sum of these terms is vanishingly
small.

Furthermore, one must verify that the boundary conditions are satisfied in the limit, in the
sense of Def. 1. Here, due to the fact that the 2-characteristic speed is not bounded away from
0, large p-waves with speed close to 0 may accumulate at the boundary. Fortunately, the speed
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of a p-wave is proportional to h, which is a factor in the flux F , so the jump in F across such a
p-wave is vanishingly small. By the assumption on the total variation on F (t), we see that F is
continuous in t except at countably many points. Consider a point t = τ where F is continuous,
we consider two cases.

• First, if F (τ) > 0, then due the lower bound on p we must have h > 0. Hence the
characteristic speed of the second family is strictly bounded away from 0 in a time interval
Iτ = [t1, t2] around τ . One can then use an argument similar to [1, Sect. 7] and conclude
that the boundary condition is satisfied pointwise in [t1, t2] except at most countably many
times.

• Second, if F (τ) = 0, then by continuity of F , for every ε there exists an interval Iτ = [t1, t2]
around t = τ such that F (t) ≤ ε for all t ∈ Iτ . Then, by the lower bound on p (p ≥ p0),
we have h(t, 0) ≤ 1

p0
ε for every t ∈ Iτ . Now, the mass of h travels with speed −p, which

is strictly negative and −p ≤ −p0. We define the domain of dependence Ωτ of Iτ for h

Ωτ
.= {(t, x); t1 ≤ t ≤ t2, − p0(t− t1) ≤ x ≤ 0} .

Clearly, (τ, 0) ∈ Ωτ . The change of h in Ωτ is proportional to the mass of p− 1 it crosses.
Thanks to the bound on the L1 norm of p − 1, we have h(t, x) ≤ c0

p0
ε for all (t, x) ∈ Ωτ

and some constant c0 > 0. Then, by the uniform bound on p, we have

h(x, t) p(x, t) ≤ ‖p‖L∞
c0

p0
ε, for (x, t) ∈ Ωτ . (3.25)

Since ε is arbitrary and the estimate (3.25) holds for every approximate solution (h, p), we
get

lim
x→0−

h(τ, x)p(τ, x) = 0 = F (τ) .

Therefore, we conclude that the boundary condition is satisfied by the approximate solution
in the limit at almost every point, except at most countably many points. This completes the
proof of Theorem 1.

4 The slow erosion limit; proof of Theorem 2

In this section we prove Theorem 2, showing that the rescaled solutions p̃ν = p̃ν(µ, x) converge
to a solution p̃ of (1.14), (1.15). This goal will be achieved in several steps. Since the functions
q = p − 1, qν

.= pν − 1 are integrable, it is convenient to rewrite the equations (1.1), (1.14) in
terms of these variables: {

(hν)t − ((qν + 1)hν)x = qνhν ,

(qν)t + (hνqν)x = 0 ,
(4.1)

qµ +
(

q

q + 1
· exp

∫ 0

x

q(µ, ξ)
q(µ, ξ) + 1

dξ

)
x

= 0 . (4.2)

The main steps in the proof are the followings.

1. Establish a Lipschitz-type dependence of q on the rescaled time variable for the solutions
of (4.1). The estimate is uniform in ν.
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2. Derive estimates on the flux function ϕ = (q + 1)h for the solutions of (4.1), uniformly in
ν.

3. Show that the limit of the q-component of (4.1) is a weak solution of (4.2), using the
estimates in the previous two steps. This is achieved by showing that it satisfies the weak
formulation. One needs the strong convergence of the function qν/(qν + 1) and the weak
convergence of the flux (qν + 1)hν . The details are worked out in Sec. 4.3.

4. Check the entropy admissibility of the limit, achieved in Sec. 4.4.

We define an entropy weak solution of (4.2) as a map q : [0,M ′]→ L1(R−) which is Lipschitz
continuous and satisfies

• ess- infx q(µ, x) + 1 ≥ p0 for some p0 > 0, for all µ ∈ [0,M ′];

• supµ∈[0,M ′] ‖q(µ, ·)‖L∞ <∞;

• q is a weak entropy solution of

qµ +
(
k(µ, x)

q

q + 1

)
x

= 0 , (4.3)

where

k(µ, x) .= exp
{∫ 0

x

q(µ, y)
q(µ, y) + 1

dy

}
,

which is Lipschitz continuous on [0,M ′]× R− thanks to the above assumptions.

Before we start the estimates on solutions of (4.1), we first notice that, given any ε0 > 0,
there exists R > 0 large enough so that∫ −R

−∞
|p̄(x)− 1| dx < ε0 . (4.4)

By (1.1), the flow speed for |q| = |p− 1| is non-negative. Hence∫ −R
−∞
|qν(t, x)| dx =

∫ −R
−∞
|pν(t, x)− 1| dx < ε0 (4.5)

for all ν and all t > 0. To prove that

lim
ν→∞

(
sup

τ∈[0,M ′]

∫ 0

−∞
|q̃ν(τ, x)− q̃(τ, x)| dx

)
= 0 ,

it thus suffices to show that q̃ν → q̃ in the space L∞
(

[0,M ′] ; L1([−R, 0])
)

, for any given R > 0.
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4.1 Lipschitz dependence of p on rescaled time

In this step we establish a Lipschitz-type dependence of q on the rescaled time variable, see
(4.10) below. Consider a solution (h, q) of the initial-boundary value problem{

ht − ((q + 1)h)x = qh ,

qt +
(
hq
)
x

= 0 ,
(4.6)

with boundary condition
h(t, 0) (q(t, 0) + 1) = F (t) .

Assume that t′ < t′′ and ∫ t′′

t′
F (t) dt = δ > 0 . (4.7)

As a first step we derive an estimate on the difference ‖q(t′′, ·)− q(t′, ·)‖L1 , showing that it
is O(δ) as δ → 0, ‖F‖L∞ → 0 and ‖h‖L∞ → 0. Define the function

g(x) .= sup
t∈[t′,t′′]

|q(t, x)− q(t′, x)| . (4.8)

We will establish the estimate ∫ 0

−R
g(x) dx ≤ Cg ·

(
‖h‖L∞ + δ

)
, (4.9)

where the constant Cg depends on R, the total variations of q, h and the L1 norms of h, F , but
not on δ. We remark that (4.9) leads to

‖q(t′′, ·)− q(t′, ·)‖L1((−R,0)) ≤ Cg ·
(
‖h‖L∞ +

∫ t′′

t′
F (t) dt

)
. (4.10)

To prove (4.9), let (H,Q) be the Riemann coordinates corresponding to the solution (h, q),
with Q = P − 1, as defined in Section 2. Observe that

sup
t,x
|Q(t, x)− q(t, x)| = O(1) · ‖h‖L∞ . (4.11)

To prove (4.9) it suffices to establish the corresponding statement for the variable Q, namely∫ 0

−R
G(x) dx = O(1) ·

(
‖h‖L∞ + δ

)
, (4.12)

where
G(x) .= sup

t∈[t′,t′′]
|Q(t, x)−Q(t′, x)| .

Since the entropy weak solution is obtained as a limit of a sequence of front tracking approxima-
tions, it suffices to prove that the bound (4.12) is uniformly valid for all approximations. From
now on we thus consider a piecewise constant approximation, constructed by the flux-splitting
technique described by (2.3), (2.4) in Section 2, and use the Riemann variables (H,Q). We have
the estimate ∫ 0

−R
G(x) dx ≤ J1 + J2 + J3 , (4.13)
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where the Ji (i = 1, 2, 3) are defined as follows. Let t` ∈ [t′, t′′] be the times at which the source
term is inserted, as in (2.4). Moreover, for each t ∈ [t′, t′′], let xα(t), iα ∈ {1, 2}, be the locations
of the wave-fronts at time t, belonging to the first or the second family. We then define

J1
.=
∫ t′′

t′

∑
iα=1

∣∣∣Q(t, xα+)−Q(t, xα−)
∣∣∣ · |ẋα(t)| dt ,

J2
.=
∫ t′′

t′

∑
iα=2

∣∣∣Q(t, xα+)−Q(t, xα−)
∣∣∣ · |ẋα(t)| dt .

Here J1 and J2 account for the changes in Q due to the crossings of 1- and 2-waves, respectively.
Finally, the contributions of the source terms at the times t` yield the term

J3
.=

∑
t`∈[t′,t′′]

∫ 0

−R
|Q(t`+, x)−Q(t`−, x)| dx .

To estimate the first term J1, we observe that along a rarefaction front of the first family,
the jump in the second Riemann coordinate is zero. Along a shock front of the first family, the
jump in the second Riemann coordinate is of second order w.r.t. the size of the shock. For any
front of the first family, say located at xα and with strength |σα|, we thus have∣∣∣Q(t, xα+)−Q(t, xα−)

∣∣∣ = O(1) · |σα| · ‖h‖L∞ .

This yields the estimate

J1 =
∫ 0

−R

 ∑
iα=1 , xα(t)=x

∣∣∣Q(t, xα+)−Q(t, xα−)
∣∣∣ · |ẋα|

 dx

= O(1) · ‖h‖L∞ ·
∫ 0

−R

 ∑
iα=1 , xα(t)=x

|σα| · |ẋα|

 dx

= O(1) ·R ‖h‖L∞ . (4.14)

Notice that in the above estimate we fix a point x ∈ [−R, 0] and estimate the total strength of
1-fronts that cross the point x from right to left. This quantity is uniformly bounded, since it
satisfies the same bounds as the total variation of h.

Observing that the shift in a p-front is proportional to the amount of h crossing the front
from right to left, we have the bound for the second term J2

J2 ≤ sup
t

(∑
iα=2

∣∣∣Q(t, xα+)−Q(t, xα−)
∣∣∣) · ∫ t′′

t′

∑
iα=2

|ẋα(t)| dt

= O(1) · sup
t

(
Tot.Var.{Q(t, ·)}

)
·

(∫ 0

−R
h(t′, x) dx+

∫ t′′

t′
F (t) dt

)
= O(1) ·

(
R‖h‖L∞ + δ

)
. (4.15)

Finally, to estimate the third term J3, we note that we have

|Q(t`+, x)−Q(t`−, x)| = O(1) |h(t`+, x)− h(t`−, x)| = O(1)∆t|q(t`−, x)| · h(t`−, x) .
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By (2.5) we have

J3 = O(1)
∑

t`∈[t′,t′′]

∫ 0

−R
∆t|q|h dx

= O(1) ·
∫ 0

−R
h(t′, x) dx + O(1) ·

∫ t′′

t′
F (t) dt

= O(1) ·
(
R ‖h‖L∞ + δ

)
. (4.16)

Together, the estimates (4.14)–(4.16) and (4.13) yield (4.12).

4.2 Estimates for the flux function

Next, we denote by ϕ the flux function of the equation for h,

ϕ = (q + 1)h = ph .

For a given ξ ≤ 0, consider the flux through the interval with endpoints (t′, ξ) and (t′′, ξ), namely

Φ(ξ) .=
∫ t′′

t′
ϕ(t, ξ) dt =

∫ t′′

t′
(q(t, ξ) + 1)h(t, ξ) dt . (4.17)

Observe that the previous quantity is well defined, non negative, continuous and bounded uni-
formly w.r.t. ξ. Before we give an estimate on Φ, we state a technical lemma, which is a variation
of the Gronwall lemma.

Lemma 2 Let ξ 7→ Φ(ξ) ≥ 0 be a Lipschitz continuous function defined for ξ ≥ 0. If

Φ(ξ2) ≤ Φ(ξ1) +
∫ ξ2

ξ1

[β(x) Φ(x) + ε] dx for all ξ2 > ξ1 > 0, (4.18)

for some bounded, measurable function β and some constant ε > 0, then

Φ(ξ) ≤
(

exp
∫ ξ

0
β(x) dx

)
Φ(0) +M1ε , (4.19)

where M1 ≥ 0 is given as

M1 =
exp(ξ‖β‖L∞)− 1

‖β‖L∞
.

Similarly, if

Φ(ξ2) ≥ Φ(ξ1) +
∫ ξ2

ξ1

[α(x) Φ(x)− ε] dx for all ξ2 > ξ1 > 0, (4.20)

for some bounded, measurable function α, then

Φ(ξ) ≥
(

exp
∫ ξ

0
α(x) dx

)
Φ(0)−M2ε , (4.21)

where M2 ≥ 0 is given as

M2 =
exp(ξ‖α‖L∞)− 1

‖α‖L∞
.
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The proof of Lemma 2 is deferred to the Appendix.

Now we will derive the estimate on Φ. We integrate the first equation in (4.6) on the domain

Ωξ = {(t, x) ; x ∈ [ξ1, ξ2] , t′ < t < t′′} ,

where ξ1 < ξ2 ≤ 0, and we obtain

Φ(ξ2) = Φ(ξ1) −
∫

Ωξ

q

q + 1
ϕ dt dx +

∫ ξ2

ξ1

(
h(t′′, x)− h(t′, x)

)
dx . (4.22)

The last term in (4.22) can be simply estimated as∣∣∣∣∫ ξ2

ξ1

(h(t′′, x)− h(t′, x)) dx
∣∣∣∣ ≤ ∫ ξ2

ξ1

2‖h‖L∞ dx . (4.23)

In order to give an estimate on the second term in (4.22), let q̄ : [ξ1, ξ2]→ R be defined by

q̄(x) = q(t′, x) .

Since q̄ is constant w.r.t. t, we have∫
Ωξ

q

q + 1
ϕ dt dx =

∫
Ωξ

(
q̄

q̄ + 1
+
[

q

q + 1
− q̄

q̄ + 1

])
ϕ dt dx

=
∫ ξ2

ξ1

q̄(x)
q̄(x) + 1

· Φ(x) dx +
∫

Ωξ

[
q

q + 1
− q̄

q̄ + 1

]
ϕ dt dx . (4.24)

Recalling the definition (4.8) of g(x), then by using the lower bound on p = q+ 1, the last term
(4.24) can be estimated as∣∣∣∣∣

∫
Ωξ

[
q

q + 1
− q̄

q̄ + 1

]
ϕ dt dx

∣∣∣∣∣ ≤ C
∫ ξ2

ξ1

g(x)Φ(x) dx . (4.25)

Therefore, by the estimates (4.23) and (4.25), from (4.22) we get the following estimates on Φ:

Φ(ξ2) ≤ Φ(ξ1) +
∫ ξ2

ξ1

([
− q̄(x)
q̄(x) + 1

+ Cg(x)
]
· Φ(x) + 2‖h‖L∞

)
dx

Φ(ξ2) ≥ Φ(ξ1) +
∫ ξ2

ξ1

([
− q̄(x)
q̄(x) + 1

− Cg(x)
]
· Φ(x)− 2‖h‖L∞

)
dx .

In particular, observe that Φ is Lipschitz continuous. Applying our Lemma 2, with

α(x) = − q̄(x)
q̄(x) + 1

− Cg(x), β(x) = − q̄(x)
q̄(x) + 1

+ Cg(x), ε = 2‖h‖L∞ ,

and reversing the roles of ξ and 0 in the integral, we get for any ξ < 0

Φ(0) ≥ Φ(ξ) · exp
∫ 0

ξ
α(x) dx−M2ε ,

Φ(0) ≤ Φ(ξ) · exp
∫ 0

ξ
β(x) dx+M1ε ,
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and hence

Φ(ξ) ≤ (Φ(0) + 2M2‖h‖L∞) · exp
∫ 0

ξ

[
q̄(x)

q̄(x) + 1
+ Cg(x)

]
dx (4.26)

Φ(ξ) ≥ (Φ(0)− 2M1‖h‖L∞) · exp
∫ 0

ξ

[
q̄(x)

q̄(x) + 1
− Cg(x)

]
dx . (4.27)

Introduce the map

k(t′, x) .= exp
∫ 0

x

q(t′, ζ)
q(t′, ζ) + 1

dζ ,

and recall from (4.7) that Φ(0) = δ. If we assume that

‖h‖L∞ = O(1) · δ2, (4.28)

and use the estimate (4.9), then (4.26) becomes

Φ(ξ) ≤ δ · k(t′, ξ) ·
(
1 + 2M2O(1)δ

)
· exp(CCg(‖h‖L∞ + δ))

≤ δ · k(t′, ξ) ·
(
1 +O(1)δ

)
= δk(t′, ξ) + O(1)δ2 . (4.29)

Following a similar argument, (4.27) leads to

Φ(ξ) ≥ δk(t′, ξ) − O(1)δ2 . (4.30)

Putting together (4.29) and (4.30), we obtain the desired estimate∣∣Φ(ξ)− δk(t′, ξ)
∣∣ ≤ O(1)δ2 . (4.31)

4.3 Convergence of (4.1) to a weak solution of (4.2)

Finally, we study the rescaled limit and show it provides a weak solution to the conservation
law (4.2). For each ν sufficiently large, consider the incoming flux Fν through the boundary,
and recall the function tν(µ) defined in (1.11), i.e.

tν(µ) .= min
{
t ≥ 0 ;

∫ t

0
Fν(s) ds = µ

}
µ ∈ [0,M ′] ,

and consider the rescaled functions

q̃ν(µ, x) .= qν(tν(µ), x) ,

obtained by using µ as new time variable. These are well defined for x ≤ 0, µ ∈ [0,M ′] and ν
sufficiently large. Moreover, for any given R > 0 we have from (4.10) that

‖q̃ν(µ2, ·)− q̃(µ1, ·)‖L1((−R,0)) ≤ Cg · |µ2 − µ1| + δν

with δν = Cg‖hν‖L∞ → 0. Hence the uniform bounds on the total variations of the functions qν
imply that there exists a subsequence, still called q̃ν , converging to a BV function q̃ = q̃(µ, x) in
L1([0,M ′]× [−R, 0]), for any R > 0.
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We claim that q̃ provides a weak solution to the conservation law (4.2). In detail, we claim
that for any fixed 0 ≤ µ1 < µ2 ≤M ′ and any test function ψ ∈ C1

c (R−), we have∫ 0

−R
ψ(x) [q̃(µ2, x)− q̃(µ1, x)] dx =

∫ µ2

µ1

∫ 0

−R
ψx(x)

[
q̃(µ, x)

q̃(µ, x) + 1
· k̃(µ, x)

]
dx dµ , (4.32)

where

k̃(µ, x) .= exp
∫ 0

x

q̃(µ, ζ)
q̃(µ, ζ) + 1

dζ . (4.33)

Indeed, for every ν the second equation in (4.1) yields∫ 0

−R
ψ(x)

[
qν(tν(µ2), x)− qν(tν(µ1), x)

]
dx

=
∫ tν(µ2)

tν(µ1)

∫ 0

−R
ψx(x)

qν(t, x)
qν(t, x) + 1

· ϕν(t, x) dx dt , (4.34)

where
ϕν(t, x) = (qν(t, x) + 1)hν(t, x)

is the flux function.
Since the sequence qν(tν(µ), x) converges to q̃(µ, x), we have∫ 0

−R

∣∣∣qν(tν(µ), x)− q̃(µ, x)
∣∣∣ dx→ 0 . (4.35)

Hence the left hand side of (4.34) converges to the corresponding left hand side of (4.32).
We now define

k̃ν(µ, x) .= exp
∫ 0

x

qν(tν(µ), ζ)
qν(tν(µ), ζ) + 1

dζ = exp
∫ 0

x

q̃ν(µ, ζ)
q̃ν(µ, ζ) + 1

dζ . (4.36)

Observe that all functions k̃ν are uniformly Lipschitz continuous. They converge to the function
k̃(µ, x) defined in (4.33) uniformly on the rectangular domain [0,M ′]× [−R, 0].

Next, we claim that for every x, µ′, µ′′, as ν →∞ one has∫ tν(µ′′)

tν(µ′)
ϕν(t, x) dt =

∫ tν(µ′′)

tν(µ′)
(qν(t, x) + 1)hν(t, x) dt →

∫ µ′′

µ′
k̃(µ, x) dµ . (4.37)

Indeed, let δ > 0 be given. Let m ≥ 1 be the smallest integer such that (µ′′ − µ′)/m ≤ δ, and
let δ0

.= (µ′′ − µ′)/m so δ0 ≤ δ. Define the intermediate values

µi = µ′ + i · µ
′′ − µ′

m
i = 0, 1, . . . ,m .

Recall now the analysis on the convergence of the flux, i.e., estimate (4.31) in Subsection 4.2.
Let ‖hν‖L∞ ≤ O(1) · δ2

0 ; then, for every x ≤ 0 and every i, estimate (4.31) gives(∫ tν(µi)

tν(µi−1)
ϕν(t, x) dt

)
− δ0 k̃ν(µi−1, x) = O(1) · δ2

0 .

23



Furthermore, by the uniform Lipschitz continuity of k̃ν , we also have∣∣∣∣∣δ0k̃ν(µi−1, x)−
∫ µi

µi−1

k̃ν(µ, x) dµ

∣∣∣∣∣ ≤
∫ µi

µi−1

∣∣∣k̃ν(µ, x)− k̃ν(µi−1, x)
∣∣∣ dµ ≤ O(1)δ2

0 .

Combine the previous two inequalities, and use triangle inequality, we get∣∣∣∣∣
∫ tν(µi)

tν(µi−1)
ϕν(t, x) dt−

∫ µi

µi−1

k̃ν(µ, x) dµ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tν(µi)

tν(µi−1)
ϕν(t, x) dt− δ0k̃ν(µi−1, x)

∣∣∣∣∣+

∣∣∣∣∣δ0k̃ν(µi−1, x)−
∫ µi

µi−1

k̃ν(µ, x) dµ

∣∣∣∣∣
≤ C δ2

0 ,

for some constant C and all ν large enough. Summing over i = 1, . . . ,m, since δ > 0 is arbitrary
and m = O(δ−1), from the above inequality and the uniform convergence k̃ν → k̃ we deduce
(4.37). In turn, (4.37) yields the weak convergence

(q̃ν(µ, x) + 1) h̃ν(µ, x) ⇀ k̃(µ, x)

on the domain [0,M ′]× [−R, 0]. Together with the strong convergence

q̃ν(µ, x)
q̃ν(µ, x) + 1

→ q̃(µ, x)
q̃(µ, x) + 1

,

this implies that the right hand side of (4.34) converges to the right hand side of (4.32). Hence
q̃ provides a weak solution of the conservation law (4.2).

4.4 Entropy admissibility

The fact that p̃ is also entropy-admissible follows from the fact that each shock in p̃ must be a
limit of corresponding shocks in the rescaled solutions p̃ν . We claim that these shocks in p̃ν are
entropy-admissible, hence the same is true for the limit p̃.

To check the entropy admissibility for shocks in p̃ν , it suffices to check the directions of the
jumps of the second family (p-wave) for the system (4.2). From the analysis of the state curves,
we already know that the p-shocks jump upward. For the scalar integro-differential equation in
(4.2), we see that the flux f(q) = q/(q + 1) is strictly concave down for q > −1, since

f ′(q) =
1

(q + 1)2
, f ′′(q) =

−2
(q + 1)3

< 0 .

Therefore admissible shocks must jump upward, which agrees with the direction of jumps in
p-wave for (4.1). This completes the proof of Theorem 2.

5 Concluding remarks

In this paper we show that the slow erosion limit of the granular flow model converges to a scalar
integro-differential equation. However, we leave open the wellposedness of the scalar integro-
differential equation (1.14). Due to the fact that the flux is a global function which involves an
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integral of the unknown variable, issues such as existence and uniqueness should need separate
attention.

In essence, we are considering a scalar equation

pµ + (k(µ, x)f(p))x = 0 (5.38)

in one space dimension. Here k(µ, x) is the global term

k(µ, x) = exp
∫ 0

x

p(µ, y)− 1
p(µ, y)

dy ,

and f(p) = (p−1)/p is the local part of the flux. Due to the discontinuities in p, the global term
k(t, x) is only a Lipschitz function, thus recent results such as [9] can not be applied directly.
Rewrite (5.38) into

pµ + k(µ, x)f(p)x = −k(µ, x)xf(p) . (5.39)

Formally the increase of total variation of p is caused by the source term in (5.39). To obtain
the BV bound for p, one needs a bound on the total variation of k(µ, x)x for any given µ. From
the particular formula of k, we have for some positive constant M

Tot.Var.{kx} ≤MTot.Var.{p} ,

provided that p is uniformly bounded in L∞ and L1, and p > 0 is bounded away from 0.
Therefore, the evolution of the total variation of p in time µ follows

d

dµ
Tot.Var{p} ≤MTot.Var{p} .

This means Tot.Var{p} would increase exponentially in µ. Thus, for finite µ (which is our case,
where µ is the total mass of avalanche, and is bounded by assumption), one has that Tot.Var{p}
is bounded. This provides a formal argument for BV bound on p. Therefore, wellposedness of
BV solutions is expected. Details will be worked out in a forthcoming paper.

A Proof of Lemma 2

In this appendix we prove Lemma 2, stated in Subsection 4.2.
Let’s first prove inequality (4.19). Let L be the Lipschitz constant for Φ. For a given integer

N , define ∆τ = ξ/N , τi = i ·∆τ , and set K1 =̇ ‖β‖L∞L∆τ + ε. We now check by induction on
i = 0, 1, . . . , N , that

Φ(τi) ≤
(

exp
∫ τi

0
β(x) dx

)
Φ(0) + K1

exp(τi‖β‖L∞)− 1
‖β‖L∞

. (A.1)

Indeed, let (A.1) hold for i = 1, . . ., k − 1. Then (4.18) and the Lipschitz condition yield

Φ(τk) ≤ Φ(τk−1) +
∫ τk

τk−1

β(x)Φ(τk−1) dx +
∫ τk

τk−1

{β(x) [Φ(x)− Φ(τk−1)] + ε} dx

≤ Φ(τk−1) ·

(
1 +

∫ τk

τk−1

β(x) dx

)
+
∫ τk

τk−1

{|β(x)| · L∆τ + ε} dx . (A.2)
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Using the relation 1 + x ≤ ex (for all x) and the inductive assumption (A.1) with i = k− 1, and
recalling that Φ ≥ 0, the first term in (A.2) is bounded by

Φ(τk−1) ·

(
1 +

∫ τk

τk−1

β(x) dx

)
≤ Φ(τk−1) · exp

(∫ τk

τk−1

β(x) dx

)

≤
(

exp
∫ τk

0
β(x) dx

)
Φ(0) + K1

exp(τk‖β‖L∞)− exp(∆τ‖β‖L∞)
‖β‖L∞

. (A.3)

The last term in (A.2) can be simply estimated by∫ τk

τk−1

{|β(s)| · L∆τ + ε} ds ≤ K1∆τ ≤ K1
exp(∆τ‖β‖L∞)− 1

‖β‖L∞
. (A.4)

Putting together (A.3) and (A.4) into (A.2), we obtain (A.1) for i = k, completing the inductive
step.

Now let i = N in (A.1), one gets

Φ(ξ) ≤ exp
(∫ ξ

0
β(x) dx

)
Φ(0) +

{
‖β‖L∞Lξ

N
+ ε

}
· exp(ξ‖β‖L∞)− 1

‖β‖L∞
.

Letting N →∞ we thus obtain (4.19).
The proof for (4.21) follows in a similar way, with some modifications. SetK2 =̇ ‖α‖L∞L∆τ+

ε. By induction on i = 0, 1, . . . , N , one needs to check that

Φ(τi) ≥
(

exp
∫ τi

0
α(x) dx

)
Φ(0) − exp(∆τ‖α‖L∞) ·K2

exp(τi‖α‖L∞)− 1
‖α‖L∞

. (A.5)

Let (A.5) hold for i = 1, . . ., k − 1. Here, (4.20) and the Lipschitz condition yield

Φ(τk) ≥ Φ(τk−1) +
∫ τk

τk−1

α(x)Φ(τk) dx −
∫ τk

τk−1

{|α(x)| · L∆τ + ε} dx ,

which gives (
1−

∫ τk

τk−1

α(x) dx

)
Φ(τk) ≥ Φ(τk−1) − K2∆τ .

Using the relation 1− x ≤ e−x, we obtain

exp

(
−
∫ τk

τk−1

α(x) dx

)
· Φ(τk) ≥ Φ(τk−1) − K2∆τ . (A.6)

By the inductive assumption on i = k − 1, the r.h.s. in (A.6) satisfies

Φ(τk−1) − K2∆τ

≥
(

exp
∫ τk−1

0
α(x) dx

)
Φ(0)−K2

exp(τk‖α‖L∞)− exp(∆τ‖α‖L∞)
‖α‖L∞

− K2∆τ

≥
(

exp
∫ τk−1

0
α(x) dx

)
Φ(0)−K2

exp(τk‖α‖L∞)− 1
‖α‖L∞

.
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Using this last inequality in (A.6), we obtain

Φ(τk) ≥
(

exp
∫ τk

0
α(x) dx

)
Φ(0) − exp

(∫ τk

τk−1

α(x) dx

)
·K2

exp(τk‖α‖L∞)− 1
‖α‖L∞

that leads to (A.1) also for i = k, completing the inductive step.
Finally, setting i = N in (A.5), one gets

Φ(ξ) ≥ exp
(∫ ξ

0
α(x) dx

)
Φ(0) − exp

(
ξ‖α‖L∞
N

)
·
{
‖α‖L∞Lξ

N
+ ε

}
· exp(ξ‖α‖L∞)− 1

‖α‖L∞
,

and then letting N →∞ we complete the proof for (4.21).
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