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Abstract

In this paper we propose a new numerical scheme to simulate the river flow in the
presence of a variable bottom surface. We use the finite volume methods, our approach
is based on the technique described by D. L. George for shallow water equations [1].
The main goal is to construct the scheme, which is well balanced, i.e. maintains not
only some special steady states but all steady states which can occur. Furthermore this
should preserve non–negativity of some quantities, which are essentially non–negative
from their physical fundamental, for example cross section or depth. Our scheme can
be extended to the second order accuracy. We also describe connections between the
central and central-upwind schemes and the approximate Riemann solvers.

1. Introduction

We are interested in solving the problem describing the fluid flow through the
channel with the general cross-section area

at + qx = 0, (1)

qt +

(
q2

a
+ gI1

)

x

= −gaBx + gI2,

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown
discharge, B = B(x) is the function of elevation of the bottom, g is the gravitational
constant and

I1 =

∫ h(x)

0

[h(x) − η]σ(x, η)dη, (2)

I2 =

∫ h(x)

0

(h − η)

[
∂σ

∂x

]
dη, (3)

where η is the depth integration variable, h is the water depth and σ(x, η) is the
width of the cross-section at the depth η.

The special cases are the equations reflecting the fluid flow through the varying
rectangular channel

at + qx = 0, (4)

qt +

(
q2

a
+

qa2

2l

)

x

=
ga2

2l2
lx − gabx,
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where l = l(x) is a function describing the width of the channel, and the system for
the constant rectangular channel (the shallow water equations)

ht + (hu)x = 0, (5)

(hu)t +

(
hu2 +

1

2
gh2

)

x

= −ghBx,

where h(x, t) is the water depth and u(x, t) is the horizontal velocity.

All of the presented systems can be briefly written in the matrix form

qt + [f(q, x)]x = ψ(q, x), (6)

where q(x, t) is the vector of conserved quantities, f(q, x) is the flux function and
ψ(q, x) is the source term. We note that this relation represents the balance laws.

There are many numerical schemes for solving (6) with different properties and
possibilities of failing. For example the central, upwind and central-upwind schemes.
The main requirements on the numerical schemes are the consistency (in the finite
volume meaning, i.e. consistency with the flux function), the conservativity (if there
is possibility to rewrite the problem to the conservative form it is required to have
conservative numerical scheme), positive semidefiniteness, i.e. the schemes preserve
nonnegativity of some quantities, which are essentially nonnegative from their phys-
ical fundamental, and the well-balancing, i.e. the schemes maintain some or all
steady states which can occur. The next properties are the order of the schemes and
stability.

2. Augmented formulations

There are several ways how to formulate the fluid flow problems. Homogeneous,
autonomous, conservative formulation usually used for standard cases like Euler
equations or fluid flow through the channel with constant cross-section and flat bot-
tom, has the form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (7)

q(x, 0) = q0(x), x ∈ R,

where q = q(x, t) : R×〈0, T ) → Rm is an unknown function, q0 = q0(x) : R → Rm

is an initial function, f = f(q) : Rm → Rm is a given flux function. This formulation
corresponds to (6) with zero right hand side and it represents the conservation law
in the differential form. It is necessary to note that the local differential form is
obtained from more fundamental integral form under special assumptions.
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The homogeneous, nonautonomous, conservative case has the form

qt + [f(q,w(x))]x = 0, x ∈ R, t ∈ (0, T ), (8)

q(x, 0) = q0(x), x ∈ R,

where w = w(x) : R → Rs is a given function.

The system (8) can be rewritten to the homogeneous, autonomous, conservative
formulation (we add the equation w̃t = 0, where w̃(x, t) = w(x))

q̃t + [f̃(q̃)]x = 0, x ∈ R, t ∈ (0, T ), (9)

q̃(x, 0) = q̃0(x), x ∈ R,

where q̃ = [q, w̃]T , f̃(q̃) = [f(q, w̃),0]T and q̃0(x) = [q0(x),w(x)]T .

Now we consider the system in the form (nonhomogeneous, nonautonomous case)

qt + [f(q,w(x))]x = B(q,w(x))wx, x ∈ R, t ∈ (0, T ), (10)

q(x, 0) = q0(x), x ∈ R,

where B = B(q,w) is the matrix function of the type m × s.
In the case of the river flow (4) this augmented formulation has the form

q = [a, q]T , w(x) = [l(x), b(x)]T ,

f(q,w) = [q, q2

a
+ ga2

2l
]T ,

B(q,w(x)) =

[
0 0

ga2

2l2
−ga

]
.

We can rewrite the previous system to the augmented, homogeneous, autonomous,
quasilinear formulation

q̃t + C(q̃)q̃x = 0, x ∈ R, t ∈ (0, T ), (11)

q̃(x, 0) = q̃0(x), x ∈ R,

where

C(q̃) =

[
fq fw − B(q,w)
0 0

]
,

and the following relation holds fx = fqqx + fwwx.

The next extension can be done by adding another equation in the form

[f(q)]t + fq[f(q,w(x))]x − fqB(q,w(x))wx = 0.
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The previous relations provide some theoretical insight into how the model behaves.

The overdetermined system has the form

q̂t + D̂(q̂)q̂x = 0, x ∈ R, t ∈ (0, T ), (12)

q̂(x, 0) = q̂0(x), x ∈ R,

where q̂ = [q, w̃, f̂ ]T , f̂(q,w, t) = f(q,w(x)),

D̂(q̂) =




fq fw − B(q, w̃) 0

0 0 0

0 −fqB(q, w̃) fq


 ,

and q̂0(x) = [q0(x),w(x), f(q0(x),w(x))]T . The advantage of this formulation is in
the conversion of the nonhomogeneous systems to the homogeneous one. For our
model of the river flow the matrix has the form

D̂(q̂) =




0 1 0 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −ga2

2l2
ga 0 1

0 0 −gqa
l2

2gq −q2

a2 + ga
l

2q
a




,

where q̂ = [a, q, l, b, q, q2

a
+ ga2

2l
]. The second and fifth row represents equations with

the same unknown quantity, so the fifth equation can be rejected.

Therefore we can formulate problem in the form

q̌t + Ď(q̌)q̌x = 0, x ∈ R, t ∈ (0, T ),
q̌(x, 0) = q̌0(x), x ∈ R,

(13)

where for the model of the river flow the matrix has the form

Ď(q̌) =




0 1 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0

0 0 0 0 0
0 0 0 0 0

0 −q2

a2 + ga
l

−gqa
l2

2gg 2q
a




, (14)

and q̌ = [a, q, l, b, q2

a
+ ga2

2l
]T .

The mentioned augmented formulations for general, i.e. nonconservative and
semiconservative, systems of the nonlinear partial differential equations can be used
for derivation of efficient numerical methods.
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3. Finite volume methods

The finite volume methods are suitable for conservation law problems, because
the numerical solution is modified only by the intercell fluxes. These methods are
based on the integral formulation

x2∫
x1

q(x, t2) dx −
x2∫
x1

q(x, t1) dx +
t2∫
t1

f(q(x2, t)) −
t2∫
t1

f(q(x1, t)) = 0,

∀(x1, x2) × (t1, t2) ⊂ R × (0, T ),

(15)

They use approximations of the integral averages of the unknown functions instead
of the approximations of the unknown functions. The consistency of these methods
is related to the flux function.

We define the following discretisation

xj = j∆x, j ∈ Z, ∆x > 0, tn = n∆t, n ∈ N0, ∆t > 0,
xj+1/2 = xj + ∆x/2, tn+1/2 = tn + ∆t/2.

We denote the conserved quantities at time tn and point xj: qn
j = q(xj, t

n) and
qj(t) = q(xj, t) and its approximations: Qn

j = Q(xj, t
n) ≈ qn

j and Qj(t) = Q(xj, t) ≈
qj(t). The finite volumes mean the sets (xj−1/2, xj+1/2) × (tn, tn+1).

We denote the integral averages of the conserved quantities over the finite volume

Q̄n
j ≈ q̄n

j =
1

∆x

xj+1/2∫

xj−1/2

q(x, tn) dx, (16)

and the average flux along x = xj+1/2

F̄
n+1/2
j+1/2 ≈ f̄

n+1/2
j+1/2 =

1

∆t

tn+1∫

tn

f(q(xj+1/2, t)) dt. (17)

Fully discrete conservative method can be written as relation between approximations
of the flux averages and approximations of the integral averages of the conserved
quantities

Q̄n+1
j = Q̄n

j −
∆t

∆x
(F̄

n+1/2
j+1/2 − F̄

n+1/2
j−1/2 ). (18)

Sometimes it is useful to consider the discretisation in two steps. First step is dis-
cretisation only in the space (here the finite volume means intervals (xj−1/2, xj+1/2))

Q̄j = Q̄j(t) ≈ q̄j = q̄j(t) =
1

∆x

xj+1/2∫

xj−1/2

q(x, t) dx. (19)

This leads to the system of the ordinary differential equations in the time

d

dt
Q̄j = −

1

∆x
[Fj+1/2 − Fj−1/2]. (20)
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4. Steady states

The steady states mean that the unknown quantities do not change in the time,
i.e. qt = 0 and the flux function must balance the right hand side, i.e. [f(q)]x =
ψ(q, x).

Some schemes are constructed to preserve some special steady states like so called
rest at lake, i.e. there is no motion and the free surface height is constant:

q(x, t) = 0, h(x, t) + b(x) = const. (21)

For our model (4) this special steady state has the following form

q(x, t) = 0,

(
q2

a
+

ga2

2l

)

x

−
ga2

2l2
lx + gabx = 0. (22)

The second relation in (22) can be rewritten into the form (under the assumption
a = hl)

ghl(h + b)x = 0.

The discrete analogue to this smooth steady state can have the form

• semidiscrete approach and piecewise constant reconstruction

Q̄j = 0, H̄j + B̄j = const. ∀j ∈ Z

• general reconstruction

Q+
j−1/2 = Q−

j+1/2 = 0, H+
j+1/2 + B+

j+1/2 = H−

j+1/2 + B−

j+1/2 = const. ∀j ∈ Z,

where (·)±j±1/2 are left and right values at the central points obtained by poly-
nomial reconstruction from values in adjacent cells.

For general steady states the following equalities hold

qx = 0, (
q2

a
+

ga2

2l
)x =

ga2

2l2
lx − gabx. (23)

The left term in the second equality we can rewrite as

(
q2

a
+

ga2

2l

)

x

=
(
−u2 +

ga

l

)
ax −

ga2

2l2
lx, (24)

and together we have (
−u2 +

ga

l

)
ax =

ga2

l
lx − gabx. (25)
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From (25) we obtain the following relation for general steady states (the Bernoulli
equation) (

1

2
u2 + gb +

ga

l

)

x

= 0. (26)

For numerical methods it is important to choose such approximation which con-
served these steady states. The equation (26) means that the term 1

2
u2 + gb + ga

l

is constant for differentiable steady states. Therefore following property has to be
satisfied (

1

2
u2 + gb +

ga

l

)

j

=

(
1

2
u2 + gb +

ga

l

)

j+1

. (27)

We consider the piecewise constant reconstruction. We rearrange (27) and we can

express the discrete relation analogous to the smooth one φx =
(
−u2 + ga

l

)
ax−

ga2

2l2
lx

∆Φ =

(
−|ULUR| + g

ĀL̄

LLLR

)
∆A −

g

2

Ã2

LLLR

∆L, (28)

where (·)L = (̄·)j, (·)R = (̄·)j+1, ∆(·) = (·)R−(·)L, L̄ = (LL+LR)/2, Ā = (AL+AR)/2,

Ã2 = (A2
L + A2

R)/2. The details can be found in [1].

The discrete analogue of the equation (27) can be written as

1

2
U2

L + gBL +
gAL

LL

=
1

2
U2

R + gBR +
gAR

LR

. (29)

This equality we multiply by Ā and after algebraic manipulation we get

(
−Ū2 + g

Ā

L̄
LLLR

)
∆A = −Āg∆B +

gĀ2

LLLR

∆L. (30)

Using (30) together with (28) we get

∆Φ =
−|ULUR| + g ĀL̄

LLLR

−Ū2 + g Ā
L̄
LLLR

(
−Āg∆B +

gĀ2

LLLR

∆L

)
−

g

2

Ã2

LLLR

∆L, (31)

This approach can be viewed as a construction of the approximation of the general-
ized Rankine–Hugoniot condition for nonhomogeneous problem (4).

In the case of general reconstruction the following condition has to be satisfied

1

2
(U−

j+1/2)
2 + gB−

j+1/2 +
gA−

j+1/2

L−

j+1/2

=
1

2
(U+

j+1/2)
2 + gB+

j+1/2 +
gA+

j+1/2

L+
j+1/2

,

1

2
(U−

j+1/2)
2 + gB−

j+1/2 +
gA−

j+1/2

L−

j+1/2

=
1

2
(U+

j−1/2)
2 + gB+

j−1/2 +
gA+

j−1/2

L+
j−1/2

,
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Q−

j+1/2 = Q+
j+1/2, Q−

j+1/2 = Q+
j−1/2.

For the augmented systems steady state means that, for formulation (12), D̂(q̂)q̂x =
0. It follows that the steady state is defined by the vector q̂ satisfying either

q̂x = 0

or

q̂x =
k∑

p=1

αprp ∀αp ∈ R,

where rp, p = 1, . . . , k are eigenvectors corresponding with eigenvalues λp = 0.

5. Central methods

The central methods are universal schemes for solving hyperbolic partial differ-
ential equations. In these schemes there is not necessary to construct the character-
istic decomposition of the flux f nor to compute the approximation of the Jacobian
matrix. These schemes are Riemann problem free. They are robust but they are
characterized by large numerical diffusion.

One simple example is the first-order Lax-Friedrichs scheme

Q̄n+1
j =

1

2
(Q̄n

j−1 + Q̄n
j+1) −

∆t

2∆x
[f(Q̄n

j+1) − f(Q̄n
j−1)], (32)

where the flux function for the conservative form can be written in the form

F
n+1/2
j+1/2 =

1

2
[f(Q̄n

j ) + f(Q̄n
j+1)] −

∆x

2∆t
(Q̄n

j+1 − Q̄n
j ). (33)

In the case of the model describing fluid flow through the constant rectangular chan-
nel

ht + qx = 0,

qt +
(

q2

h
+ 1

2
gh2

)
x

= −ghbx,

we substitute y = h + b and then we can write

yt + qx = 0,

qt +
(

q2

y−b
+ 1

2
g(y − b)2

)
x

= −g(y − b)bx.
(34)

The special steady state ”rest at lake” means y(x, t) = const and q(x, t) = 0.

Discrete approximations of the flux function and the right hand side are in the
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form
F n,1

j+1/2 = 1
2
(Q̄n

j + Q̄n
j+1) −

∆x
2∆t

(Ȳ n
j+1 − Ȳ n

j ),

F n,2
j+1/2 = 1

2

[
(Q̄n

j )2

Ȳ n
j −B̄j

+
(Q̄n

j+1
)2

Ȳ n
j+1

−B̄j+1
+ 1

2
g(Ȳ n

j − B̄j)+

+ 1
2
g(Ȳ n

j+1 − B̄j+1)
]
− ∆x

2∆t
(Q̄n

j+1 − Q̄n
j ),

S1,n
j = 0,

Sn,2
j = − g

4∆x
(B̄j+1 − B̄j)

(Ȳ n
j+1 − B̄j+1 + Ȳ n

j − B̄j + Ȳ n
j − B̄j + Ȳ n

j−1 − B̄j−1).

This scheme preserves only special steady state ”rest at lake”. But in general these
methods are not suitable for computation steady states [8]. One of their big disad-
vantages is the relatively large numerical dissipation.

The next type of the central method is for example the Rusanov scheme in
semidiscrete form

d
dt
Q̄j = − 1

2∆x
[f(Q̄j+1) − f(Q̄j−1)] + 1

2∆x
[âj+1/2(Q̄j+1 − Q̄j)−

−âj−1/2(Q̄j − Q̄j−1)],
(35)

where
âj+1/2 = max

p
{max{λp

j , λ
p
j+1}}.

This scheme can be written in the conservative form (20) where the numerical fluxes
have the form

Fj+1/2 =
1

2
[f(Q̄j) + f(Q̄j+1)] −

1

2
|âj+1/2|(Q̄j+1 − Q̄j).

And as will be mentioned in the next section, this scheme can be rewritten in the
fluctuation form.

The Rusanov scheme applied to our model (34) has the following form

d
dt
Q̄j = − 1

∆x
(Fj+1/2 − Fj−1/2) + Sj,

F 1
j+1/2 = 1

2
(Q̄j + Q̄j+1) −

1
2
âj+1/2(Ȳj+1 − Ȳj),

F 2
j+1/2 = 1

2

[
Q̄2

j

Ȳj−B̄j
+

Q̄2
j+1

Ȳj+1−B̄j+1
+ g

2
(Ȳj+1 + Ȳj − B̄j+1 − B̄j)

2
]
−

− 1
2
âj+1/2(Q̄j+1 − Q̄j)

S1
j = 0

S2
j = −g

4∆x
(B̄j+1 − B̄j−1)

(Ȳj+1 + Ȳj − B̄j+1 − B̄j + Ȳj + Ȳj1 − B̄j − B̄j−1)

(36)

The suitable choice of the CFL condition preserves positive semidefiniteness of some
components of the solution. As in the previous case this scheme can preserve only
special steady state ”rest at lake”.
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6. Upwind methods

6.1. Scalar case

In this subsection we consider the equation

qt + aqx = 0, x ∈ R, t ∈ (0, T ), a ∈ R, (37)

q(x, 0) = q0(x), x ∈ R.

This advection equation has known solution q(x, t) = q0(x − at). Usually the REA
algorithm (reconstruct-evolve-average) is used to solve this problem. This algorithm
is based on the piecewise polynomial reconstruction of the solution from the values
Q̄j(t). This reconstruction we denote Q̂j(x, t) for x ∈ (xj−1/2, xj+1/2) and it is con-
sidered to be the initially condition for solving sets of the Riemann problems (in this
case we can use the form of the solution).

The semidiscrete scheme (20) has the numerical flux in the form

Fj+1/2 =
1

2
a(Q−

j+1/2 + Q+
j+1/2) −

1

2
|a|(Q+

j+1/2 − Q−

j+1/2), (38)

where Q+
j+1/2 = Q̂j+1(x(j+1/2)+ , t), Q−

j+1/2 = Q̂j(x(j+1/2)− , t) are one–sided limits.
This scheme can be rewritten into so called fluctuation form

dQ̄j

dt
=

−1

∆x
(a−∆Qj+1/2 + a∆Qj + a+∆Qj−1/2), (39)

where fluctuations are defined

a∆Qj = a(Q−

j+1/2 − Q+
j−1/2),

a−∆Qj+1/2 = a−(Q+
j+1/2 − Q−

j+1/2),

a+∆Qj−1/2 = a+(Q+
j−1/2 − Q−

j−1/2),

where a+ = max{a, 0}, a− = min{a, 0}.

For simple piecewise constant reconstruction Q+
j+1/2 = Q̄j+1, Q−

j+1/2 = Q̄j we
obtain for a > 0

d

dt
Q̄j = −

a

∆x
(Q̄j − Q̄j−1), (40)

and for a < 0
d

dt
Q̄j = −

a

∆x
(Q̄j+1 − Q̄j). (41)

6.2. Linear systems

Now we consider a linear system

qt + Aqx = 0, x ∈ R, t ∈ (0, T ), (42)

q(x, 0) = q0(x), x ∈ R,
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where A is a real matrix m × m. We suppose that the matrix A has distinct
real eigenvalues and is diagonalisable, i.e. there exists regular matrix R such that
Λ = R−1AR, where Λ is diagonal matrix. Thus we can rewrite (42) to the form

γt + Λγx = 0, (43)

where γ(x, t) = R−1q(x, t). The system (43) represents m advection equations which
can be solved analogous to the scalar case.

After rewriting the system (42) to the conservation form, where f(q) = Aq, and
solving sets of the generalized Riemann problems we get the numerical fluxes in the
form

Fj+1/2 =
1

2
A(Q−

j+1/2 + Q+
j+1/2) −

1

2
|A|(Q+

j+1/2 − Q−

j−1/2), (44)

where Q+
j+1/2 = Q̂j+1(x(j+1/2)+, t), Q−

j+1/2 = Q̂j(x(j+1/2)−, t), |A| = R|Λ|R−1 and

|Λ| = diag(|λp|). In analogy to the previous section we can rewrite the conservative
scheme to the fluctuation form

dQ̄j

dt
=

−1

∆x
(A−∆Qj+1/2 + A∆Qj + A+∆Qj−1/2), (45)

where
A∆Qj = A(Q−

j+1/2 − Q+
j−1/2),

A−∆Qj+1/2 =
m∑

p=1

λ−,p∆γp
j+1/2r

p,

A+∆Qj−1/2 =
m∑

p=1

λ+,p∆γp
j−1/2r

p,

∆Qj+1/2 =
m∑

p=1

∆γp
j+1/2r

p,

∆Qj = Q−

j+1/2 − Q+
j−1/2,

A+ = RΛ+R−1, A− = RΛ−R−1, Λ+ = diag(max{λp, 0}), Λ− = diag(min{λp, 0}),
∆γj+1/2 = R−1∆Qj+1/2.

6.3. Nonlinear systems

Now we consider nonlinear system

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (46)

q(x, 0) = q0(x), x ∈ R,

The fluctuation form of the conservative scheme is as follows

dQ̄j

dt
=

−1

∆x
[A−(Q−

j+1/2,Q
+
j+1/2) + A(Q−

j+1/2,Q
+
j+1/2) + A+(Q−

j+1/2,Q
+
j+1/2)], (47)
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A(Q−

j+1/2,Q
+
j+1/2) = f(Q−

j+1/2) − f(Q+
j−1/2),

A−(Q−

j+1/2,Q
+
j+1/2) = F−

j+1/2 − f(Q−

j+1/2),

A+(Q−

j+1/2,Q
+
j+1/2) = f(Q+

j−1/2) − F+
j−1/2.

(48)

This scheme can be rewritten to the form

d

dt
Q̄j = −

1

∆x
[F−

j+1/2 − F+
j−1/2]. (49)

If the fluctuations have the following property

f(Q+
j+1/2) − f(Q−

j+1/2) = A+(Q−

j+1/2,Q
+
j+1/2) + A−(Q−

j+1/2,Q
+
j+1/2), (50)

then F−

j+1/2 = F+
j+1/2 ∀j ∈ Z, i.e. the scheme is conservative.

It is difficult to solve nonlinear Riemann problems to take exact solution. It is
efficient to use some approximate Riemann solvers such as HLL or Roe’s solvers.

6.3.1. Roe’s solver

This approximate Riemann solver is based on the approximation of the nonlinear
system qt + [f(q)]x ≡ qt + A(q)qx = 0, where A(q) is the Jacobian matrix, by the
linear system qt +Aj+1/2qx = 0, where Aj+1/2 is the Roe-averaged Jacobian matrix,
which is defined by suitable combination of A(Qj) and A(Qj+1).

We define intercell numerical fluxes

Fj+1/2 =
1

2
[f(Q−

j+1/2) + f(Q+
j+1/2)] −

1

2
|Aj+1/2|(Q

+
j+1/2 − Q−

j+1/2), (51)

and intercell fluctuations in the scheme (47) by

A−(Q−

j+1/2,Q
+
j+1/2) =

m∑
p=1

λ−,p
j+1/2r

p
j+1/2∆γp

j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

m∑
p=1

λ+,p
j+1/2r

p
j+1/2∆γp

j+1/2,
(52)

where r
p
j+1/2 are eigenvectors of the Roe matrix Aj+1/2, λp

j+1/2 are eigenvalues called

Roe’s speeds and ∆γj+1/2 = R−1
j+1/2∆Qj+1/2, ∆Qj+1/2 = Q+

j+1/2 − Q−

j+1/2.

6.3.2. HLL solver

This solver does not use the explicit linearization of the Jacobian matrix, but the
solution is constructed by the consideration of two discontinuities, propagating at
speeds s1 and s2. The middle state Q∗

j+1/2 is determined by conservation law

f(Q+
j+1/2) − f(Q−

j+1/2) = s2
j+1/2(Q

+
j+1/2 − Q∗

j+1/2) + s1
j+1/2(Q

∗

j+1/2 − Q−

j+1/2), (53)

Q∗

j+1/2 =
f(Q+

j+1/2) − f(Q−

j+1/2) − s2
j+1/2Q

+
j+1/2 + s1

j+1/2Q
−

j+1/2

s1
j+1/2 − s2

j+1/2

. (54)
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When the special choice of the characteristic speeds called Einfeldt speeds is used,
the solver is called HLLE. The Einfeldt speeds are defined by

s1
j+1/2 = min

p
{min{λp

j , λ
p
j+1/2, 0}}, s2

j+1/2 = max
p

{max{λp
j+1, λ

p
j+1/2, 0}}, (55)

where λp
j are eigenvalues of the matrix Aj = f ′(Q−

j+1/2).

6.4. Wave–fluctuation scheme for augmented systems

Consider the model for river flow through the varying rectangular channel (4) as
was presented in 1. Section and its augmented formulation (13) and (14) presented
in 2. Section. The eigencomponents for the matrix Ď are

λ1 = 0, λ2 = 0, λ3 = 2u, λ4 = u +

√
ga

l
, λ5 = u −

√
ga

l
,

and
r1 = [− ga

λ4λ5
, 0, 0,−1, ga]T , r2 = [− ga2

l2λ4λ5
, 0, 1, 0, ga2

2l2
]T ,

r3 = [0, 0, 0, 0, 1]T , r4 = [1, λ4, 0, 0, λ
2
4]

T ,

r5 = [1, λ5, 0, 0, λ
2
5]

T .

We realize the decomposition for the augmented quasilinear formulation i.e. for
the system of five equations with Einfeldt speeds

s1 = 0, s2 = 0, s3 = s4 + s5,

s4 = min
p
{min{λp

L, λp
LR}}, s5 = max

p
{max{λp

R, λp
LR}},

and approximation of the eigenvectors of the matrix Ď

r1 ≈ [ gĀ
s̃4s5

, 0, 0,−1, gĀŝ4s5

s̃4s5
]T ,

r2 ≈ [ gĀ2

LLLRs̃4s5
, 0, 1, 0, gĀ2ŝ4s5

LLLRs̃4s5
− gÃ2

2LLLR
]T ,

r3 ≈ [0, 0, 0, 0, 1]T ,

r4 ≈ [1, s4, 0, 0, s
2
4]

T ,

r5 ≈ [1, s5, 0, 0, s
2
5]

T ,

where s̃4s5 = −Ū2 + gĀL̄
LLLR

, ŝ4s5 = −|ULUR| + gĀL̄
LLLR

, λp
L and λp

R are eigenvalues of

the Jacobi matrix for the left end right values and λp
LR are eigenvalues of the Roe’s

matrix.

The decomposition of the augmented system has the following form



∆A
∆Q
∆L
∆B
∆Φ




=
5∑

p=1

γpr
p.

13



We have five linearly independent eigenvectors. The approximation is chosen to be
able to prove the consistency and provide the stability of the algorithm. In some
special cases this scheme is conservative and we can obtain the positive semidefinite-
ness, but only under the additional assumptions.

The basic version of the numerical scheme for piecewise constant reconstruction
is in the form

dQ̄j

dt
= −

1

∆x
[A−(Q−

j+1/2,Q
+
j+1/2) + A+(A−(Q−

j+1/2,Q
+
j+1/2)], (56)

where fluctuations are defined by

A−(Q−

j+1/2,Q
+
j+1/2) =

m∑

p=1

sp,n
j+1/2

<0

γp
j+1/2r

p
j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

m∑

p=1

sp,n
j+1/2

>0

γp
j+1/2r

p
j+1/2.

7. Central-upwind method

Now we introduce so called central-upwind schemes. These schemes combine ad-
vantages of the upwind schemes i.e. lower numerical diffusion and usability for the
steady states with advantages of the central schemes i.e. positive semidefiniteness.
These schemes are Riemann solver free.

One simple method in the conservative form (20) has the numerical flux in the
form

Fj+1/2 =
a+

j+1/2f(Qj) − a−

j+1/2f(Qj+1)

a+
j+1/2 − a−

j+1/2

+
a+

j+1/2a
−

j+1/2

a+
j+1/2 − a−

j+1/2

[Qj+1 − Qj] , (57)

where

a+
j+1/2 = max {λN (f ′(Qj)) , λN (f ′(Qj+1)) , 0} ,

a−

j+1/2 = min {λ1 (f ′(Qj)) , λ1 (f ′(Qj+1)) , 0} ,

represent maximal speeds of the propagation of the waves at the points xj+1/2 and
we suppose that λ1 < λ2, . . . , λN .
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For system (34) this scheme has the following form

dQ̄j

dt
= −

1

∆x
(Fj+1/2 − Fj−1/2) + Sj. (58)

Numerical fluxes have the form

Fj+1/2 =
a+

j+1/2f(Q
−

j+1/2) − a−

j+1/2f(Q
+
j+1/2)

a+
j+1/2 − a−

j+1/2

+
a+

j+1/2a
−

j+1/2

a+
j+1/2 − a−

j+1/2

[
Q+

j+1/2 − Q−

j+1/2

]
,

(59)

where Q−

j+1/2 and Q+
j+1/2 are left and right approximations of the unknown function

at the points xj+1/2, a+
j+1/2 and a−

j+1/2 represent maximal wave propagation speeds
at points xj+1/2.

a+
j+1/2 = max

{
λN

(
f ′(Q−

j+1/2)
)

, λN

(
f ′(Q+

j+1/2)
)

, 0
}

,

a−

j+1/2 = min
{

λ1

(
f ′(Q−

j+1/2)
)

, λ1

(
f ′(Q+

j+1/2)
)

, 0
}

,
(60)

where λ1 < λ2, . . . , λN . The source term is discretized by the following way

S1
j = 0

S2
j = −g

Bj+1/2−Bj−1/2

∆x
·

·
(Y −

j+1/2
+Y +

j−1/2
−Bj+1/2−Bj−1/2)

2
.

(61)

These schemes preserve only steady state ”rest at lake” such as central methods.

8. Decomposition of the flux function

All described schemes can be represented and understood by the same way. The
amount of data about the structure of the solution of the Riemann problem included
into schemes causes the differences between schemes. This information is employed
in decomposition of the difference of the flux function.

Central schemes, for example Lax-Friedrichs scheme, are based on the following
decomposition

f(Q+
j+1/2)− f(Q−

j+1/2) = s(Q+
j+1/2−Q∗

j+1/2)−s(Q∗

j+1/2−Q−

j+1/2) =
2∑

p=1

Z
p
j+1/2, (62)

where s = ∆x
∆t

and

Z2
j+1/2 = s(Q+

j+1/2 − Q∗

j+1/2),

Z1
j+1/2 = −s(Q∗

j+1/2 − Q−

j+1/2).
(63)
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The only used information is upper estimation of the maximum speed of the discon-
tinuities propagation. This estimate is used in the CFL condition. These methods
are global because no information about discontinuities propagation in the neigh-
bourhood of the point is used. From (62) we can express Q∗

j+1/2 and we get

Q∗

j+1/2 =
∆t

2∆x
[f(Q−

j+1/2) − f(Q+
j+1/2)] +

1

2
(Q−

j+1/2 + Q+
j+1/2). (64)

Next we define fluctuations

A−(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp<0

Z
p
j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp>0

Z
p
j+1/2.

(65)

For conservative form of the scheme we have to evaluate Fj+1/2 = f(Q∗

j+1/2). We use
the Rankine–Hugoniot jump condition in the form

f(Q+
j+1/2) − f(Q∗

j+1/2) = s(Q+
j+1/2 − Q∗

j+1/2) (66)

and together with (64) we get

Fj+1/2 = f(Q∗

j+1/2) =
1

2
[f(Q−

j+1/2 + f(Q+
j+1/2] −

∆t

2∆x
(Q+

j+1/2 − Q−

j+1/2). (67)

This scheme can be understood by another way. We can derive them from fully
discrete form (18) where we use the following partition of the x–axis

〈xj+1/2,L, xj+1/2,R〉,

where xj+1/2,L = xj+1/2 − s∆t, xj+1/2,R = xj+1/2 + s∆t and 〈xj+1/2,L, xj+1/2,R〉 =
〈xj−1/2, xj+3/2〉 hold. On each of these intervals we use the balance in integral form
(15). The points where the solution is discontinuous lie inside these intervals and
this scheme is Riemann problem free.

We can use the relation (47) and we can derive the scheme in the conservative
form. These schemes are not suitable for the semidiscrete formulation because of the
infinite speed (∆t → 0) of the propagating discontinuities which is typical for the
parabolic type of the equations.

The semidiscrete central schemes use estimate of the upper bound of maximal
local speed of the propagating discontinuities. They are based on the following
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decomposition

f(Q+
j+1/2)−f(Q−

j+1/2) = sj+1/2(Q
+
j+1/2−Q∗

j+1/2)−sj+1/2(Q
∗

j+1/2−Q−

j+1/2) =
2∑

p=1

Z
p
j+1/2,

(68)
where

sj+1/2 = max
p

{max{|λp(Q−

j+1/2)|, |λ
p(Q+

j+1/2)|}},

and
Z2

j+1/2 = sj+1/2(Q
+
j+1/2 − Q∗

j+1/2),

Z1
j+1/2 = −sj+1/2(Q

∗

j+1/2 − Q−

j+1/2).
(69)

We can express

Q∗

j+1/2 =
1

2sj+1/2

[f(Q−

j+1/2) − f(Q+
j+1/2)] +

1

2
(Q−

j+1/2 + Q+
j+1/2), (70)

and we define

A−(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp
j+1/2

<0

Z
p
j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp
j+1/2

>0

Z
p
j+1/2.

(71)

For evaluating Fj+1/2 = f(Q∗

j+1/2) we use the Rankine–Hugoniot jump condition in
the form

f(Q+
j+1/2) − f(Q∗

j+1/2) = sj+1/2(Q
+
j+1/2 − Q∗

j+1/2), (72)

and together with (70) we get

Fj+1/2 = f(Q∗

j+1/2) =
1

2
[f(Q−

j+1/2 + f(Q+
j+1/2] −

1

2
sj+1/2(Q

+
j+1/2 − Q−

j+1/2). (73)

This scheme we can derive from fully discrete form (18) where the x-axis is partitioned
to subintervals of the following types

〈xj−1/2,R, xj+1/2,L〉 and 〈xj+1/2,L, xj+1/2,R〉,

where xj+1/2,L = xj+1/2−sj+1/2∆t, xj+1/2,R = xj+1/2+sj+1/2∆t. On these intervals we
use the integral balance law (15). The points where the solution is discontinuous lie
inside these intervals and as in the previous case, this method is Riemann solver free.
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The central-upwind methods can be identified with HLL solver. The decomposi-
tion has the form

f(Q+
j+1/2)−f(Q−

j+1/2) = s2
j+1/2(Q

+
j+1/2−Q∗

j+1/2)−s1
j+1/2(Q

∗

j+1/2−Q−

j+1/2) =
2∑

p=1

Z
p
j+1/2,

(74)
where s1

j+1/2 = a−

j+1/2, s2
j+1/2 = a+

j+1/2 and

Z2
j+1/2 = s2

j+1/2(Q
+
j+1/2 − Q∗

j+1/2),

Z1
j+1/2 = −s1

j+1/2(Q
∗

j+1/2 − Q−

j+1/2).
(75)

As in the previous cases we can express Q∗

j+1/2

Q∗

j+1/2 =
f(Q+

j+1/2) − f(Q−

j+1/2)

s1
j+1/2 − s2

j+1/2

+
s1

j+1/2Q
−

j+1/2 − s2
j+1/2Q

+
j+1/2

s1
j+1/2 − s2

j+1/2

. (76)

We define

A−(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp
j+1/2

<0

Z
p
j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

2∑

p=1

sp
j+1/2

>0

Z
p
j+1/2.

(77)

Relation (76) with Rankine–Hugoniot jump condition in the form

f(Q+
j+1/2) − f(Q∗

j+1/2) = s2
j+1/2(Q

+
j+1/2 − Q∗

j+1/2) (78)

give us the following

Fj+1/2 = f(Q∗

j+1/2) =
s1

j+1/2f(Q
+
j+1/2) − s2

j+1/2f(Q
−

j+1/2)

s1
j+1/2 − s2

j+1/2

+
s1

j+1/2s
2
j+1/2

s1
j+1/2 − s2

j+1/2

(Q−

j+1/2−Q+
j+1/2).

(79)
We can derive these schemes from fully discrete method (18) by limiting process
(∆t → 0). The x–axis is partitioned to subintervals of following types

〈xj−1/2,R, xj+1/2,L〉 and 〈xj+1/2,L, xj+1/2,R〉,

where xj+1/2,L = xj+1/2 − s1
j+1/2∆t, xj+1/2,R = xj+1/2 + s2

j+1/2∆t. In analogy to the

previous cases we formulate the integral balance law (15) on each of defined inter-
vals. The solution is discontinuous at the points lying inside of these intervals and
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no Riemann problem we need to solve.

The previous schemes contain only one middle state Q∗

j+1/2 between states Q−

j+1/2

and Q+
j+1/2. It is possible derive schemes with two or more middle states. For

example, the Roe solver is based on the decomposition with (m − 1) middle states

f(Q+
j+1/2) − f(Q−

j+1/2) =
m∑

p=1

sp
j+1/2W

p
j+1/2, (80)

where sp
j+1/2 = λp

j+1/2 are eigenvalues and r
p
j+1/2 are eigenvectors of the Roe matrix

(see paragraph 6.3.1.), s1
j+1/2 < s2

j+1/2 < · · · < sm
j+1/2, W

p
j+1/2 = γp

j+1/2r
p
j+1/2 and

γp
j+1/2 = R−1

j+1/2∆Qj+1/2.

The middle states can be express in the following form

Q
p,∗
j+1/2 = Q−

j+1/2 +

p∑

k=1

Wk
j+1/2. (81)

Next we define
Z

p
j+1/2 = sp

j+1/2W
p
j+1/2 (82)

and than the following holds

A−(Q−

j+1/2,Q
+
j+1/2) =

m∑

p=1

sp
j+1/2

<0

Z
p
j+1/2,

A+(Q−

j+1/2,Q
+
j+1/2) =

m∑

p=1

sp
j+1/2

>0

Z
p
j+1/2.

(83)

From (48) and from the conservativity we get the following results

Fj+1/2 = f(Q−

j+1/2) + A−(Q−

j+1/2,Q
+
j+1/2),

Fj−1/2 = f(Q+
j−1/2) − A+(Q−

j−1/2,Q
+
j−1/2).

(84)

The numerical flux function can be express in the form

Fj+1/2 = f(Q∗

j+1/2) =
1

2
[f(Q−

j+1/2) + f(Q+
j+1/2)] −

1

2
|Aj+1/2|(Q

+
j+1/2 − Q−

j+1/2) (85)

This scheme can be derived in the same way as the previous ones. We define the
partition of the x–axis

〈xj−1/2,m, xj+1/2,1〉, 〈xj+1/2,1, xj+1/2,2〉, . . . , 〈xj+1/2,m−1, xj+1/2,m〉,

where xj+1/2,p = xj+1/2 + sp
j+1/2∆t. The speeds sp

j+1/2 was getting from linearized
problem and it cannot be said that the discontinuities lie inside of the intervals. It
is not possible to interprete this scheme as a scheme without Riemann solver.
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9. Conclusion

We presented various numerical schemes for solving fluid flow problems with
various properties. All described schemes can be understood in the same way. We
note here that in the case of the methods the source term is not included in the
decompositions and if we include them the central and central-upwind methods do
not preserve general steady states anyway.
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