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Abstract

In this paper, we investigate the asymptotic behavior of global classical solutions to the mixed
initial-boundary value problem with small BV data for linearly degenerate quasilinear hyperbolic sys-
tems with general nonlinear boundary conditions in the half space {(¢,z)[t > 0,2 > 0}. Based on
the existence result on the global classical solution, we prove that when ¢ tends to the infinity, the
solution approaches a combination of C! traveling wave solutions, provided that the C' norm of the
initial and boundary data is bounded and the BV norm of the initial and boundary data is sufficiently
small. Applications to quasilinear hyperbolic systems arising in physics and mechanics, particularly to
the system describing the motion of the relativistic string in the Minkowski space-time R'*™, are also

given.
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1. Introduction and main result

Consider the following first order quasilinear hyperbolic system:

ou ou

— +A(u)=— =0 1.1

ot + AW Oz ’ (1.1)
where u = (u1,...,u,)" is the unknown vector function of (,z) and A(u) is an n x n matrix with
suitably smooth elements a;;(u) (i,7 =1,...,n).

It is assumed that system (1.1) is strictly hyperbolic, i.e., for any given u on the domain under

consideration, A(u) has n real distinct eigenvalues

Ar(u) < Aa(u) < ... < Ap(w). (1.2)

0*Corresponding author. Tel: +86-0591-83852790
E-mail address: zqshao_fzu@yahoo.com.cn.

ISupported by the National Natural Science Foundation of China (Grant 70371025), the Scientific Research
Foundation of the Ministry of Education of China (Grant 02JA790014), the National Natural Science Foundation
of Fujian Province (Grant JB07021), and the Science and Technology Developmental Foundation of Fuzhou
University (Grant 2004-XQ-16).



Let 1;(u) = (Lin(u),. .., Lin(u)) (resp. 7i(u) = (1 (w),...,7in(w)T) be a left (resp. right) eigenvector

corresponding to A\;(u)(i =1,...,n):
Li(uw)A(u) = Xi(u)li(u)  (resp. A(u)ri(u) = Ai(uw)ri(u)), (1.3)
then we have
det|lij(u)| #0  (equivalently, det|ri;(u)| # 0). (1.4)
Without loss of generality, we may assume that on the domain under consideration
li(u)rj(u) = 5@‘ (7,,_7 = 1,,,,,TL) (1.5)
and
ri(wWri(u)=1 (i=1,...,n), (1.6)

where §;; stands for the Kronecker’s symbol.

Clearly, all A;(u), l;;(u) and 7i5(u)(i,j = 1,...,n) have the same regularity as a;;(u)(i,j =
1,...,n).

We assume that on the domain under consideration, the eigenvalues satisfy the non-characteristic
condition

Ar(u) <0 < As(u) (r=1,....m; s=m+1,...,n). (1.7)
We also assume that on the domain under consideration, system (1.1) is linearly degenerate, i.e.,
each characteristic field is linearly degenerate in the sense of Lax:

Vai(wri(u) =0 (i=1,...,n). (1.8)

Consider the mixed initial-boundary value problem with small BV data for system (1.1) in the half
space
D={(t,z)|t>0, z >0} (1.9)

with the initial condition:

t=0:u=¢(x) (z>0) (1.10)
and the nonlinear boundary condition (cf. [10, 15-17])
z=0:vs =Gs(a(t),v1,...,vm) + hs(t), s=m+1,...,n (t>0), (1.11)
where
vi=Lwu (i=1,...,n) (1.12)
and
alt) = (a1(t), .., ax(t)).
Here, Gs € C'(s =m +1,...,n), ¢ = (o1,...,02)7, @ and h(-) = (hms1(-),..., hn(-)) € C' with
bounded C* norm, such that

lle(@)llcrs Nle@llers [[AE)ller < M, (1.13)



for some positive constant M (bounded but possibly large). Also, we assume that the conditions of C*

compatibility are satisfied at the point (0,0). Without loss of generality, we assume that
Gs(a(t),0,...,0) =0 (s=m+1,...,n). (1.14)
Without loss of generality, we also assume that
¢(0) =0. (1.15)

In fact, by the following transformation
u=1u— p(0), (1.16)

we can always realize the above assumption.

Recently, Shao [14] proved the following global existence result on the classical solution:
Theorem A. Suppose that system (1.1) is strictly hyperbolic and linearly degenerate. Suppose
furthermore that in a neighborhood of v = 0, A(u) € C? and (1.7) holds. Suppose finally that
©,a,Gs, hs(s =m-+1,...,n) are all C* functions with respect to their arguments satisfying the condi-
tions of C' compatibility at the point (0,0). For any constant M > 0, there exists € > 0 small enough
such that, if (1.13)-(1.15) hold together with

+oo +o0 +o0o
/ |<p’(x)|dx,/ |o/(t)|dt,/ |R'(t)|dt < e, (1.17)

then the mixed initial-boundary value problem (1.1) and (1.10)-(1.11) admits a unique global C*
solution u = u(¢, x) in the half space {(¢,z)|t > 0,z > 0}.

Our goal in this paper is to describe the asymptotic behavior of global classical solutions to the
mixed initial-boundary value problem (1.1) and (1.10)-(1.11). Based on Theorem A, we shall prove the
following theorem.

Theorem 1.1 (Asymptotic Behavior). Under the assumptions of Theorem A, for the mixed initial-
boundary value problem (1.1) and (1.10)-(1.11), if

400 —+oo
NZ2 max{/ \ap(m)|d:ﬂ,/ |h(t)|dt} < +o0, (1.18)
0 0
then there exists a unique C'vector-valued function ¢(z) = (¢1(z), ..., ¢n(z))” such that in the nor-
malized coordinates .
u(t,z) = Y ¢i(@ = Ai(0)t)e;  as t — +oo, (1.19)
i=1
where
(@) .
ei=(0,...,0,1,0,...,0)T.
Moreover, ¢;(z)(i = 1,...,n) are global Lipschitz continuous, more precisely, there exists a positive

constant k1 independent of ¢, M, x1 and x2 such that
|pi(z1) — ¢i(x2)| < K1iM|z1 — 22|, Vxi,z2 € R. (1.20)

Furthermore, if the derivatives of the initial and boundary data, i.e., ¢’(z), o/(t) and h'(t), are global

p-Holder continuous, where 0 < p < 1, that is, there exists positive constants ¢, ¢2 and ¢3 such that

o' (1) = ¢’ (22)] < 1]an gaoa’s  Vanaz€ R", (1.21)



|O¢l(t1) — a/(t2)| < §2|t1 — t2|p, th,tz S R,Jr (1.22)

and
|h/(t1) — hl(t2)| < §3|t1 — t2|p, Vthtz € R+, (1.23)

then ¢'(x) is also global p-Hoélder continuous and satisfies that
| (x1) — ¢ (z2)| < Kas(1 + MN +€)°|z1 — 22|” + kaM*(1 +€)(1 4+ MN + ¢)|z1 — 22|, (1.24)

where k2 is a positive constant independent of e, M, N, ¢, z; and x2.
Remark 1.1. Suppose that system (1.1) is non-strictly hyperbolic but each characteristic has a

constant multiplicity, say, on the domain under consideration,

Ar(u) < <A (u) <0< Am(u) < ... <XAppi(u) =+ = An(u) (m <p<n). (1.25)

Then, if there exist the normalized coordinates, the conclusion of Theorem 1.1 still holds (cf. [3-4, 9]).

The global existence of classical solution of the Cauchy problem for quasilinear hyperbolic systems
has been established for linearly degenerate characteristics or weakly linearly degenerate characteristics
with various smallness assumptions on the initial data by Bressan [1], Kong [6], Li et al [11-12], Zhou
[18] and etc. On the other hand, for the asymptotic behavior of the classical solutions of the quasilinear
hyperbolic systems, many results have also been obtained in the literature (for instance, see [3-5, 7, 13]
and the references therein). In particular, Kong and Yang [7] firstly studied the asymptotic behavior
of the classical solutions of the quasilinear hyperbolic systems with some decay initial data. However,
it is well known that the BV space is a suitable framework for one-dimensional quasilinear hyperbolic
systems (see Bressan [2]), the result in Bressan [1] suggests that one may achieve global smoothness
even if the C* norm of the initial data is large. So the following question arises naturally: can we obtain
the global existence and the asymptotic behavior of the classical solutions to the mixed initial-boundary
value problem (1.1) and (1.10)-(1.11), provided that the BV norm of the initial and boundary data is
suitably small? Here, it is important to mention that for the Cauchy problem case, this problem was
solved by Bressan [1], Zhou [18], Dai and Kong [4]. However, due to the presence of a boundary, any
waves with negative speed are expected to be reflected at the boundary, some additional difficulties
appear. Therefore new proofs are required to overcome them. This makes our new analysis more
complicated than that for the Cauchy problem case. The present paper can be viewed as a development
of [1], [4] and [18]. The rest of the paper is organized as follows. For the sake of completeness, in Section
2 we recall John’s formula on the decomposition of waves with some supplements. Section 3 is devoted
to establishing some new estimates, these estimates will play an important role in the proof of main
result. The main result, Theorem 1.1, is proved in Section 4. It is easy to see that Theorem 1.1 can
be applied to all physical models discussed in Li and Wang [10] on the mixed initial boundary value
problem for the system of the planar motion of an elastic string, provided that the BV norm of the
initial and boundary data is suitably small, therefore we do not give the details in this paper. However,
of particular interest is the system of the motion of the relativistic string in the Minkowski space-time
R as an application of Theorem 1.1, the asymptotic behavior of the classical solutions to the mixed
initial-boundary value problem with small BV data for this system is presented in Section 5.
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2. Preliminaries

Suppose that on the domain under consideration, system (1.1) is strictly hyperbolic and (1.5)-(1.6)
hold.

Suppose that A(u) € C2. By Lemma 2.5 in [11], there exists an invertible C* transformation
u = u(u) (u(0) = 0) such that in u-space, for each i = 1,...,n, the ith characteristic trajectory passing

through u = 0 coincides with the wu;-axis at least for |u;| small, namely,

ri(uie;) = e, V|ug| small (i =1,...,n), (2.1)
where
(%)
ei=(0,...,0,1,0,...,0)". (2.2)
Such a transformation is called the normalized transformation and the corresponding unknown variables
%= (U1,...,un)T are called the normalized variables or normalized coordinates (see [12]).
Let
w; =lLi(wWue, (G=1,...,n), (2.3)
where

denotes the ith left eigenvector.

By (1.5), it follows from (1.12) and (2.3) that

k=1
and .
Uy = Zwkrk(u). (2.5)
k=1
Let
d 0 0
TJ - a + )\z(u)% (26)

be the directional derivative along the ith characteristic. We have (see [3-4, 12])

ZZ}; = Z Bijk(w)vjwr (i=1,...,n), (2.7)
where o

Bigr(u) = (Ak(u) = Ai(w))li(w) Vr; (w)r(u). (2.8)
Hence, we have

Biji(u) =0, Vj (2.9)

and by (2.1), in the normalized coordinates we have
Biji(uje;) =0, V |uj| small, V j. (2.10)
Noting (2.5), by (2.7) we have

Ov; n A (u)vs)
ot Ox

= Z Bijk(u)vjwk déf Fi(t,x), (2.11)



or equivalently,

d[vi(dz — Xi(w)dt)] = > Bigk(u)vswedt A dz = Fy(t, z)dt A da,

j,k=1
where
Bijk(u) = Biji(w) + Vi (w)rk (u)di;.
By (2.9), it is easy to see that

Biji(u) = O7 Vi 75 ]

and

Biii(u) = Vi(u)ri(u), v i.
Moreover, by (2.10), in the normalized coordinates we have
Bij;(uje;) =0, V |uj| small, Vi # j.
When the system is linearly degenerate, in the normalized coordinates, we have
B;jj(uje;) =0, Y |uj| small, V j.
On the other hand, we have (see [3-4, 12])

dwi - .
e D yusuwgwe (i=1,...,n),

Jyk=1

where

Yigh(u) = %{(Ag’ () = A (W)l () Vry (w)rg (w) — VAi(u)ry (w)di + (§1k)},

in which (j|k) denotes all the terms obtained by changing j and k in the previous terms.

have
Yigi(u) =0, Vj#i
and
~yiii(u) = =V (u)ri(u) (i=1,...,n).

When the system is linearly degenerate, we have
Yiji(w) =0, Vi,j.
Noting (2.5), by (2.18) we have

dwi | di(whw) _ &

J,k=1

equivalently,
n

d[wi(de — Xi(w)dt)] = Y Tigp(wwjwdt A dz = Gi(t,z)dt A da,

where

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Hence, we

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



Hence, we have

Fijj(u) = 07 A Z,] (2.26)

3. Uniform Estimates

In this section, we shall establish some new uniform estimates which play a key role in the proof
of Theorem 1.1.

By Lemma 2.5 in [11], there exists a normalized transformation. Without loss of generality, we
assume that v = (uq, ..., un)T are already the normalized coordinates.

Noting (1.2) and (1.7), we have
A1(0) < ... < Am(0) <0 < Amy1(0) < ... < An(0). (3.1)

Thus, there exist sufficiently small positive constants ¢ and dp such that

Ait1(u) — Ai(v) > o, Vijul, lv|] <0 (i=1,...,n—1), (3.2)
Mol — i) < %, Vlul o] <8 (=1,...,n) (3.3)

and
M) =60 (i=1,...,n). (3.4)

On the other hand, by Lemma 3.5 in [14], we know that on the domain of existence of the C'
solution u = u(t, z) to the mixed initial-boundary value problem (1.1) and (1.10)-(1.11), we have

|u(t, z)| < Koe. (3.5)

where Ko > 0 is a constant independent of ¢ and M. Therefore, taking ¢ suitably small, we always

have
[ult, )] < 6. (3.6)
For any fixed T' > 0, let
Un(T) = sup_sup [u(t, )], (3.7)
0<t<T zeRt+
Voo(T) = sup sup [v(t, )], (3.8)
0<t<T ceR+
Weo(T) = sup sup |w(t, z)], (3.9)
0<t<T zeRt
“+oo
U(T) = sup/ |u(t, z)|dx, (3.10)
0<t<T Jo
“+oo
Vi(T) = sup/ |v(t, z)|dz, (3.11)
0<t<T Jg
+oo
Wi(T) = sup/ lw(t, z)|dz, (3.12)
0<t<T Jo
ﬁl(T): max maxsup/ |us|dt, (3.13)
i=1,...,n jF#i c; c;

\71(T): max maxsup/ |vs|d, (3.14)
i=1,...m %# o Jo.



Wl(T): max maxsup |w;|dt, (3.15)
i=1,...,n j#i c; c;

Uy(T) = max maxsup/ lus|dt, (3.16)
Lj

i=1,..., n j#i [,

Vi(T) = max maxsup/ |vs|dt, (3.17)
i JL;

i=1,...,n j#i |,

Wi(T) = max maxsup/ |w;|dt, (3.18)
i=len g1, Jp

where |-| stands for the Euclidean norm in R", C; stands for any given jth characteristic on the domain
[0,T] x R*, while L; stands for any given ray with the slope ;(0) on the domain [0, 7] x R". Clearly,
Voo (T) is equivalent to Uss (T').

Lemma 3.1. Under the assumptions of Theorem 1.1, on any given domain of existence {(¢,z)|0 <
t < T,z > 0} of the C* solution u = u(t,z) to the mixed initial-boundary value problem (1.1) and
(1.10)-(1.11), there exists a positive constant K; independent of e, M, N and T such that

+oo +o0 T +oo
/ lvs(t, @) |dz < Kl{vl(m +/ Ih(t)|dt +/ / F(t, m)|dxdt},v P<T (i=1,....n)
0 0 0 0

(3.19)
provided that the right hand side of the inequality is bounded and F = (Fi, F», ..., F,).
Proof. To es‘cima‘cefo-H>o |vi(t, x)|dz, we need only to estimate
L
| o (3.20)
0

for any given L > 0 and then let L — +oc0.

i) For ¢ = 1,...,m, for any fixed point (7,L), we draw the ith backward characteristic z =

z;(t) (0 <t < T) passing through this point:

Bt — \i(u(t,zi(t), t<T,

(3.21)
Z’l(T) = L.
From (2.11), we have
foile + u(@)lwil)e = sgn(os) Fi(t, ). (3.22)
Thus, noting (1.7), we get
d z; (t) @4 (t)
i) = / D fos(t, )+ 0 o1, ()
@4 (t) z;(t)
= [ smtoraas - [ Ould)ede + a0 o)
z; (t)
= / sgn(vi) Fy(t, x)de — (Ni(u(t, zi(t))) — 25 () [vi (t, 2:(8))] + Ai(u(t, 0))|vi(t, 0)]
z;(t) = (t)
:/ sgn(v;) Fi (¢, z)dz + Ai(u(t, 0))|vi(t,0)] < / |Fi(t, z)|dx. (3.23)
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Then, it follows from (3.23) that

zi(t) z;(0) 7(0
/ |vi(t, ) |dx </ |vi (0, z |d1’+/ / 5 (t, @) |dxdt
0
—+oo +oc
S/ |vi (0, x \da:Jr/ / F(t,x)|dzdt. (3.24)
0
L “+oo
/ |vi (t, z)|dz < V2 (0 / / F(t,z)|dzdt. (3.25)
0

Letting L — 400, we immediately get the assertion in (3.19).
(ii)) For i = m+1,...,n, let © = x;(¢t,L) (0 < ¢t < T) be the ith forward characteristic passing
through point (0,L). Then, passing through point (T,a) (a > z;(T, L)), we draw the ith backward

Thus

characteristic x = z;(¢t) (0 < ¢ < T') which intersects the z-axis at a point (0, z;0). By exploiting the

same arguments as in (i), we can deduce that

d x;(t) x;(t)
T )l =:J/ sgn(vo) Fi (1, 2)dz + As(u(t,0)vi(t,0)
[0) 0

@ (t)
< / |F5(t, z)|dz + As(u(t, 0))|vi(t, 0)]. (3.26)

Thus, noting (3.6), it follows from (3.26) that

= (t) 0 1(t>
/ |vs (t, x)|dx S/ |vs (0, x)|d:c+/ i(u(t,0))|vi(t,0) |dt+/ / i(t, x)|dzdt
0 0
+oo
< cl{/ |vi (0, m)\dm—l—/ v (t 0)\dt+/ / F(t,x |dwdt} (3.27)
0

where here and henceforth, ¢;(i = 1,2,...) will denote positive constants independent of ¢, M, N and
T. Noting (1.14), by (1.11), it is easy to see that

0)= 3 aurB)er(t.0) + hufo), (3.28)
where L
0G;
ir(t) = a(t), 7v1(t,0),...,7om(t,0))dT. 3.29
wet) = [ Got(ao). ru(e0). .. ron(e.0) (3.29)

Thus, noting (3.6), we have

/ |vi(t, 0)|dt = Z/ |gir (t)vr (¢, 0)|dt+/ B (t)|dt

m T “+ oo
CQ{Z/ |vT(t,O)|dt+/ h(t)|dt}. (3.30)

Then, passing through the point A(T,0), we draw the rth characteristic Cr.(r € {1,...,m}) which
intersects the x-axis at point B(0,zp). We rewrite (2.12) as

d(Jvr(t, 2)|(dx — A\r(uw)dt)) = sgn(v,)Frdxdt. (3.31)



By (3.31), using Stokes’ formula on the domain AOB, we have

/OT vr(t,0)|(—)\r(u)dt)’</0”3 |Ur(o,x)\dx+//403‘FT|dxdt
§v1(0)+/0T /;Oo |F(t, z)|dzdt. (3.32)

Noting (3.4) and (3.6), for sufficiently small § > 0, it is easy to see that

|Ar(u)] > %0. (3.33)

Therefore, it follows from (3.32) that

T T +oo
vr(t,0)]dt < c3< V1(0 F(t,x)|dxdt ». 3.34
A'(t)“:{ U+ALA |a>|t} (3.34)

Combining (3.27) with (3.30) and (3.34), we obtain

/OW) |vi(t,ac)|d:)cscél{vl(ow/o+oo Ih(t)dt+/0T /;Oo |F(t,m)|dmdt}. (3.35)
/OL vi(t, 2)|dz < c4{V1(0)+/0+oo |dt+/ /+Oo (t,x |dzdt} (3.36)

Letting L — 400, we immediately get the assertion in (3.19). The proof of Lemma 3.1 is finished. O

Thus

Lemma 3.2. Under the assumptions of Lemma 3.1, on any given domain of existence {(¢,2)|0 <
t < T,z > 0} of the C* solution u = u(t,z) to the mixed initial-boundary value problem (1.1) and
(1.10)-(1.11), there exists a positive constant K2 independent of ¢, M, N and T such that

T +o0 +o0 T 400
/ / |vs (t, )| |w; (¢, z)|dedt < Ko <V1(0) + / |h(t)|dt + / / |F(t,x)dxdt>
+oo T +oco
x (Wl(O) +/ (|o' ()| + [K' ()])dt +/ / |G(t, x)|dmdt>7

Viti (i,j=1,...,n), (3.37)
provided that the right hand side of the inequality is bounded and G = (G1,Ga,...,Gn).
Proof. To estimate
T +o0
/ / v (t, ) ||w; (¢, x)|dxdt, (3.38)
o Jo
it is enough to estimate
T L
/ / v (¢, z)||w; (¢, z)|dzdt, (3.39)
o Jo

for any given L > 0 and then let L — +o0.

i) Fori,j € {1,...,m} and i # j, without loss of generality, we suppose that i < j, passing through
point (T, L), we draw the ith backward characteristic x = x;(t) (0 < ¢t < T') which intersects the x-axis
at a point (0, z;0).

We introduce the ”continuous Glimm’s functional” (cf. [1, 18])

w:// (8, ) o (£, )|y, (3.40)
0<z<y<z;(t)
10



Then, it is easy to see that

aQ(t) _ o
O~ slftn o) [ ol

1o}
[ 2 (t.2) ot )y
O<z<y<z;(t)

0
[ o0 1, 2)| 20, 9) )y
O<z<y<z;(t)

x;(t)

— 2Ot (0) / fwy (1, 2)|de
ey
- / / (1) 2 a0 (0, )y

O<z<y<z;(t) 8y

+ sgn(w;)Gj(t, x)|vi(t, y)|dzd
/A<r<y<ri(t) ¢ Y Y
+ |w; (t,x)| sgn(v;)F; (¢, y)dzd
\/»/0<I<y<zi(t) & Y Y
x; (t)
— (@(t) — As(ult, () ot 2o(8) / (8, ) de
;(t)
T (u(t, 0)) sy (1,0) / (s (1, )|

z;(t)
*/ (Aj(u(t, ) = Ai(u(t, x)))|vi(t, @) ||w; (¢, z)|de

+ / / sen(w)) G (t, 2)os (¢, y) [ddy
O<e<y<z;(t)
n / / s (1, )| sen(v) Fi(t,y)dedy
0<z<y<w;(t)
x;(t) a;(t)
< Iy (u(t, 0)) [ (1,0)| / fou(t. )] — 6o / fou(t, )| (1, ) de
0 (0]
x;(t) x;(t)
+ / G (t,2)do / (vi(t, 2)\da
0 0
x; (t) x;(t)
[ iRl [ s
0 0
+o0 x;(t)
< Iny(u(t, 0))] (8, 0)] / fos(t,2)|de — / fou(t, )] [y (8, )
0 0

“+oo “+oo
n / G (t, 2)|da / foi(t, 2)|da
0 0

+oo +o0o
+/ |Fi(t,m)|dx/ |wj (t,x)|dx. (3.41)
0 0
11



It then follows from Lemma 3.3 in Shao [14] and Lemma 3.1 that

x4 (t)
dQ(t) —|—50/ vi(t, z)||w; (¢, x)|dx
dt 0

+oo +oo T +oo
<c5(Aj<u<t,o>>||wj<t,o>|+ / |G<t,x>dx) (v1<o>+ / Ih(t)ldt + / / |F<t7x>|dmdt)
+oo +o0 T “+oo
+06/ F(t,x)dm<W1(0)+/ (|a’(t)\+|h’(t)|)dt+/ / |G(t,:p)|dxdt>. (3.42)

Thus, noting (3.6), we have
T przi(t)
60/ / |vi (¢, 2)||w; (t, z)|dzdt

<Q(0 )+C7</ lw, (t, 0) \dt—i—/ /m (t,x |dxdt) (vl( )+ /m |h(t)|dt+/T /m F(t,x)dacdt)
ce/o /;oo |F(t,x)|dacdt(W1(0)+/O+oo(|0z( )+ R (¢ dt+/ / G(t,x |dmdt> (3.43)

Then, passing through A(T,0), we draw the jth characteristic C; which intersects the x-axis at a point
B(0,zp). We rewrite (2.24) as

d(|w;(t,z)|(dz — Xj(u)dt)) = sgn(w,;)G;dzdt. (3.44)

By (3.44), using Stokes’ formula on the domain AOB, we have

‘/OT |wj(t,0)\(*/\j(u)dt)’ < /OIB ij(O,x)\der//AOB |G |dedt

T “+oo
< W1(0) —|—/ / |G (¢, z)|dzdt. (3.45)
o Jo
Thus, it follows from (3.33) that
T +oo
/ |w; (t,0)|dt < cs{W1(0 / / G(t,z)|dzdt}. (3.46)
0
Then, noting
“+oo —+oo
Q< [ s [ o0l (3.4
0 0

it follows from (3.43) and (3.46) that

T rzi(t)
60/0 /0 |vi (¢, )| |w; (¢, z)|dxdt
< cgy (Vl(O) +/+°° \dt—i—/ / F(t,x) |dccdt)
+oo too
><<W1(0)+/ (|a’(t)|+|h’(t)\)dt+/ / |G(t,x)|dxdt>. (3.48)

T rzi(t)
/ / ot )y (1, )|l
0
+oo
< cio <V1(0) +/ |dt+/ / F(t,x dmdt)

It thus follows



“+o0 T +oo
X<W1(0)+/ (|a/(t)|+|h'(t)\)dt+// |G(t,m)|dmdt>. (3.49)

/OT /OL |vi (t, )| [w; (¢, z)|dwdt
: 010<V1(0)+/0+°° |h(t)|dt+/0T /Om F(t,x)da:dt)

+o0 T “+o0o
X<W1(0)+/ (|a'(t)|+|h’(t)\)dt+// |G(t,a:)|d:1cdt). (3.50)

and the desired conclusion follows by taking L — +oo.

Hence

ii) For ¢ € {m+1,...,n} and j € {1,...,m}, passing through point (7}, L), we draw the jth
backward characteristic x = z;(t) (0 <t < T') which intersects the z-axis at a point (0, z;0).

We introduce the ”continuous Glimm’s functional” (cf. [1, 18])
an-[ [ i, )t dady. (351)
O<y<z<z; (t)

Then, it is easy to see that

x5 (t)
QW) _ oty .2, (1) / et ) dy

0
) D sy 4, 2) Dl 2.9y
0<y<z<z;(t)

19}
) (8. 2)| 2 (. 9)
0<y<z<w;(t)

z;(t)
= (D) (25 ()] / fou(t, ) dy
0
o
- D0y )y (4 )t )y
O<y<z<zj(t)
0
-/ a6, 2) 2 (o1, ) ey
0<y<z<z;(t) Y
" / / sem ()G 8, ) s (1, )y
0<y<z<wz;(t)

+ |w; (t, z)| sgn(vi)Fi(t,y)dzd
//O<y<z<zj(t) & Y Y
x;(t)
— (@ (t) — Ay (u(t, 2 ())) sy (8, 25 (1)) / foe(t, )| dy
z;(t)
st )i (4,0)| / (8, )

z(t)
_ / aults 2)) — A (ult,2))) s (1, )| o (¢, 2) | de

+ / / sgn(w;) G (1, ) s (1, ) | dady
O<y<w<w;(t) 13



" / / (8, )| sgn(v) Fi(t,y)dedy
o<y<z<z;(t)
xj(t) xj(t)
< X(ult, 0)[us(t, 0) / (8, ) d — 3 / fwy (1, )] s (8, )z
(0] 0

zj(t) @ (t)
n / G ()| da / os(t,y)dy
0 [0]

x;(t) xj(t)
n / (Fi(t,9)dy / fwy (8, ) da
0 0

+oo x4 (t)
< X(u(t, 0))ui(t,0)] / s (8, ) e — / s (8, ) o (£, ) de
0 [0}

“+o0 “+o0
n / G (t,2)do / foi(t, 2)de
0 0

—+oo —+o0
+/ |Fi(t,m)|dx/ |w; (¢, z)|dx. (3.52)
0 0

It then follows from Lemma 3.3 in Shao [14] and Lemma 3.1 that

d z;(t)

GO 0 [ el .0l

dt ;
“+o0o “+ oo T “+o0o
<en (A (u(t. e, )1+ | |F<t,x>|dm) <W1(0>+ | wwommop [ |G<t,a:>|dwdt>
0 0 o Jo
+oo +oo T +oo
—|—C12/ |G(t, x)|dz <V1(0) +/ |h(t)|dt —|—/ / |F(t,x)|dmdt>. (3.53)
0 0 o Jo

Therefore

8o /T /Ijm |vi(t, z)||w; (t, )| dadt
§Q(O)—|—cn(/T>\( (t,0))|vi(t, 0) \dt+/ /m tm)|dmdt) <W1(0)+/0+Oo(|a'(t)|+h'(t)|)dt—|—/0T /Om |G(t,x)da:dt>
+cl2/ /m (t, |dmdt<V1( )+/O+°O |h(t)|dt+/0 /;oo |F(t,x)|dmdt). (3.54)

By exploiting the same arguments as in Lemma 3.1, we can deduce that

T +oo
/O X (ult, 0))|vi (¢, 0) \dt<613/ lvi t, O)|dt<c14{2/ o (£, 0)|dt+/0 |h(t)dt}

§015<V1(0) /ﬂo |dt+/ /m t:p|dxdt> (3.55)

+oo +oo
Q) < / 104(0, ) dz / (0, ) de, (3.56)

it follows from (3.54)-(3.55) that
T x;(t)
o / / Jos(t, ) ()
0 0

14

Then, noting



“+oo T +oo
< cis <V1(0)+/ |h(t)|dt+/ / F(t,x)dwdt)
+oo T +oo
><<W1(0)+/ (|a’(t)|+|h’(t)\)dt+/ / |G(t,ac)|d:cdt>. (3.57)

T x5 (t)
I
—+oo T —+o0
scu<vl(0)+/ |h(t)|dt+/ / F(t,a:)dacdt)
+oco T +oo
><<W1(0)+/ (|a/(t)|—|—|h'(t)\)dt—|—// |G(t,x)|dacdt>. (3.58)

/ / |vi (t, z)||w; (¢, z)|dzdt
0 0
+oo T +oo
§c17<V1(0)+/ |h(t)|dt+/ / F(t,x)dmdt)
+o0 T +o0
><<W1(0)+/ (|a’(t)|+|h’(t)\)dt+/ / |G(t,x)|dxdt). (3.59)

and the desired conclusion follows by taking L — +o0.

It thus follows

Hence

iii) For i,5 € {m+1,...,n} and ¢ # j, without loss of generality, we suppose that ¢ < j. Let
x =ux;(t,L) (0 <t <T) be the ith forward characteristic passing through point (0, L). Then, we draw
the ith backward characteristic © = z;(¢) (0 <t < T') passing through point (T, a) (a > z;(T, L)).

We introduce the ”continuous Glimm’s functional” (cf. [1, 18])

H= / / s (¢, )] v (¢, ) ddy. (3.60)
O<z<y<z;(t)

Then, it is easy to see that

xi(t)
W0 _ st @)t |/ (1, 2))de

/ / 9y () (1) ey
O<z<y<z; (t)

[ o0 (1, 2)| 2 (o1, ) vy
O<z<y<wz;(t)

x;(t)
— 2 (0 os(t, i (8)] / oy ()| de

0
-1/ D (0w 1, 2) st ) ey
O<z<y<z;(t)

3]
-1/ (8, 2) 2 (w0, 9) ey
O<z<y<z;(t) Y
] sem(w;) Gy (t, ) s (¢, )l dody
O<z<y<z;(t)

n / / fwy (¢, )] sgn(v0) Fu(t, y)dedy
O<z<y<z;(t) 15



x;(t)
— (@(t) — MeCult 2 (0)) s (1, 24(0)] / oy (1, 2)|de
x;(t)
Aj(u(t,0))|w;(¢,0 v (t, x)|dx
T (ult, 0))uwy (¢ >|/0 fou(t, )

i(t)
—/ (N (u(t, ) = Ai(ult, ) |vi(t, )| Jw; (¢, 2)|de

+ / / sgn(wy)G (1, ) (¢, )| dady
O<z<y<z;(t)

n / / oy (t, )] sgn(v)Fi(t, y)dady
O<e<y<z;(t)

z; (t) z; (t)
< Ay (ult, 0)wy (t,0)] / fou(t, 2)ld — 0 / s, @) [y (1, )| de
0 0

x;(t) x;(t)
" / G (t, 2)|da / 0u(t, 2)|da
(0] 0

xi(t) xi(t)
+/ |Fi(t, m)|dx/ |w; (t, z)|dx
0 0

+oo x4 (t)
< Xy (ult,0)) s (1, 0)| / fou(t. )| de — do / fou(t, )] (1, ) d
0 0

+oo +oo
[ G [ s
0 0

—+oo —+o00
+/ |Fi(t,x)|dm/ |w; (¢, z)|dx. (3.61)
0 0

It then follows from Lemma 3.3 in Shao [14] and Lemma 3.1 that

xi(t)
= Y 4 60/ |vi (£, )| |w; (¢, z)|dx
dt 0

+oo +o0 T ~+oo
< e (A( (1, )l (1,0)] + / |G<t,:c>|da:> (v1<o>+ / Ih(e)ldt + / / |F<t,m>|dxdt)
+oo +oo +°C
+clg/ |F(t,z)|dz <W1( )+/ (o' @)+ | (¢ dt+/ / G(t,x) |d:cdt) (3.62)

Therefore 0
/ / |vi (£, )| |w; (¢, ) |dxdt

<Q(0 )+C18(/TA (u(t, 0))|w; (t,0) \dt+/ /m (t :p)|d:cdt) (vl( )+/0+Oo h(t)|dt+/OT /0+O°|F(t,ac)|dxdt>
+C19/ /+OO (t,x |d:rdt<W1( ) + /C)+oo(|a'(t)|+|h/(t)|)dt+/0 /0+OOG(t,x)|dxdt). (3.63)

Noting (3.6), by (3.25) in Shao [14], we have

/ Ay (u(t, 0) oy (8, 0)d < ez / |wj(t,o>|dt3czo{z / oty ) 1,0\t

16
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gcm{ﬁ;/; wr(t,0)|dt+/0+oo(|a’(t)|+h/(t)|)dt}. (3.64)

Then, passing through A(T,0), we draw the rth characteristic Cr(r € {1,...,m}) which intersects the
x-axis at a point B(0,zp). We rewrite (2.24) as

d(Jw;(t, z)|(dz — Xi(uw)dt)) = sgn(w;)Gidxdt. (3.65)

By (3.65), using Stokes’ formula on the domain AOB, we have

‘/OT |wr(t,0)\(—Ar(u)dt)‘ </O””B |wr(0,x)\dm+//AOB |G| dadt

< Wi(0) + /T /+Oo |G (¢, z)|dzdt. (3.66)
o Jo

Thus, it follows from (3.33) that

T T oo
/ |wr(¢,0)|dt < c22{W1(0) +/ / |G (¢, z)|dxdt}. (3.67)

Then, noting (3.64), we get

T “+ oo T ~+oo
/ Aj(u(t,0))|w;(¢,0)|dt < ca3 <W1(0)+/ (|a’(t)|+|h’(t)|)dt+/ / |G(t,:c)|d:rdt>. (3.68)

Thus, noting

+oo +oo
Q) < / 104(0, ) da / (0, ) de, (3.69)

T przi(t)
50/ / |vi (t, 2)||w; (t, z)|dzdt
o Jo

g024<v1(0)+/0+00 |h(t)|dt+/0T/0+ooF(t,x)da:dt)

+o0 T “+o0o
><<W1(0)+/ (|a'(t)|+|h’(t)\)dt+// |G(t,m)|d:pdt>. (3.70)

T rzi(t)
/ / os(t, ) [y (8, )t
0 0
o0 T “+ oo
SC25<V1(0)+/ |h(t)|dt+/ / F(t,x)dmdt)
0 (0] 0

+o00 T +oo
><<W1(0)—|—/ (|a/(t)|—|—|h’(t)\)dt—|—/ / |G(t,x)|d:cdt>. (3.71)
0 0 0

A
Foo T oo
§C25<V1(0)+/ |h(t)|dt+/ / F(t,a:)da:dt)
0 17 0 0

it follows from (3.63) that

It thus follows

Hence



“+o0 T +oo
X<W1(0)+/ (|a/(t)|+|h'(t)\)dt+// |G(t,x)|dacdt). (3.72)

and the desired conclusion follows by taking L — +oo.
iv) For i € {1,...,m} and j € {m+1,...,n}, passing through the point (T, L), we draw the ith
backward characteristic x = z;(t) (0 < ¢ < T') which intersects the z-axis at a point (0, z).

We introduce the ”continuous Glimm’s functional”

- / / fwy (¢, )] v (8, ) [ddy. (3.73)
o<ez<y<z;(t)

By exploiting the same arguments as in (iii), we can deduce that

zi(t)
/ / |vs (¢, )] |w; (¢, ) |dxdt

oo +oo
< 2 <V1(0) + /+ |h(t)|dt+/ / F(t,x)dmdt)
+o0 T +o0
x(W1(0)+/ (| (t)] + |h’(t)\)dt+/ / |G(t7ac)|dacdt). (3.74)

/ / Jos(t, )y (1, )\t
§CQ6<VI(0)+/+OO |h(t)|dt+/T/+ooF(t,x)dazdt)
0 0 0
+oo T +o0
><<W1(0)—|—/ (|a/(t)|—|—|h’(t)\)dt+/ / |G(t,x)|d1:dt). (3.75)

and the desired conclusion follows by taking I — +o0o. The proof of Lemma 3.2 is finished. O

Hence

Lemma 3.3. Under the assumptions of Lemma 3.1, on any given domain of existence {(¢,z)|0 <
t < T,z > 0} of the C" solution u = u(t,z) to the mixed initial-boundary value problem (1.1) and
(1.10)-(1.11), there exists a positive constant K3 independent of ¢, M, N and T such that

Wi(T), Wa(T) < Kse, (3.76)
Uso(T), Voo (T) < K3ze (3.77)

and
Weo(T) < K3 M. (3.78)

The proof can be found in Shao [14].
Lemma 3.4. Under the assumptions of Lemma 3.1, on any given domain of existence {(¢,z)|0 <
t < T,z > 0} of the C" solution u = u(t,z) to the mixed initial-boundary value problem (1.1) and
(1.10)-(1.11), there exists a positive constant K4 independent of ¢, M, N and T such that

U (T), Uy (T),U(T), Vi(T), Vi(T),V1(T) < K4N (3.79)
and
Wi(T) < Kye. (3.80)
Proof. We introduce

+oo
ZZ/ / lwi(t, z)|[w; (¢, z)|ddt (3.81)

J=1 i#j



and let

+oo
ZZ / / o (t, @) [Jw; (¢, )| dad. (3.82)

J=1 i#j
By (2.11) and (2.23), it follows from Lemma 3.2 that

“+oo T “+oo
Qv(T) < cor <V1 (0) + /0 [h(t)|dt + /0 /0 |E'(¢, m)|dazdt>
—+oo T “+oo
-(Wl(O) +/O (I’ (®)] + |k (t)|)dt+/0 /0 |G(t,x)dmdt>. (3.83)

Noting (2.26), we have
T +oo
/ / |G(t, x)|dzdt < casQw (T). (3.84)
o Jo

Noting (2.17) and using Hadamard’s formula, we obtain

Z Bz]k v]wk = Z ZB,]IC ijk + Z B'L]] U]wj

Jik=1 =1 k#j
= Z Z Bijk(w)vjwe + Z ii (W) — Bijj(uje;))viw;
Jj=1 k#j
8Bm TUL, .- - ,TUj_l,Uj,T'LL]‘+1, e ,Tun)
= ZZB”k w)vjwi + ZZ Sur dr Jupvjw;. (3.85)
Jj=1 k#j Jj=1 h#j
By (4.27)-(4.31) in Zhou [18], i.e.,
D lunl <20y fonl, Vi€ {L,...,nd, (3.86)
h#j h#j
we have .
Fi(t,z)| < s » > [vjwil, Vie{l,...,n}. (3.87)
J=1 k#j
Thus, we get
+oo
/ / F(t,z)|dzdt < c51Qv(T). (3.88)

Noting (1.18), (1.19), (3.84) and (3.88), using (3.69) in Shao [14], we obtain from (3.83) that
+oo too
Qu(T) < ex (v1<o> n / Ih(t)dt+Qv(T)> - <W1(0) " / (o' (0] + |h’<t>|>dt+Qw<T>>

<N+ Qu(T))(e +¢7), (3.89)
Therefore
Qv (T) < cgaNe. (3.90)

We now estimate Vi (T).

By Lemma 3.1, we have

/Om |Ui(t,x)|dx§K1{V1(0)+/O+oo |h(t)dt+/0T /0+<x> |F(t,m)|dxdt}

+oo
< 035{V1(O) +/ |h(t)|dt + QV(T)} < c36N. (3.91)
0 19



Therefore
V1 (T) S 637N. (392)

We next estimate V1 (T).

To estimate V1(T), we need to estimate

/ v (t, z)|dt,
L.

j
where L; stands for any given ray with the slope \;(0) on the domain [0,7] x R*. Without loss of
generality, we assume that L; intersects the x-axis with point A(0, «), and intersects the line ¢t = T
with point B.

i) For ¢ = 1,...,m, passing through point B, we draw the ith backward characteristic C; which
intersects the x-axis at a point C(0, 3). For fixing the idea, suppose that a < 3.

We rewrite (2.12) as

d(|vi(t, z)|(dz — Xi(u)dt)) = sgn(v;)Fidzdt. (3.93)

By (3.93), using Stokes’ formula on the domain ABC, we have

B
S/ |U,-(O,ac)|da:+// |F;|dzdt
« ABC

< Vi(0) + e3sQv (T). (3.94)
In the definition of V1 (T'), j # 4, thus we have from (3.2) that

‘/ |vi(t, ©)| (A5 (0) — Ai(w))dt

1A;(0) = Ai(u)| = do. (3.95)
Therefore, it follows that

/ |'Ui(t, ZIJ)|dt S ng{Vl (0) + QV(T)} (396)

(ii))For ¢ = m+1,...,n, we draw the ith backward characteristic C; passing through point B. Here,
there are only two possibilities:
(a)The ith backward characteristic C; intersects the t-axis at a point C'(5,0). By (3.93), using

Stokes’ formula on the domain OABC, we have

o B
g/ |Ui((),m)|dx+/ |)\i(u(t,0))\|vi(t,0)\dt+// |F;|ddt
0 0 OABC

/ s (6, 2)| (A (0) — Au(u))de

B
< Vi (0) + C40{ / |vi(t, 0)|dt + Qv(T)} (3.97)
0
Thus, it follows from (3.95) and (3.97) that
B
/ |1)Z' (t, m)|dt < ca1 {Vl (0) + / |v7;(t, 0)|dt + Qv(T)} (398)
L; 0

J

Noting (3.6), by (3.28), we have

B m 8 8
/ |vi(t,0)|dt:2/ |gir(t)vT(t,0)|dt+/ |hi(t)|dt

20



< C42{ i/f vr(t,0)|dt+/0+oo |h(t)|dt}. (3.99)

Then, passing through C(3,0), we draw the rth characteristic Cr(r € {1,...,m}) which intersects the
x-axis at point D(0,zp). By (3.31), using Stokes’ formula on the domain COD, we have

‘/06|vr(t,0)|(—>w(u)dt)‘ S/OID |Ur(0,w)|dm+//COD‘Fr|dwdt

< Vi(0) + casQv (T). (3.100)
Thus, it follows from (3.33) that
/OB lop(¢,0)|dt < caa{V1(0) + Qv (T)}. (3.101)
Then, noting (3.98)-(3.99), we have
/L |vi (t, )| dt < C45{V1(0) +/O+°O |h(t)|dt+Qv(T)}. (3.102)

J
(b) The ith backward characteristic C; intersects the x-axis at a point (0,3). By exploiting the

same arguments as in (i), we can deduce that

/ |vi(t, x)|dt < C46{V1 (0) =+ Qv(T)} (3103)

Combining (3.96) and (3.102), (3.103), we have

Vl(T) < C47{‘/1(0) + /+Oo |h(t)|dt + Qv(T)} < c4sN. (3.104)

Similarly, replacing the ray L; with the slope \;(0) by the jth characteristic C;, we get
+oo
(1) < c49{v1<0> + / |h<t>dt+Qv<T>} < el (3.105)
0

We next estimate Uy (T') and Uy (T).
Noting (2.1), by Hadamard’s formula we have

n

u; = kark(u)ei =v; + Vi (rk(u) - rk(ukek))ei
k=1 k=1

n 1
Org (TUL, « « oy TUK—1, Uky TUkf 1y - - -5 TUn )
=v; + Vg dr |uje;
0 8u]-

k=1 j#k

=v; + ZZpuk(u)uwk, (3.106)

k=1 j#k

where pi;(u) are all C* functions of u, which are defined by

1

9] . _ . n )

pue(u) = / rE(TUL, - TUR é;;k,rukﬂ, ,TU )6id’7', Vi4k (3.107)
0 j

Integrating (3.106) along the ray L; with the slope A;(0), we have

/ lui(t, )|dt < Vi(T) + c51{Usc(T)V1(T) + Voo (T)U1(T)}. (3.108)
L 21



Noting (3.77) and (3.104), we obtain from (3.108) that
ﬁl(T) S C52N. (3109)

On the other hand, integrating (3.106) along the jth characteristic C;(j # i) gives
/ lui(t, z)|dt < Vi(T) + cs53{Uno (T)VA(T) + Voo (T) U1 (T) . (3.110)
G
Noting (3.77) and (3.105), we get
Uy (T) < csaN. (3.111)

We finally estimate W (7).

To estimate W1 (T), we need to estimate

[ttt
Lj

where L; stands for any given ray with the slope \;(0) on the domain [0,7] x R*. Without loss of
generality, we assume that L; intersects the x-axis with point A(0,«), and intersects the line t = T’
with point B.

i) For ¢ = 1,...,m, passing through point B, we draw the ith backward characteristic C; which
intersects the x-axis at a point C(0, 3). For fixing the idea, suppose that o < 3.

We rewrite (2.24) as

d(Jwi(t, z)|(dz — Xi(u)dt)) = sgn(w;)G;dzdt. (3.112)

By (3.112), using Stokes’ formula on the domain ABC, we have

B
S/ |wi(0,x)\dw+// |G |dzdt
a ABC

< Wi (0) + c55Qw (T) (3.113)
In the definition of W, (T), j # 1, thus we have from (3.2) that

‘ / i (£,2)| (A5 (0) — Au(u))dt

1A (0) — Ai(u)| > 6. (3.114)

Thus, it follows that
/ |wi(t, x)|dt < C56{W1 (0) + Qw(T)} (3.115)
L

J

(ii))For ¢ = m+1,...,n, we draw the ith backward characteristic C; passing through point B. Here,
there are only two possibilities:
(a)The ith backward characteristic C; intersects the t-axis at a point C(3,0). By (3.112), using

Stokes’ formula on the domain OABC, we have

o B
§/ |wi(0,x)|dm+/ |)\i(u(t,0))||wi(t,0)|dt+// |G |dzdt
0 0 OABC

<]
< Wi (0) + 057{ / |wi(t, 0)|dt + Qw(T)} (3.116)

0

/ o] (0) = )i

22



Thus, it follows from (3.114) and (3.116) that
B
/ |wi (¢, z)|dt < 658{W1(0) +/ |w;(t,0)|dt + QW(T)}. (3.117)
L; 0

Noting (3.6), by (3.25) in Shao [14], we have

8 m_ B koo N8
[ weoia =" [t o Y (5 w0 S [ ifionio

Il=m+1

m B —+o0
gc5g{2/0 |wr(t,0)|dt+/0 (|a'(t)|+|h’(t))dt}. (3.118)

Then, passing through C(3,0), we draw the rth characteristic Cr(r € {1,...,m}) which intersects the
x-axis at point D(0,zp). By (3.112), using Stokes’ formula on the domain COD, we have

‘/05 \wr(t,0)|(—)\r(u)dt)‘ < /OQCD Iwr(O,x)\das—f—//COD |G, |dwdt

< Wi (O) + CGOQW (T) (3.119)
Thus, it follows from (3.33) that
B
/ |w7-(t7 0)|dt < 061{W1 (O) + Qw(T)} (3.120)
0

Then, noting (3.117) and (3.118), we get

“+oo
/ﬂm&MﬁSm@%@+/ amw+meHQw@ﬁ. (3.121)

J

(b) The ith backward characteristic C; intersects the x-axis at a point (0,3). By exploiting the

same arguments as in (i), we can deduce that

/ lwi(t, z)|dt < ce3{W1(0) + Qw (1)} (3.122)

J

Combining (3.115) and (3.121), (3.122), we have

“+oo
Wi(T) < c64{W1(0) —|—/ (o ()] + |B' (&) )dt + QW(T)} < ces€. (3.123)
0
On the other hand, using (3.91) and noting (2.4) and (3.6), we have
Ul(T) S CgaN. (3.124)

Taking K3 suitably large and noting (3.92), (3.104)-(3.107) and (3.123)-(3.124), we obtain (3.79)-
(3.80) immediately. Thus, the proof of Lemma 3.4 is finished. O

By Theorem 1.1 in Shao [14], combining Lemmas 3.3 and 3.4 gives
Lemma 3.5. Under the assumptions of Theorem 1.1, there exists a positive constant K5 independent
of ¢, M and N such that

U1(00), Ur(00), U1 (00), Vi (00), Vi (00), Vi (o0) < K5N, (3.125)

Wi (00), Wi (00 JV1(00) < Kae, (3.126)



Uso(00), Vo (00) < Kise, (3.127)

Woo(00) < K5 M, (3.128)
where
—+oo
Vi(oo) = sup / lv(t, z)|dx, (3.129)
teRt Jo
etc.

Lemma 3.6. Under the assumptions of Theorem 1.1, there exists a positive constant K¢ independent
of e, M, N, t, a and (3 such that for arbitrary o, 3 € R* and (¢, z:(t, ), (t,z:(¢, 8)) € RT x RF,

lu(t, zi(t, ) — u(t, z: (¢, B))| < KeM|a — B|; (3.130)
moreover, for any given C' function g(u),

lg(u(t, zi(t, @))) — g(u(t, zi(t, B)))| < Ke Ml — f], (3.131)

where for arbitrary o € R*, z = x;(¢,a) stands for the ith characteristic passing through the point
(0, ).

Proof. For fixing the idea we assume that o« < . Since the solution u = u(t,x) is classical, i.e.,
u € CH(RT x R™), using Taylor’s formula and noting (2.5) (3.6) and (3.128), we obtain

lu(t, (8, ) — u(t, wi(t, )] < sup {|ua(t,2)[} x sup {‘M’} x o — B

zeRT EERT 85

< eaWeo(t) X 53;3{’%2’5)‘} X |a— 8]

< exla =) x sup {‘%25)‘} (3.132)

where here and henceforth, ¢;(z = 1,2,...) will denote positive constants independent of €, M, N, ¢, «
and (.
Noting (1.8) and (2.5), we have

Vi(uug = VAi(u) ijrj (u) = Z[V)\i(u)rj (u)w;. (3.133)
j=1 i

Then, noting (3.126), we obtain

/ [(VAi(u)ue) (s, zi(s, €))|ds < C3W1(t) < cqe. (3.134)

By (4.46) in Dai and Kong [4], i.e.,

t
Be:(t,8) =exp{ / (vxi(u>ux><s7Xi(s,s»ds}- (3.135)
o¢ 0
h.
we have sup {‘axz(t,f)’} < eths (3.136)
(t,&)eRT xR+ 3 B

Substituting (3.136) into (3.132) yields (3.130) immediately. Finally, noting (3.130) we get (3.131) by
Taylor’s formula. The proof of Lemma 3.6 is finished. O

Similarly, we can prove the following lemma.
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Lemma 3.7. Under the assumptions of Theorem 1.1, there exists a positive constant K7 independent

of e, M, N, t, @ and 3 such that for arbitrary o, 3 € R™ and fori € {m +1,...,n},
fu(t, 2:(t, @)) — u(t, 2:(t, 8))] < KeMla— Bl; (3.137)
moreover, for any given C' function g(u),
lg(u(t, zi(t, @) — g(u(t, z:(t, )| < KrMla — g, (3.138)

where for arbitrary o € R™, x = z;(¢t,a)(i = m + 1,...,n) stands for the ith characteristic passing
through the point (%(0), 0).
For any fixed T > 0 and for arbitrary o, 8 € R", we introduce

T
UE(T) = e ma [ sty 1, 0) = ey 1 ), (3.139)
i=1,...,n j#i Jg
T
VA) = o ma [t (0, 0) = ot 0 D) (3.140)
i=1,..., n j#i Jo
T
W) = x| sty (0, ) = w6 D)l (3.141)
i=1,...n j#i J,

where for arbitrary a € R™, = x;(t, a) stands for any given jth characteristic passing through the
point (0, @).

Lemma 3.8. Under the assumptions of Theorem 1.1, there exists a positive constant Kg independent
of e, M, N, T, o and (8 such that

UZ(T) < Ks(MN +¢)|a — ], (3.142)

VE(T) < Ks(MN +¢)|a — 3| (3.143)
and

WE(T) < KsM(1 +¢)|a — 8] (3.144)

Proof. We first prove (3.143).

For arbitrary a, 8 € RT, let Cj(a) and C;(8) be the jth characteristics passing through the points
Py : (0,a) and P, : (0, 3), respectively. For the sake of simplicity, we assume that o < 8. We denote
by Py : (T,z;(T,c)) (respectively Ps : (T,z;(T,(3))) the the intersection point of C;(a) (respectively
C;(B) ) with the straight line t = T

We rewrite (2.12) as

dlE(t)vi(dz — Ni(u)dt)] = E(t) Fi(t, x)dxdt, a.e., (3.145)

where

£(t) = sen[(vilt, z;(t, @) — vi(t,z;(t, 5))) (N (w) (8, 25 (E, 5)) = Xi(w) (t, 25t @)))].
By (3.145), using Green formula on the domain P1 P, P3Py bounded by the curves Cj(a), C;(8), the
x-axis and the straight line ¢ = T, we have (cf. [4])

B T
/ / E(WF(t,2)dtda — / £(0)0:(0, x)dar + / €80 (g () — Aa())] (825 8, B) e
Py Py P3Py @ 0
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B ) T
- [ ey o) 22 e - [ 0l - Ao

ie.,

/ [(vr (L5 (1)) — (b, 25 (8 ) Oy () (1 5 (1, B)) — Aa () (1, 5 (1, )t
/ £t 25 (6, B)) e () (1, 25 (1, @) — Na(ur) (2 (¢, )]t

—/ E@)vilt, x;(t, @) [Aj (u)(t, 25(t, @) — Ay (u) (L, z5(t, B))]dt

B
+/ [€(0)vi(0,~) — &(T)vs (T, x; (T, ~ 3‘””] ) 1dy _// Fi(t, x)dtda.
« P1P2P3P4

In the definition of V,? (T'), j # 1, thus we have from (3.2) that
| (u)(t, 25 (t, B)) — Ai(u)(t, 2;(t, @))| = do.

Therefore, noting (3.136), it follows from Lemma 3.5 and Lemma 3.6 that

/ [ou(t, 5 (8 @) — (b5 (1, B))] e

< 61{[05V00(T) + 2K MVi(T)]|o — B3] + // |F3(t, :c)|dtd:c}
0 PPy P3Py

Sce{(MN+6)a—ﬂ+// |Fi(t,x)|dtdx}.
Py PyP3Py

On the other hand, noting (3.87) and using (3.136) and (3.76)-(3.79), we have

i(t, x)|dtdr < cr // |viwg|dtdx
/L1P2P3P4 ZZ Py Py P3Py

I=1 k£l
z;(t,5)
—0722/ dt/ |vlwk|dx§08ZZ/ d’y/ |viwg| (¢, x5 (t,y))dt

1=1 k#l 5 () =1 kil Vo
< co{ Voo (D)W (T) + W (T)VA(T)}ar = 8| < 10(MN + &%)]ax — B].
Substituting (3.149) into (3.148) gives

/ [vi(t, x;(t, @) — vi(t,z; (¢, 6))|dt < c11(MN +¢e)|la— 8|, Vj#i.

This proves (3.143).
We next prove (3.144).
We rewrite (2.24) as

dlg(t)wi(dz — Xi(uw)dt)] = (1) Gi(t, x)dzdt, a.e.,

where

(1) = sgn(wi(t, z;(t, a)) —wilt, z;(t, 8))) (N (W) (¢, 25 (L, 8)) = Ai(u)(t, z5(t, @)))].
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By (3.151), using Green formula on the domain P; P> P3P bounded by the curves Cj(a), C;(3), the

x-axis and the straight line ¢t = T', we have (cf. [4])

/ (wi(t, (8, ) —wilt, z;(t, 8))) (N (W) (¢, 25(E, 8)) — Aiu) (t, 25 (t, @) |dt

=/ﬁawwm%uﬁmxwmwxmm—AMMm%mﬁmw
—/5wwmwmmmmMmmmm—MWmeﬁMﬁ

B
Ox; (T,
+ [ 160y 0.7) — 6ty 28Dy - [ Gult, @)t
a Py P2P3P4
In the definition of W/ (T), j # i, thus we have from (3.2) that

A () (t, 25 (2, B)) = Ai(w)(t, @ (E, @) = do-

Therefore, noting (3.136), it follows from Lemmas 3.5 and 3.6 that

/|mwwua»fmw@uﬂmw

< ;{[csww(:r) + 2K6MW1(T)]|Q - Bl +// |Gi(t,x)|dtdm}
0 Py P2 P3Py

Sclg{M(1+e)|aﬂ+// |Gi(t,x)dtdx}.
Py P2 P3Py

On the other hand, noting (2.26) and using (3.136) and Lemma 3.3, we have

i(t,x)|dtdz < c13 // |wiwg |dtdx
//P’1P2P3P4 ZZ Py Py P3Py

1=1 k#l
—01322/ dt/ |wlwk|dx < 61422/ d’y/ |wiwp|(t, 25 (L, 7y))dt
1=1 k#l zj (t,) 1=1 k#l

< c15Woo (T)WA (T) | — B < c16Melar — B.

Substituting (3.155) into (3.154) gives

T
/‘wwt@@ﬂﬂ—wAmWwﬂmﬁSchO+dw—ﬁL Vi
0

This proves (3.144).
We finally prove (3.142).
We rewrite (3.106) as

E(us = §(t)vs +&(¢ Zszzk u)uv, a.e.,
k=1 £k
where pyii(u) is defined by (3.107) and
&(t) = sgnlui(t, z;(t, o)) — wi(t, z;(t, B))]-
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Integrating (3.157) from 0 to T" along the characteristics Cj(a): = = z;(t, ) and C;(8): = = z;(t, B),
respectively, and subtracting the last integral from the first integral gives (cf. [4])

/ |ui(t7m1 (t’ a)) - ui(ta 'Tj(t7 ﬁ))|dt = / g(t)[vi(tvmj (tva)) - vi(tij (tvﬂ))]dt

Y / (0 s wyurve] (25 (1,00) — e (o] (1,2, (1 )Yl

k=1 I#k

_ / £ vt 2 (¢, 0)) — vi(t, 25 (1, B))dt

+ZZ / £ Lpun () (t,25(t, @) — pare(w) (¢, 25 (t, 8)) Hurvw] (¢, 5 (¢, ) )dt

k=1 I#k

+ZZ / E()parn (w) (¢, B)) fun (t, 25 (8, @) = wit, @; (¢, 5)) yow (¢, @5 (¢, @))dt

k=1 l#k

+ZZ (O)pavr (wyu)(t, 25 (8, B)) ok (b, 5 (1, ) = vi(t, 25 (2, 8)) Y. (3.158)

k=1 1k 70
Thus, noting (3.6) and using (1.12), (3.130) and (3.131), we obtain

/ i (8, 25 (t, @) —uwi (t, 25 (t, B)]dt < VE(T)+ers{KeMla—B|[Uso(T)Vi(T)+Vao (T) U1 (T))+Ks M|a—B|Va(T)

+UL(T)Vao (T) + VE(T)Uoo (T) + Ke M| — B|UL(T)}, Vj #i. (3.159)

Then, using Lemma 3.5 and (3.143), we have

T
/ wi(t, z;(t, @) — uilt, z;(t, 8))|dt < c1o(MN + ¢€)|a — B| + c20K5eUL (T), V3 # i. (3.160)
0

It follows that
US(T) < c1o(MN + &)|oc — 8| + c20K5eUZ (T). (3.161)
This implies (3.142). The proof of Lemma 3.8 is finished. O

For arbitrary o, 3 € R~ and for any fixed T >  max mink{%f ! we introduce
j=m+1,...,n J

T
Us(T) = max{ max  max / i (t, 25 (t, @) — wi(t, z;(t, B))|dt,

i=1,..., mj=m+1,..., nin{«,B3}
—X;(0)
T
mex / s (25 (1, ) — s (251, )t b, (3.162)
i,j=m+1,...,n | min{a,8}
J#i —X;(0)
~ T
VA(T) = max max max / |vi (¢, z;(t, @) — vilt, z; (¢, B))|dt,
i=1,....m j=m+1,....n [ min{«,8}
—X;(0)
T
max / |vi(t, z;(t, @) — vi(t, z; (¢, B))|dt p, (3.163)
i,j=m+1,...,n | min{a,8}
A —; 0

nin{a,8}

T
Wf(T) = max { _max . max / |wi(t, x;(t, ) — wi(t, z;(t, B))|dt,



min{a,3}
J#i =X, (0)

T
| max / fwe(t, 5, @) — wilt, rj(t,ﬂ))ldt}, (3.164)
where for arbitrary o € R™, « = z;(t,a)(j = m + 1,...,n) stands for any given jth characteristic
passing through the point (%@, 0).
J
Lemma 3.9. Under the assumptions of Theorem 1.1, there exists a positive constant Kg independent

of e, M, N, T, a and 3 such that

US(T) < Ko(MN +¢)|o — 3], (3.165)

VA(T) < Ko(MN +¢€)|a — | (3.166)
and

WE(T) < KoM (1 +€)|o — 8. (3.167)

Proof. For arbitrary o, 3 € R™ and for j € {m+1,...,n}, let Cj(a) and C;(5) be the jth character-
istics passing through the points (ﬁ7 0) and (%, 0), respectively. For the sake of simplicity, we
assume that o < 3. We assume that C;(«) (respectively C;(3) ) intersects the straight line ¢t = ﬁ
with point P; : (%,O) (respectively Ps : (ﬁ,@(%,ﬁ))L and intersects the straight line
t =T with point Py : (T, z;(T,a)) (respectively Ps : (T, z;(T,3))).

We first prove (3.166).

By (3.145), using Green formula on the domain PiP>P3P,; bounded by the curves Cj(«), C;(8),

the straight lines ¢ = —%5s and ¢ = T', we have (cf. [4])
J

o 0=t

8
//P1P2p3p4€(t)Fi(t7x)dtdx:/a 5(_)\?(0))%'(_/\?(0)Ja‘(_)\j(o)ﬁ)) By dy

+ E(B)[vi (A (w) = Ai(w)](E, 5 (¢, B))dt

—X;(0)

0z;(T,7)

oy dy

B
- / E(TY0u(T, 2, (T, )
[ ) - M)l st
=

it z5(t @) — it 25 (8 B)) (g ()t 25 (8 B)) = A (8, 25 (8, )t
=3

= [ eOnta e M 0) ~ )ty e )t

7/ E(t)vi(t, (¢, ) [Aj (w) (&, 25t @) = A (u)(E, 25 (¢, B))]dt

s @ « @ 8‘%1(%:7)

- 5(_)\j(o))vi(_)\j(o),xj(_)\j(o),v oy

dry

@

B .
_ / f(T)Ui(T,xj(T,fy))%:ﬂ)dv— / / €(O)Fi(t, v)dtda. (3.168)
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In the definition of V,? (T), j # i, thus we have from (3.2) that

|Aj (u)(t, z;(t, B)) — Ni(u)(t, (¢, )| > do. (3.169)

Therefore, noting (3.136), it follows from Lemma 3.5 and Lemma 3.7 that

T

[vi (t, z; (¢, o)) — vi(t, x5 (¢, B))|dt

a
—X;(0)

< ;{[Cmvoo(:r) + 2K MV (T)] | — B +// |Fi(t,x)|dtdac}
0 PiPyP3Py

Sczz{(MN+5)|a—ﬁ|+// Fi(t,m)dtdx}. (3.170)
Py Py P3Py
On the other hand, noting (3.87) and using (3.136) and (3.76)-(3.79), we have

// i (t, x)|dtde < 02322// |viwg|dtdx
P1P2P3P4

1=1 k#l Py Py P3Py
z;(t,5)
= 02322/ dt/ |[vwg|dx < 82422/ d’y/ \vlwk\ (t,z;(t,))dt
I=1 k#l zj (t,) 1=1 k#l
< 025{Voo( )ﬁ//l(T) + WOO(T)‘~/1(T)}|a -6 < 626(MN +e )\oz - A (3.171)
Substituting (3.171) into (3.170) gives
T
|vi (¢, 25 (t, @) — vi(¢, x;(t, B))|dt < cor(MN + )| — 3],
=,
ifie{l,....m},je{m+1,...;,n}ori,j€{m+1,...,n}, j#1i. (3.172)

This proves (3.166).
We next prove (3.167).

By (3.151), using Green formula on the domain PP P3P bounded by the curves Cj(a), C;(5),
the straight lines ¢t = ﬁ and ¢t = T, we have (cf. [4])

[(wi(t, @ (t, o)) — wilt, 2;(L, B))) (A (W) (L, 2 (¢, B)) — Ai(u)(t, 25(L, o)))|dt
=/ E@wi(t, x;(t, B))[Ni(w) (L, z;(t, ) — Xi(u) (¢, 2;(t, B))]dt
*/ Sty 2t )X (w) (8 25 (8 @) — Ay (u)(t, 25 (¢, B))]dt

« a 8x]( (0)7’)’)
+ [ eigmic M)m I

_/aﬁé(T)wi(T,xj(T,»y))ax] //plp2p3p4 Gi(t, z)dtdz. (3.173)

In the definition of W/ (T), j # i, thus we have from (3.2) that

[A;(w)(t, z;(t, B3)) %\)O (t,z;(t, )| > do. (3.174)



Thus, noting (3.136), it follows from Lemmas 3.5 and 3.7 that

|wi (t7 Zj (t7 a)) — w; (t7 €T (t7 ﬁ)) ‘dt

o
—X;(0)

< ;{[CQSWOO(T)+2K6MWI(T)]aﬂ +// |Gi(t,x)dtdx}
0 P1PyP3Py

< CQQ{M(1+6)|aﬂ+// |Gi(t,x)dtdx}. (3.175)
Py Py P3Py
On the other hand, noting (2.26) and using (3.136) and Lemma 3.3, we have

i(t,x)|dtde < c13 // |wiwg |dtdx
//191P2P3,P4 ZZ PP, P3Py

I1=1 k#l
5 (t.8)
= 01322/ dt/ |lwiwg|dz < 03022/ d’y/ \wlwk| (t, 5 (t,v))dt
1=1 k#l ¥ =350 zj(t) 1=1 k#l
< e31Weo (T) 1(T)|a — B §032M5\a—ﬁ|. (3.176)
Substituting (3.176) into (3.175) gives
T
lwi(t, z;(t, ) — wi(t, z;(t, B))|dt < cssM(1+¢)|e — B,
;0
ifie{l,...,mhje{m+1,....ntori,j€{m+1,...,n}, j #i. (3.177)

This proves (3.167).
We finally prove (3.165).

Integrating (3.157) from to T along the characteristics Cj(a): = = z;(t,«) and C;(3):

3,0
x = z;(t, 3), respectively, and subtracting the last integral from the first integral gives (cf. [4])

/ sty 5 (1, @) — w(t, 5 (1, B))dt = / EOi(t 2 (@) — vilty s (1, B))Nde

7{;(0) 7{;(0)

+ZZ/ @ pak (W)wvr](t, z; (t, @) = [par(w)wvr](t, z;(t, 3)) dt

k=1 l#k —)\ (0)

= Tﬂ EBwit w5 (t, @) — vilt, w5t B))]dt
+ Z ; () pan (W)t 25t @) — pak(w) (8, @ (¢, B)) Huwwow] (¢, ; (¢, @)) dt
= =
- Z ; / (©)pa () (&, a5 (£ B) {un(t, 5 (8, ) — wa(t, (8, B)) Yon (8, @ (¢, o)t
= =
+ Z > / &) lpan (wyw] (¢, 2 (¢, B)){vr (b 25 (t, @) = vit, @ (¢, 8)) Y. (3.178)

k=1 l#k 7A ©)
Thus, noting (3.6) and using (1.12), (3.137) and (3.138), we obtain
T
Jui(t, x5 (t, @) = wilt, x5 (8, B))|dt < VIH(T) + csa{ KsM|a = B|[Uso(T)VA(T) + Voo (T)Ur(T)]
=m 31



+EsMla — BIVA(T) + UL(T)Voo (T) + VI (T)Uso(T) + KeM|a — B|UL(T)},
ifie{l,...,m}je{m+1,...,ntori,je{m+1,...,n}, j#i. (3.179)

Then, using Lemma 3.5 and (3.166), we have

' lui (8, x5 (t, @) — ui(t, z;(t, B))|dt < css(MN +¢e)|a— 8] + 036K55[~]5(T),
==, ©
ifie{l,...,mhje{m+1,...,.ntori,je{m+1,...,n}, j #i. (3.180)
It follows that
UZ(T) < css(MN + ¢)|o — B| + 36 KseUS(T). (3.181)

This implies (3.165). The proof of Lemma 3.9 is finished. O
For any fixed T > 0 and for arbitrary a, 8 € RT, we introduce

T
Uﬁ (T)= max m;xx/ |ui(t, oo + X;(0)¢) — wui(t, B+ A;(0)t)dt, (3.182)
i=1,...,n j#i [,
o T
VZ(T) = max m;ix/ |vs(t, e + A;(0)t) — vi(¢, B+ A;(0)t)dt (3.183)
i=1,...,n j#i [,
and -
WZ(T) = max mix/ |wi(t, a4+ A;(0)t) —wi(t, B+ X;(0)t)dt. (3.184)
i=1,..., n j#i Jg

Similarly, we can prove the following lemma.
Lemma 3.10. Under the assumptions of Theorem 1.1, there exists a positive constant K1¢ indepen-

dent of e, M, N, T, o and 3 such that

B

U(T) < K19(MN + €)|a — ], (3.185)

VT) < Kio(MN +¢)|o — | (3.186)
and

W2(T) < KioM(1+€)|a — 8. (3.187)

Combining Lemmas 3.8, 3.9 and 3.10 gives
Lemma 3.11. Under the assumptions of Theorem 1.1, there exists a positive constant K11 indepen-
dent of e, M, N, o and 3 such that

UL (00), U8 (00), Ua(T), V2 (00), Vil (00), ValT) < K11(MN +&)|a — | (3.188)
and
WP (00), WP (00), We(T) < K11 M(1 + €)|a — . (3.189)

4. Asymptotic behavior of the global classical solution—Proof of Theorem 1.1

This section is devoted to the study of asymptotic behavior of the global classical solution of
the mixed initial-boundary value problem (1.1) and (1.10)-(1.11) and gives the proof of Theorem 1.1.
Without loss of generality, we assume that v = (u1,...,u,)” are already the normalized coordinates.

Let

= = +(0) . (4.1)



Noting (1.1) and (2.5), we have

Du _ 0u /\i(o)% = —A(u)g—z + )\1(0)% = > (a(0) = Ay (w))wyrs (w). (4.2)

Dit Ot

Thus, noting (1.8), it follows that

T = Dl = ST u(0) = A (wes + Ou(0) = As(w)wiri(ue
J#i
= Z(Az‘(ﬂ) = Aj(w)wjirj(u)e; + (Ai(uies) — Ai(w))wiri(u)e;. (4.3)
e

By Hadamard’s formula, (4.3) can be rewritten as

DUZ'
Dt > Bi(ww; + Y T (uyuyw,, (4.4)

J#i J#i

where B;j(u) and T';;(u) are all C* functions of u, which are defined by

Bij(u) = (Ai(0) = Aj(u))rj(u)es, Vij#i (4.5)
and )
Pij(u) _ —ri(u)ei/ 8/\1-(Tu1,...,Tui_l,ui,Tui_‘_l,...,Tun)dT’ V] ;éz (46)
0 Ouy

For any fixed (t,xz) € RT x R*, define
a =z — X\(0)t. (4.7)

Thus, it follows from (4.4) that

w(ts) = wta + X0 = w(O) + 3 [ {To@uws+ Biy(uyw, f(s.a+ Xi(0)s)ds,
ifie{l,...,m}
ui(t, @) = wi(t,a+ Xi(0)t) = ui(0,a) + > [ {Fij(u)ujwi + Bij(u)wj}(s, a+ X\i(0)s)ds,
J#i 0
ifaeRT,iec{m+1,...,n}
wilt o) = it + A(O0)) = (=250 + £ [ {Tuuw + By(w; }(s,a+ Xi(0)s)ds,

7=t

faeR7,ie{m+1,...,n}.
(4.8)
Then, Lemma 3.5 implies that the integral in the right hand side of (4.8) converges absolutely when ¢

tends to +o00. Therefore, there exists a unique function ¢;(«) such that
ui(t,x) — ¢i(a), ast— +oo. (4.9)

Moreover, using Lemma 3.5, we obtain that there exists a positive constant K12 independent of €, M,
N and « such that

Then from above we have proved the following lerggla.



Lemma 4.1. For any i € {1,...,n}, the limit

lim w;(t, ) = ¢i(a) = ¢i(x — Xi(0)2)

t——4o00

exists and the limit function ¢;(a) satisfies the estimate (4.10).

Lemma 4.2. Suppose that the limit

lim  w;(¢, o + A (0)¢)

t——+o0

exists, then

doi(a) .. ) )
—do = hm wilt,at Ai(0)1).

Proof. By the definition (4.11),
dgi(e) _  dila+ Aa) — ¢i(a)

doe Aa—0 Aa
C b g et At Ai(0)) — uit, o+ Xi(0)t)
ANa—0t—+4o0 Ao
= lim lim ui(t, o+ Ao+ Ai(0)t) — ui(t, o + Ai(0)¢)
t—+oco Aa—0 Ao
— im 2wt o+ 2:(0)t)
t—+oo Ox

t—+4o0 -

= Tim > wy(t,a+ A(0)t)r; (ult, o+ Ai(0)t))es

— lim { z_: w; (rs () — 5 (uge;))es + w,}(t, a4 Mi(0))

t——+o00

= lim { i Z Oijk(uw)urw; + wi}(t, a+ X (0)t),

t——+oo - ‘
Jj=1 k#j

where

1
or; - i ity n .
Ozgk(u):/ T](Tuh y TUG—1, Uj, TUGj+1, , TU )eidT, \v/k_?éj
0

Buk
By Lemma 3.5, when ¢t — +o0,

> Ouw(uyurw; (t, o + Xi(0)t) — 0,

J=1 k#j
uniformly for o € R. Hence
dgi(a) _ . , ,
— = tl}inoc w; (¢, a + A (0)).

The proof of Lemma 4.2 is finished. O
In what follows, we shall investigate the regularity of the limit function ®;(«).
Case 1: When o € RY, for any fixed (¢, + X\;(0)t) € RT x R™.
Case I There exists a 0;(t,«) € R such that

0:(t,a) + / Xi(u(s, zi(s,0:(t,))))ds = a + X (0)t,

namely,

0:(t,a) = a+ / [A:(0) —i\i(u(s,xi(sﬁi(m a))))]ds,
0 3

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



where x = x;(s, 0;(t,)) stands for the ith characteristic passing through the point (0, 6;(¢, ), which
is defined by
doils0it0)) — ), (u(s, zi(s, 0i(t, o
e (s, 2405, 6 ), o
Li (Oa ei(ta a)) =0; (t7 a)'
Lemma 4.3. Under the assumptions of Theorem 1.1 and for any fixed a € R™, there exists a unique
9i(a) such that
0i(t, ) — ¥i(a), t— +o0 (4.20)
and
[9i(a) — o] < K13N. (4.21)

The 9;(a) defined above is global Lipschitz continuous with respect to o, i.e.,
[9i(a) = 9i(B)] < [1 + K1a(MN +¢)]|a — f], (4.22)

where K3 is a positive constant independent of £, M, N and «, while K14 is another positive constant
independent of ¢, M, N,  and (3.
Proof. Noting (1.8), we have from (4.18) that

0i(t,a) = « —l—/ (Ni(uieq) — Xi(w)) (s, zi(s, 0 (¢, a)))ds. (4.23)

By Hadamard’s formula, (4.23) can be rewritten as

t
Oi(t,0) =a+y / (Aij(u)u; ) (s, i(s, 0i(t, @)))ds, (4.24)
j#i 0
where .
Ay () = 7/ ON(TUL, oy TUG—1, Uiy TUG+1, - - - ’Tu")dT, Vi£i (4.25)
0 8uj

Noting (3.125), we observe that the integral in the right hand side of (4.25) converges absolutely when
t tends to +o00. This implies that there exists a unique ¥;(a) such that
ligl 0:(t, o) = ¥i(a). (4.26)
t——+oo
Thus,
t
i) = 9:(8) =a— B+ lim / {[Ass (wus)(s, (s, 0:(t, @))) — [Asj (wug](s, (s, 0 (t, 3))) Y
0

t——+o0

J#i

= a—B—FZ lim {/ [Aij(u)(s,xi(s,ei(t,a))) —Aij(u)(s,:ci(s,0i(t,ﬂ)))]uj(s,xi(s,Hi(t,a)))ds

PorA
+/ Aij(u) (s, wi(s, 0i(t, B)))[u; (s, zi(s, 05 (¢, @))) — u; (s, zi(s, 0:(2, 5)))]d5}- (4.27)
0
Noting (4.18), we have
00:(t,&) 1
9 1+ [J(VA(w)us)(s,mi(s, 0:(t, €))) 22l g o
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Then, it follows from (3.134) and (3.136) that

sup {‘M‘} < ; (4.29)

(t,6)eR+ xR+ o = 1 — cyeecac

Thus, using Lemmas 3.5, 3.6 and 3.11, we obtain from (4.27) that
[9i(e) = 9:(B)| < | B] + e1 {Ks M]a — B|T7 (00) + UL (00)}

<o =B+ a{KeMla = B| x KsN + Kii(MN +¢)la — B}
<[14+ K1a(MN +¢)]la — 3], (4.30)

where here and henceforth, as before, ¢;(¢ = 1,2,...) will denote some positive constants independent
of e, M, N, a and g.
Employing Lemma 3.5 again, we obtain from (4.24) that

10:(t, ) — a| < e2Ur(t) < caKsN. (4.31)

Letting t — +00, we immediately get (4.21). The proof of Lemma 4.3 is finished. O
Case IT  There exists a 6;(t,a) € R™ such that

t
/9 Ai(u(s,mi(s,0:(t,@))))ds = a+ X (0)t (i=m+1,...,n), (4.32)
S(t, o
lii(oi
namely,
t
outt0) =at [ DO = Auto o lt. ), (4.33)
(t,a
—l*(-;(O;
where x = z;(s, 0;(t, o)) stands for the ith characteristic passing through the point (G_IS(%)) ,0), which
is defined by
dea(s.00t0)) — N (y(s, 24 (s, 0:(t, o
L =l 50, s
:CZ( :)(\i,(%) ) 0) =0.
Similar to Case I, we have the following lemma.
Lemma 4.4. Under the assumptions of Theorem 1.1, for any ¢ € {m + 1,...,n} and for any fixed
a € R, there exists a unique ¥;(a) such that
0i(t,a) — 9i(a), t— 400 (4.35)
and
|197,(OL) — CZ| S K15N. (436)
The 9;(a) defined above is global Lipschitz continuous with respect to «, i.e.,
[9i(a) = :(B)] < [L+ Kig(MN +¢)]|a — f, (4.37)

where K5 is a positive constant independent of ¢, M, N and «, while K¢ is another positive constant
independent of €, M, N, a and f.
Proof. Noting (1.8) and using Hadamard’s formula, we have from (4.33) that

0i(t, ) = « +/9 (Ai(uses) — Ai(w))(s, zi(s, 0:(t, a)))ds

it o)

=X (0) 36




t
=a+d [ awu)(s@is, 0:(t,)))ds, (4.38)
J#i Y =X3(0)
where Ajj(u) is defined by (4.25). Noting (3.125), we observe that the integral in the right hand side
of (4.38) converges absolutely when ¢ tends to +oo. This implies that there exists a unique ¥;(«) such

that

lim 6;(t,a) = %:i(a). (4.39)

t—+o0

Therefore,

i(a) = i(B) =a— B+ lim (/ [Aij (w)us) (s, zi(s, 0:(t, a)))ds

ttoo 0;(t.0)
J#i 3 (0)
t
= [ o0 B)))ds). (10)
J*iko)

For the sake of simplicity, we assume that 6;(¢, @) < 0;(t, 3). Then we have

t—+oo 0, (t, )
JF#i —2;(0)

Vi() = 0i(B) =a— B+ lim »- { / [Aij (u)(s, zi(s, 0i(t, @)

—Aij(u) (s, 2i(s, 0i(t, B)))]ui (s, zi(s, 0:(t, @)))ds

+/€i(tva> Aij(u)(s, (s, 0:(t, 8)))[u; (s, 7i(s, 0:(t, @) — uj(s, zi(s, 0i(t, B)))]ds
—X;(0)

0;(t,a)

e s m))ds}. (441)
—2;(0)

Thus, noting (4.29) and Lemmas 3.5, 3.7 and 3.11, using Taylor’s formula and the integral mean value

theorem, we obtain from (4.41) that
[9s(@) = 9:(B)] < | = B] + es{ KrM|a — BIU1(00) + UL (00) } + caclar — B

< o= Bl + cs{ K7 M| — 8| x KsN + K1n(MN +¢)|a — B} + cacla — B
<1+ Ki6(MN + &)]|a — 8. (4.42)

Employing Lemma 3.5 again, we obtain from (4.38) that

t
10:(t, @) — af < 5 Z/ (s, (s, 0:(t, )))|ds < csUn (t) < c6KsN. (4.43)
#i 0
Letting t — +o0, we immediately get (4.36). The proof of Lemma 4.4 is finished. O

Lemma 4.5. For every i € {1,...,n}, there exists a positive constant K7 independent of e, M, N, «

and (3 such that
|pi(ar) — ¢i(B)| < Ki7(M + M°N 4 Me)la— 8], Va,8€R". (4.44)
Proof. It follows from (4.17) and (4.32) that

ui(t7 a+ )\i(O)t) = ui(t, xi(t, Oi(t, a))), (445)
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where x = z;(s, 6;(t, o)) stands for the ith characteristic passing through either the point (0, 0;(¢, «))

or the point (=522 0). en, notin . and using Lemma 4.3 and Lemma 4.4, we have
he point (2{:35,0). Th g (4.11) and using L 4.3 and L 4.4, we h

$i(a) = ¢i(B) = lm wi(t,a+A:(0)t) — lim wui(t, 6+ Xi(0)t)

= lim ui(t,xi(t,Qi(t,a)))—tliT wi(t, zi(t, 0i(t, B)))

t—+oo
= i {ui(t,2i(t, 94(a))) — st z:(t, 9:(8)))}- (4.46)
Thus, using Taylor’s formula and noting (2.5), (3.6), (3.128), (3.136) and (4.22), (4.37), we have
oo sp  {|ZEAL sy {2 e - 09)
< e7rWeo(00) x €74 x |9 () — 9:(B)|
< Ki7(M + M?N + Me)|la— 3|, Va,3€RT. (4.47)

The proof of Lemma 4.5 is finished. O
For arbitrary o, 3 € R and for any fixed i € {1,...,n}, we introduce

Wéﬁ(oo) = sup |wi(t, x:(t, @) — wi(t, z:i(t, B))], (4.48)

teR+
where for arbitrary o € R, x = z;(t, ) stands for the ith characteristic passing through the point
(0, ).
Lemma 4.6. Under the assumptions of Theorem 1.1, for any i € {1,...,n} and for any fixed o € R™,
the limit
lim  w; (¢, z:(t, @)

t——+oo
exists, denoted it by ¥;(«), i.e.,
lim w;(t,zi(t, @) = Yi(a), VYaeRT, (4.49)

t——+oo

where z = z;(¢, &) stands for the ith characteristic passing through the point (0, ). Moreover, 9;(c) is
continuous with respect to & € R* and satisfies that there exists a positive constant K1g independent
of e, M, N and « such that

[i(a)| < (1 + Kige)M, VYacRT, (4.50)
Also, there exists a positive constant K19 independent of ¢, M, N, a and 3 such that
W,5(00) < (14 Kige)|wi(0, ) — wi(0, B)| + KioM*(1 +€)la — 8|, Va,8eR". (4.51)

In particular, if (1.21) is satisfied, then there exists a positive constant K2 independent of €, M, N, «
and ( such that

[i(a) — 1i(8)] < Kaosi|a — B|” + KaoM?*(1 +¢)la— 6], YVa,B€RY, (4.52)

where 0 < p < 1.
Proof. For any fixed « € R" and for any i € {1,...,n}, we have from (2.18) and (2.22) that

w;(t, zi(t, o)) = w; (0, ) +/ ZZ’yijk(u)ijk(s,xi(s,a))ds. (4.53)
"3

k#j



Then, Lemma 3.5 implies that the integrals in the right hand side of (4.53) converge absolutely when

t tends to +00. Thus, there exists a unique function ¥;(«) such that
w;(t, zi(t, ) — ¥i(a), ast— +oo. (4.54)
Moreover, we obtain from Lemma 3.5 and (4.53) that
|w; (t, zi(t, )| < |wi(0, )| + csz(t)Wl(t) < (14 Ki7e)M. (4.55)

This implies (4.50).

By a direct computation, we have

wi(t, i (t, o)) — wi(t, z:(t, B)) = ws (0, o) — w;i(0, B)

Y / i () wgan (5, 23(5, ) — g (w)wgon(s, zi(s, B)]ds
j=1 k#j
= wi(0,a) — wi(0, B)

> / {yign (w) (s, 245, @)) = ign (u) (s, 23 (s, B)) Hewywe (s, i (s, @) )ds

J=1 k#j

+> 3 / Yign () (5, @i (s, ) {w; (s, 2i(s, @) = w; (s, 2i(s, 8)) hw (s, 2i(s, ) ds

=1 k#j

+Y 0N / [ign (w)w;)(s, (s, B) {wi(s, wi(5, @) — we (s, 2i(s, 3)) }ds. (4.56)
J=1 k#j

Then, noting Lemmas 3.5, 3.6 and 3.8, we obtain
fwi(t, wi(t, @) — wi(t, 2:(t, B)] < [wi(0, @) — wi (0, B)] + co{ Ks Mo — B|Woo () Wi (£)

WL (OWoo () + Wi (t) sup Jwi(t,i(t, @) — wilt, 2:(t, 8))]}

teR+

< |wi(0, @) — w; (0, B)| + co{ Ke M |ae — 8] x Ks M x Kse
+EsM(1+¢)la = Bl x KsM + Kse sup |wi(t, zi(t, ) — wi(t, i(t, 3))[}

teRT
< wi(0,a) — wi(0, B)| + croM*(1 + )| — B
+eoKse sup |wi(t, zi(t, @) — wi(t, z:i(t, 8))|- (4.57)

teR+
Thus, (4.51) follows from (4.57) directly. Because w;(0,z) is continuous, it follows from (4.51) that
Yi(a) € C°(RT).
If (1.21) holds, we see that w;(0,x) is globally p-Holder continuous. (4.52) follows from (4.51)
easily. The proof of Lemma 4.6 is finished. O
For arbitrary a, 3 € R~ and for any fixed i € {m + 1,...,n}, we introduce

Wa,p(00) = sup fwi(t, zi(t, @) —wi(t, z:(t, )], (4.58)
teR+
where for arbitrary o € R™, z = z;(t,a)(¢ = m + 1,...,n) stands for the ith characteristic passing
through the point (%(0)7 0).

Similarly, we have the following lemma.
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Lemma 4.7. Under the assumptions of Theorem 1.1, for any ¢ € {m + 1,...,n} and for any fixed
a € R7, the limit
lim  w;(¢, zi(¢t, )

t——+o00

exists, denoted it by 1; (), i.e.,

lim w;(t, zi(t,a)) = (), VaeR™, (4.59)

t——4o0

where © = x;(¢, &) stands for the ith characteristic passing through the point (%(0), 0). Moreover,
;s () is continuous with respect to @ € R~ and satisfies that there exists a positive constant Kaq
independent of £, M, N and « such that

[i(a)] < (1+ Ko1e)M, VYaeR™ . (4.60)
Also, there exists a positive constant K32 independent of £, M, N, o and (3 such that

a,3(00) < (14 Kaze)|wi( ,0)| + Koo M?*(1 +¢)|a— 6], Va,B€R™. (4.61)

a B
= 0) —wi(—
W () M w(iy
In particular, if (1.21)-(1.23) are satisfied, then there exists a positive constant K23 independent of €,
M, N, o and (3 such that

i (a) — ¥i(B)| < Kassla — BI° + KasM*(1 4+ ¢)la— ], Va,BE€R, (4.62)

where 0 < p < 1.
Proof. For any fixed « € R™ and for any ¢ € {m +1,...,n}, we have from (2.18) and (2.22) that

¢ n
wi(t @it @) = wi(%(o),()) + /7 Z Z’yijk(u)ijk(s,xi(s, a))ds. (4.63)
=X;(0) J=1 k#j
Then, Lemma 3.5 indicates that the integrals in the right hand side of (4.63) converge absolutely when
t tends to +o0o0. Thus, the right hand side of (4.63) converges when ¢ tends to +co. We denote the
limit by ¥;(), i.e.,
lm  w;(t, zi(t, @) = ().

t——+oo

It follows from Lemma 3.5 and (4.63) that

jwi(t, 2i(t, )| < \m(%@,m\ teny Y / wjwy (s, zi(s, @))|ds

j=1 k5 V0

< |w1( — @ | + Clzwoo(t)ﬁ//l (t) < (1 + KQ()E)MA (4.64)

——F—,0
M) )
This implies (4.60). Moreover,

wi(t,xi(t,a))fwi(t,xi(t,ﬁ)):wi(%(o),())+/ ) DO vir(wwswi(s, wi(s, a))ds

X, j=1 k#j

7wi(%(0), 0) — /L Z Z’yijk(u)ijk(s,xi(s,ﬁ))ds. (4.65)

=3, g=1 k#j
For the sake of simplicity, we assume that o < 8. Then we have

wilt, wi(t, @) — wilt, zi(t, B)) = wi( ——

40T@)70)_wi(

B
7/\i(0)70)



+ZZ / {yian () (5, 243, @)) = iz (u) (s, @i (s, 8)) Huwjwil (s, 745, @) )ds

J=1 k5 Y Tx; :(0)

Y / Yign () (3,25, B) uw; (5, 23 (s, 0)) — w; (5, s, B)) Y (5, (s, @) ds

J=1 k£5 Y Tag :(0)

Y / g ()5, (5, B)) o (5, (5, ) — wi 5,4 (5, 8)) Y

J=1 k5 Y Tag 4 (0)

;00
Y / ik (wywgn(s, (s, B))ds. (4.66)
J=1 k#j —A (0)
Thus, using the integral mean value theorem and Lemmas 3.5, 3.7 and 3.9, we obtain
0)] + cra{ K7 Mo — B|Weo () Wi (£)

|wi (t, i (t, @) — wilt, zi(2, B))] < |wi( — wi(

_B
(0’

FWE () Wao (t) + Wi () sup |wi(t,zi(t, @) — wilt,zi(t, B)|} + crab|a — B

teRT

DYON

< |wz(

0) — wz( 0)| + 013{K7M|a — 5| X K5M X K5€

a _B_
=:(0) =X:(0)
+KoM(1+¢)|a — B| x KsM + Kse sup |wi(t, z;(t, o)) — wi(t, z:(t, B))|} + craM?|a — 3]
teR+t

« I5] 9
T(O)’O) - wi(T(O)’O” +csM (1 +¢)|a— G

+c1aKse sup |wi(t, zi(t, o)) — wi(t, @i(t, 5))]. (4.67)
teR*

Then, (4.61) follows from (4.67) directly.
Noting (3.25) in Shao [14], we have

< |wz(

m

8 g (O
1(0)’“(—&(0)’0))} (o

«

B
T(O),O)_wi(T(o),o) Z{fzr( Z( ),u( ( ) ,0))— fzr(

r=1

m ﬁ ﬁ o B
+Zfir(xi(m’u<&(0)’0”{wr(m<()>’°) _wT(MO)’O)}

+ Z ﬁl(—)f(())’u(—g(oyo)){h;(—)\i(o))_hz(—)\i(o))}’ (4.68)

where fi., f i and f;; are continuous functions of ¢ and w.
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Then, passing through the point (%(0)70), we draw the ray L,(r € {1,...,m}) with the slope

Ar(0)
> Xi(0)

Ar(0) which intersects the x-axis at point (0 a). Integrating (2.18) along the ray L, from 0 to

%@ and noting (2.22), we have
. Ar(0) O 2 (0)
(™ 7 = wr(U, i . 7 . . n
w (_)\i(O) 0)=w (0 % (0) Oé) +/O ZZ’Y ]k(u)ijk(g ,\i(o)a+>‘ (O)S)ds ( 69)

J=1 k#j

Similarly, we have

B n
B Ar(0) —i® Ar(0)
wel =gy 0 = w0 g ) + / Ezj ; Tegp (s (s, S0+ A (O)s)ds. (470)
Therefore,
o B 3 A(0) A (0) O _ _ A (0)
wr( o O Sy ©) = w0 3 gy ) e 0. g 5)+/0 ; ;wk(u)ijk(s, 20
= & A (0
_ / ‘ Z Z'yrjk(u)ijk (s, )\T-((O)) B+ Ar(0)s)ds. (4.71)
0 J=1 k#j ’
Noting Lemmas 3.5 and 3.11, using Taylor’s formula and making use of the method of (4.67), we obtain
Ar )\r A7
r(—52500) — o O < o 0, 325 ) = e 0, 30 D+ cxs M = B ()1 (0)
W2 (00) Weao (00)} + e17M?|ov — 6|
< [w, (0, i((g)) o) — w0, i((g)) B)| + e M*(1+ &)|ar — 4. (4.72)

Because w; (0, 2) is continuous, noting (4.68), it follows from (4.61) and (4.72) that ¥;(a) € C°(R7).
If (1.21)-(1.23) hold, we see that w; (0, z) is globally p-Holder continuous. (4.62) follows from (4.61),

(4.68) and (4.72) easily. The proof of Lemma 4.7 is finished. O

Lemma 4.8. For every i € {1,...,n}, the limit tli+moo w;(t, e + A\;(0)t) exists and

lim wi(t, o + X (0)t) = s (9i()) € CO(RT). (4.73)

t——+oo

Moreover, if (1.21)-(1.23) are satisfied, then the following estimate holds

bi(9i(@)) = ¢i(9i(8))] < Kaac(1+ MN +¢)’Ja— 5|

+KouM?(1 +€)(14+ MN 4¢)la—08], Va,8eR", (4.74)

where K34 is a positive constant independent of €, M, N, ¢, « and f.
Proof. It follows from (4.17) and (4.32) that

wi(t, o+ /\Z(O)t) = wi(t, X (t, 0; (t, Oé))), (475)

where © = x;(s, 0;(t,a)) stands for the ith characteristic passing through either the point (0, 6;(¢, «))

or the point (@S‘(a‘og, ). Then, noting Lemmas 4.3 and 4.4, we have
li+m wi(t, a0+ X\ (0)t) = 1i+m w;i(t,zi(t,0;(t, ) = lm w;(t, z;i(t, 9 ())), (4.76)
t——+oo t——+oo t—+oco
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and then by Lemmas 4.6 and 4.7,

lim wi(t,a+ Xi(0)t) = Hm w;(t, zi(t,9:())) = ¥i(Vi()). (4.77)

t——+oo t——+oo

Since, by Lemmas 4.6, 4.7, 4.3 and 4.4, ¥;(-) and ¥;(x) are continuous with respect to - and * respec-
tively, ¥;(9i(a)) is a continuous function of a € R*. This proves (4.73).

Moreover, if (1.21)-(1.23) are satisfied, then using (4.22), (4.37), (4.52) and (4.62), we obtain (4.74)
immediately. The proof of Lemma 4.8 is finished. O

Combining Lemmas 4.2 and 4.8 gives
Lemma 4.9. For every i € {1,...,n}, it follows that

dei(a)

— = ¥i(9i(a)) € C°(RT). (4.78)

Moreover, if (1.21)-(1.23) are satisfied, then the following estimate holds

L (@) = SE(B)| < Kaasl1+ MN +2)%)a - B
+KouM?*(1+e)(1+MN +¢)|la—p|, Va,8eRT, (4.79)

where Kb, is a positive constant independent of e, M, N, ¢, a and (3.
Case 2 : When a € R™ and a = 0, the similar results above can also be obtained.
Clearly, we get from Case 1 and Case 2 that

Lemma 4.10. For every i € {1,...,n}, it follows that

dei()
do

= ;(9i(a)) € C°(R). (4.80)

Moreover, if (1.21)-(1.23) are satisfied, then the following estimate holds

2 () = 224 (5)| < Kass(1+ MN + &)l - P
+KosM*(1+€)(1 + MN +¢)|a — 3, Va,3 €R, (4.81)

where K35 is a positive constant independent of €, M, N, ¢, « and f.
Proof of Theorem 1.1. The conclusion of Theorem 1.1 follows from Lemmas 4.1, 4.5 and 4.10

immediately. Thus, the proof of Theorem 1.1. is finished. O

5. An application of Theorem 1.1

In this section, we use the conclusion of Theorem 1.1 to consider the mixed initial boundary value
problem for the system of the motion of the relativistic string in the Minkowski space-time R!'T™.
Recall Kong et al’s work [8] at first. We denote by X = (¢, 21, -, z») points in the (14 n)-dimensional
Minkowski space R'™™. Then the scalar product of two vectors X and Y = (?, Y1, -+, Yn) in R s
defined by

X~Y:iny¢*t¥; (51)
i=1

in particular,
n

X% = fo - (5.2)
3



The Lorentzian metric of R'*™ can be written as
ds? = Z do? — dt*. (5.3)
i=1

To describe the motion of the relativistic string in the (1 + n)-dimensional Minkowski space R' ™,
we consider the local equation of an extremal timelike surface S in R'™" taking the following parameter

form in a suitable coordinate system (cf. [8]):
o =z (t,0) i=1,...,n). (5.4)

Then, in the surface coordinates ¢t and 0, the Lorentzian metric (5.3) is expressed as

ds® = (dt,do) M (dt,do)" (5.5)
where,
w?P=-1 (z , T
o || (1, w0) 7 (5.6)
(ze,20) 2ol
in which z = (z1,---,2»)" and
(z¢,z0) = Zmi,tfﬂiﬂv |zt|? = (24, 2¢) and |ze|> = (zo, zo). (5.7)
i=1

Since the surface S is C? and timelike, i.e.,
det M <0, (5.8)

equivalently,
(@e,0)” — (Jze|* = 1)]aol* > 0, (5.9)

it follows that the area element of the surface S is

dA = \/{ze, 30)? — (Jz1]? — 1)|e|2dtd0. (5.10)

The surface S is called to be extremal surface, if x = z(¢, 0) is the critical point of the area functional

I= // V@, 20)2 — (|| — 1)|aq|2dtds. (5.11)

The corresponding Euler-Lagrange equation is (cf. [8])

( |zo|* x4 — (x4, 20)20 ) _ ( (we, o)zt — (Joe]* — D)y ) —o (5.12)
V(@ @0)? = (Jee]? = Dlzol2/t - \\/(we,20)? — (2> — 1)[wg[2/ 0
Let
u=u1x¢, V=T, (5.13)
where u = (u1,---,un)" and v = (v, ---,v,)7, Then (5.12) can be equivalently rewritten as
( v u(uv) ) _ ( (wpyu—(jul*~v ) -0
V(w2 =(ul2=1)v[2 /4 Vw2 =(uP-Di2 /g (5.14)

v —ug = 0.
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We consider the mixed initial boundary value problem for system (5.14) with the initial condition

t=0:u=uo(f), v="u1o+v9(0)(6>0) (5.15)

and the boundary condition
0=0:u=0 (t>0). (5.16)
Here, 9o = (07,---,09)7 is a constant vector with [vo] = 1/(09)2 + -+ + (03)2 > 0, (uo(8)”,v0(0)T) €

C' with bounded C* norm, such that
[luo(0)]]co, [lvo(@)llco, [luo(@)llco, llvo(B)llco < M, (5.17)

for some positive constant M (bounded but possibly large). Also, we assume that the conditions of C*

compatibility are satisfied at the point (0, 0).

Let
U
U= . (5.18)
v
Then, we can rewrite system (5.14) as
Ut + A(U)Uy =0, (5.19)
where
_ 2(u,v) Tosn \u|2711—n n
A(U) = Hiln e (5.20)
“TInXn 0
0
It is easy to see that in a neighborhood of Uy = ~ , (5.14) is a hyperbolic system with the
Vo
following real eigenvalues:
MU) = =2U) =22 <0< g1 (U) = = Aan(U) = A4, (5.21)
where
—{u,v) £ v/ (u,v)2 — (Jul2 — 1)|v|?
N LA ERVA ol R VI 522
|vf?
The corresponding left and right eigenvectors are
LU) = (ei;Arei) (i=1,...,n), L{U)=(ei—n,A—€i—n) (i=n+1,...,2n) (5.23)

and
ri(U) = (=A_ei,e))” (i=1,...,n), ri(U)=(=Ar€in,ein) (i=n+1,...,2n) (5.24)
respectively, where
(%)
e; =(0,...,0,1,0,...,0) (i=1,...,n). (5.25)

When n = 1, (5.14) is a strictly hyperbolic system; while, when n > 2, (5.14) is a non-strictly hyperbolic
system with characteristics with constant multiplicity. It is easy to see that all characteristic fields are

linearly degenerate in the sense of Lax, i.e.,

VAW)r(U) = Qs (i =1,...,2n), (5.26)



see [8].
Let
Vi = LU)(U —Ug) (i=1,...,2n). (5.27)

Then, the boundary condition (5.16) can be rewritten as
0=0: Vors=-V;, (i=1,...,n). (5.28)

Thus, we have the global classical solutions of the mixed initial-boundary value problem (5.14)-(5.16).
More precisely, the following existence theorem was proved by Shao [14].
Theorem B. Suppose that uo, vo are all C'* functions with respect to their arguments, for which there

is a constant M > 0 such that
lluo(@)llcos [lvo(@)llcos [[uo(@)llco, [[vo(0)]lco < M, (5.29)

Suppose furthermore that the conditions of C* compatibility are satisfied at the point (0,0). Then
there exists a small positive constant ¢ independent of M such that, if (5.29) holds together with

“+oo +oo
[ o, [ o <. (5.30)
0 0

then the mixed initial-boundary value problem (5.14)-(5.16) admits a unique global C* solution U =
U(t, ) in the half space {(¢,0)|¢t > 0,0 > 0}.

By Theorem A and Theorem 1.1 , we get the following theorem.
Theorem 5.1. Under the assumptions of Theorem B, for the mixed initial-boundary value problem
(5.14)-(5.16), if

+oo o0
N2 max{/ |uo(0)|d6,/ [vo(0)]d0} < +o00, (5.31)

then there exists a unique C'vector-valued function ¢(8) = (¢1(6),. .., ¢2n(0))T such that in the

normalized coordinates

t
Vo
t
vi(t,ﬂ)—>¢n+i(9—ﬁ), t— +oo, i=1,...,n. (5.33)
Vo
Moreover, ¢;(0)(¢ = 1,...,2n) are global Lipschitz continuous, more precisely, there exists a positive

constant k1 independent of €, M, 01 and 02 such that
|9i(01) — ¢i(02)] < k1M|[0y — 02, V01,02 € R. (5.34)

Furthermore, if uy(0) and vj(0) are global p-Holder continuous, where 0 < p < 1, that is, there exists

a positive constant ¢ such that
|uo(61) — uo(B2)] + [v6(61) — vo(62)] <<lr —62]”, V61,62 € RY, (5.35)
then ¢'(0) is also global p-Hélder continuous and satisfies that
16/ (01) — ¢ (02)] < koc(1+ MN +)°|01 — 02]° + kaM>(1+ ) (1 + MN +¢)|01 — 02|,  (5.36)

where k2 is a positive constant independent of &, % N,¢,01 and 02.



Remark 5.1. By Remark 1.5 in Dai and Kong [4], the normalized coordinates always exist for system
(5.14).
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