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Abstract

In an early approach, we proposed a kinetic model with multiple translational temperature [K. Xu,
H. Liu and J. Jiang, Phys. Fluids 19, 016101 (2007)] to simulate non-equilibrium flows. In this
paper, instead of using three temperatures in the x−, y−, and z-directions, we further define the
translational temperature as a second-order symmetric tensor. Based on a multiple stage BGK-type
collision model and the Chapman-Enskog expansion, the corresponding macroscopic gas dynamics
equations in three-dimensional space will be derived. The zeroth-order expansion gives the 10
moment closure equations of Levermore [C.D. Levermore, J. Stat. Phys 83, pp.1021 (1996)]. The
derived gas dynamic equations can be considered as a regularization of Levermore’s 10 moments
equations in the first-order expansion. Our new gas dynamic equations have the same structure
as the Navier-Stokes equations, but the stress-strain relationship in the Navier-Stokes equations is
replaced by an algebraic equation with temperature differences. At the same time, the heat flux,
which is absent in Levermore’s 10 moment closure, is recovered. As a result, both the viscous
and the heat conduction terms are unified under a single anisotropic temperature concept. In
the continuum flow regime, the new gas dynamic equations automatically recover the standard
Navier-Stokes equations. The extended gas dynamic equations present a closed system, which is a
natural extension of the Navier-Stokes system to the near continuum flow regime and can be used
for microflow computations. Both analytical and numerical solutions for the force-driven Poiseuille
flow and the Couette flow in the transition flow regime will be used to validate the current system.

1 Introduction

The transport phenomena, i.e., mass, heat, and momentum transfer, in different flow regimes
are of a great scientific and practical interest. The classification of various flow regimes is based
on the dimensionless parameter, i.e., the Knudsen number, which is a measure of the degree of
rarefaction of the medium. The Knudsen number, Kn, is defined as the ratio of the mean free path
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to a characteristic length scale of the system. In the continuum flow regime where Kn < 0.001,
the Navier-Stokes equations with linear relations between stress and strain and the Fourier’s law
for heat conduction are adequate to model fluid behavior. For flows in the continuum-transition
regime (0.1 < Kn < 1), the Navier-Stokes (NS) equations are known to be inadequate. This
regime is important in many practical engineering problems. Hence, accurate models that give
reliable solutions at low computational costs, would be useful.

One of the alternative approaches to simulating non-equilibrium flow is that based on moment
closures. Grad’s 13 moment equations are among the most important. They provide the time evo-
lution of non-equilibrium quantities, such as stress and heat flux [3]. However, due to its hyperbolic
nature, these equations lead to a well-known sub-shock problem inside a shock layer when the Mach
number is larger than a critical value. To improve the validity of the 13 moment equations, based on
the Chapman-Enskog expansion, Struchtrup and Torrilhon introduced terms of the super-Burnett
order to the balance of pressure deviator and the heat flux vector in the moment equations and
established regularized 13 moment (R13) equations that have much better performance in the non-
equilibrium flow regime [4]. Another well-known moment system is Levermore’s 10 moment closure,
which follows his hierarchy of non-perturbative moment closures with many desirable mathematical
properties [2]. These equations do not suffer from closure-breakdown deficiencies, and they always
give physically realizable solutions due to non-negative gas distribution functions. However, the
10 moment Gaussian closure has no heat flux even though the Navier-Stokes viscous terms can be
recovered in the continuum flow regime. In an effort to extend the Gaussian closure to include
higher-order effects, Groth et al. formulated perturbative variants of the original moment closure
with a new extended fluid dynamics model [5]. The most studied of these closures is a 35-moment
closure. Recently, McDonald and Groth took a Chapman-Enskog-type expansion of either the mo-
ment equations or the kinetic equation and introduced the heat flux into Levermore’s 10 moment
closures and obtained extended fluid dynamics equations for non-equilibrium flow simulation [6].
This new system led to improved results in the transition flow regime where heat transfer has a
significant effect.

Currently, the Direct Simulation Monte Carlo (DSMC) method is the most successful technique
for numerical prediction of low density flows [7]. The DSMC method primarily consists of two
steps, i.e., free transport and collision within each computational cell. The determination of the
transport coefficients in the DSMC method is based on the particle collision model, which is based
on the well-defined theories for continuum flows. The collision models for the particle cross section
and the probability for each collision pair can be used for recovering the dissipative coefficients in
the Navier-Stokes limit. For example, the commonly used variable hard sphere (VHS) molecular
model in DSMC can be used to recover the first-order Chapman-Enskog expansion with viscosity
coefficient µ = µref (T/Tref )ω, which is of the Navier-Stokes order. However, when the DSMC
method is used for non-equilibrium flow calculations, the particle transport from one place to
another is controlled individually by each particle’s velocity, which is not uniformly controlled by
the macroscopically defined particle collision time τ , i.e., τ = µ/p, where µ is the dynamic viscosity
coefficient and p is the pressure. Therefore, particle transport from one place to another in DSMC
may be the key for capturing of non-equilibrium properties. Traditionally, it is noted that the
concepts and measurements of the dissipative coefficients are limited to the continuum flow regime.
A generalized mathematical formulation of the stress and heat flux under rarefied flow conditions
has not been developed so far. In order to construct valid macroscopic governing equations for
non-equilibrium flow, instead of trying different kinds of approximate solutions of the Boltzmann
equation, it may be important to borrow the critical ingredients of the DSMC method directly and
use them in the construction of macroscopic equations.

In recent years, we have concentrated on the development of numerical schemes for near con-
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tinuum flow simulation. To capture the non-equilibrium physics in the transitional flow regime, we
have extended the gas-kinetic Navier-Stokes flow solver with the following developments [8]. First,
a closed solution of the gas distribution function up to the NS order has been used to derive a
generalized particle collision time to obtain the extended viscosity and heat conduction coefficients
[9]. This step is mainly to mimic the effect of the transport process in the DSMC method. Later,
in order to describe the non-equilibrium flow related to the molecular rotational and vibrational
degree of freedom, a multiple time relaxation kinetic scheme was introduced for the shock structure
calculations [10, 11]. Recently, the gas-kinetic scheme was further extended to study the multiple
translational temperature non-equilibrium [1]. The use of the multiple temperature in the above
kinetic schemes is basically to incorporate the physical effect of the collision step in the DSMC
method, where the pair collision in DSMC may not directly drive the system to equilibrium, but
rather stay in an anisotropic middle state. The gas-kinetic schemes developed in the above study
give reasonable results in the transitional flow regime, such as the capturing of shock structures at
different Mach numbers and flow phenomena that cannot be described properly by the NS equa-
tions. In the above simulations, the underlying physical model is a generalized BGK (GBGK)
model [1], where the multiple stage relaxation processes have been considered.

In gas-kinetic schemes, the solutions are obtained without knowing the explicit macroscopic
governing equations. In this paper, we derive the underlying macroscopic governing equations for
monatomic gas. In an earlier approach [1], we introduced the multiple translational temperature
into the kinetic model, where the energy exchanges between the x-, y-, and z-directions are mod-
eled through particle collisions. Based on the above kinetic model, in one-dimensional space, the
generalized NS equations are derived, where the viscous term in the NS equations is replaced by
the temperature relaxation term. In this paper, we further develop this model and regard the tem-
perature as a second-order tensor. Since the gas flow may settle to an equilibrium state through
multiple stages [12], one reasonable assumption is to use a Gaussian distribution with multiple tem-
perature as a middle state. Physically, this state corresponds to a gas with different temperatures
in different directions. Therefore, the thermal energy or particle random motion is represented
through a symmetric temperature tensor, Tij . Historically, the temperature has been defined as a
thermodynamic variable, where there is no bulk fluid velocity variation. The temperature therefore
becomes a scalar concept. However, in the transition flow regime, the gas has large bulk velocity
variation, and there are not enough particle collisions to equalize the random particle motion. To
construct gas dynamic equations, extending the temperature from a scalar concept to a tensor is
justifiable. The commutable property of the random particle velocity determines the temperature
to be a symmetric tensor. Actually, this kind of non-equilibrium gas property has been routinely
extracted from DSMC solutions. Based on the physical model with the Gaussian distribution as a
middle state between the real gas distribution function, f , and the equilibrium Maxwellian, feq, and
the strategy used in the construction of the kinetic scheme, we are going to derive the correspond-
ing macroscopic governing equations. Surprisingly, the obtained gas dynamic equations become
regularizations of Levermore’s 10 moment Gaussian closure, where additional viscous and heat
conduction terms are obtained. The structure of the gas dynamic equations are almost identical
to the Navier-Stokes equations, but the constitutive relationship of the NS which relates the stress
tensor σ to the velocity gradient, i.e., σij = −ρRT eqδij + µ(∂iUj + ∂jUi − 2

3∂kUkδij), is replaced
by a new relationship σij = −ρRTij + ρR(T eq

ij − Tij), where Tij is the temperature tensor. At the
same time, the heat flux depends on the gradient of the temperature Tij .

This paper is organized as follows. Section 2 introduces the kinetic equation and the generalized
particle collision model. At the same time, the 10 moment closure and the generalized gas dynamics
equations are presented. Section 3 presents applications of the new gas dynamics equations to two
flow problems in the near continuum regime. Conclusions are drawn in section 4.
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2 Extended Gas Dynamic Equations

In this section, we first review the particle collision model, introduce the Gaussian closure, and
derive the new gas dynamic equations. A monatomic gas is considered in this paper.

2.1 A two stage gas-kinetic collision model

The gas-kinetic Bhatnagar-Gross-Krook (BGK) model has the form [13],

∂tf + ui∂if = (feq − f)/τ,(1)

where the particle distribution function, f , is a function of time, t, spatial location, xi, and particle
velocity, ui. The left-hand side of the above equation represents the free streaming of molecules in
space, and the right-hand side is the simplified collision term of the Boltzmann equation. In the
BGK model, the collision operator involves a single relaxation time, τ , for a non-equilibrium state
to evolve to an equilibrium one, feq, which is an isotropic Gaussian,

feq =
ρ

(2πRT eq)3/2
exp[−(ui − Ui)(ui − Ui)

2RT eq
],

where ρ is the density, T eq is the equilibrium temperature, and Ui is the averaged macroscopic
fluid velocity. Traditionally, based on the above BGK model, the Navier-Stokes and higher-order
equations, such as the Burnett and the Super-Burnett, can be derived [14, 15]. Unfortunately, these
higher-order equations have intrinsic physical and mathematical problems in the transitional flow
regime.

In general, the BGK collision term is valid only for flows close to the thermal equilibrium regime.
To extend the capacity of the BGK model to the non-equilibrium flow regime, we can rewrite the
collision term of the BGK model into two physical sub-processes,

∂tf + ui∂if = (g − f)/τ + (feq − g)/τ,(2)

where g is a middle state between f and feq (see Figure 1). The DSMC solutions show that the
randomness of the particle motion depends on the spatial direction. A natural assumption about
the middle state is that it is a state with multiple temperatures. In the above equation, the term
(feq − g)/τ has no direct connection with f ; therefore, we can consider it as a source term in the
above generalized BGK (GBGK) model,

∂tf + ui∂if = (g − f)/τ + Q,(3)

where Q = (feq − g)/τ for the monatomic gas.
In an earlier approach, we assumed that the middle state, g, has individual temperature in the

x−, y− and z−directions, and that it took the following form in a two-dimensional case:

g = ρ

(

λx

π

)1/2 (

λy

π

)1/2 (

λz

π

)1/2

exp
[

−λx(u − U)2 − λy(v − V )2 − λzw
2
]

.(4)

Here λx = 1/(2RTx), λy = 1/(2RTy), and λz = 1/(2RTz) are related to the translational tempera-
ture, Tx, Ty, and Tz, in the x−, y−, and z− directions, respectively, and R is the gas constant.

To solve the above kinetic equation numerically to determine the time evolution of the macro-
scopic physical quantities (ρ, U, V, Tx, Ty, Tz), we proposed the following scheme. First, we expanded
the gas distribution function around the multiple temperature state g, such as f = g−τ(gt+ui∂ig),
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from which the numerical fluxes across each cell interface were evaluated. Second, the source term,
Q, was integrated in a time step inside each computational cell and was regarded as a source term.
The physical effect of the source term was to equalize the temperature in different directions. The
above processes are composed of the relaxations from the non-equilibrium state, f , to a multiple
temperature state, g. Next, g converges to an equal temperature Maxwellian. These two processes
may have different relaxation time scales, and the specific formulation of g depends on the flow
problems. According to the above model, we derived hydrodynamic equations in one-dimensional
space [1], where the stress-strain relationship in the Navier-Stokes equations is replaced by the
temperature relaxation. In the continuum flow regime, where the middle state is close to the
Maxwellian, the standard Navier-Stokes equations can be recovered. The numerical tests presented
in [1] verified the validity of the above model. In this paper, we use multiple temperature Gaus-
sians as the middle state and we use the procedure to derive general gas dynamics equations in
three-dimensional space.

The approximation of the Boltzmann particle collision term by multiple BGK-type sub-processes
has been investigated before by many authors, such as Callaway [16], Gorban and Karlin [17], and
Levermore [2]. It was also shown that the GBGK model could admit the H-theorem if the middle
state is chosen carefully [17]. With the DSMC method, including the rotation and vibration modes
is possible through the BGK-type relaxation model as well. As realized in [2], for Maxwellian
molecules, the use of the multiple BGK-type collision term is correct even if the flow is far away
from the equilibrium. This suggests that the generalized BGK operator may be a legitimate ap-
proximation of the collision term for use in the near continuum flow regime.

2.2 Extended gas dynamics equations: zeroth-order

For the rarefied flow simulation, a generalized middle state, g, between f and feq can be a Gaussian
distribution. The Gaussian distribution appears to have been derived in the early work by Maxwell
[18], and then re-discovered by many researchers, such as Holway [19] and Levermore [2]. In this
paper, we directly define the gas temperature as a tensor instead of a scalar. The traditional
temperature concept comes from thermodynamics in which the local bulk fluid velocity deviation
is absent. However, in the transport equations, the temperature basically represents the degree
of randomness of particle motion. In order to dynamically equalize the temperature, there should
be enough particle collisions. In the near continuum flow regime, the number of particle collisions
inside a microscale device is limited. It is most likely that the particles will keep the non-isotropic
particle randomness.

One of the middle states we can use between f and feq is the Gaussian distribution,

g =
ρ

√

det(2πRTij)
exp(−1

2
(ui − Ui)(RTij)

−1(uj − Uj)),

where Tij is the positive definite temperature matrix, which is related to the thermal energy of the
particle motion, ρRTij =

∫

(ui−Ui)(uj−Uj)gdu. Due to the commutable property between particle
randomness velocities, such as (ui − Ui)(uj − Uj) = (uj − Uj)(ui − Ui), Tij must be a symmetric
tensor. Levermore [2] developed a non-perturbative method, where the gas distribution function,
f , is assumed to be equal to g. Based on the kinetic equation (3) with the assumption f = g, i.e.,

∂tg + ui∂ig = Q,

taking the moments
ψ = (1, ui, uiuj)

T ,
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on the above equation gives the following Gaussian closure:

∂tρ + ∂k(ρUk) = 0,(5)

∂t(ρUi) + ∂k[ρ(UiUk + RTik)] = 0,(6)

∂t[ρ(UiUj + RTij)] + ∂k[ρ(UiUjUk + RUkTij + RUiTjk + RUjTki)] =
1

τ
ρR(T eqδij − Tij).(7)

These equations are actually the zeroth-order Chapman-Enskog expansion, i.e., f = g, for the
generalized BGK model. In the above equations, the source term on the right-hand side comes
from the term Q in the generalized BGK model. The equilibrium temperature, T eq, is defined by

T eq =
1

3
Tr(Tij).

If the state g is equal to the Maxwellian, i.e., g = feq, the above equations reduce to the Euler
equations. Based on the above equations, Levermore and Morokoff showed that if the initial data
of Tij is symmetric positive definite, then it remains so [20].

Even without heat conduction terms, Levermore showed that the above equations recover the
Navier-Stokes viscous terms in the continuum flow regime [2]. In the above system, (5)-(7), the
left-hand side equations have complete real eigenvalues and eigenvectors [21, 22], and the system
is strictly hyperbolic. The temperature difference in different directions, such as the Tij , basically
shows that the speed of sound depends on the spatial direction, the so-called anisotropic wave
propagation due to the non-isotropic gas property.

To further introduce heat flux into the above 10 moment closure, McDonald and Groth re-
cently made a Chapman-Enskog-type expansion about the Gaussian moment equations based on
the ellipsoidal statistical model (ES) model [6]. The heat conduction was added for the thermal
temperature equation,

∂tTij + ∂k(UkTij) + Tik∂kUj + Tjk∂kUi + ∂kQijk =
1

τ
(T eqδij − Tij),(8)

where the heat flux, Q, has the form

Qijk = − τ

Pr
[Tkl∂lTij + Tjl∂lTik + Til∂lTjk].

2.3 Extended gas dynamic equations: first order

The generalized BGK model includes two relaxation processes. One is from f to the Gaussian, g,
and the other is from g to an equilibrium state, feq. In the last section, the distribution function
f is assumed to be equal to g, and the 10 moment closure equations are derived. However, as
presented in Figure 1, the real distribution function should be different from g, and the process
of relaxation from f to g must be considered. In the past years, we have developed gas-kinetic
schemes based on the generalized BGK model, where a gas distribution function, f , around g has
been constructed and used to evaluate the numerical fluxes in a finite volume scheme [1]. The
schemes present reasonable numerical solutions in the near continuum flow regime, such as the
micro-channel flow computation [12]. In the following, we derive the corresponding macroscopic
governing equations underlying the gas-kinetic scheme. The method used here can be regarded as
the Chapman-Enskog expansion or the iterative expansion [15]. They are equivalent.

The solution, f , around the Gaussian, g, is constructed using the iterative expansion to the
first-order [15],

f = g − τ(∂tg + ui∂ig) + τQ,(9)
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where in the kinetic scheme, ∂tg, is determined using the zeroth-order equations or the following
compatibility condition

∫

ψ(∂tg + ui∂ig)du =

∫

ψQdu,(10)

which is exactly the 10 moment closure, (5)-(7). Substituting the distribution function, f , in (9)
into the BGK model (3), the equation becomes

∂tg + ui∂ig = τ(∂2
t g + 2ui∂t∂ig + uiuj∂i∂jg) + Q − τ(∂tQ + ui∂iQ).(11)

Taking the moments, ψ, of the above equation and using Eq.(10) to express the time derivative in
terms of the spatial derivative, we have the following macroscopic equations:

∂tρ + ∂k(ρUk) = 0,(12)

∂t(ρUi) + ∂k[ρ(UiUk + RTik)] = ∂k[ρR(T eqδki − Tki)],(13)

∂t[ρ(UiUj + RTij)] + ∂k[ρ(UiUjUk + RUkTij + RUiTjk + RUjTki)]

=
2

τ
ρR(T eqδij − Tij)

+∂k{ρR[Uk(T
eqδij − Tij) + Ui(T

eqδjk − Tjk) + Uj(T
eqδki − Tki)]}

+∂k{τρR2 1

Pr
(Tkl∂lTij + Til∂lTjk + Tjl∂lTki)}.(14)

The above equations have been written in a similar way as the Navier-Stokes equations are writ-
ten. The differences between the above equations and the 10 moment closure equations are the
additional terms that appear on the right-hand sides of the momentum and energy equations. It
is interesting to see that the corresponding heat conduction term derived above has the same form
as that obtained by McDonald and Groth, even though the equations are obtained given different
considerations [6]. Based on the BGK-type collision model, a unit Prandtl number is obtained for
the heat conduction term. However, since we believe that up to the NS order, the structure of the
gas dynamic equations will not be changed due to the BGK collision term or the exact Boltzmann
collision model, we add the Prandtl number in the above corresponding heat flux term. Since the
viscosity and heat conduction coefficients are the concepts for the continuum flow, the particle
collision time, τ , in the above equations is defined according to the result in the continuum regime,

τ = µ/(ρRT eq),

where µ is the dynamical viscosity coefficient. Certainly, in the rarefied flow regime, the correspond-
ing viscosity coefficient has to be modified [9]. Also, attention should be paid to the relaxation
term in the energy equation, where an additional 2 appears.

The above equations can be re-arranged to gain the time-evolution equation for the thermal
energy, ρRTij ,

∂t[ρTij ] + ∂k[ρUkTij ]

=
2

τ
ρ(T eqδki − Tij)

−ρ[Tkj∂kUi + Tki∂kUj ] (a)

+∂k[ρUk(T
eqδij − Tij)] + ρ(T eqδjk − Tjk)∂kUi + ρ(T eqδki − Tki)∂kUj (b)

+∂k{τρ
R

Pr
(Tkl∂lTij + Til∂lTjk + Tjl∂lTki)}. (c)(15)

7



In comparison with the Navier-Stokes equations, the right-hand side of equation (15) has a clear
physical meaning in its each term. Here, (a). the forces multiplied by fluid deformation, which
is the heating and cooling of the fluid by compression or the expansion and this term represents
a reversible process. (b). viscous dissipation, which is responsible for heat generation, and it is
always positive and produces internal energy. This is an irreversible process. (c). heat conduction
term, which is also irreversible.

The relaxation parameter, τ , controls the distance between the non-equilibrium state, f , and
the equilibrium state, feq. The current method for the derivation of the gas dynamics equations
can be used in other systems, such as one with a more complicated non-equilibrium middle state, g,
such as the distributions with 14 or 26 moments. However, a distribution function, g, with higher-
order terms may correspond to macroscopic governing equations without clear physical meanings
for the higher-order terms.

The generalized gas dynamic equations, (12)-(14), have the same left-hand side as the 10 moment
closure equations, (5)-(7) [20]. And the fluxes on the left have complete eigenvalues and eigenvectors
[21, 22, 23]. In other words, the left-hand side is the hyperbolic part. On the right-hand side,
besides the heat flux as recently derived by McDonald and Groth [6], additional dissipative terms,
i.e., ρR(T eqδij − Tij) in the momentum equations and ρR[Uk(T

eqδij − Tij) + Ui(T
eqδjk − Tjk) +

Uj(T
eqδki − Tki)] in the thermal energy equation, have been obtained. Furthermore, in the present

model, the relaxation time appearing in the first term on the right-hand side of Eq.(14) is τ/2 in
our two-stage collision model, while the corresponding term in the model by McDonald and Groth
is τ . The differences may be attributed to two main causes. First, the two-stage collision operator
used in Eq. (2) is different from that for the model by McDonald and Groth [6] (i.e, the ES model);
Second, in the derivation of the present model we used an iterative expansion while McDonald and
Groth made use of the Chapman-Enskog expansion in their work.

To gain a clear understanding of the difference between our model and the traditional Navier-
Stokes equations, we can figure out the corresponding ”NS” terms from the above equations (12)-
(14). First, it is emphasized here that our equations basically represent a non-equilibrium system.
The temperature tensor is defined according to the anisotropic Gaussian distribution function g,
i.e., ρRTij =

∫

(ui − Ui)(uj − Uj)gdu, which is different from the pressure tensor Pij defined by
Pij =

∫

(ui−Ui)(uj−Uj)fdu. Similar situation happens for the Navier-Stokes system as well, where
the temperature is defined according to the local equilibrium Maxwellian distribution function and
the pressure tensor is obtained according to the 1st-order Chapman-Enskog expansion fNS . In our
case, f = g − τ(∂tg + ui∂ig) + τQ, and we can show as done in the derivation of Eq. 13 that

Pij = ρR(2Tij − T eqδij).

Accordingly, the corresponding viscous stress, τij , in our closed system becomes

τij =
1

3
Pkkδij − Pij = 2ρR(T eqδij − Tij).

As a result, the corresponding ”NS” stress tensor σij in our system, or the constitutive relation-
ship, becomes

σij = −ρRT eqδij + τij = −ρRTij + ρR(T eqδij − Tij).(16)

The momentum and energy equations, (13) and (14), can be rewritten in terms of the pressure
tensor as follows,

∂t(ρUi) + ∂k[ρ(UiUk + Pik)] = 0,(17)

∂t[ρ(UiUj + RTij)] + ∂k[ρUiUjUk + UkPij + UiPjk + UjPki − qijk] =
2

τ
ρR(T eqδij − Tij),(18)
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where

qkij =
τρR2

Pr
(Tkl∂lTij + Til∂lTjk + Tjl∂lTki).(19)

Furthermore, the trace of Eq. 18 gives the conservation equation for the total energy as

∂t

[

1

2
ρUiUi +

3

2
ρRT eq

]

+ ∂k

[(

1

2
ρUiUi +

5

2
ρRT eq

)

Uk − τikUi −
1

2
Qk

]

= 0,(20)

where Qk = −qiik. In the following, we show that the new constitutive relationship can recover the
standard NS formulation in the continuum flow regime.

In the continuum flow regime, the Gaussian distribution, g, will come to the same state as the
equilibrium one, feq, see Figure 1. In this case, the first-order expansion of f presented in this
section will be expanded basically around feq. To the leading order of small τ , Eq.(14) gives the
temperature deviation,

ρR(T eqδij − Tij) ≈
(τ/2){∂t[ρ(UiUj + RTij)] + ∂k[ρ(UiUjUk + RUkTij + RUiTjk + RUjTki)]}.(21)

In the above equation, when applying the equilibrium conditions, Tii = T eq (no summation) and
Tij = T eqδij , and using the Euler equations to replace the temporal derivative by the spatial
derivative, we have

ρR(T eqδij − Tij)

≈ (τ/2)ρRT eq[∂iUj + ∂jUi −
2

3
∂kUkδij ] = (µ/2)[∂iUj + ∂jUi −

2

3
∂kUkδij ].(22)

Therefore, the constitutive relationship (16) becomes

σij = −ρRT eqδij + 2ρR(T eqδij − Tij)

= −pδij + µ[∂iUj + ∂jUi −
2

3
∂kUkδij ],(23)

which is exactly the Navier-Stokes stress-strain relationship. In the Navier-Stokes equations, the
stress becomes the symmetric tensor, which is constructed through rational mechanical analysis.
However, in the new gas dynamic equations, the ”stress” tensor is automatically a symmetric
tensor due to the commutable property of random particle velocities, i.e., (ui − Ui)(uj − Uj) =
(uj − Uj)(ui − Ui). In order words, the present formulation gives a microscopic interpretation of
the origin of the symmetric stress tensor. At the same time, the heat flux transported in the
k−direction for the thermal energy, ρRTij , becomes qkij defined by Eq. (19). These results are
consistent with the early analysis of one-dimensional flow [1].

In summary, we derived generalized gas dynamics equations based on the multiple stage BGK
model. With the added Prandtl number, Pr, and the introduction of dynamic viscosity in the
determination of the relaxation parameter, τ , the gas dynamic equations derived in this section
are a closed system, which is a natural extension of the Navier-Stokes equations. Theoretically,
the new gas dynamic equations cover a wider flow regime than do the Navier-Stokes equations.
The new constitutive relationship has a microscopic physical basis. The viscous term involves only
first-order derivatives of the flow variables. The ability to treat non-equilibrium flow problems
without evaluating higher than first-order derivatives would prove very advantageous numerically.
The method should be insensitive to irregularities in the grid, the straight-forward computation in
Discontinuous Galerkin framework, and the easy implementation of boundary conditions. Due to
the low order equations, the less communication between the computational cells (small stencil)
makes its numerical scheme more efficient to implement on parallel computing architecture.
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3 Solutions of the generalized gas dynamic equations

In this section, we present two flow problems in the near continuum flow regime for the validation
of the generalized gas dynamic equations derived in the last section. Both test problems are
microchannel flows, but with different flow speeds and non-equilibrium properties.

3.1 Analytic solution of force-driven Poiseuille flow in the near continuum flow

regime

In this subsection, we apply the generalized gas dynamic equations to rarefied gas flows, such as the
case of a force-driven Poiseuille flow between two parallel plates. Both DSMC and kinetic theory
have shown that even with a small Kn, the pressure and temperature profiles in this flow exhibit
a different qualitative behavior from that predicted by the Navier-Stokes equations [24, 25, 26, 27,
28, 29]. Therefore, this flow can serve as a good test problem for any extended hydrodynamic
equations intended for non-continuum flow computation.

In our test, the two walls of the channel are located at y = ±H/2 and the force, a = (a, 0, 0), is
along the x-direction. The flow is assumed to be unidirectional, i.e., ∂xφ = 0, for any variable, φ,
and the velocity has only an x-component in the laminar and stationary case, i.e., Um = (U, 0, 0).
Under such conditions, the generalized gas dynamic equations (12)-(14) reduce to

2
dΘxy

dy
− ρa = 0,

d

dy
(2Θyy − P ) = 0,

1

Pr

d

dy

(

2τΘxy
dθxy

dy
+ τΘyy

dθxx

dy

)

=
2(Θxx − P )

τ
+ 4Θxy

dU

dy
,

3

Pr

d

dy

(

τΘyy
dθyy

dy

)

=
2(Θyy − P )

τ
,

1

Pr

d

dy

(

τΘyy
dθzz

dy

)

=
2(Θzz − P )

τ
,

and
1

Pr

d

dy

(

2τΘyy
dθxy

dy
+ τΘxy

dθyy

dy

)

=
2Θxy

τ
+ (2Θyy − P )

dU

dy
,

where Θij = ρθij and P = ρθ is the pressure, with θij = RTij and θ = RT eq.
It is difficult to obtain an analytical solution from the above nonlinear system. Here, we try

to find an approximate solution using a perturbation method similar to that used in [26]. To this
end, we first introduce the following dimensionless variables:

ŷ =
y

H
, ρ̂ =

ρ

ρ0
, Θ̂ij =

Θij

P0
, θ̂ij =

θij

θ0
, Û =

U√
θ0

, τ̂ =
τ

τ0
,

where the variables with subscript 0 represent the corresponding reference quantities. With these
dimensionless variables, the system can be rewritten as

dΘ̂xy

dŷ
− ǫρ̂ = 0,(24)

2Θ̂yy − P̂ = C,(25)
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d

dŷ

(

2τ̂Θ̂xy
dθxy

dŷ
+ τ̂Θ̂yy

dθ̂xx

dŷ

)

= 2Prδ2 (Θ̂xx − P )

τ
+ 4PrδΘ̂xy

dÛ

dŷ
,(26)

d

dŷ

(

τ̂Θ̂yy
dθ̂yy

dŷ

)

= 2Prδ2 (Θ̂yy − P̂ )

τ
,(27)

d

dŷ

(

τ̂Θ̂yy
dθ̂zz

dŷ

)

= 2Prδ2 (Θ̂zz − P̂ )

τ
,(28)

and
d

dŷ

(

2τ̂Θ̂yy
dθ̂xy

dŷ
+ τ̂Θ̂xy

dθ̂yy

dŷ

)

= 2Prδ2 Θ̂xy

τ
+ CPrδ

dÛ

dŷ
,(29)

where C is a constant and ǫ and δ are two dimensionless parameters given by

ǫ =
a

2θ0
, δ =

H

τ0

√
θ0

=

√

π

2

1

Kn
.

Now, we assume that the force acceleration, a, is small, such that ǫ ≪ 1. Then, we can expand
the dimensionless flow quantities by powers of ǫ̂ (we will omit the hat for simplicity hereafter):

ρ = 1 + ǫ2ρ(2) + O(ǫ4), U = ǫU (1) + O(ǫ3), C = 1 + ǫ2C(2),

Θxy = ǫΘ(1)
xy + O(ǫ3), θxy = ǫθ(1)

xy + O(ǫ3),

Θii = 1 + ǫ2Θ
(2)
ii + O(ǫ4), θii = 1 + ǫ2θ

(2)
ii + O(ǫ4), for i = x, y, z,

and
P = 1 + ǫ2P (2) + O(ǫ4), θ = 1 + ǫ2θ(2) + O(ǫ4), τ = 1 + ǫ2τ (2) + O(ǫ4).

The odd or even properties of the variables as functions of ǫ are based on their symmetric properties
in terms of the acceleration a. In general, the odd (even) velocity moments of the distribution
function, f , are also odd (even) functions of ǫ. Furthermore, from the definition Θij = ρθij we can
obtain some useful relations that will be used later:

ρ(2) = P (2) − θ(2) = Θ
(2)
ii − θ

(2)
ii , Θ(1)

xy = θ(1)
xy , for i = x, y, z.(30)

By substituting the above expansions into the nondimensional system, we obtain the first-order
differential equation in ǫ. Eqs. (24) and (29) go to

dΘ
(1)
xy

dy
− 1 = 0,

Prδ
dU (1)

dy
=

d2θ
(1)
xy

dy2
− 2Prδ2Θ(1)

xy ,

which give
Θ(1)

xy = θ(1)
xy = y,(31)

U (1) = −δy2 + C ′,(32)

where C ′ is a constant. Here, we have made use of the symmetry of the velocity profile about y = 0.
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From Eqs. (25) (26), (27), and (28), we can obtain the second-order equations in ǫ:

2Θ(2)
yy − P (2) = C(2),(33)

d2θ
(2)
xx

dy2
= 2Prδ2

(

θ(2)
xx − θ(2)

)

− 1 − 8Prδ2y2,(34)

3
d2θ

(2)
yy

dy2
= 2Prδ2

(

θ(2)
yy − θ(2)

)

(35)

and
d2θ

(2)
zz

dy2
= 2Prδ2

(

θ(2)
zz − θ(2)

)

(36)

where the results up to the first-order Eqs. (31) and (32) have been used. Summing up the above
three equations, we have

d2

dy2

(

3θ(2) + 2θ(2)
yy

)

= −1 − 8Prδ2y2.(37)

From Eqs. (35) and (37), we have

θ(2) = −2

3
A cosh

(√
10

3
Ky

)

− 2K2

15
y4 +

43

50
y2 +

231

125K2
+ B,

θ(2)
yy = A cosh

(√
10

3
Ky

)

− 2K2

15
y4 − 77

50
y2 − 693

250K2
+ B,

where K =
√

Prδ, A and B are two integral constants dependent on boundary or other conditions.

Since θ(2) is obtained, the other two temperatures, θ
(2)
xx and θ

(2)
zz , from Eqs. (34) and (36) can be

constructed, respectively.
Now, let’s find the second-order pressure, P (2). From Eqs. (30) and (33), we obtain

P (2) = C(2) + 2(θ(2) − θ(2)
yy ) = C(2) − 10A

3
cosh

(√
10

3
Ky

)

+
24

5
y2 +

231

25K2
.

Then, ρ(2) can be determined from (30) as

ρ(2) = P (2) − θ(2)) = C(2) − 8A

3
cosh

(√
10

3
Ky

)

+
2K2

15
y4 +

197

50
y2 +

924

125K2
− B.

With the above results, we finally get the approximate solutions of the problem:

U√
RT0

= −ǫδ

(

y

H

)2

+ Us,(38)

P

P0
= 1 + ǫ2P (2),(39)

T

T0
= 1 + ǫ2θ(2).(40)

With these results, we are able to discuss the velocity, pressure, and temperature profiles for
the force-driven Poiseuille flow problem. First, it is clear that the velocity profile is parabolic, but
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the profiles of pressure and temperature may be complicated due to the presence of the hyperbolic
cosine function.

It is interesting to compare the approximate solutions of the present gas dynamic equations to
those of the Navier-Stokes-Fourier (NSF) equations. For the same flow problem, the NSF equations
reduce to

d

dy

(

µ
dU

dy

)

+ ρa = 0,(41)

dP

dy
= 0,(42)

d

dy

(

k
dU

dy

)

+ µ

(

dU

dy

)2

= 0.(43)

Using the similar perturbation method, we have the following approximate solutions for the NSF
equations:

U√
RT0

= −ǫδ

(

y

H

)2

+ Us, P = const,
T

T0
= 1 + ǫ2θ

(2)
nsf ,(44)

where θ
(2)
nsf = −(2/15)Prδ2ŷ4 + D and D is a constant. It is shown that the velocity profile of the

NSF equations is also parabolic, which is the same as the that of the generalized hydrodynamic
equations. However, the NSF equations give a constant pressure, which is qualitatively different

from the predictions of the new proposed model. For the temperature, it is evident that θ
(2)
nsf is

only part of θ(2), and has one local maximum at y = 0. On the other hand, the presence of terms,
cosh(y) and y2, in θ(2) of the new model makes it possible to have a local minimum at y = 0, due
to [θ(2)]′y=0 = 0 and [θ(2)]′′y=0 = −K2(100A + 216)/135 + 1.72 > 0 as A < 2.322K−2 − 2.16.

To see this more clearly, we present the pressure and temperature profiles for the case of Kn=0.1
which was studied extensively using the DSMC method [28]. The constants A and B in θ and P
of the present hydrodynamic model are obtained by enforcing the values of θ at y = 0 and −H/2
to be the same as the DSMC data, and then C is obtained by enforcing P (y = 0) to be the DSMC
value. The NSF solutions are obtained by enforcing their pressure and temperature values to be
identical to the DSMC data at y = 0. In Figure 2, the reduced temperature and pressure variations,
θ(2) = (T/T0 − 1)/ǫ2 and P (2) = (P/P0 − 1)/ǫ2, are shown for both the NSF equations and the
present model. It is seen that the temperature and pressure profiles of the present model are in
qualitative agreement with the DSMC data. For example, the temperature has a bimodal shape
and exhibits a local minimum at y = 0, and the pressure has two local maximums near the two
walls. These critical flow behaviors are absent in the profiles of the NSF equations. For example,
the temperature minimum only appears in the super-Burnett order if the traditional BGK collision
model is used to construct the gas dynamic equations [14, 30]. These observations demonstrate the
fundamental difference between the present hydrodynamic model and the NSF equations.

We would also like to point out that the original Gaussian moment equations [2] cannot be used
to describe the structure of the force-driven Poiseuille flow due to the absence of the conduction
terms in the energy equation. Actually, for the Poiseuille flow the 10 moment equations reduce to

dΘxy

dy
− ρa = 0,(45)

dΘyy

dy
= 0,(46)

(Θxx − P )

τ
+ 2Θxy

dU

dy
= 0,(47)
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(Θyy − P )

τ
= 0,(48)

(Θzz − P )

τ
= 0,(49)

Θxy

τ
+ Θyy

dU

dy
= 0,(50)

The first equation indicates that Θxy 6= 0, while Eqs.(47), (48), and (49) give that Θxx = Θyy =
Θzz = P and Θxy

dU
dy = 0, which means that U must be a constant. One the other hand, the last

equation, (50) means that U cannot be a constant. This contradiction reveals the insufficiency of
the Gaussian closure for flows undergoing thermal diffusion.

We have also made a similar analysis for the regularized 10-moment model by McDonald and
Groth [6] (MG model). The final perturbation solutions of the system are given as follows:

θ(2) = C0 cosh

(√
10

6
Ky

)

− 2K2

15
y4 +

86

25
y2 + C1,

P (2) = 5C0 cosh

(√
10

6
Ky

)

+
96

5
y2 + C1.

where C0, C1, and C2 are integral constants. It is clear from the above solutions that the flow
structures predicted by the MG model is similar to that of the present hydrodynamic model. This
can also be seen obviously from Figure 3 where the integral constants are determined as before.
Compare with Figure 2, it can be observed that the temperature profile of the MC model agrees
with the DSMC data slightly better than the present model, while the pressure profile does slightly
worse.

3.2 Numerical solution for Couette flows

For the new gas dynamic equations, a corresponding gas-kinetic scheme can be developed [1]. To
test the validity of the new governing equations, we study a planar Couette flow [31]. The height
of the Couette system is h0 = 50 nm. The wall’s temperatures are fixed at T0 = 273K and,
at equilibrium, the pressure of the gas is 1 atm. Given that the distance between walls is less
than a mean-free path and the relative wall speed is high, the gas system will be strongly out of
equilibrium. Specifically, the velocity distribution for the particles is non-Maxwellian. As in [31],
the temperature along the channel is defined as Tx and the temperature perpendicular to walls
is Tz. With the fixed Knudsen number Kn= 1.25, and various wall velocities, such as the Mach
numbers M = 0.5, 1.0, and 1.5, the simulation results from the new gas dynamic equations are
shown in Figure 4, where the DSMC solutions are also included [31]. Clearly, at high Knudsen
number and Mach numbers, the temperature is anisotropic. The new gas dynamics equations are
capable of capturing this kind of non-equilibrium flow phenomena. Also, it is necessary for any gas
dynamic equations to consider the temperature as a tensor for the non-equilibrium system.

4 Conclusion

Based on the multiple stage particle collision BGK model and the Gaussian distribution function as
the middle state, the generalized gas dynamic equations have been derived. Since the gas temper-
ature basically represents the molecular random motion, the direct extension of the temperature
concept from a scalar to a second-order symmetric tensor, Tij , is physically reasonable. In the
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non-equilibrium flow regime, the randomness of the particle distribution indeed depends on the
spatial orientation. The new gas dynamic equations have the same structure as the Navier-Stokes
equatons, but the NS constitutive relationship,

σij = −ρRT eqδij + µ(∂iUj + ∂jUi −
2

3
∂kUkδij)

is replaced by
σij = −ρRTij + ρR(T eqδij − Tij).

At the same time, the heat flux in the k−direction for the transport of thermal energy, ρRTij ,
becomes

qkij =
τρR2

Pr
(Tkl∂lTij + Til∂lTjk + Tjl∂lTki).

In the continuum flow regime, the generalized constitutive relationship and the heat flux term go
back to the corresponding Navier-Stokes formulations. The new gas dynamic equations can be
regarded as a regularization of Levermore’s 10 moment closure equations [2]. The gas dynamic
equations have a wider applicable flow regime than that of the NS equations. They capture the
time evolution of the anisotropic non-equilibrium flow variables, as demonstrated in our examples.

The traditional temperature concept come from thermodynamics, in which there is no anisotropic
particle random motion in space. However, for the non-equilibrium flow transport, due to inade-
quate particle collisions the random molecule motion can become easily anisotropic. To directly
consider the temperature as a tensor rather than a scalar is a reasonable description of a non-
equilibrium flow. For a diluted gas, due to the lack of long-range particle interactions, the ran-
domness of the particle motion is the only source for the dissipation in the system. Under the new
definition of the temperature, all dissipative effects in a diluted gas system, such as the viscosity and
heat conduction, can be unified under the same concept, Tij . The current gas dynamic equations
can be useful in the study of microflows. Further developments of the gas dynamic equations based
on the kinetic model and its scheme in [32], which are valid for compressible shock waves as well,
will be done in the near future.
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Appendix: Gas Dynamic Equations in 2D Space

As a special application, we consider the 2D case, where there are seven unknowns (ρ, U, V, Txx, Txy, Tyy, Tzz).
The generalized gas dynamic equations for those unknowns are

∂U

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Ev

∂x
+

∂Fv

∂y
+ S,(51)
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where U is the vector macroscopic flow variable, and F and G are x− and y−direction flux vectors
given by

U =























ρ
ρU
ρV

ρ(U2 + RTxx)
ρ(UV + RTxy)
ρ(V 2 + RTyy)

ρRTzz























,F =























ρU
ρ(U2 + RTxx)
ρ(UV + RTxy)

ρ(U3 + 3URTxx)
ρ(U2V + 2URTxy + V RTxx)
ρ(UV 2 + URTyy + 2V RTxy)

ρURTzz























,

G =























ρV
ρ(UV + RTxy)
ρ(V 2 + RTyy)

ρ(U2V + V RTxx + 2URTxy)
ρ(UV 2 + URTyy + 2V RTxy)

ρ(V 3 + 3V RTyy)
ρV RTzz























,

Ev =























0
ρR(T eqδxx − Txx)
ρR(T eqδxy − Txy)

3ρR[U(T eqδxx − Txx) + τR(Txx∂xTxx + Txy∂yTxx)]
ρR[V (T eqδxx − Txx) + 2U(T eqδxy − Txy + τR(Txy∂xTxx + Tyy∂yTxx + 2Txx∂xTxy + 2Txy∂yTxy))]
ρR[U(T eqδyy − Tyy) + 2V (T eqδxy − Txy) + τR(2Txy∂xTxy + 2Tyy∂yTxy + Txx∂xTyy + Txy∂yTyy)]

ρR[U(T eqδzz − Tzz) + τR(Txx∂xTzz + Txy∂yTzz)]























,

Fv =























0
ρR(T eqδxy − Txy)
ρR(T eqδyy − Tyy)

ρR[V (T eqδxx − Txx) + 2U(T eqδxy − Txy) + τR(2Txy∂yTxy + 2Txx∂xTxy + Tyy∂yTxx + Txy∂xTxx)]
ρR[U(T eqδyy − Tyy) + 2V (T eqδxy − Txy + τR(Txy∂yTyy + Txx∂xTyy + 2Tyy∂yTxy + 2Txy∂xTxy))]

3ρR[V (T eqδyy − Tyy) + τR(Tyy∂yTyy + Txy∂xTyy)]
ρR[V (T eqδzz − Tzz) + τR(Tyy∂yTzz + Txy∂xTzz)]























,

and the source term is

S =























0
0
0

2ρR(T eqδxx − Txx)/τ
2ρR(T eqδxy − Txy)/τ
2ρR(T eqδyy − Tyy)/τ
2ρR(T eqδzz − Tzz)/τ























.

In the above closed system, the equilibrium temperature is

T eq = T eqδxx = T eqδyy = T eqδzz =
1

3
tr(Tij),

where
T eqδxy = T eqδyx = 0.
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Figure 1: Schematic representation of particle collision relaxation processes.
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Figure 2: Temperature (a) and pressure (b) at Kn = 0.1, where the results from the DSMC [28],
the present model, and the Navier-Stokes-Fourier (NSF) model are presented.
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Figure 3: Temperature (a) and pressure (b) at Kn = 0.1, where the results from the DSMC [28], the
regularized 10-moment (MG) model [6], and the Navier-Stokes-Fourier (NSF) model are presented.
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Figure 4: The ratio of the temperature components, Tx/Tz, in relation to the vertical position,
Z = z/h0, in a planar Couette flow for Knudsen number Kn=1.25, and Mach numbers M =
0.5, 1.0, and 1.5. The solid lines are the solutions of the new gas dynamic equations and the circles
are the DSMC solutions [31].
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