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Abstract. We propose new Kruzhkov type entropy conditions for one dimen-
sional scalar conservation law with a discontinuous flux in rather general form
(no convexity or genuine linearity is needed). We prove existence and unique-
ness of the entropy admissible weak solution to the corresponding Cauchy
problem merely under the assumption that initial data belong to the BV-
class. Such initial data enable us to prove that the sequence of solutions to a
special vanishing viscosity approximation of the considered equation is, at the
same time, the sequence of quasisolutions to a non-degenerate scalar conser-
vation law. This provides existence of the solution admitting strong traces at
the interface. The admissibility conditions are chosen so that a kind of cross-
ing condition is satisfied which, together with existence of traces, provides
uniqueness of the solution.

In the current contribution, we consider the following problem
{

∂tu + ∂x (H(x)f(u) + H(−x)g(u)) = 0, (t, x) ∈ IR+ × IR

u|t=0 = u0(x) ∈ BV (IR), x ∈ IR
(1)

where u is the scalar unknown function; u0 is an integrable initial function of
bounded variation such that a ≤ u0 ≤ b, a, b ∈ IR; H is the Heaviside function; and
f, g ∈ C1

0 (R) are such that f(a) = f(b) = g(a) = g(b) = 0.
Problems such as (1) are non-trivial generalization of scalar conservation law with

smooth flux, and they describe different physical phenomena (flow in porous media,
sedimentation processes, traffic flow, radar shape-from-shading problems, blood
flow, gas flow in a variable duct...). Therefore, beginning with eighties (probably
from [33]), problems of type (1) are under intensive investigations.

As usual in conservation laws, the Cauchy problem under consideration in gen-
eral does not possess classical solution, and it can have several weak solutions.
Since it is not possible to directly generalize standard theory of entropy admissible
solutions [22], in order to choose a proper weak solution to (1) many admissibil-
ity conditions were proposed. We mention minimal jump condition [16], minimal
variation condition and Γ condition [9, 10], entropy conditions [18, 1], vanishing
capillary pressure limit [17], admissibility conditions via adapted entropies [5, 7] or
via conditions at the interface [2, 11].

But, in every of the mentioned approaches, some structural hypothesis on the
flux (such as convexity or genuine nonlinearity) or on the form of the solution (see
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[2]) were assumed. Such hypothesis were used to show existence of traces as well
as existence or uniqueness of a weak solution to the considered problem.

Recently, in [25], we have proved existence and uniqueness in the multidimen-
sional situation. Still, due to certain technical obstacles, admissible solutions se-
lected in that paper are rather special.

Here, we propose admissibility conditions which involve much less restrictions
than in previous works on the subject (excluding [25] where there are no restric-
tions), and we still can make many different stable semigroups depending on the
physical situation under considerations. We only assume that u0 ∈ BV (IR) and

f and g are not identically equal to zero on any subinterval (ã, b̃) ⊂ (a, b). (2)

We remark that, in a view of recent preprint [4], the condition u0 ∈ BV (IR) can be
omitted. We provide details in Remark 19.

Since one can find excellent overviews on the subject in many papers [4, 2, 6, 7,
11, 28] which are easily available via internet (e.g. www.math.ntnu.no/conservation),
we shall restrict our attention on papers [18], [20], and [28] which are in the closest
connection to our contribution.

In [18], degenerate parabolic equation with discontinuous flux is considered:
{

∂tu + ∂x (H(x)f(u) + H(−x)g(u)) = ∂xxA(u), (t, x) ∈ (0, T )× IR

u|t=0 = u0(x) ∈ BV (IR) ∩ L1(IR), x ∈ IR,

where A is non-decreasing with A(0) = 0. Assuming that A ≡ 0 we obtain the
problem of type (1). In order to obtain the uniqueness of a weak solution to the
problem, the Kruzhkov type entropy admissibility condition [22] is used:

Definition 1. [18] Let u be a weak solution to problem (1).
We say that u is entropy admissible weak solution to (1) if the following entropy

condition is satisfied for every fixed ξ ∈ R:

∂t|u− ξ|+ ∂x

{
sgn(u− ξ)

[
H(x)(f(u)− f(ξ)) + H(−x)(g(u)− g(ξ))

]}

− |f(ξ)− g(ξ)|δ(x) ≤ 0 in D′(IR+ × IR).

Still, merely such entropy condition was insufficient to prove stability of the ad-
missible weak solution to the considered problem. Two more things were necessary.

First, one needs the following technical assumption:
Crossing condition: For any states u, v the following crossing condition must

hold:
f(u)− g(u) < 0 < f(v)− g(v) ⇒ u < v.

Geometrically, the crossing condition requires that either the graph of f and g do
not cross, or the graph g lies above the graph of f to the left of the crossing point
(see Figure 1). The functions f and g appearing in (1) do not necessarily satisfy
the crossing conditions, but it is possible to transform them so that the crossing
condition is satisfied (see Figure 2).

We remark that the crossing condition is bypassed in [18] by using so called
adapted entropies (see [5]). Admissibility conditions that we introduce in Definition
9 can be considered as a generalization of the approach from [18] (see Remark 10).
In a matter of fact, our approach shed (another) light on how adapted entropies
enabled avoiding the crossing conditions.
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Figure 1. Functions f (normal line) and g (dashed line) satisfying
the crossing condition.

Next, in [20] existence of strong traces at the interface x = 0 was necessary. We
provide appropriate definition.

Definition 2. Let W : IR× IR+ → IR be a function that belongs to L∞(IR× IR+).
By the right and left traces of W (·, t) at the point x = 0 we understand functions
t 7→ W (0±, t) ∈ L∞loc(IR

+) that satisfy for a.e. t ∈ IR+:

esslimx↑0 |W (x, t)−W (0+, t)| = 0, esslimx↓0 |W (x, t)−W (0−, t)| = 0

Assuming the crossing condition and the existence of traces, we have the follow-
ing theorem:

Theorem 3. [18] Assume that weak solutions u and v to (1) with the initial condi-
tions u0 and v0, respectively, satisfy entropy admissibility conditions from Definition
1 and admit left and right strong traces at the interface x = 0.

Then for any T,R > 0 there exist constants C, R̄ > 0 such that:
∫ T

0

∫ R

−R

|v(t, x)− u(t, x)|dxdt ≤ CT

∫ R̄

−R̄

|v0(x)− u0(x)|dx. (3)

Remark 4. It is important to notice that Theorem 3 remains to hold if in (1), instead
of ∂tu, we put ∂t(α(u)H(x) + β(u)H(−x)), for some strictly increasing functions
α, β : [a, b] → [a, b]. Indeed, since we did not put a function depending on t ∈ IR+

under the derivative ∂t, and since α and β are increasing functions (we can extract
all the information on u knowing only β(u) or α(u)), we can safely use results from
[20] on the equation ∂t(α(u)H(x)+β(u)H(−x))+∂x(f(u)H(x)+g(u)H(−x)) = 0.

First, we shall explain how to force the crossing condition and existence of traces.
We shall use the idea from [28]. In [28] the following problem was considered

∂tu + ∂xf(α(x, u)) =0,

u|t=0 = u0(x),
(4)

where α is a function discontinuous in x ∈ IR and strictly increasing with respect
to u. Then we can write:

v = α(x, u) ⇒ u = β(x, v).

Problem (4) becomes

∂tβ(x, v) + ∂xf(v) =0,

v|t=0 = α(x, u0).
(5)
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Figure 2. Functions f (normal line) and g (dashed line) on the
left plot do not satisfy the crossing condition. On the other hand,
for appropriate (highly convex) α and (highly concave) β, the func-
tions fα = f ◦α and gβ = g◦β on the right plot satisfy the crossing
conditions.

Thus, the discontinuity in x is removed out of the derivative in x, and we can apply
standard vanishing viscosity approach:

∂tβ(x, vε) + ∂xf(vε) =ε∂xxvε,

v|t=0 = α(x, u0),
(6)

to obtain the sequence (vε) strongly converging in L1
loc(IR × IR+) to a unique

Kruzhkov admissible weak solution v of (5) which immediately gives uniqueness
of appropriate weak solution to (4).

It is important to notice that the existence and uniqueness are actually obtained
thanks to the appropriate choice of the viscosity term. Such choice enables the
author to control the flux corresponding to (4).

Using this observation, we shall propose new admissibility conditions which will
enable us to control the flux corresponding to (1) in an extent which will provide
uniqueness in a rather general situation. Informally speaking, we shall consider the
following vanishing viscosity regularization to (1):{

∂tu + ∂x (H(x)f(u) + H(−x)g(u)) = ε∂xx(α̃(u)H(x) + β̃(u)H(−x)),
u|t=0 = u0(x),

(7)

where α̃, β̃ : [a, b] → [a′, b′] are smooth strictly increasing functions. In the sequel,
without loosing on generality, we shall assume that [a′, b′] = [a, b].

Denote by α and β the inverse functions of the functions α̃ and β̃, respectively.
Introducing the change of the unknown function:

v = α̃(u)H(x) + β̃(u)H(−x) ⇒ u = α(v)H(x) + β(v)H(−x),

and denoting fα = f ◦ α and gβ = g ◦ β, we have from (7):{
∂t(α(v)H(x) + β(v)H(−x)) + ∂x (H(x)fα(v) + H(−x)gβ(v)) = ε∂xxv,

v|t=0 = α̃(u0)H(x) + β̃(u0)H(−x).
(8)

So, instead of dealing with the flux H(x)f(u) + H(−x)g(u), we deal with the new
flux H(x)fα(v) + H(−x)gβ(v). Clearly, by choosing appropriate functions α and β
we can always make the new flux to satisfy ”the crossing condition” (see Figure 2).
From here, appealing on [18], we conclude that we need only existence of traces to
obtain the uniqueness.

The question of existence of traces is rather serious in itself [23, 27, 34] and
usually demands a kind of genuine nonlinearity condition:
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Definition 5. Let h : IR2 → IR and f, g : IR → IR.
We say that the vector (h(x, λ),H(x)f(λ) + H(−x)g(λ)) is genuinely nonlinear

if for almost every x ∈ IR and every (ξ0, ξ1) ∈ S1, S1 ⊂ IR2 is two dimensional
sphere, the mapping

(a, b) 3 λ 7→ ξ0h(x, λ) + ξ1 (H(x)f(λ) + H(−x)g(λ)) ,

is different from a constant on any non-degenerate interval (α, β) ⊂ (a, b).

In order to formulate a necessary theorem about the existence of traces, we need
the notion of the quasi-solution.

Definition 6. We say that the function u ∈ L∞(IRd) is a quasi-solution to the
scalar conservation law

divxF (u) = 0, x ∈ IRd,

where F = (F1, . . . , Fd) ∈ C(IRd; IR) if it satisfies for every ξ ∈ IR:

divxsgn(u− ξ)(F (u)− F (ξ)) = γk in D′(IRd),

where γk is a locally bounded Borel measure.

Next theorem can be found in [27]. We adapt it to our situation.

Theorem 7. [27] Let h, f ∈ C(IR).
Suppose that the function u is a quasi-solution to

∂th(u) + ∂xf(u) = 0,

where the vector (h, f) is genuinely nonlinear.
Then, the function u admits right and left strong traces at x = 0.

Now, we can explain how to force the existence of traces for a solution to (1). At
the same time, due to similarity in the approach, we shall make a plan how to deal
with the existence question. We need the following theorem formulated so that it
corresponds to our purposes. It uses the genuine nonlinearity condition similarly
as Theorem 7.

Theorem 8. [26] Assume that the vector (h(x, u),H(x)f(u)+H(−x)g(u)), (x, u) ∈
IR× IR, is genuinely nonlinear in the sense of Definition 5.

Then, the following statement holds:
Each family (vε(t, x)) ∈ L∞(IR+×IR), a ≤ vε ≤ b, ε > 0, such that for every c ∈ IR
the quantity

∂t(H(vε − c)(h(x, vε)− h(x, c))) (9)

+ ∂x (H(vε − c)((H(x)(f(vε)− f(c)) + H(−x)(g(vε)− g(c)))))

is precompact in W−1,2
loc (IR+×IR), contains a subsequence convergent in L1

loc(IR
+×

IR).

In the case of a scalar conservation law with smooth flux, the proof of existence is
based on the BV-estimates for a sequence of solutions to the corresponding Cauchy
problem regularized with the vanishing viscosity. Such estimates are not available
if the flux is discontinuous. Therefore, we need to apply more subtle arguments
involving singular mapping [33], compensated compactness [20, 19, 31], difference
schemes [2, 21, 18] or H-measures [14, 15, 26, 32].

In general, using e.g. the compensated compactness, it is possible to prove that
the sequence (uε) of solutions to (7) weakly converges to a weak solution u of (1).
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But, it is not possible to state that the weak solution satisfies wanted admissibility
conditions. In order to be sure that u is admissible, in principle, we need to prove
that the corresponding sequence (uε) strongly converges strongly in L1

loc(IR
+× IR)

to u (still, not necessarily; see [29]). However, at least in the framework of the
compensated compactness (or the H-measures which we are going to use), this can
be proved only by assuming the genuine nonlinearity condition from Definition 5.

In order to overcome this obstacle we shall use an idea from [20] which is further
developed in [3]. In [20, 3], existence of solution to a Cauchy problem of type (1) is
proved. Roughly speaking, the key point of the proof is based on a lemma stating
that if in (1) we assume u0 ∈ BV (IR), then, for the sequence (uε) of solutions to
(7), it holds ‖∂tuε‖L1(IR) ≤ const for every fixed t, ε ∈ IR+. This actually means
that for any function h(x, λ), x, λ ∈ IR, which is Lipshitz continuous in λ, it holds
‖∂th(x, uε)‖L1(IR) ≤ const for every fixed t, ε ∈ IR+.

Next, it is not difficult to prove that it holds for the sequence (uε) of solutions
to (7)

∂t(H(uε− c)(uε− c)) + ∂x (H(uε − c) (H(x)(f(uε)− f(c))+H(−x)(g(uε)− g(c))))

is precompact in W−1,2
loc (IR+×IRd). However, since (|∂tuε|) is the sequence bounded

in the space of Radon measures, we also have:

∂t(H(uε − c) (H(x)(hR(uε)− hR(c)) + H(−x)(hL(uε)− hL(c)))

+ ∂x (H(uε − c) (H(x)(f(uε)− f(c)) + H(−x)(g(uε)− g(c))))

is precompact in W−1,2
loc (IR+ × IRd) if hL, hR ∈ Lip(IR) (Lipschitz continuous func-

tions). Furthermore, if we choose hL and hR so that the vector (H(x)hR(u) +
H(−x)hL(u),H(x)f(u) + H(−x)g(u)) is genuinely nonlinear, we can apply Theo-
rem 8 to conclude about strong L1

loc precompactness of the family (uε). It is clear
that a L1

loc limit along a subsequence of the family (uε) will represent wanted ad-
missible weak solution to (1). Furthermore, according to Theorem 7, we infer about
the existence of traces on the interface x = 0 for the previously constructed weak
solution which immediately gives the uniqueness.

1. New entropy admissibility conditions

In order to simplify the presentation, we shall assume that the mappings

λ 7→ f(λ), λ 7→ g(λ), (10)

are non-constant on any interval (α, β) ⊂ (a, b).
Together with (2), such condition provides that the vector

(H(x)f2(λ)+H(−x)g2(λ),H(x)f(λ)+H(−x)g(λ)), x, λ ∈ IR, is genuinely nonlin-
ear. Otherwise, we could take disjunct intervals (αf

i , βf
i ) ⊂ (a, b), i = 1, . . . , d1,

where the function f is constant, and the disjunct intervals (αg
i , β

g
i ) ⊂ (a, b),

i = 1, . . . , d2, where the function g is constant. Then, we take the functions
f̂ , ĝ ∈ Lip(IR):

f̂(λ) =

{
0, λ /∈ (αf

i , βf
i ), i = 1, . . . , d1,

(λ− αf
i )(λ− βf

i ), λ ∈ (αf
i , βf

i ),

ĝ(λ) =

{
0, λ /∈ (αg

i , β
g
i ), i = 1, . . . , d2,

(λ− αg
i )(λ− βg

i ), λ ∈ (αg
i , β

g
i ).
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Now, the vector (H(x)(f2 + f̂)(u) + H(−x)(g2 + ĝ)(u), H(x)f(u) + H(−x)g(u)) is
genuinely nonlinear and, if (10) is not satisfied, everywhere in the sequel we can
choose it instead of the vector (H(x)f2(λ)+H(−x)g2(λ),H(x)f(λ)+H(−x)g(λ)).

Finally, we are ready to introduce the new entropy admissibility conditions.

Definition 9. Let u be a weak solution to problem (1). Let α, β : [a, b] → [a, b] be
smooth strictly increasing functions. Denote by α̃ and β̃ the inverse functions to α
and β, respectively.

We say that u is an (α, β)-admissible weak solution to (1) if the function v =
α̃(u)H(x) + β̃(u)H(−x) satisfies the following entropy condition for every fixed
ξ ∈ R:

∂t

{
sgn(v − ξ)

[
H(x)(α(v)− α(ξ)) + H(−x)(β̃(v)− β̃(ξ))

]}
(11)

+ ∂x

{
sgn(v − ξ)

[
H(x)(fα(v)− fα(ξ)) + H(−x)(gβ(v)− gβ(ξ))

]}

− |fα(ξ)− gβ(ξ)|δ(x) ≤ 0,

where, as before, fα = f ◦ α and gβ = g ◦ β.

Remark 10. Here, we will explain how the given definition of admissibility can be
understood as a generalization of the admissibility conditions [7, Definition 3.1.].
Let us briefly recall the concept from [7]. First, we need the function cAB (see [7,
(11)]):

cAB(x) =

{
A, x ≥ 0
B, x < 0

.

In [7], the function cAB is used to form the function u 7→ |u− cAB(x)| which is an
example of what is called an adapted entropy in [5]. Still, in [5], the existence of
infinitely many adapted entropies was necessary to prove uniqueness (see also [28])
while in [7] only the entropy u 7→ |u− cAB(x)| was enough for uniqueness (together
with the classical Kruzhkov entropies out of the interface). The function cAB is
called a connection if it represents a weak solution to (1), i.e. if f(A) = g(B). The
following admissibility conditions were used in [7]:

Definition 11. [7, Definition 3.1.] (Entropy solution of type (A,B)). A measurable
function u : IR+×IR → IR, representing a weak solution to (1) is an entropy solution
of type (A, B) if it satisfies the following conditions:

(D.1) u ∈ L∞(IR+ × IR); u(t, x) ∈ [a, b] for a.e. (t, x) ∈ IR+ × IR.
(D.2) For any test function 0 ≤ ϕ ∈ D([0, T ) × IR), T > 0, which vanishes for

x ≥ 0, and any ξ ∈ IR, the following holds:

∫ T

0

∫

IR

(|u− ξ|ϕt + sgn(u− ξ)(f(u)− f(ξ))ϕx) dxdt +
∫

IR

|u0 − ξ|ϕ(0, x)dx ≥ 0,

and for any test function 0 ≤ ϕ ∈ D([0, T )× IR), T > 0, which vanishes for x ≤ 0

∫ T

0

∫

IR

(|u− ξ|ϕt + sgn(u− ξ)(g(u)− g(ξ))ϕx) dxdt +
∫

IR

|u0 − ξ|ϕ(0, x)dx ≥ 0,
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(D.3) The following Kruzhkov-type entropy inequality holds for any test function
0 ≤ ϕ ∈ D([0, T )× IR), T > 0,

∫ T

0

∫

IR

(
|u− cAB(x)|ϕt

+sgn(u−cAB(x))(H(x)(f(u)−f(A))+H(−x)(g(u)−g(B)))ϕx

)
dxdt

+
∫

IR

|u0 − cAB(x)|ϕ(0, x)dx ≥ 0.

Now, assume that a function u is the entropy solution of type (A,B) in the sense
of Definition 11. Take the functions α and β from Definition 9 so that for some
constant c it holds α(c) = A and β(c) = B. Assume that the functions fα and gβ

satisfy the crossing conditions. Notice that, in the cases when uniqueness is proved
in [7], we can always choose such α and β. Then, the function cAB will represent a
unique (α, β)-admissible weak solution to (1) in the sense of Definition 9. Taking
another (α, β)-admissible weak solution to (1), say u = α(v)H(x) + β(v)H(−x),
in the sense of Definition 9 and applying the procedure from [18], we reach to the
following well known relation:

∂tsgn(v − c) (H(x)(α(v)− α(c)) + H(−x)(β(v)− β(c))) (12)

+ ∂xsgn(v − c) (H(x)(fα(v)− fα(c)) + H(−x)(gβ(v)− gβ(c))) ≤ 0.

Since α and β as well as their inverses α̃ and β̃ are increasing functions. it holds

sgn(v − c) = sgn
(
α̃(u)− α̃(A)H(x) + β̃(u)− β̃(B)H(x)

)
= sgn(u− cAB).

From here, we see that (12) is actually condition (D.3) from Definition 11 meaning
that the (α, β)-admissible weak solution u is, at the same time, an entropy solution
of type (A,B) (conditions (D.1.) and (D.2.) from Definition 11 are easily checked).

The following theorem is the main theorem of the paper:

Theorem 12. There exists a pair of function (α, β) from Definition 9 such that
there exists a unique (α, β)-entropy admissible solution to (1).

For such α and β any two (α, β)-entropy admissible solutions u and v to (1)
satisfy (3).

In order to construct an (α, β)-entropy admissible solution to (1), we use non-
standard vanishing viscosity approximation with regularized flux.

First, introduce the following change of the unknown function u:

u(t, x) = α̃(v(t, x))H(x) + β̃(v(t, x))H(−x),

for the functions from Definition 9. Equation (1) becomes:

∂t (H(x)α(v) + H(−x)β(v)) + ∂x (H(x)fα(v) + H(−x)gβ(v)) = 0. (13)

Then, take the following regularization of the Heaviside function H

Hε(x) =
∫ x/ε

−∞
ω(z)dz,

where ω is a smooth even compactly supported function with total mass one.
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Then, consider the following regularized problem:

∂t (Hε(x)α(vε) + Hε(−x)β(vε)) (14)

+ ∂x (Hε(x)fα(vε) + Hε(−x)gβ(vε)) = ε∂xxvε.

Obviously, for every fixed ε > 0 quasilinear parabolic equation (14) augmented
with the initial condition vε

∣∣
t=0

= (α̃(u0)H(x)+β̃(u0)H(−x))? 1
εω(·/ε)χε(x), where

χε is a smooth function equal to one in the interval (−1/ε, 1/ε) and zero out of the
interval (−2/ε, 2/ε), will have a unique smooth solution vε.

Since α and β are strictly increasing functions, slightly modifying the method-
ology from [7], we obtain the following three lemmas.

Lemma 13. [7, Lemma 4.1] [L∞-bound] There exists constant c0 > 0 such that for
all t ∈ (0, T ),

‖vε(t, ·)‖L∞(IR) ≤ c0.

More precisely,
a ≤ vε ≤ b.

Lemma 14. [7, Lemma 4.2] [Lipshitz regularity in time] There exists constant c1,
independent of ε, such that for all t > 0,

∫∫

IR

|∂tvε(·, t)| dx ≤ c1.

Lemma 15. [7, Lemma 4.3] [Entropy dissipation bound] There exists a constant
c2 independent from ε such that

ε

∫

IR

(∂xvε(t, x))2 dx ≤ c2,

for all t > 0.

To proceed, we need Murat’s lemma:

Lemma 16. [13] Assume that the family (Qε) is bounded in Lp(Ω), Ω ⊂ IRd, p > 2.
Then,

(div Qε)ε ∈ W−1,2
c,loc if div Qε = pε + qε,

with (qε)ε ∈ W−1,2
c,loc (Ω) and (pε)ε ∈Mb,loc(Ω).

Now, we can prove a crucial lemma for obtaining the existence of the (α, β)-
admissible weak solution to (1).

Lemma 17. Denote for a fixed ξ ∈ IR:

q(x, λ) = H(λ−k)
(
H(x)(fα(λ)−fα(ξ))+H(−x)(gβ(λ)−gβ(ξ))

)
,

q̄(x, λ) = H(λ−k)
(
H(x)(f2

α(λ)−f2
α(ξ))+H(−x)(g2

β(λ)−g2
β(ξ))

)
,

qα,β(x, λ) = H(λ−k)
(
H(x)(α(λ)−α(ξ))+H(−x)(β(λ)−β(ξ))

)
.

(15)

The family

∂tq̄(x, vε) + ∂xq(x, vε), ε > 0, (16)

is precompact in W−1,2
loc (IR+ × IR).
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Proof:
Denote η′(λ) = H(λ− ξ). Define the entropy flux which corresponds to (14):

qε(x, λ)=H(λ−ξ)
(
Hε(x)(fα(λ)−fα(ξ))+Hε(−x)(gβ(λ)−gβ(ξ))

)
,

qε
α,β(x, λ)=H(λ−ξ)

(
Hε(x)(α(λ)−α(ξ))+Hε(−x)(β(λ)−β(ξ))

)
.

Denote δε(x) = H ′
ε(x), i = 1, 2. After multiplying (14) by η′(vε), we obtain in

the sense of distributions:

∂tq
ε
α,β(x, vε) + ∂xqε(x, vε) (17)

= (δε(x)fα(ξ)− δε(x)gβ(ξ)) + ε(∂x(vεxη′(vε))− (vεx)2η′′(vε)

≤ δε(x) (fα(ξ)− gβ(ξ)) + ε(∂x(vεxη′(vε)).

From here, according to the Schwartz lemma for non-negative distributions, we
conclude that there exists a positive Radon measure µε

ξ(t, x) such that:

∂tq
ε
α,β(x, vε) + ∂xqε(x, vε) (18)

= δε (fα(ξ)− gα(ξ)) + ε(∂x(vεxη′(vε))− µε
ξ(t, x).

Rewrite expression (18) in the form:

∂tq̄(x, vε) + ∂xq(x, vε) (19)

= ∂t

(
q̄(x, vε)− qε

α,β(x, vε)
)

+ ∂x (qε(x, vε)− q(x, vε))

+ δε (fα(ξ)− gβ(ξ)) + ε(∂x(vεxη′(vε))− µε
ξ(t, x).

Since, clearly, qε(x, vε)−q(x, vε) → 0 as ε → 0 pointwisely, we derive the statement
of the lemma from the Lebesgue dominated convergence theorem, Lemmas 13-15,
and Lemma 16. For details please consult [3, Theorem 2.6.]

2

From Lemma 17 and Theorem 8, it is easy to prove the following theorem:

Theorem 18. For every functions (α, β) from Definition 9 there exists an (α, β)-
entropy admissible weak solution to (1).

Proof:
First, notice that the vector (q̄(x, λ), q(x, λ)) from (15) is genuinely nonlinear.

Indeed, for x > 0 the vector reduces to (f2
α(λ), fα(λ)) and this is obviously genuinely

nonlinear vector since, due to (2) and (10), for any ξ0, ξ1 ∈ IR, it holds ξ0f
2(λ) 6=

ξ1f(λ) for a.e. λ ∈ (a, b). Similarly, we conclude about the genuine nonlinearity for
x < 0.

Now, from Theorem 8 and Lemma 17, we conclude that the family (vε) of solu-
tions to (14) is strongly precompact in L1

loc(IR
+×IR). Denote by v the L1

loc(IR
+×IR)

limit along a subsequence of the family (vε). Clearly, u = α(v)H(x) + β(v)H(−x)
will represent the (α, β)-admissible weak solution to (1).

2

Now, we can prove the main theorem of the paper.
Proof of Theorem 12:
First, choose functions α and β from Definition 9 such that the functions fα

and gβ satisfy the crossing condition (see Figure 2). Then, notice that from the
construction (it is enough to let ε → 0 in (19)) and Lemma 14, it follows that for an
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(α, β)-admissible weak solution u to (1), the function v = α(u)H(x) + β(u)H(−x)
is, at the same time, a quasi-solution to the problem:

∂t

(
H(x)f2

α(v)+H(−x)g2
β(v)

)
+∂x

(
H(x)fα(v)+H(−x)gβ(v)

)
= 0,

v|t=0 = α̃(u0)H(x) + β̃(u0)H(−x).

Since the vector (H(x)f2
α(λ)+H(−x)g2

β(λ),H(x)fα(λ)+H(−x)gβ(λ)) is genuinely
nonlinear, according to Theorem 7, the function v admits strong traces at the
interface x = 0.

Similarly, from the construction again and according to the choice of the function
α and β, we see that v is an entropy admissible solution in the sense of Definition
1 to the Cauchy problem

∂t

(
α̃(v)H(x) + β̃(v)H(−x)

)
+ ∂x (H(x)fα(v) + H(−x)gα(v)) = 0,

v|t=0 = α(u0)H(x) + β(u0)H(−x),
(20)

where fα and gβ satisfy the crossing condition.
According to Theorem 3, we conclude that v is a unique entropy admissible solu-

tion to (20) in the sense of Definition 1 implying that u = α̃(v)H(x) + β̃(v)H(−x)
is a unique (α, β)-admissible weak solution to (1).

2

Remark 19. If the initial data u0 /∈ BV (IR) then, approximate the function u0 by
a sequence (u0δ) ∈ BV (IR) so that

u0 − u0δ → 0 as δ → 0

strongly in L1
loc(IR). Then, we find a unique (α, β)-admissible weak solution uδ to

(1) where ut=0 = u0δ (given α and β for which we have uniqueness). According to
Theorem 12, the family (uδ) satisfy the following stability relation:

∫ T

0

∫ R

−R

|uδ1 − uδ2 |dxdt ≤ T

∫ R̄

−R̄

|u0δ1 − u0δ2 |dx,

where R and T are arbitrary positive constants, and R̃ is a large constant depending
on R, the functions f , g, α and β. Since the right-hand side of the latter expression
is uniformly small with respect to δ1 and δ2, from the Cauchy criterion we conclude
that there exists u ∈ L1

loc such that uδ → u strongly in L1
loc(IR

d). Clearly, the
function u will represent an (α, β)-admissible weak solution to (1) without BV-
assumption on u0.

Furthermore, in [4], it is announced that uniqueness can be obtained only by
assuming existence of strong traces of the flux H(x)f(u) + H(−x)g(u).

On the other hand, such traces exist almost always (see [27, Theorem 1.2]) and
we would have existence and uniqueness without any restrictions on the initial data.
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[14] H. Holden, K. Karlsen, D. Mitrović, Zero diffusion dispersion limits for a scalar conservation
law with discontinuous flux function, International Journal of Differential Equations, Volume
2009, Article ID 279818, 33 pages doi:10.1155/2009/279818

[15] Gerard, P., Microlocal Defect Measures, Comm. Partial Differential Equations, 11 (1991),
pp. 1761–1794.

[16] T. Gimse, N .H. Risebro, Riemann problems with discontinuous flux function, in Proc. 3rd
Int. Conf. Hyperbolic Problems Studentlitteratur, Uppsala (1991), pp. 488–502.

[17] E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous
media, Comput. Geosci. 3 (1999), 23–48.

[18] K. H. Karslen, N. H. Risebro, J. Towers, L1-stability for entropy solutions of nonlinear
degenerate parabolic connection-diffusion equations with disc. coeff., Skr.K.Nor.Vid.Selsk, 3
(2003), 1–49.

[19] K. Karlsen, N. H. Risebro, J. Towers, On a nonlin. degenerate parabolic transport-diff. eq.
with a disc. coeff., Electronic J. of Differential Equations, 93 (2002), 23 pp. (electronic)

[20] K. Karlsen, M. Rascle, and E. Tadmor On the existence and compactness of a two-
dimensional resonant system of conservation laws, Communications in Mathematical Sci-
ences 2 (2007), 253–265.

[21] K. Karlsen, J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conser-
vation laws with a discontinous space- time dependent flux, Chinese Ann. Math. Ser. B, 3
(2004), 287–318.

[22] S. N. Kruzhkov, First order quasilinear equations in several independent variables, Mat.Sb.,
81 (1970), 217-243.

[23] Y. S. Kwon, A. Vasseur, Strong traces for scalar conservation laws with general flux, Arch.
Rat. Mech. Anal 3 (2007), 495-513.

[24] P. L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidim. scalar cons. law
and related equations, J. Amer. Math. Soc. 1 (1994), 169–191.



NEW ENTROPY CONDITIONS 13

[25] D. Mitrovic, Estence amd Stability of a Multidimensional Scalar Conservation Law with
Discontinuous flux, Netw. Het. Media 5 (2010), 1–xx.

[26] E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a
first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., doi
10.1007/s00205-009-0217-x

[27] E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conser-
vation Laws, J. of Hyperbolic Differential Equations, 4 (2007), 729–770.

[28] E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for
a conservation law with discontinuous flux, J. of Hyperbolic Differential Equations 3 (2009),
525–548

[29] E. Yu. Panov, On Weak Completeness of the Set of Entropy Solutions to a Scalar Conser-
vation Law, SIAM J. Math. Anal., 1 (2009), 26–36.

[30] B. Perthame, Kinetic approach to systems of conservation laws, Journées équations aux
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