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Abstract. We consider multi-dimensional conservation laws with discontin-
uous flux, which are regularized with vanishing diffusion and dispersion terms

and with smoothing of the flux discontinuities. We use the approach of H-

measures [17] to investigate the zero diffusion-dispersion-smoothing limit.
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1. Introduction

We consider the convergence of smooth solutions u = uε(t, x) with (t, x) ∈
R+ ×Rd of the nonlinear partial differential equation

∂tu+ divx f%(t, x, u) = εdivx b(∇u) + δ

d∑
j=1

∂3
xjxjxju (1)

as ε→ 0 and δ = δ(ε), % = %(ε)→ 0. Here

sup
u∈R
||f%(t, x, u)− f(t, x, u)||Lploc(R+×Rd) → 0, %→ 0, p > 2,
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for the Caratheodory flux vector f ∈ C(R;BV (R+
t × Rd

x)). The aim is to show
convergence to a weak solution of the corresponding hyperbolic conservation law:

∂tu+ divx f(t, x, u) = 0, u = u(t, x), x ∈ Rd, t ≥ 0. (2)

We refer to this problem as the zero diffusion-dispersion-smoothing limit.
In the case when the flux f is at least Lipschitz continuous, it is well known that

the Cauchy problem corresponding to (2) has unique admissible entropy solution in
the sense of Kruzhkov [11] (or measure valued solution in the sense of DiPerna [3]).
The situation is more complicated when the flux is discontinuous and it has been
the subject of intensive investigations in recent years (see, e.g., [9] and references
therein). The one-dimensional case of the problem is widely investigated using
several approaches (numerical techniques [9, 1], compensated compactness [23, 10],
kinetic approach [15, 2]). In the multidimensional case there are only a few results
concerning existence of a weak solution. In [8] existence is obtained by a two-
dimensional variant of compensated compactness, while in [24] the approach of
H-measures [17] is used for the case of arbitrary space dimensions. Still, many
open questions remain such as the uniqueness and stability of solutions.

A problem that has not yet been studied in the context of conservation laws
with discontinuous flux, and which is the topic of the present paper, is that of
zero diffusion-dispersion limits. When the flux is independent of the spatial and
temporal positions, the study of zero diffusion-dispersion limits was initiated in
[21] and further addressed in numerous works by LeFloch et al. (e.g., [12, 14,
13]). The compensated compactness method is the basic tool used in the one
dimensional situation for the so-called limiting case in which the diffusion and
dispersion parameters are in an appropriate balance, while for the case in which
diffusion dominates dispersion, the notion of measure valued solutions [3, 22] is
used. More recently, in [7] the limiting case has also been analyzed using the
kinetic approach and velocity averaging [19].

The remaining part of this paper is organized as follows: In Section 2 we collect
some basic a priori estimates for smooth solutions of (1). In Section 3 we look
into the diffusion-dispersion-smoothing limit for multidimensional conservation laws
with a flux vector which is discontinuous with respect to spatial variable. In doing
so we rely on the a priori estimates from the previous section in combination with
Panov’s H-measures approach [17]. Finally, in Section 3 we restrict ourselves to
the one dimensional case for which we obtain slightly stronger results using the
compensated compactness method.

2. A priori inequalities

Assume that the flux f in equation (1) is smooth in all variables. Consider a
sequence (uε,δ)ε,δ of solutions of:

∂tu+ divx f(t, x, u) = εdivx b(∇u) + δ

d∑
j=1

∂3
xjxjxju, (3)

u(x, 0) = u0(x), x ∈ Rd. (4)

We assume that (uε,δ)ε,δ has enough regularity so that all formal computations
below are correct. So, following Schonbek [21], we assume that for every ε, δ > 0
we have uε,δ ∈ L∞([0, T ];H4(Rd)).
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Later on, we will assume that the initial data u0 depends on ε. In this section,
we shall determine a priori inequalities for the solutions of problem (3), (4).

To simplify the notation we will write uε instead of uε,δ.
We shall need the following assumptions on the diffusion term b(λ) = (b1(λ), . . . , bn(λ)).
(H1) For some positive constants C1, C2 we have:

C1|λ|2 ≤ λ · b(λ) ≤ C2|λ|2 for all λ ∈ Rd.

(H2) The gradient matrix Db(λ) is a positive definite matrix, uniformly in
λ ∈ Rd, i.e., for every λ, % ∈ Rd, there exists a positive constant C3 such that we
have:

%TDb(λ)% ≥ C3|%|2.
We use the following notation:

|D2u|2 =
d∑

i,k=1

|∂2
xixk

u|2.

In the sequel, for a vector valued function g = (g1, . . . , gd) defined on R+×Rd×R,
we denote:

|g|2 =
d∑
i=1

|gi|2.

The partial derivative ∂xi in the point (t, x, u), where u possibly depends on (t, x),
is defined by the formula:

∂xig(t, x, u(t, x)) = (Dxig(t, x, λ))|λ=u(t,x).

In particular, the total derivative Dxi and the partial derivative ∂xi are connected
by the identity

Dxig(t, x, u) = ∂xig(t, x, u) + ∂ug(t, x, u)∂xiu.

Finally we use

divx g(t, x, u) =
d∑
i=1

Dxigi(t, x, u), g = (g1, . . . , gd),

∆xq(t, x, u) =
d∑
i=1

D2
xixiq(t, x, u), q ∈ C2(R+ ×Rd ×R).

With the previous conventions, we introduce the following assumption on the
flux vector f :

(H3) The growth of the velocity variable u and the spatial derivative of the flux
f is such that for some C,α > 0 we have

d∑
i=1

|∂ufi(t, x, u)| ≤ C,

d∑
i,j=1

|∂xifj(t, x, u)| ≤ µ(t, x)
1 + |u|1+α

,

where µ ∈ M(R+ × Rd) is a bounded measure (and, accordingly, the above in-
equality is understood in the sense of measures).

Now, we can prove the following theorem:
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Theorem 1. Suppose that the flux function f = f(t, x, u) satisfies (H3) and that it
is Lipschitz continuous on R+×Rd×R. Assume also that initial data u0 belongs to
L2(Rd). Under conditions (H1)–(H2) the sequence of solutions (uε)ε>0 of (3)–(4)
for every t ∈ [0, T ] satisfies the following inequalities:∫

Rd

|uε(t, x)|2dx+ ε

∫ t

0

∫
Rd

|∇uε(t′, x)|2dxdt′ (5)

≤ C4

(∫
Rd

|u0(x)|2dx−
∫ t

0

∫
Rd

∫ uε(t
′,x)

0

divx f(t′, x, v)dvdxdt′
)
,

and

ε2

∫
Rd

|∇uε(t, x)|2dx+ ε3

∫ t

0

∫
Rd

|D2uε(t′, x)|2dxdt′ (6)

≤ C5

(
ε2

∫
Rd

|∇u0(x)|2dx+ ε

∫ t

0

∫
Rd

d∑
k=1

|∂xkf(t′, x, uε(t′, x))|2dxdt′

+ ||∂uf ||2L∞(R+×Rd×R)

)
,

for some constants C4 and C5.

Proof: We follow the procedure from [7]. Given a smooth function η = η(u),
u ∈ R, we define

qi(t, x, u) =
∫ u

0

η′(v)∂vfi(t, x, v)dv, i = 1, . . . , d.

If we multiply (3) by η′(u), it becomes:

∂tη(uε) +
d∑
i=1

∂xiqi(t, x, uε) (7)

−
d∑
i=1

∫ uε

0

∂2
xivfi(t, x, v)η′(v)dv +

d∑
i=1

η′(uε)∂xifi(t, x, uε)

= ε

d∑
i=1

∂xi(η
′(uε)bi(∇uε))− εη′′(uε)

d∑
i=1

bi(∇uε)∂xiuε

+ δ

d∑
i=1

∂xi(η
′(uε)∂2

xixiuε)−
δ

2
η′′(uε)

d∑
i=1

∂xi(∂xiuε)
2.

Choosing here η(u) = u2

2 and integrating over [0, t)×Rd we get:∫
Rd

|uε(t, x)|2dx+ ε

∫ t

0

∫
Rd

∇uε(t′, x) · b(∇uε(t′, x))dxdt′ (8)

=
∫
Rd

|u0(x)|2dx+
d∑
j=1

∫ t

0

∫
Rd

∫ uε(t
′,x)

0

vD2
xjvfj(t

′, x, v)dvdxdt′

−
d∑
i=1

∫ t

0

∫
Rd

uε(t′, x)∂xifi(t
′, x, uε(t′, x))dxdt′
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=
∫
Rd

|u0(x)|2dx−
d∑
i=1

∫ t

0

∫
Rd

∫ uε(t
′,x)

0

∂xifi(t
′, x, v)dvdxdt′,

where the second equality sign is justified by the following partial integration∫ t

0

∫
Rd

∫ uε

0

vD2
xjvfj(t

′, x, v)dvdxdt′

=
∫ t

0

∫
Rd

uε∂xifi(t
′, x, uε)dxdt′ −

∫ t

0

∫
Rd

∫ uε

0

∂xifi(t
′, x, v)dvdxdt′.

Now inequality (5) follows from (8), using (H1).
As for inequality (6), we start by using (8), viz.∫

Rd

|uε(t, x)|2dx+ ε

∫ t

0

∫
Rd

∇uε(t′, x) · b(∇uε(t′, x))dxdt′

=
∫
Rd

|u0(x)|2dx−
d∑
i=1

∫ t

0

∫
Rd

∫ uε(t
′,x)

0

∂xifi(t
′, x, v)dvdxdt′,

≤
∫
Rd

|u0(x)|2dx+
d∑
i=1

∫ t

0

∫
Rd

∫ uε(t
′,x)

0

|∂xifi(t′, x, v)|dvdxdt′

≤
∫
Rd

|u0(x)|2dx+
∫ t

0

∫
Rd

∫
R

µ(t′, x)
1 + |v|1+α

dvdxdt′

=
∫
Rd

|u0(x)|2dx+ C

∫ t

0

∫
Rd

µ(t′, x)dxdt′,

where C =
∫
R

dv
1+|v|1+α .

From here, using (H3), we conclude in particular that

ε

∫ t

0

∫
Rd

|∇uε(t′, x)|2dxdt′ ≤ C11 (9)

for some constant C11 independent of ε.
Next we differentiate (3) with respect to xk and multiply the expression by ∂xku.

Integrating over Rd, using partial integration and then summing over k = 1, . . . , d
we get:

1
2

∫
Rd

∂t|∇uε|2dx−
d∑
k=1

∫
Rd

(∇∂xkuε) · (∂xkf(t, x, uε) + ∂uf∂xkuε) dx

= −ε
d∑
k=1

∫
Rd

(∇∂xkuε)TDb(∇uε)(∇∂xkuε)dx.

Integrating this over [0, t] and using the Cauchy–Schwarz inequality and condition
(H2) we find:

1
2

∫
Rd

|∇uε(t, · )|2dx+ εC3

d∑
k=1

∫ t

0

∫
Rd

|∇∂xkuε|2dxdt′

≤ 1
2

∫
Rd

|∇u0|2dx
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+
d∑
k=1

||∇(∂xkuε)||L2(R+×Rd)||∂xkf( · , · , uε) + ∂uf∂xkuε||L2(R+×Rd).

Then, using Young’s inequality (the constant C3 is the same as above):

ab ≤ C3ε

2
a2 +

C6

ε
b2, a, b ∈ R,

where C3, C6 are independent on ε, we can write

1
2

∫
Rd

|∇uε(t, · )|2dx+ εC3

d∑
k=1

∫ t

0

∫
Rd

|∇∂xkuε|2dxdt′

≤ 1
2

∫
Rd

|∇u0|2dx+ C3
ε

2

d∑
k=1

∫ t

0

∫
Rd

|∇∂xkuε|2dxdt′

+
C6

ε

∫ t

0

∫
Rd

d∑
k=1

∣∣∣∂xkf(t′, x, uε) + ∂uf∂xkuε

∣∣∣2dxdt′.
Multiplying this by ε2, using (a+ b)2 ≤ 2a2 + 2b2, and applying (9), we conclude:

ε2

2

∫
Rd

|∇uε(t, · )|2dx+ C3
ε3

2

∫
Rd

∫ t

0

|D2uε|2dxdt′

≤ ε2

2

∫
Rd

|∇u0|2dxdt′

+ 2εC6

∫ t

0

∫
Rd

d∑
k=1

|∂xkf(t′, x, uε(t′, x))|2dxdt′

+ C6C11||∂uf ||2L∞(R+×Rd×R).

This inequality is actually inequality (6) when we take C5 = 2 max{1,2C6,C6C11}
min{1,C3} .

2

3. The multidimensional case

Consider the following initial-value problem: Find u = u(t, x) such that

∂tu+ divx f(t, x, u) = 0, (10)

u(x, 0) = u0(x), x ∈ Rd, (11)

where u0 ∈ L2(Rd) is given initial data.
For the flux f = (f1, . . . , fd) we need the following assumption, denoted (H4):
(H4a) For the flux f = f(t, x, u), (t, x, u) ∈ R+ × Rd × R, we assume that

f ∈ C(R;BV (R+×Rd)) and that for every l ∈ R+ we have maxu∈[−l,l] f(t, x, u) ∈
Lploc(R+ ×Rd), p > 2 .

(H4b) There exists a sequence f% = (f1%, . . . , fd%), % ∈ (0, 1), such that f% =
f%(t, x, u) ∈ C1(R+ ×Rd ×R), satisfying for some p > 2 and every l ∈ R+:

lim
%→0

max
z∈[−l,l]

||f%( · , · , z)− f( · , · , z)||Lp(R+×Rd) = 0, (12a)

d∑
i=1

|∂xifi%(t, x, u)| ≤ µ1(t, x)
1 + |u|1+α

, (12b)
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%3
d∑
i=1

|∂xifi%(t, x, u)|2 ≤ µ2(t, x), (12c)

d∑
i=1

|∂ufi%(t, x, u)| ≤ C

β(%)
, (12d)

d∑
i=1

|∂2
xiufi%(t, x, u)| ≤ µ3(t, x)

1 + |u|1+α
, (12e)

where µi ∈M(R+ ×Rd), i = 1, 2, 3, are bounded measures.
In the case when we have only vanishing diffusion it is usually possible to obtain

uniform L∞ bound for the corresponding sequence of solutions under relatively
mild assumptions on the flux and initial data (see, e.g., [8, 17]). In the case when
we have both vanishing diffusion and vanishing dispersion, we must assume more
on the flux in order to obtain even much weaker bounds (see Theorem 3). We
remark that demand on controlling the flux at infinity is rather usual in the case
of conservation laws with vanishing diffusion and dispersion (see, e.g., [7, 14, 13]).

Remark 2. For an arbitrary compactly supported, nonnegative ϕ1 ∈ C∞0 (R+×Rd)
and ϕ2 ∈ C∞0 (R) with total mass one, denote by

ϕ%(z, u) =
1

%d+1
ϕ1(

z

%
)

1
β(%)

ϕ2(
u

β(%)
),

z ∈ R+ ×Rd and u ∈ R, where β is a positive function tending to zero as %→ 0.
In the case when the flux f ∈ C(R;BV (R+×Rd))∩BV (R×R+×Rd)) is locally
bounded, straightforward computation shows that the sequence f% = f ? ϕ% =
(f1%, . . . , fd%) satisfies (H4b) with β(%) = %.

We also need to assume that the flux f is genuinely nonlinear, i.e., for every
(t, x) ∈ R+ ×Rd and every ξ ∈ Rd \ {0}, the mapping

R 3 λ 7→
d∑
i=1

fi(t, x, λ)
ξi
|ξ|

(13)

is nonconstant on every non-degenerate interval of the real line.
We will analyze the vanishing diffusion-dispersion-smoothing limit of the problem

∂tu+ divx f%(t, x, u) = εdivx b(∇u) + δ

d∑
j=1

∂3
xjxjxju, (14)

u(x, 0) = u0,ε(x), x ∈ Rd, (15)

where the flux f% satisfies the conditions (H4b). We denote the solution of (14),
(15) by uε = uε(t, x). We assume that

‖u0,ε − u0‖L2(Rd) → 0 and ||u0,ε||L2(Rd) + ε||u0,ε||H1(Rd) ≤ C. (16)

We also assume that % = %(ε) → 0 and δ = δ(ε) → 0 as ε → 0. We want to
prove that under certain conditions, a sequence of solutions (uε)ε>0 of (14), (15)
converges to a weak solution of problem (10), (11) as ε → 0. To do this in the
multidimensional case we use the approach of H-measures, introduced in [24] and
further developed in [16, 17]. In the one dimensional case we use the compensated
compactness method, following [21].
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In order to accomplish the plan we need the following a priori estimates:

Theorem 3 (A priori inequalities). Suppose that the flux f(t, x, u) satisfies (H4).
Also assume that initial function u0 satisfies (16). Under these conditions the
sequence of smooth solutions (uε)ε>0 of (14), (15) satisfies the following inequalities
for every t ∈ [0, T ]:∫

Rd

|uε(t, x)|2dx+ ε

∫ t

0

∫
Rd

|∇uε(x, s)|2dxds ≤ C3

(∫
Rd

|u0,ε(x)|2dx+ C10

)
,

(17)

and

ε2

∫
Rd

|∇uε(t, x)|2dx+ ε3

∫ t

0

∫
Rd

|D2uε(t′, x)|2dxdt′

≤ C4

(
ε2

∫
Rd

|∇u0,ε(x)|2dx+
ε

%
C11 +

C12

β(%)2

)
, (18)

for some constants C10, C11, C12 (the constants C3, C4 are from Theorem 1).

Proof: For every fixed %, the function f% = (f1%, . . . , fd%) is smooth, and, due to
(H4), we see that f% satisfies (H3). This means that we can apply Theorem 1.

Replacing the flux f by f% from (14) and u0 by u0,ε from (15) in (5) and (6), we
get: ∫

Rd

|uε(t, x)|2dx+ ε

∫ t

0

∫
Rd

|∇uε(x, s)|2dxds (19)

≤ C3

(∫
Rd

|u0,ε(x)|2dx−
∫ t

0

∫
Rd

∫ uε(t
′,x)

0

divx f%(t′, x, v)dvdxdt′
)
,

and

ε2

∫
Rd

|∇uε(t, x)|2dx+ ε3

∫ t

0

∫
Rd

|D2uε(t′, x)|2dxdt′ (20)

≤ C4

(
ε2

∫
Rd

|∇u0,ε(x)|2dx+ ||∂uf%||2L∞(R+×Rd×R)

+ ε

∫ t

0

∫
Rd

d∑
k=1

d∑
i=1

[∂xkfi%(t
′, x, uε(t′, x))]2dxdt′

)
.

To proceed, we use assumption (H4). We have:∫ t

0

∫
Rd

∫ uε(t
′,x)

0

div fi%(t′, x, v)dvdxdt′ (21)

≤
∫ t

0

∫
Rd

∫
R

d∑
i=1

|∂xifi%(t′, x, v)|dvdxdt

≤
∫ t

0

∫
Rd

∫
R

µ1(t, x)
1 + |v|1+α

dvdxdt ≤ C10,

which together with (19) immediately gives (17).
Similarly, combining (H4) and (20), and arguing as in (21), we get (18). 2
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In this section we shall inspect the convergence of a sequence (uε)ε>0 of solutions
to (14), (15) in the case when

b(λ1, . . . , λd) = (λ1, . . . , λd)

for the function b appearing in the right-hand side of (14). This is not an essential
restriction, but we will use it in order to simplify the presentation.

Thus we use the following theorem which can be proved using the H-measures
approach (see, e.g., [17, Corollary 2 and Remark 3]). We let θ denote the Heaviside
function.

Theorem 4. [17] Assume that the vector f(t, x, u) is genuinely nonlinear in the
sense of (13). Then each sequence (vε(t, x))ε>0 ⊂ L∞(R+ × Rd) such that for
every c ∈ R the distribution

∂t(θ(vε − c)(vε − c)) + divx (θ(vε − c)(f(t, x, vε)− f(t, x, c))) (22)

is precompact in H−1
loc , contains a subsequence convergent in L1

loc(R+ ×Rd).

We can now prove the following theorem.

Theorem 5. Assume that the flux vector f is genuinely nonlinear in the sense of
(13) and that it satisfies (H4). Furthermore, assume that

%3 = ε, δ = ε2ρ2(ε) with
ρ(ε)

(β(ε3))2
→ 0 as ε→ 0, (23)

and that u0,ε satisfies (16). Then there exists a subsequence of solutions (uε)ε>0 of
(14)–(15) that converges to a weak solution of problem (10)–(11).

Proof: We shall use Theorem 4. Since it is well known that the sequence (uε)ε>0

of solutions of problem (14)–(15) is not uniformly bounded, we cannot directly
apply the conditions of Theorem 4.

Take an arbitrary C2 function S = S(u), u ∈ R, and multiply the regularized
equation (14) by S′(uε). As usual, put

q(t, x, u) =
∫ u

0

S′(v)∂uf% dv, q = (q1, . . . , qd).

We easily find that

∂tS(uε) + divx q(t, x, uε)− divx q(t, x, v)|v=uε + S′(uε) divx f%(t, x, v)|v=uε (24)

= εdivx
(
S′(uε)∇uε

)
− εS′′(uε)|∇uε|2

+ δ

d∑
j=1

Dxj (S
′(uε)∂2

xjxjuε)− δ
d∑
j=1

S′′(uε)∂xjuε∂
2
xjxjuε.

We will apply this formula repeatedly with different choices for S(u).
In order to apply Theorem 4, we will consider a truncated sequence (Tl(uε))ε>0,

where the truncation function Tl is defined for every fixed l ∈ N as:

Tl(u) =


−l, u ≤ −l,
u, −l ≤ u ≤ l,
l, u ≥ l.

(25)

We shall prove that the sequence (Tl(uε))ε>0 is precompact for every fixed l. Denote
by ul a subsequential limit (in L1

loc) of the sequence (Tl(uε))ε>0, which gives raise
to a new sequence (ul)l>1 that we prove converges to a weak solution of (10)–(11).
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To carry out this plan we must replace Tl by a C2 regularization Tl,σ : R→ R.
We define Tl,σ : R→ R by Tl,σ(0) = 0 and

T ′l,σ(u) =


1, |u| < l − σ,
l−|u|
σ , l − σ < |u| < l,

0, |u| > l.

(26)

Note that as σ → 0 we have Tl,σ(u) → Tl(u) in Lploc for every p < ∞, where Tl is
defined by (25).

Next we want to estimate ‖T ′′l,σ(uε)∇uε‖L2(R+×Rd). To accomplish this, we
insert the functions T±l,σ for S in (24) where T±l,σ are defined by T±l,σ(0) = 0 and

(T+
l,σ)′(u) =


1, u < l,
l+σ−u
σ , l < u < l + σ,

0, u > l + σ,

(T−l,σ)′(u) =


1, u > −l,
l+σ+u
σ , −l − σ < u < −l,

0, u < −l − σ.

Notice that

(T±l,σ(u))′ ≤ 1, |T±l,σ(u)| ≤ |u|,
T+
l,σ(u) = T−l,σ(u) for − l ≤ u ≤ l.

(27)

By inserting S(u) = −T+
l,σ(u), q = q+(t, x, u) = −

∫ u
0

(T+
l,σ)′(v)∂uf% dv in (24) and

integrating over Πt = [0, t]×Rd we get:

−
∫
Rd

T+
l,σ(uε)dx+

∫
Rd

T+
l,σ(u0)dx+

ε

σ

∫∫
Πt∩{l<uε<l+σ}

|∇uε|2dxdt

=
∫∫

Πt

divx q+(t, x, v)|v=uεdxdt+
∫∫

Πt

(T+
l,σ)′(uε) divx f%(t, x, v)|v=uεdxdt

(28)

− δ

σ

∫∫
Πt∩{l<uε<l+σ}

d∑
j=1

∂xjuε∂
2
xjxjuεdxdt.

Similarly, for S(u) = T−l,σ(u), q = q−(t, x, u) =
∫ u

0
(T−l,σ)′(v)∂uf% dv we have from

(24):∫
Rd

T−l,σ(uε)dx−
∫
Rd

T−l,σ(u0)dx+
ε

σ

∫∫
Πt∩{−l−σ<uε<−l}

|∇uε|2dxdt

=
∫∫

Πt

divx q−(t, x, v)|v=uεdxdt−
∫∫

Πt

(T−l,σ)′(uε) divx f%(t, x, v)|v=uεdxdt

(29)

+
δ

σ

∫∫
Πt∩{−l−σ<uε<−l}

d∑
j=1

∂xjuε∂
2
xjxjuεdxdt.
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Adding (28) and (29) we get:

ε

σ

∫∫
Πt∩{l<|uε|<l+σ}

|∇uε|2dxdt

= −
∫
Rd

(
T−l,σ(uε)− T+

l,σ(uε)
)
dx+

∫
Rd

(
T−l,σ(u0)− T+

l,σ(u0)
)
dx

+
∫∫

Πt

divx q−(t, x, v)|v=uεdxdt−
∫∫

Πt

divx q+(t, x, v)|v=uεdxdt

−
∫∫

Πt

(T−l,σ)′(uε) divx f%(t, x, v)|v=uεdxdt+
∫∫

Πt

(T+
l,σ)′(uε) divx f%(t, x, v)|v=uεdxdt

− δ

σ

∫∫
Πt∩{−l−σ<uε<−l}

d∑
j=1

∂xjuε∂
2
xjxjuεdxdt

− δ

σ

∫∫
Πt∩{l<uε<l+σ}

d∑
j=1

∂xjuε∂
2
xjxjuεdxdt.

From (27) and definition of q− and q+ it follows:

ε

σ

∫∫
Πt∩{l<|uε|<l+σ}

|∇uε|2dxdt ≤
∫
|uε|>l

2|uε|dx+
∫
|u0|>l

2|u0|dx (30)

+ 2
∫∫

Πt

∫
R

d∑
i=1

|D2
xivfi%(t, x, v)|dvdxdt

+ 2
∫∫

Πt

d∑
i=1

|∂xifi%(t, x, uε)|dxdt

+ 2
δ

σ

∫∫
Πt∩{l−σ<|uε|<l}

d∑
j=1

|∂xjuε∂2
xjxjuε|dxdt.

Without loss of generality, we can assume that l > 1. Having this in mind, we get
from (H4) and (30):

ε

σ

∫∫
Πt∩{l<|uε|<l+σ}

|∇uε|2dxdt (31)

≤
∫
|uε|>l

2|uε|2dx+
∫
|u0|>l

2|u0|2dx

+ 2
∫∫

Πt

∫
R

d∑
i=1

µ3(t, x)
1 + |v|1+α

dvdxdt

+ 2
∫∫

Πt

d∑
i=1

|∂xifi%(t, x, uε)|dxdt

+ 2
δ

σ

∫∫
Πt∩{l<|uε|<l+σ}

d∑
j=1

|∂xjuε∂2
xjxjuε|dxdt

≤
∫
Rd

2
(
|uε(x, t)|2 + |u0(x, t)|2

)
dx
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+K1 +K2 + 2
δ

σε2

d∑
i=1

‖ε∂xiuε‖L2(R+×Rd)‖ε2∂xixiuε‖L2(R+×Rd)

≤ K5 +
(

δ2

σ2ε2(β(%))2
+

δ2

σ2ε4

)1/2

K3K4,

where Ki, i = 1, . . . , 5, are constants such that (cf. (17) and (18)):

2
∫∫

Πt

∫
R

d∑
i=1

µ3(t, x)
1 + |v|1+α

dvdxdt ≤ K1,

2
∫∫

Πt

d∑
i=1

|∂xifi%(t, x, uε)|dxdt ≤ K2,

d∑
i=1

‖ε∂xiuε‖L2(R+×Rd) ≤ K3,

d∑
i=1

‖ε2∂xixiuε‖L2(R+×Rd) ≤
(

1
(β(%))2

+
ε

%

)1/2

K4,∫
Rd

2
(
|uε(x, t)|2 + |u0(x, t)|2

)
dx+K1 +K2 ≤ K5,

2
δ

σε2
‖ε∇uε‖L2(R+×Rd)

d∑
i=1

‖ε2∂xixiuε‖L2(R+×Rd) ≤
(

δ2

σ2ε4β2(ε)
+

δ2

σ2ε4

)1/2

K3K4,

where we in the last formula used the assumption ε = % from (23). These estimates
follow from (H4) and the a priori estimates (17), (18). Thus, in view of (31),

ε

σ

∫∫
Πt∩{l<|uε|<l+σ}

|∇uε|2dxdt ≤ K5 +
(

δ2

σ2ε2β2(ε)
+

δ2

σ2ε4

)1/2

K3K4, (32)

which is the sought for estimate for ‖T ′′l,σ(uε)∇uε‖L2(R+×Rd).
Next, take a function Uρ(z) satisfying Uρ(0) = 0 and

U ′ρ(z) =


0, z < 0,
z
ρ , 0 < z < ρ,

1, z > ρ.

Clearly, Uρ is convex, and we have U ′ρ(z) → θ(z) in Lploc(R) as ρ → 0, for any
p <∞; as before, θ denotes the Heaviside function.

Insert S(uε) = Uρ(Tl,σ(uε)− c) in (24). We get:

∂tUρ(Tl,σ(uε)− c) + divx
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv

=
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v) divx ∂vf%(t, x, v)dv

− U ′ρ(Tl,σ(uε)− c)T ′l,σ(uε) divx f%(t, x, v)|v=uε

+ ε∆xUρ(Tl,σ(uε)− c)− εD2
uu[Uρ(Tl,σ(uε)− c)]|∇uε|2

+ δ

d∑
i=1

Dxi

(
Du[Uρ(Tl,σ(uε)− c)]∂2

xixiuε
)



DIFFUSION-DISPERSION-SMOOTHING LIMITS 13

− δ
d∑
i=1

D2
uu [Uρ(Tl,σ(uε)− c)] ∂xiuε∂2

xixiuε.

We rewrite the previous expression in the following manner:

∂t

(
θ(Tl(uε)− c)(Tl(uε)− c)

)
+ divx

(
θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

)
= ∂t

(
θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)

)
+ divx

(
θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv
)

+
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v) divx ∂vf%(t, x, v)dv

− U ′ρ(Tl,σ(uε)− c)T ′l,σ(uε) divx f%(t, x, v)|v=uε

+ ε∆xUρ(Tl,σ(uε)− c)− εU ′′ρ (Tl,σ(uε)− c)(T ′l,σ(uε))2|∇uε|2

− εU ′ρ(Tl,σ(uε)− c)T ′′l,σ(uε)|∇uε|2

+ δ

d∑
i=1

Dxi

(
Du[Uρ(Tl,σ(uε)− c)]∂2

xixiuε
)

− δ
d∑
i=1

D2
uu [Uρ(Tl,σ(uε)− c)] ∂xiuε∂2

xixiuε,

or

∂t

(
θ(Tl(uε)− c)(Tl(uε)− c)

)
(33)

+ divx
(
θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

)
= Γ1,ε + Γ2,ε + Γ3,ε + Γ4,ε + Γ5,ε + Γ6,ε + Γ7,ε

where

Γ1,ε = ∂t

(
θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)

)
,

Γ2,ε = divx
(
θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv
)
,

Γ3,ε =
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v) divx ∂vf%(t, x, v)dv

− U ′ρ(Tl,σ(uε)− c)T ′l,σ(uε) divx f%(t, x, v)|v=uε ,

Γ4,ε = ε∆xUρ(Tl,σ(uε)− c)

+ δ

d∑
i=1

Dxi

(
Du[Uρ(Tl,σ(uε)− c)]∂2

xixiuε
)
,

Γ5,ε = −εU ′ρ(Tl,σ(uε)− c)T ′′l,σ(uε)|∇uε|2,
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Γ6,ε = −δ
d∑
i=1

D2
uu [Uρ(Tl,σ(uε)− c)] ∂xiuε∂2

xixiuε,

Γ7,ε = −εU ′′ρ (Tl,σ(uε)− c)(T ′l,σ(uε))2|∇uε|2.

To continue, we assume that σ depends on ε in the following way:

σ = β2(ε3). (34)

From here, we shall prove that the sequence (Tl(uε))ε>0 satisfies the conditions
of Theorem 4. Accordingly, we need to prove that the left-hand side of (33) is
precompact H−1

loc (R+ ×Rd).
To accomplish this, we use Murat’s lemma ([5, Ch. 1, Cor. 1]). More precisely,

we have to prove:
(i) When the left-hand side of (33) is written in the form divQε, we have Qε ∈

Lploc(R+ ×Rd) for p > 2, and
(ii) The right-hand side of (33) is of the form Mloc,B + H−1

loc,c, where Mloc,B

denotes set of families which are locally bounded in the space of measures and
H−1

loc,c is set of families precompact in H−1
loc .

First, since Tl(uε) is uniformly bounded by l, we see that (i) is satisfied.
To prove (ii), we consider each term on the right-hand side of (33). First we

prove that:

Γ1,ε = ∂t (θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)) ∈ H−1
loc,c.

Trivially we have:

θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)
= θ(Tl(uε)− c)(Tl(uε)− c)− θ(Tl,σ(uε)− c)(Tl,σ(uε)− c)

+ θ(Tl,σ(uε)− c)(Tl,σ(uε)− c)− Uρ(Tl,σ(uε)− c).

Since the function θ(z − c)(z − c) is Lipschitz continuous in z with a Lipschitz
constant one, and, according to definition of Uρ, it holds |Uρ(z)− θ(z)z| ≤ 1

2ρ, we
have from the last expression:

|θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)|
≤ |Tl(uε)− Tl,σ(uε)|+O(ρ) ≤ O(σ) +O(ρ).

From this and assumptions (23) and (34) on σ = σ(ε) and ρ = ρ(ε) it follows
that as ε→ 0

θ(Tl(uε)− c)(Tl(uε)− c)− Uρ(Tl,σ(uε)− c)→ 0

in Lploc for all p < ∞. Thus, (since we can take p = 2 as well) we see that
Γ1,ε ∈ H−1

loc,c.
Next we shall prove that

Γ2,ε = divx
(
θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv
)
∈ H−1

loc,c +Mloc,B.

Indeed,

θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))
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−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv

= θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f%(t, x, Tl,σ(uε))− f%(t, x, c))
+ θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l (v)∂vf%(t, x, v)dv

−
∫ uε

U ′ρ(Tl,σ(v)− c)(T ′l,σ(v)− T ′l (v))∂vf%(t, x, v)dv.

Since T ′l (u) ∈ {0, 1},∫ uε

U ′ρ(Tl,σ(v)− c)T ′l (v)∂vf%(t, x, v)dv

=
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l (v)∂vf%(t, x, Tl(v))dv,

from which we conclude

θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v)∂vf%(t, x, v)dv

= θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

+ θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

−
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l (v)∂vf%(t, x, Tl(v))dv

−
∫ uε

U ′ρ(Tl,σ(v)− c)(T ′l,σ(v)− T ′l (v))∂vf%(t, x, v)dv

= θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

+ θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

−
∫ uε

θ(Tl,σ(v)− c)Dv[f%(t, x, Tl(v))]dv

−
∫ uε

U ′ρ(Tl,σ(v)− c)(T ′l,σ(v)− T ′l (v))∂vf%(t, x, v)dv

−
∫ uε

(U ′ρ(Tl,σ(v)− c)− θ(Tl,σ(v)− c))T ′l (v)∂vf%(t, x, Tl(v))dv

= Γ1
2,ε + Γ2

2,ε + Γ3
2,ε, (35)

with

Γ1
2,ε = θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c)),

Γ2
2,ε = θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))



16 H. HOLDEN, K. H. KARLSEN, AND D. MITROVIC

−
∫ uε

θ(Tl,σ(v)− c)Dv[f%(t, x, Tl(v))]dv,

Γ3
2,ε = −

∫ uε

U ′ρ(Tl,σ(v)− c)(T ′l,σ(v)− T ′l (v))∂vf%(t, x, v)dv

−
∫ uε

(U ′ρ(Tl,σ(v)− c)− θ(Tl,σ(v)− c))T ′l (v)∂vf%(t, x, Tl(v))dv.

Consider now each term on the right-hand side of (35). Since Tl is continuous
function and Tl(u) ∈ [−l, l], the function f(t, x, Tl(u)) is uniformly continuous in
u ∈ R. Therefore, we have pointwise on R+ ×Rd:

|Γ1
2,ε| = |θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))| = oσ(1)

where oσ(1) → 0 as σ → ∞. Since maxu∈[−l,l] f(t, x, u) ∈ Lploc(R+ ×Rd), p > 2,
Lebesgue’s dominated convergence theorem yields |Γ1

2,ε| = oσ,Lploc
(1) where∫

R+×Rd |oσ,Lp(1)|pdxdt→ 0 as σ → 0. Thus, we conclude

divx Γ1
2,ε ∈ H−1

loc (R+ ×Rd). (36)

We pass to Γ2
2,ε. We have to make a case distinction depending on the relative

size of c and l. Consider first the case when |c| < l, in which case we have Tl(c) = c,
thus:

|Γ2
2,ε| = |θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c)) (37)

−
∫ uε

θ(Tl,σ(v)− c)Dv[f%(t, x, Tl(v))]dv|

= |θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)
∫ uε

c

Dv[f%(t, x, Tl(v))]dv|

= |θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

− θ(Tl,σ(uε)− c)(f%(t, x, Tl(uε))− f%(t, x, c))|
≤ |θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f%(t, x, Tl(uε)))|

+ |θ(Tl,σ(uε)− c)(f(t, x, c)− f%(t, x, c))|
≤ |θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f%(t, x, Tl,σ(uε)))|

+ |θ(Tl,σ(uε)− c)(f%(t, x, Tl,σ(uε))− f%(t, x, Tl(uε)))|
+ |θ(Tl,σ(uε)− c)(f(t, x, c)− f%(t, x, c))|

= o%,Lploc
(1) + oσ,Lploc

(1) + o%,Lploc
(1),

where oσ(1) comes from (36) and term |o%,Lploc
(1)| appears due to (H4b), (12a).

For c > l we have θ(Tl,σ(uε)− c) ≡ 0 and for c < −l we have θ(Tl,σ(uε)− c) ≡ 1.
Thus, the problematic case is when c < −l. In this case, instead of (37) we have:

Γ2
2,ε = θ(Tl,σ(uε)− c)(f(t, x, Tl,σ(uε))− f(t, x, c))

−
∫ uε

θ(Tl,σ(v)− c)Dv[f%(t, x, Tl(v))]dv

= f(t, x, Tl,σ(uε))− f%(t, x, Tl(uε)) + f(t, x, l)− f(t, x, c)
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implying
divx Γ2

2,ε ∈ H−1
loc,c +Mloc,B, (38)

since f(t, x, Tl,σ(uε))− f%(t, x, Tl(uε))→ 0 in Lploc(R+ ×Rd) for p defined in (H4),
and f(t, x, l)− f(t, x, c) ∈ BV (R+ ×Rd).

It remained to estimate Γ3
2,ε. Noticing that |U ′ρ|, |Tl,σ| ≤ 1 we get

|
∫ uε

U ′ρ(Tl,σ(v)− c)(T ′l,σ(v)− T ′l (v))∂vf%(t, x, v)dv| (39)

≤ C
∫
R

|T ′l,σ(v)− T ′l (v)|dv = O(
σ

β(%)
)

(23),(34)
= O(β(ε3)),

where C is the constant from (12d).
Similarly, from (12d) and since |T ′l (v)| ≤ 1, we have:

|
∫ uε

(U ′ρ(Tl,σ(v)− c)− θ(Tl,σ(v)− c))T ′l (v)∂vf%(t, x, Tl(v))dv| (40)

≤ C
∫ uε

|U ′ρ(Tl,σ(v)− c)− θ(Tl,σ(v)− c)|dv = O(
ρ

β(%)
)

(23)
= O(β(ε3)),

from which we conclude that Γ3
2,ε tends to zero in L2

loc. From assumptions (23) and
(34), as well as estimates (36)–(40), it follows that the expression from (35) tends
to zero in L2

loc from which it follows that Γ2,ε ∈ H−1
loc,c.

The next term is

Γ3,ε =
∫ uε

U ′ρ(Tl,σ(v)− c)T ′l,σ(v) divx ∂vf%(t, x, v)dv

− U ′ρ(Tl,σ(uε)− c)T ′l,σ(uε) divx f%(t, x, v)|v=uε .

According to (H4) it is clear that Γ3,ε ∈ Mloc,B. Indeed, since |U ′ρ|, |T ′l,σ| ≤ 1 we
have from (12b) and (12e):

|Γ3,ε| ≤
∫
R

µ3(t, x)
1 + |v|1+α

dv + µ1(t, x)

implying the claim.
Next, we claim that:

Γ4,ε =
d∑
i=1

Dxi

(
εDxiUρ(Tl,σ(uε)− c) + δDu[Uρ(Tl,σ(uε)− c)]∂2

xixiuε
)
∈ H−1

loc,c.

Due to a priori estimates (17) and (18) and, again, the fact that |T ′l,σ|, |U ′ρ| ≤ 1, we
see that for every i = 1, . . . , d

εDxiUρ(Tl,σ(uε)− c) + δDu[Uρ(Tl,σ(uε)− c)]∂2
xixiuε → 0

in L2(R+ ×Rd). Therefore, Γ4,ε ∈ H−1
loc,c.

Further, we claim that

Γ5,ε = εU ′ρ(Tl,σ(uε)− c)T ′′l,σ(uε)|∇uε|2 ∈Mloc,B.

Since |U ′ρ| ≤ 1 and |T ′′l,σ| ≤ 1
σ we have from (32)

ε

∫
R+×Rd

|U ′ρ(Tl,σ(uε)− c)T ′′l,σ(uε)| |∇uε|2dxdt
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≤ ε

σ

∫
l<|uε|<l+σ

|∇uε|2dxdt ≤ K5 +
(

δ2

σ2ε4
+

δ2

σ2(β(%))2ε4

)1/2

K3K4 ≤ K6,

for some constant K6, according to assumptions (23) and (34) on δ = δ(ε), σ = σ(ε),
% = %(ε) and β(%) = β(ε3). Thus, we see that Γ5,ε ∈Mloc,B.

Next, we need to show

Γ6,ε = δ

d∑
i=1

D2
uu [Uρ(Tl,σ(uε)− c)] ∂xiuε∂2

xixiuε ∈Mloc,B.

In view of a priori estimates (17), (18) and assumptions (23), (34), it holds∫∫
R+×Rd

δ|
d∑
i=1

D2
uu [Uρ(Tl,σ(uε)− c)] ∂xiuε∂2

xixiuε|dxdt

≤
d∑
i=1

(
δ

σ
+
δ

ρ

)(∫∫
R+×Rd

|∂xiuε|2dxdt
)1/2(∫∫

R+×Rd

|∂2
xixiuε|

2dxdt

)1/2

≤
(

δ

ε2σ
+

δ

ε2ρ

) d∑
i=1

(
ε

∫
R+×Rd

|∂xiuε|2dxdt
)1/2(

ε3

∫
R+×Rd

|∂2
xixiuε|

2dxdt

)1/2

≤ C
(

δ

ε2σ
+

δ

ε2ρ

)(
ε

%
+

1
(β(%))2

)
≤ C̃,

for some constants C and C̃. The second estimate holds since U ′′ρ ≤ 1
ρ and T ′′l,σ ≤ 1

σ

implying |Duu[Uρ(Tl,σ(uε)− c)]| ≤
(

1
σ + 1

ρ

)
. Therefore, Γ6,ε ∈Mloc,B.

Finally, we will prove that

Γ7ε = −εU ′′ρ (Tl,σ(uε)− c)(T ′l,σ(uε))2|∇uε|2 ∈Mloc,B.

First, notice that suppU ′′ρ = (0, ρ), and therefore:

U ′′ρ (Tl,σ(uε)− c) 6= 0 for c ≤ Tl,σ(uε) ≤ c+ ρ. (41)

Then, assume initially that c ≥ l. In that case U ′′ρ (Tl,σ(uε)− c) 6= 0 only if uε ≥ l.
But, then T ′l,σ(uε) = 0 and thus Γ7ε ≡ 0 ∈Mloc,B.

Now, assume that c < l. In this case, we can assume that c+ ρ < l− σ since we
can choose ρ and σ arbitrary small. Therefore, from the definition of Γ7ε and (41)
it follows that we can assume Tl,σ(uε) = uε. Thus,

Γ7ε = −εU ′′ρ (uε − c)|∇uε|2 ∈Mloc,B,

according to (41) and (32) (we put there l = c).
Collecting the previous items, due to the properties of Γi,ε, i = 1, . . . , 7, it follows

from (33) that

∂tθ(Tl(uε)− c)(Tl(uε)− c)
+ divx θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c)) ∈Mloc,B +H−1

loc,c.

Therefore, we see that (ii) is satisfied and we can use Murat’s lemma to conclude
that

∂tθ(Tl(uε)− c)(Tl(uε)− c)
+ divx θ(Tl(uε)− c)(f(t, x, Tl(uε))− f(t, x, c)) ∈ H−1

loc,c.
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Thus we conclude that the conditions of Theorem 4 are satisfied, and we find that
for every l > 0 the sequence (Tl(uε))ε>0 is precompact in L1

loc(R+ ×R).
Since the sequence (uε)ε>0 is uniformly bounded in L2(R+ × Rd), from [4,

Lemma 7], we conclude that (uε)ε>0 is precompact in L1
loc(R+ ×Rd). 2

4. The one-dimensional case

We will analyze the convergence of the sequence (uε)ε>0 of solutions to (14), (15)
in the one dimensional case. Unlike the situation we had in the previous section, we
shall assume that the flux is continuously differentiable in the u variable. This will
enable us to optimize the ratio δ/ε2. We will work under the following assumptions
on the flux f = f(t, x, u) denoted (H4’):

(H4a’) For the flux f = f(t, x, u) we assume that f ∈ C1(R;BV (R+ ×Rx)) ∩
L∞(R×R+ ×Rx) and ∂uf ∈ L∞(R×R+ ×Rx).

(H4b’) There exists a sequence (f%)%>0 defined on R+ × R × R, smooth in
(t, x) ∈ R+×R and continuously differentiable in u ∈ R, satisfying for some p > 2:

lim
%→0

max
z∈R
||f%(t, x, z)− f(t, x, z)||Lploc(R+×R) = 0,

|∂xf%(t, x, u)| ≤ µ1(t, x)
1 + |u|1+α

, %3|∂xf%(t, x, u)|2 ≤ µ2(t, x),

|∂2
xuf%(t, x, u)| ≤ µ3(t, x)

1 + |u|1+α
,

|∂uf(t, x, u)| ≤ C,

where µi ∈ M(R+ ×R), i = 1, 2, 3, are bounded measures (and, accordingly, the
above inequalities involving µi, i = 1, 2, 3, are understood in the sense of measures).

Under these assumptions we will prove the following:

• Without assuming non-degeneracy of the flux, the sequence (uε)ε>0 con-
verges along a subsequence to a solution of (10)–(11) in the distributional
sense when δ = O(ε2) and % = O(ε) (less stringent assumptions than in the
multidimensional case).
• If, in addition, we assume f ∈ C2(R;BV (R+×Rx))∩L∞(R×R+×Rx),

and that f is genuinely nonlinear in the sense of (44), the sequence (uε)ε>0

of solutions to problem (14)–(15) is strongly precompact in L1
loc(R+ ×R)

when δ = O(ε2).

Remark 6. The proof relies on a priori inequalities (17) and (18). Notice that in
the inequality (18) we can take β(%) = 1 due to (H4a’).

We shall need the fundamental theorem of Young measures.

Theorem 7. [18] Assume that the sequence (uεk) is uniformly bounded in
L∞(R+;Lp(Rd)) ∩ Lr(R+ ×Rd), p, r ≥ 1. Then, there exists a subsequence (not
relabeled) (uεk) and a sequence of probability measures

ν(t,x) ∈M(R), (t, x) ∈ R+ ×Rd

such that the limit
ḡ(t, x) := lim

k→∞
g(t, x, uεk(t, x))
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exists in the distributional sense for all g measurable with respect to (t, x) ∈ R+ ×
Rd, continuous in u ∈ R and satisfying uniformly in (t, x):

|g(t, x, u)| ≤ C(1 + |u|q)

for constants C, M and q such that 0 ≤ q < p. The limit is represented by the
expectation value

ḡ(t, x) =
∫
R+×Rd

g(t, x, λ)dν(t,x)(λ),

for almost all points (t, x) ∈ R+ ×Rd.
We refer to such a sequence of measures ν = (ν(t,x)) as the Young measure

associated to sequence (uεk)k∈N.
Furthermore,

uεk → u in Lrloc(R+ ×Rd), 1 ≤ r < p

if and only if
νy = δu(y) a.e.

Before we continue, we need to recall the celebrated Div-Curl lemma.

Lemma 8 (Div-Curl). Let Q ⊂ R2 be a bounded domain. Suppose

v1
ε ⇀ v1, v2

ε ⇀ v2,

w1
ε ⇀ w1, w2

ε ⇀ w2,

in L2(Q) as ε ↓ 0. Suppose also that the two sequences
{

div
(
v1
ε , v

2
ε

)}
ε>0

and{
curl

(
w1
ε , w

2
ε

)}
ε>0

lie in a (common) compact subset of H−1
loc (Q), where

div
(
v1
ε , v

2
ε

)
= ∂x1v

1
ε + ∂x2v

2
ε and curl

(
w1
ε , w

2
ε

)
= ∂x1w

2
ε − ∂x2w

1
ε . Then along a

subsequence(
v1
ε , v

2
ε

)
·
(
w1
ε , w

2
ε

)
→
(
v1, v2

)
·
(
w1, w2

)
in D′(Q) as ε ↓ 0.

Lemma 9. Assume that (uε)ε>0 ∈ L2(R+ ×R) weakly converges in L2(R+ ×R)
to a function u ∈ L2(R+ × R). Assume that η(t, x, λ), (t, x, λ) ∈ R+ × R2 is a
function such that η ∈ C2(Rλ;L∞ ∩BV (R+

t ×Rx)).
By ηn we denote the truncation of the function η:

ηn(t, x, λ) =

{
η(t, x, λ), |λ| < n,

0, |λ| > 2n
, (t, x) ∈ R+ ×R, (42)

and qn(t, x, λ) the corresponding entropy flux.
If for every n ∈ N we have

div(ηn(uε), qn(t, x, uε)) ∈ H−1
loc,c(R

+ ×R). (43)

then the limit function u is a weak solution to (2).
Furthermore, if the flux function f = f(t, x, λ) is twice differentiable with respect

to λ, and it is genuinely nonlinear, i.e., for every (t, x) ∈ R+ ×Rd the mapping

R 3 λ 7→ ∂λf(t, x, λ) is non-constant (44)

on non-degenerate intervals, then (uε)ε>0 strongly converges to u in L1
loc(R+×R).



DIFFUSION-DISPERSION-SMOOTHING LIMITS 21

Proof: We shall apply the method of compensated compactness as in [21].
First notice that according to Theorem 7 there exists a subsequence (uεk) ⊂ (uε)

and a sequence of probability measures

ν(t,x) ∈M(R), (t, x) ∈ R+ ×R

such that the limit
ḡ(t, x) := lim

k→∞
g(t, x, uεk(t, x))

exists in the distributional sense for all g measurable with respect to (t, x) ∈ R+×R,
continuous in u ∈ R and satisfying uniformly in (t, x):

|g(t, x, u)| ≤ C(1 + |u|q)

for constants C, M and q such that 0 ≤ q < p, and is represented by the expectation
value

ḡ(t, x) =
∫
R+×R

g(t, x, λ)dν(t,x)(λ),

for almost all points (t, x) ∈ R+×R. From this, due to (H4), we conclude that for
the flux function f(t, x, v) we have

lim
k→∞

f(t, x, uεk(t, x)) =
∫
R+×R

f(t, x, λ)dν(t,x)(λ).

To continue, notice that

u(t, x) =
∫
λ dν(t,x)(λ). (45)

Take η(u) = I(u) = u in (42), and consider the vector fields (In(uε), fn(t, x, uε))
where fn(t, x, uε) = I ′n(v)∂λf(t, x, uε), and (−ψn(t, x, uε), φn(uε)), where φ ∈ C1(R)
is an arbitrary entropy, and ψn is the entropy flux corresponding to φn. Here In
and φn denote the smooth truncation functions of I and φ, respectively, cf. (42).

According to (43) we can apply the Div-Curl lemma on the given vector fields.
Hence, we get after letting ε→ 0 along a subsequence:∫ (

In(λ)ψn(t, x, λ)− φn(λ)fn(t, x, λ)
)
dν(t,x)(λ)

=
∫ (

ūn(t, x)ψn(t, x, λ)− f̄n(t, x)φn(λ)
)
dν(t,x)(λ), (46)

where

f̄n(t, x) =
∫
fn(t, x, λ)dν(t,x)(λ), ūn(t, x) =

∫
In(λ)dν(t,x)(λ).

Then, put φ(λ) = |λ − u(t, x)|. Notice that for |λ| < n we have ψn(t, x, λ) =
sgn(λ− u(t, x))(f(t, x, λ)− f(t, x, u(t, x))). Therefore, we have from (46):∫ n

−n

(
λ sgn(λ− u(t, x))(f(t, x, λ)− f(t, x, u(t, x)))− |u(t, x)− λ|f(t, x, λ)

)
dν(t,x)(λ)

−
∫ n

−n

(
u(t, x) sgn(λ− u(t, x))(f(t, x, λ)− f(t, x, u(t, x)))− |u(t, x)− λ|f̄n

)
dν(t,x)(λ)

= −
(∫ −n
−∞

+
∫ ∞
n

)(
In(λ)ψn(t, x, λ)− φn(λ)fn(t, x, λ)

)
dν(t,x)(λ)
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+
(∫ −n
−∞

+
∫ ∞
n

)(
u(t, x)ψn(t, x, λ)− f̄nφn(λ)

)
dν(t,x)(λ)

+
(∫ −n
−∞

+
∫ ∞
n

)
(In(λ)− λ)dν(t,x)(λ)

∫
ψn(t, x, λ)dν(t,x)(λ). (47)

It is clear that for every fixed (t, x) ∈ R+ ×Rd the right-hand side of (47) tends
to zero as n→∞ implying:∫ (

λ sgn(λ− u(t, x))(f(t, x, λ)− f(t, x, u(t, x)))− |u(t, x)− λ|f(t, x, λ)
)
dν(t,x)(λ)

−
∫ (

u(t, x)sgn(λ− u(t, x))(f(t, x, λ)− f(t, x, u(t, x)))

− |u(t, x)− λ|f̄(t, x)
)
dν(t,x)(λ) = 0.

Now a standard procedure gives (see, e.g., [10, Remark 2.3])

(f(t, x, u(t, x))− f̄(t, x))
∫
|λ− u(t, x)|dν(t,x)(λ) = 0, (48)

where f̄(t, x) =
∫
f(t, x, λ)dν(t,x)(λ). From here it follows that u is a weak solution

to (10). This concludes the first part of the lemma. For the details of the procedure
one should consult, e.g., [21].

Now, assume that f ∈ C2(R;BV (R+ ×Rx)) ∩ L∞(R×R+ ×Rx), and that it
is genuinely nonlinear in the sense of (44).

Then, take arbitrary η1(t, x, u) ∈ C1((R;L∞∩BV (R+
t ×Rx))) and η2 ∈ C1(R);

thus ∂uη1 depends explicitly on (t, x), while Duη2 does not. Denote by η1,n and η2,n

the appropriate smooth truncations, cf. (42), and by q1,n and q2,n the corresponding
entropy fluxes, that is,

q1,n(t, x, λ) =
∫ λ

∂zη1,n(t, x, z)∂zf(t, x, z)dz,

q1,n(t, x, λ) =
∫ λ

∂zη2,n(z)∂zf(t, x, z)dz.

Due to (43) and the Div-Curl lemma the following commutation relation holds:∫
R

(η1,n(t, x, λ)q2,n(t, x, λ)− η2(λ)q1,n(t, x, λ)) dν(t,x) (49)

=
∫
R

η1,n(t, x, λ)dν(t,x)

∫
R

q2,n(t, x, λ)dν(t,x)

−
∫
R

η2,n(λ)dν(t,x)

∫
R

q1,n(t, x, λ)dν(t,x).

Letting n→∞ as in (47), we get:∫
R

(η1(t, x, λ)q2(t, x, λ)− η2(λ)q1(t, x, λ)) dν(t,x) (50)

=
∫
R

η1(t, x, λ)dν(t,x)

∫
R

q2(t, x, λ)dν(t,x) −
∫
R

η2(λ)dν(t,x)

∫
R

q1(t, x, λ)dν(t,x).

Then, following [10], we insert in (50):

η1(t, x, λ) = f(t, x, λ)− f(t, x, u(t, x)), q1(t, x, λ) =
∫ λ

u(t,x)

(∂vf(t, x, v))2dv,
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η2(λ) = λ− u(t, x), q2(t, x, λ) = f(t, x, λ)− f(t, x, u(t, x)),

which yields the following relation:(∫
R

(f(t, x, λ)− f(t, x, u(t, x)))dν(t,x)

)2

(51)

+
∫
R

(
(λ− u(t, x))

∫ λ

u(t,x)

(∂%f(t, x, %))2d%− (f(t, x, λ)− f(t, x, u))2

)
dν(t,x)(λ) = 0.

By the Cauchy–Schwarz inequality

(f(t, x, λ)− f(t, x, u))2 =

(∫ λ

u(t,x)

∂%f(t, x, %)d%

)2

≤ (λ− u(t, x))
∫ λ

u(t,x)

[∂%f(t, x, %)]2d%dν(t,x)(λ),

with equality only if f%(t, x, %) is constant for all % between u(t, x) and λ. Still, this
is not possible according to the genuine nonlinearity condition (44). Thus, from
this and (51) we conclude that

(λ− u(t, x))
∫ λ

u(t,x)

[∂%f(t, x, %)]2d%dν(t,x)(λ) = 0,

i.e., that ν(t,x) = δu(t,x) a.e. on R+×R implying strong L1
loc convergence of (uε)ε>0

along a subsequence (see Theorem 7). 2

Now we are ready to prove the main theorem of the section:

Theorem 10. Assume that

δ = δ(ε) = O(ε2), % = O(ε), ε→ 0, (52)

and u0 ∈ H1(R).
Assume that the flux function f from equation (10) with d = 1 satisfies (H4’).

Assume also that the function b from (14) satisfies (H1) and (H2). Then a sub-
sequence of solutions (uεk) ⊂ (uε) to problem (14)–(15) converges in the sense of
distributions to a weak solution of problem (10)–(11).

If the flux function f ∈ C2(R;BV (R+ ×Rx)) ∩ L∞(R ×R+ ×Rx), and if it
is genuinely nonlinear in the sense of (44) then a subsequence of solutions (uεk) ⊂
(uε) to problem (14)–(15) converges strongly in L1(R+ ×R) to a weak solution of
(10)–(11).

Proof: Assume that η(t, x, λ), (t, x, λ) ∈ R+ × R2 is a function such that η ∈
C2(R;L∞ ∩BV (R+

t ×Rx)). As usual, denote by ηn the truncation given by (42),
and let the entropy flux corresponding to ηn and f be:

qn(t, x, u) =
∫ u

∂vηn(t, x, v)∂vf(t, x, v)dv. (53)

According to Lemma 9, it is enough to prove that for every fixed n ∈ N the
expression div(ηn(t, x, uε(t, x)), qn(t, x, uε(t, x))) is precompact in H−1

loc (R+ ×R).
In order to prove the latter, take the following mollifier ηn,ε(t, x, u) = ηn(·, ·, u)?

1
ε1/2

ω( t
ε1/4

)ω( x
ε1/4

), where ω is a nonnegative real function with unit mass. Denote
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the entropy flux corresponding to ηn and f by:

qn,ε(t, x, u) =
∫ u

∂vηn,ε(t, x, v)∂vf%(t, x, v)dv. (54)

Recall that here (and in the sequel) we assume that % = O(ε). Actually, we can
take % = ε without loss of generality.

Notice that according to the assumptions on η and the choice of the mollifier
ηn,ε we have:

|∂tηn,ε(t, x, u)|, |∂xηn,ε(t, x, u)|, |∂xvηn,ε(t, x, u)| ≤ µ(t, x),

|∂xηn,ε(t, x, u)|2, |∂2
xvηn,ε(t, x, u)|2 ≤ µ(t, x)

ε
,

(55)

for a locally bounded Radon measure µ ∈M(R+ ×R).
Then, apply equation (24) with S replaced by ηn,ε. We find

Dtηn(t, x, uε) +Dxqn(t, x, uε)

=
∫ uε (

∂2
xvf%(t, x, v)∂vηn,ε(t, x, v) + ∂vf%(t, x, v)∂2

xvηn,ε(t, x, v)
)
dv

− ∂vηn,ε(t, x, uε)∂xf%(t, x, uε)− ∂tηn,ε(t, x, uε)
+ εDx(∂vηn,ε(t, x, uε)b(∂xuε))− ε∂2

vvηn,ε(t, x, uε)b(∂xuε)∂xuε

− ε∂xb(uε)∂2
xvηn,ε(t, x, uε)− δ∂2

xxuε∂
2
xvηn,ε(t, x, uε)

+ δDx(∂vηn,ε(t, x, uε)∂2
xxuε)−

δ

2
∂2
vvηn,ε(t, x, uε)Dx(∂xuε)2

+Dx(−qn,ε(t, x, uε) + qn(t, x, uε))

+Dt(−ηn,ε(t, x, uε) + ηn(t, x, uε)). (56)

Now, we apply a similar procedure as in the multidimensional case.
Combining (H4b’) and (55) we get for a constant C1 depending only on ηn

|
∫ uε (

∂2
xvf%(t, x, v)∂vηn(t, x, v) + ∂vf%(t, x, v)∂vηn(t, x, v)

)
dv| (57)

≤ C1(µ3(t, x) + µ(t, x)),

implying boundedness in the sense of measures.
Similarly, for a constant C2:

| − ∂vηn,ε(t, x, uε)∂xf%(t, x, uε)− ∂tηn,ε(t, x, uε)| (58)

≤ C2(µ1(t, x) + µ(t, x)),

implying boundedness in the sense of measures.
Then, combining (55) with (17) and (18) we infer (see estimation of Γ6ε):

− ε∂xb(uε)∂2
xvηn,ε(t, x, uε)− δ∂2

xxuε∂
2
xvηn,ε(t, x, uε) (59)

is bounded in M(R+ ×R).
Next,

Dx

(
ε∂vηn(t, x, uε)b(∂xuε) + δ∂vηn(t, x, uεk)∂2

xxuεk
)

(60)
is precompact in H−1(R+×R) since |η′n| < C, δ = O(ε2), % = O(ε), and from (17)
and (18) (see also Remark 6) we have

εb(∂xuε) + δ∂2
xxuε → 0 as ε→ 0

in L2(R+ ×R).
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Similarly, by (17) and (18) (see estimation of Γ6ε again):

ε∂vvηn,ε(t, x, uε)b(∂xuε)∂xuε +
δ

2
∂vvηn,ε(t, x, uε)Dx(∂xuε)2 (61)

is bounded in M(R+ ×R).
Next, due to (H4b’) and the definitions of qn,ε and qn:

|qn,ε(t, x, uε)− qn(t, x, uε)|
≤ 4nC max

−2n<v<2n
|f%(t, x, v)− f(t, x, v)| → 0 in L2

loc(R+ ×R) as ε→ 0

for arbitrary p > 0 and a constant C > 0, implying precompactness in H−1
loc of the

sequence
Dx(qn,%(t, x, uε)− qn(t, x, uε)). (62)

Similarly, it is easy to see that

max
−2n<v<2n

(−ηn,ε(t, x, uε) + ηn(t, x, uε))→ 0 in L2(R+ ×R),

and thus
Dt(−ηn,ε(t, x, uε) + ηn(t, x, uε)) ∈ H−1

c (R+ ×R). (63)
From (57)–(63) and the fact that (ηn(t, x, uε), qn(t, x, uε)) ∈ L∞(R+ ×R), we

conclude using Murat’s lemma that

div(ηn(t, x, uε), qn(t, x, uε)) ∈ H−1
loc,c(R

+ ×R). (64)

Finally, relying on Lemma 9 we conclude the theorem.

2
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