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Abstract

In this paper, we are interested in the stochastic perturbation of a
first order hyperbolic equation of nonlinear type. In order to illustrate
our purposes, we have chosen a scalar conservation law in a bounded do-
main with homogeneous Dirichlet condition on the boundary. Using the
concept of measure-valued solutions and Kruzhkov’s entropy formulation,
a result of existence and uniqueness of the entropy solution is given.
keywords : Stochastic PDE, first-order hyperbolic problems, bounded do-
main, Young measures, Kruzhkov’s entropy.
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1 Introduction

In this paper, we are interested in the formal stochastic partial differential equa-
tion of first order nonlinear hyperbolic type:

du — div(f(u))dt = hdw in Q x Dx]0, T, (1)

with an initial condition ug and homogeneous ” Dirichlet” boundary condition.

In the sequel, one assumes that D is a bounded Lipschitz domain of R?,
that T is a positive number, @ =]0,T[xD and that W = {w;, F;;0 <t < T}
denotes a standard adapted one-dimensional continuous Brownian motion, de-
fined on some probability space (2, F, P), with the property that wy = 0 (cf.
I. Karatzaset al. [20] for example). This assumption on W is made for conve-
nience. Our aim is to adapt known methods of first-order nonlinear PDE to noise
perturbed ones. For more general noise, one can consider cylindrical Wiener
processes on separable Hilbert spaces (cf. G. Da Prato and J. Zabczyk[12]) or
space-time noise.

On the one hand, remind that, even in the deterministic case, the weak
solution to such a problem is not unique in general. One needs to introduce
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the notion of entropy solution in order to discriminate the physical solution.
Moreover, weak and entropy solutions are not smooth enough allowing for trace
properties. Trace has to be understood in a weak way. Moreover, it is not pos-
sible to impose the Dirichlet condition on the whole boundary of D, but only on
a free set: the one corresponding to entering characteristics (without exhaus-
tiveness, see for example C. Bardos et al.[5], J. Carrillo et al.[9], F. Otto[22],
E.Y. Panov([24], G. Vallet[27] and A. Vasseur[29]).

On the other hand, the stochastic perturbation will not simplify the situation.

Many papers on the viscous Burgers type stochastic problem (i.e. usually
in 1-D with f(z) = 2% and a Laplacian) can be found in the literature, where,
usually, the stochastic convolution is used. Let us mention, without exhaustive-
ness, G. Da Prato, A. Debussche and R. Temam[11] , G. Da Prato et al.[12],
W. Grecksch and C. Tudor[17] or I. Gyéngy and D. Nualart[18].

Few papers exist concerning the stochastic perturbation of nonlinear first
order hyperbolic problems. Most of them are interested in the Cauchy problem
in the 1-D case. Let us cite the paper of H. Holden et al.[19] where an operator
splitting method is proposed to prove the existence of a weak solution to the
Cauchy problem

du + f(u),dt = g(u)dw in R.

The convergence is obtained by using path-wise arguments.
In the paper of E. Weinan, K. Khanin, A. Mazel and Y. Sinai[30], the authors
are interested in the invariant measures for the Burgers equation

du + %(UZ)Q, = (Z Fy(z)dwg),
k>0

with a periodic assumption in space. The existence and uniqueness of a stochas-
tic entropy® solution is proved thanks to a Hopf-Lax type formula for the cor-
responding Hamilton-Jacobi equation. A parabolic perturbation problem ap-
proach is considered, too, based on the Hopf-Cole transformation.

In the paper of J. H. Kim|[21], a method of compensated-compactness is pre-
sented to prove the existence of a stochastic weak entropy solution to the Cauchy
problem

du + ¢(u),dt = g(t, z)dw in R.

Then, a Kruzhkov-type method is used to prove the uniqueness.
J. Feng and D. Nualart[15] propose to extend the above-mentioned result to the
Cauchy problem in R%:

du + divF (u) = / (., u, 2)dw(t, 2),
z€Z

where the right-hand side depends on u. For this reason, a notion of strong
entropy solution has to be introduced in order to prove the uniqueness of the

Lin the sense of P. D. Lax and O. A. Oleinik.



solution. The existence result is achieved in the 1 — D case.
Some other papers can be found in the references cited therein.

In our main result, we propose a result of existence and uniqueness of the
stochastic entropy solution to Problem (1). A multi-dimensional bounded do-
main with homogeneous Dirichlet conditions is considered. A method of artifi-
cial viscosity is proposed to prove the existence of a solution. The compactness
property is based on the theory of Young measure solutions and the trace for-
mulation is based on the one proposed by J. Carrillo[7]. An adaptation of the
classical method of Kruzhkov is proposed to prove the uniqueness of the entropy
measure-valued solution. The existence of such a solution follows as usual from
the theorem of Prohorov for Young measures.

After giving the assumptions on the data and the definition of an entropy
solution, we devote a section to the existence of an entropy measure-valued
solution in the sense of Young measures. The uniqueness of the entropy measure-
valued solution is proved by using the doubling-variable method of Kruzhkov in
a following section. Then, the result of existence of the entropy solution comes
from the properties of Young measures connected to weak convergence. The
last section constitutes a basic reminder on Young measures.

As mentioned by J. U. Kim[21] for example, the equation has to be under-
stood in the following way:

Otu —/0 hdw(s)] — div(f(u)) = 0,

where fot hdw(s) denotes the It6 integration of h.

Let us assume that

. £ =(f1,., fa) : R — R% is a Lipschitz-continuous function?, as well as f, and
fi(0)=0, Vi=1,....d.

. h € L*[0,T, H}(D)]. Note that h is the restriction to Q of the function h of
L%[R, H'(R9)] by considering that h(t,x) = 0 if (t,2) € Q.

Our aim is to prove a result of existence and uniqueness of the stochastic
entropy solution to the above-mentioned problem. Let us fix in what sense such
a solution is understood.

Notations. In the sequel, for any bounded Lipschitz G C R¥, one denotes by
H'(G) the usual Sobolev space and by HE(G) the space of Sobolev functions
with null trace on the boundary of G. Remind that H}(G) is also the closure
in H'(G) of the distribution space D(G): the space of C*(R¥) with compact
support in G. Then, one denotes by H~1(G) the dual space of H}(G) (see
for example R. A. Adams[1] or L. C. Evans and R. Gariepy[13]). In general,
if G is not assumed to be an open set (G = D or [0,T[xD), D(G) denotes

2Some information are given in section 3.4 about locally-Lipschitz f.



the restriction to G' of D(R¥) functions u such that support(u)NG is compact.
Then, DT (G) will denote any non-negative element of D(G).

For convenience, for any function u of L?(Q2x Q), any real k and any function
¢ in HY(Q), denote by:

1. K(t,z,.) = fot h(s,z)dw(s) and A = u — K.

2. sgnd(z) = 1if 2 > 0, 0 else; 2t = asgnf (v); FH(a,b) = [f(a) —
f(b)]sgng (a — b). Note, in particular, that F* is a Lipschitz-continuous
function.

3. dP-a.s. in , denote by p the distribution in R4+,
poule) = [ {- K- Do - (£ - 0+ 0]V} duds
{u>K+k)

+/ pdivf[K + k] dxdt+/ (ug — k)T (0,.) dx.
{u>K+k} D

/Q LA~ k)" o — F*(K + A K + k).V} dodt
+ /Q psgnd (A — k) div £[K + k] dwdt + /D(uo —k)T(0,.) dx.
4. dP-a.s. in €, denote by y, the distribution in R4 +1,
o () = / LK+ k= w)dhp — [£0C + ) — F(u)]. Vip s dvd
{u<K+k}

—/ edivf[K + K] dmdt—i—/ (k —up)T(0,.) dx
{u<K+k} D

/ {(k = Ay 0up — FF(K + b, K + A).Vip } dudt
Q

—/ gsgnd (k — A) div £[K + k] dadt + / (k — 1)+ (0, ) da.
Q D

O
Then, one would say that

Definition 1. Any function u of L*(2 x Q), adapted to the filtration F; as an
L?(D)-valued function, is an entropy solution if

i) For any (k, ) € R x H(Q) such that k > 0 and ¢ > 0, and

for any (k,¢) € R x [HY(Q) N L2(0,T; H}(D))] such that ¢ >0,

0 < puf(p), dP-—as.

ii) For any (k,) € R x HY(Q) such that k <0 and ¢ >0, and
for any (k,¢) € R x [HY(Q) N L2(0,T; H}(D))] such that ¢ >0,

0 < pp(p), dP—as.



For technical reasons, one also need to consider a generalised notion of en-
tropy solution. In fact, in a first step, we will only prove the existence of a
Young measure-valued solution. Then, thanks to a result of uniqueness, we are
able to deduce the existence of an entropy solution in the sense of Definition 1.

Definition 2. Any function u of L*(2 x Q@x]0,1]), adapted to the filtration F;
as an L?(D)-valued function, is a Young measured-valued entropy solution if
i) For any (k,) € R x H(Q) such that k > 0 and ¢ > 0, and

for any (k,¢) € R x [HY(Q) N L*(0,T; H}(D))] such that ¢ > 0,

1
0 < /,u:(cp)da, dP — a.s.
0

ii) For any (k,¢) € R x H(Q) such that k <0 and ¢ >0, and
for any (k,¢) € R x [HY(Q) N L2(0,T; H}(D))] such that ¢ >0,

1
0 < /u;(go)da, dP — a.s.
0

Note that in this definition the measures u;:, Hy, also depend on o because u
does.

Therefore, immediate consequences are:

Remark 1. Consider u an entropy solution and A a countable dense sub-family
of HL(Q), the set of all the non-negative elements of H*(Q). Then, Q C Q exists
such that P(Q\Q) = 0 and, for any w € Q: Yk e QT,Vpe A, 0< i ().
Since pit is a H*(Q)-continuous function, for any w € Q:

VkeQT, Vo € H(Q), 0 < pyf ().

Since k + sgnd (A(w) — k) is a right-continuous function, by approzimating any
positive number by an upper-sequence of rational numbers, for any w € Q:

Vk >0, Yo € HY(Q), 0 < i (¢)-

Since this remark holds similarly for any of the assertions of the above defi-
nition, it can be said that any function u of L*( x Q), adapted to the filtration
Fi as an L?(D)-valued function, is an entropy solution if, dP — a.s.,

vk o) € [RY x HLQ)| U [Rx [HL@Q) N L0, Ts HYD)]| : 0= 45 (),
V(k, ) € [R™ x HL@| U [Rx [HL(@Q N L2, T HY(D)]] - 0< sy (o).
Remark 2. dP-a.s., for any real k, ,uf are non-negative Radon measures on
Q.

Moreover, dP-a.s., for any non-negative k, |uik| = uik(l) < 400 and ,uik are
bounded non-negative Radon measures on Q.

Let us also mention

Remark 3. Any entropy solution is a.s. a weak solution, too.



Following J. Carrillo et al.[9], dP-a.s, for any positive ¢ € DT ([0, T[x D),
note that

i@ = [ {w=K0e-twVe}de+ [ up.)ds (= 1)
Q D
k;@tgp f(K+k).Ve — odivf[K 4+ k]} dxdt — / ko(0,.)dx (= 15)
/Q u—IC k)orp — [f(u) —f(lC—i—k)].Vgo} dzdt (:=13)
u<lC+k}
/ e div f[IC + k] dxdt + / (uo — k)~ (0,.) dz (:=1a)
{u<K+k} D
If £ <0, then
I3 < / u| + |K|) 0] + / ds|Og, | p dxdt — 0,
Bl < f {0 Dl Z ds|ds ol dudt —

S [ I+ D P @NKl e+ [l e

{uo<k}
Then, I, tends to 0 with k to —oo and, since I, = 0, one concludes that for any
positive ¢ € D([0, T[x D),
0< / {(u — K)o — f(u).V@} dxdt + / uop(0,.) dz.
Q D
Since the opposite inequality can be proved by using p, for large values of &, u
is a solution in the sense of distributions.

Remark 4. The unique solution obtained in this paper satisfies the initial con-
dition in the following sense:

esslim E/ |A — ugldz = 0.
D

t—0+

Indeed, by the existence proof, the solution u will be in L>(0, T, L?(Q2 x D)).
Therefore, following F. Otto[22] (see also G. Vallet[27]), if one considers any real
k and any non-negative 3 in H{ (D), then, for any non-negative o in H*(0,T),
one has that

0< Euf(a®p) = /T{a'/ E[(A—k)*}ﬂ—a/ E[F*(lC+A,IC+k)].Vﬂdx}dt
TO D D
+/0 a/DﬁE{sgnar(A—k) divf[lC+k]}dxdt—|—a(0)/D(uo—k)+ﬁd1:

T
= A [a’(t)Akﬁ(t) +Oé(t)Bkﬂ(t)}dt+Q(O)Ckﬁ.



Therefore, Eu,iﬁ ca € DT(R fo (t) A, p(t) + a(t) Br,p(t)]dt + (0)Cy g 1s
a positive Radon measure on R. Its restrlctlon to ]0, T'[, denoted by Ep; ByLjo.r

is a positive bounded Radon measure on ]0,7[ and

T
|E“KB,L]O,T[| < Epj (1) = /0 By s(t)dt + Cy.
< CT DA = El[2@x ) IVBll(2(py)a + COBl]L2(p)
+luo — /f||L2(D)|\5||L2(D)-
In particular, ¢ : ¢t — Ay (¢ fo By, 5(s)ds is a non-increasing function of

bounded variation on [0, T]. Thub P(0T) =ess 101£n P(t) exists and
t—

1/n T
P(07) =lim n P(t)dt = lim al(t)dt
where a,,(t) = min(nt,1)*.
Since lirél+ fot By g(s)ds =0, A (0T) =ess li£n Ay 5(t) = ¢(07) and
t—

T
0< Ak’B(OJ’_) = nhnclo (an — Ak @ / By, g s)dsld
- 0
T
= lim 7/ [(1— Ozn)lAk)ﬂ(t) + Bkﬁ(t)(l — ap)]dt,
n—oo O
= lim [—pfs(1—an)] +Crp < / (uo — k)* Bd.
n— o0 ’ D

Thanks to the hypothesis on «, uniformly with respect to t, 5 +— Ay g(t) is a
continuous linear function on L?(D), a density argument leads to the existence,
for any real k and any non-negative 3 in L?(D), of ess li£n Ag p(t) = Ak g(0T)

t—0

with, moreover, Ay 5(07) < [ (uo — k)t Bda.
In order to keep essential limits, consider k£ in Q. Then, if w, = Z?:o kilp, is
a simple function with k; in Q, one gets that

=0
and esslim Ay, 5(t) exists with moreover Aw7[3(0+ < [p(ug — w) T Bdz, for any
t—0

non-negative 3 in L?(D) and any Q-valued simple function w.
As any w of L?(D) is a limit in L?(D) of a sequence of such simple functions
and since for w and @ in L*(D), |Ay5(t) — As g(t)] < |w — @ L2(py 6] 2,
independently of ¢, the same argument of density leads to:
ess %131 Ay p(t) exists with moreover Ay, 3(0%) < [}, (uo — w) T Bdz, for any non-
negative 3 in L?(D) and any w in L?(D).

Now, for w = ug and 8 = 1, this leads to: etss %{n EfD(A —ug)Tdz = 0.

A similar reasoning with the second inequality of the definition of a solution
would yields: ess 101£n E [, (uo—A)Tdz = 0 and thus ess ngrn E [ |[A—ug|dz = 0.
t— t—s



2 Existence of a solution

The aim of this section is to give a result on existence of a measure-valued
entropy solution to the problem. The technique is based on the notion of narrow
convergence of Young measures (or entropy processes) (cf. Appendix). Then,
thanks to the uniqueness result of the next section, one is able to prove that the
measure-valued solution is an entropy weak solution and that the sequence of
approximation proposed to prove the existence of the solution converges in LP
for any p < 2.

Let us set, in the sequel of this section, for any positive integer n, u,, the
unique weak solution to the stochastic viscous parabolic equation:

8t[un - IC] - %Aun - le(f(Un)) = O’

i.e., U, exists in L2(Q2x]0,T[; Hi(D)), adapted to the filtration F; as an L?(D)-
valued function, with moreover d;[u — K] € L?[|0, T[xQ; H~}(D)] and, a.s. in
Q, a.e. in ]0, T, for any v in Hg(D),

1
< Otun — K},v >p-1(p), 12 (D) +/ EVun.Vv + f(uy,).Vodx = 0. (2)
D

We admit such a result and refer e.g. to G. Da Prato et al.[12], W. Greckschet
al.[17] or G. Vallet[28] for further information on the viscous stochastic parabolic
equation.

Then, thanks to the stochastic energy equality (see for example W. Grecksch[17]
Th. 3.4 p.42), the following estimate holds:

t
1
[[tn (6)][72 () +2/0 /D[E\Vunp—i—f(un).Vun] dxds

t t
= ||u(0)\|%2(D)+2/ /unhdxdws+/ / h? dxds.
o Jp o Jp

Since fg Jp £(un).Vuy, deds = 0, one gets that

Proposition 1. There exists a positive constant C such that,

Vn € N7, ||U7LH%°°[O,T;L2(Q><D)] + E||un|‘iﬂ],o,T[xQ;Hé(D)] <C.

In particular, u, is a bounded sequence in L%(]0, T[x x D) and the associ-
ated Young measure sequence 7, converges (up to a sub-sequence still indexed in
the same way) narrowly to an entropy process denoted by u (see the Appendix).

Consider 7, a non-decreasing Lipschitz-continuous function satisfying the
assumptions that supp n’ is compact and 7(0) = 0, k an integer and ¢ a positive
element of D(Q) such that a.s. in Q and a.e. in ]0,7], v = n(u, — K — k)
belongs to Hg (D). Therefore, v is an admissible test-function in (2).



i) Thanks to the chain rule lemma of Alt -Bamberger - Luckhaus - Mignot
(see A. Bamberger[4] and H. W. Alt et al.[2]) based on convex inequalities, if ¥
denotes the primitive of 5 such that ¥(0) = 0, one has that

T
[17,7 = /O <8t[un*]C],?7(Un*’C*k)Q0 >H*1(D),H6(D) dt

= / Ulun(T) — K(T) — k]e(T) — U[u(0) — k) (0) doe — / Ulu, — K — k]Ovp dadt
D Q

Y

—/ Ulu(0) — klp(0) dx — / Ulu, — K — k)]0 dxdt;
D Q
ii) Concerning the viscous term, one gets that

L, = / Vu,.V — K — k)] dzdt

1
n/gm)( — K = k)|V]up fIC}|2d9:dt+ﬁ/n(unflek)Vun.Vgadxdt
Q

1
+= / 1 (tn — K — k) VK.V [u, — K] dwdt
Q

n

1 1
> - / n' (un — K — k)pVK.V]u, — K] dzdt + - / n(u, — K — k)Vu,.Vo dodt;
Q Q

iii) Then, for the flux term, the Gauss-Green formulae and the chain rule
(since 7" has a compact support) lead to

I3, = / f(un).Vin(u, — K — k)p] dadt
Q

= / [f(un) — £(K + K)].Vn(u, — K — k)| dedt — / divf (K + k)n(u, — K — k)p dxdt
Q Q

= /Qn’(un — K = k)plf(un,) — £(K + k)].V[u, — K] dzdt

+/ N(un — K — k)[f(u,) — £(K + k)]. Vo dzdt — / n(u, — K — k)pf (K + k).VK dzdt.
Q Q

Let us note that

dw{/u" £(r + K) — £(K + b)) (r — ) dr}
= (= K — B)[E(un) — £0C + F)].V (un — K)
+ /k " B 1) — £0C 4 R (r— k) dr
= o (= K = B)[Eun) — £C + F)].V (un — K)
n /:"K[f'(r 4 K) — (K + ).V (r — k) dr.



Thus, it yields
Izn = / n(u, — K —k)[f(un) — f(K + k). Ve dedt
Q

—/ n(u, — K — k)pf (K + k).VK dzdt
Q

Up —IC
_/ [/ 0 (r = B)E (r + K) — £/(K + k)].VK dr] dedt

/OT[an/ [£(r) = £(R)]n'(r — k) drlp dodt
[ 0~ - Ve @
QJk

Since 7 is a non-decreasing Lipschitz-continuous function with supp#n’ com-
pact, ¥ is a Lipschitz-continuous function and, for any A € F, ¥[u,, — K —
k]Oppl 4 is uniformly integrable. Then, (see Appendix) one concludes that

lim inf F{71,,14]
> _E[l4 / Blu(a) — K — Koy dedtda] — B[l / B[u(0) — k]p(0) da].
Qx]0,1] D

As ﬁ“unHLz(]O’T[XQ;Hé(D)) is bounded and since  and 7’ are bounded
functions, the following result holds:

liminf E[1415,] > 0.

n—oo

As 7 is a bounded Lipschitz-continuous function with supp 7’ compact, f is
a Lipschitz-continuous function (for the first term of I3 ;) and £’ is a Lipschitz-
continuous function, the integrands involved in the first three terms of El3,14
are uniformly integrable and the convergence in the sense of Young measures
holds. Noting that the fourth term is independent of n, one needs to take care
of the last one. As f is not a bounded function, the uniform integrability of the
integrand is ensured by the hypothesis of compact support for 7.

Conclusion: testing (2) with v = n(u, — K — k)y, estimating all terms as
above, yields for any A € F,

0o > 1A~/Q><]0 | — K — k]Oyp dzdtda) — E[lA/D\II[u(O)—k]ap(O)dx]
IA/ — K = k)[f(u(a)) — £(K + k)].Ve dzdtda]
Qx]o, 1[
B[l / — K — k) (K + k). VK dedtda]
Qx]o, 1[

u(a)—K
1A/ / n'(r—k)[f'(r+K)— (K + k)].VK dr] dzdtda]
Qx]0,1] k

10



0
+E[1a /]O,T[an[/k [£(r) — £(k)]n' (r — k) dr]e dodt]

u(a)—K
—E[lA/ [/ [£(r +K) — £(K + k)]0 (r — k) dr].V dzdtda)]
Qx]0,1[ Jk
= JSi+J+Jds+Jyg+ J5+ Js.

Assume now that n(x) = n.(z) = min(1, %) Then, in order to be com-

patible with the trace assumption for n.(u, — K — k), p € D(Q) if k > 0,
» € D(]0,T] x D) otherwise.

Obviously,
lim J; = —E[lA/ [u(a) — K — k] T 0y dxdtda) — E[lA/ [u(0) — k] T(0) dx],
e—0 Qx]0,1] D
liné Jy = E[la / sgng (u(a) — K — k)[f(u(a)) — £(K + k)].V drdtdal,
e QRx]0,1]
liné J3 = —E[l4 / seng (u(a) — K — k)of' (K + k).VK dzdtdal,
- Qx]0,1]
hné Jy = 0 since f’ is a Lipschitz-continuous function,
lim J; = 0.
e—0
(a)—-K—k pr
Then, Jo = —E[la / [/ / f'(K + k + o)don'(r) dr].V dzdtda]
Qx]o,1[ Jo 0

vanishes as € goes to 07 thanks to the hypothesis on f’ and one gets that:
i) For any (k,p) € R x H'(J0,T[xD) such that k > 0 and ¢ > 0, and for
any (k,p) € R x [H*(J0,T[xD)] N L%(0,T; H} (D)) such that ¢ > 0,
0 < / {(u K — k)dp — [E(u) — £(K + k)}.w} dzdtda
{u>K+k}
+/ e div [ + k] dedtda + / (ug — k)T p(0,.)dz, dP — a.s.
{u>K+k} D

1.€.
0 < / {(u—IC—k:)+8t<p—F+(u,lC+k).V<p} dwdtdo

@x]0,1]

+/ sengd (u — K — k) divf[K + k] dedtda + / (up — k)T (0,.) dx, dP — a.s.
@x]0,1] D

where F't(z,y) = f(z) — f(y) if x > y and 0 else.
In the same way, one can prove
ii) For any (k,¢) € R x H'(]0,T[xD) such that k¥ < 0 and ¢ > 0, and for

11



any (k,¢) € R x [H'(]0,T[xD)] N L?(0,T; Hi (D)) such that ¢ > 0,
0 < / {(/C+k—u)8t<p— f(K+ k) —f(u)}.Vg&} dxdtda
{u<K+Ek}

- / e div [ + k] dzdtda + / (k —up)Tp(0,.)dr, dP — a.s.
{u<K+k} D

i.e.
0 < / {(’C+k_U)+8t<P—F+(/C+k’,u).V<p} dxdtdo
Qx]0,1]

- / sengd (K + k — u)p div £[K + k] dedtda + / (k —up)T(0,.)dx, dP — a.s.
@x]0,1] D

This proves that an entropy measure-valued solution exists.

One needs to use the uniqueness result to conclude that this Young measure
is associated to a function that should be the unique entropy solution. Moreover,
u belongs to L>°(0,T, L?>(Q x D)) and the strong convergence in LP would be
obtained too, for any p € [1,2[.

Remark: Note that, for any (k, ) € R x [H1(]0, T[xD)] N L*(0,T; Hi (D))
such that ¢ > 0, we also have

0 < / [[u—K — k|dyp — F(u, K + k). V| dedtdo
Qx]0,1]
+/ sgng(u — K — k) div £[K + k] dedtda + / |uo — k|¢(0,.) dz, dP — a.s.
Qx]0,1] D

where F(z,y) = sgny(x — y)[f(x) — £(y)] and sgny(z) =0 if x = 0 and Ta7 else.

3 Uniqueness

Let us denote by u; and us two admissible Young measure-valued solutions
associated to two initial conditions u; ¢ and uz .

3.1 Interior inequality

Consider ¢ in DT ([0, 7] x D) and G(t, z, s,y) = ©(s,y)pn(x — y)pi(s — t) where
pn and p; denote the usual mollifier sequences in R? and R, respectively, with
suppp; C [—%, 0]. We assume moreover that n and [ are large enough for G to
belong to D([0,T] x Dx]0,T] x D).
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Proposition 2. For any positive ¢ in H'(Q) N L?(0,T, H} (D)),
+
0 < FE (ul(t,x, a) — us(t, a:,ﬂ)) Oy dadtdad
Qx]0,1[

-F FT (ul(t,x,a),uQ(t,x,ﬁ)).Vgadxdtdozdﬁ
Qx]0,1[2

+/ (ULO - ’LLQ,())J'_QD(O) dz.
D

For convenience set p = (t,7,a), ¢ = (s,9,0), A = u1 — K, A=uy—K.
Since u; is a solution, for k = A(q), the following inequality holds dP — a.s.:

~ +
0 < [ (A -A@) G dpdg
Q2x]0,1[?
—/ Ft (/C(t,x)+A(p),/C(t,x)+[\(q)).vzadpdq
Q2x]0,12

[ s (80) - A@) 1K 2) + A0). VK () dpda
Q*x]0,1[?
Similarly, since wus is a solution, for &k = A(p), one has dP — a.s.:

. +
0 < [ (A -A@) .Gy
Q2x]0,1[?
[ (K + AG)K(s) + Al))-V,G dpdg
Q2%x]0,1[2
< sl (M)~ A@) 1K 0) + AV ) dd
Q2%x]0,1[2
b A0) = unal) (0.0~ p)n(~dpdy.
Qx]0,1]
Summing up the preceding two inequalities, we obtain
o +
o< | (A(p) ~1(9)) 01+ 2.)C dpdg
Q2x]0,1[2
/ K(t,z) + Alp), (¢, ) + A(q)) V.G dpdq
Q?x]0,1[2

-/ (5.9) + ), K(s.) + () .V, G dpdg
Q?x]0,1[2

_|_

/ GE'[K(t, ) + A(q)]. VL K(t, ) dpdg
{A(p)>A(a)}
Gf'|

/{/\(p >Aa)}

/ —un0 () 00, 9)pu( — y)or(—t)dpdy, dP — as.
Qx]o, 1[><D

"[K(s,y) + Ap)]-VyK(s,y) dpdg

+

13



For convenience, denote by A = {A(p) > A(¢g)}. Then we can rewrite the
preceding inequality as

L N (RS XO) MR AR
- /A (FIK(t,2) + A)] — () + A(0)]) VG dpdg
[ (0G5, + M) = £ (5.0 + A@))) ¥, Gl
+ [ G + ALK () dpdy — [ GETE(, )+ ALV, 0)

+ [ (A(p) = 120 (1)) (0, 9)pn(x — )1 (—)dpdy, dP —as.,
Q@x]0,1[x D
which yields

~ +

/Q o + A(p), K(5,0) + A(0))-Vyip(5,) ou(& — p)n(s — ) dpg
— [ (£ ) + AG) =~ 1K)+ A@)) Vapaa =) ol 9)or(s 1) dody

+ [ (80 (s,) + A £ (5,) + A@)])-Fapa o = ) o5, 5)p1(s — ) dpda
A

+/Gf’ (t,x) + Aq)]. VL.K(t, x)dpdq—/Gf (s,y) + A(p)].V4,K(s,y) dpdg
A

+/ —u2,0(y)) @(0,y)pn(x — y)pi(—t)dpdy, dP — a.s.
Qx]o 1[><D
i.e.

. +
0 < / (A(p) - A(Q)) 9sp(5,y) pn(x — y)pu(s — ) dpdg
x]0,1[2

Lo +AP)K(5,9) + M) Vypl5,9) pulx — )il — 1) dpda
+/ fK(s,y) + Ap)] — £[K(t, ) +A(p)])-Vzpn(x—y)w(say)pz(s —t) dpdyq
+/ fIKC(t, x) + A(q)] — F[K(s,y) + Aq )})prn(m —y) (s, y)pi(s — t) dpdq
+/ Gf'[K(t,z) + A(q)]. V.K(t, a:)dpdq—/ GI'[K(s,y) + A(p)].V4K(s,y) dpdq

A

+ — o) RO, Yl — vy, dP s
%10, 1[><D

= L+L+I3+1,+ 15+ Ig+ I7.

14



Thanks to the properties of Lebesgue sets, the following convergence holds:

+
lim lim E(l + 1) = E (ul(t,x, a) — uz(t,ac,ﬂ)> Oy dxdtdadf
n—ool— oo QX]O’1[2
-F FT (ul(t,x,a) usz(t, x B)) V. dxdtdadf.
Qx]0,1[2
Note that

I; = /A (/01 f'lui(p) + o(K(s,y) — K(t,x))] da).V,;pn(x — ) (K(s,y) — K(t,z)) x

xp(s,y)pi(s —t) dpdq
u1(p)+o(K(s,y)—K(t,z))
- / / / £ [n] dn) V.0 (& — ) (K(5,5) — K (1. 2) x

A(p)+K(s,y)
xp(s,y)pi(s —t) dpdgq

+ /Af/[IC(S, y) + A(p)]'van(x - y)(’C(Sa y) - ’C(tv x)) 90(5’ y)pl(s - t) dpdq
= Iz1+150.

Since f’ is assumed to be a Lipschitz-continuous function, one has the following
estimate

d
sal < IIf”IlooZ/A|5xipn|(ff—y)(/C(s,y)—’C(t,x))2w(87y)pz(8—ﬂdpdq.
i=1

Lemma 1. limsuplimsup |EI51] <0.

n— oo l—o0

Proof. Starting from the above inequality, using the classical properties of the
Ito integral, we deduce that

d
|EIzq] < [|f"||eo ZE/Q2 10, pn|(z — ) (K(s,y) — K(t,2))* o(s,y)pi(s — t) dedtdyds
i=1

IN

d
DI / Oespal(z — ) (K(5.9) — K(8,9))? 5 — ) dadtdyds

+CZ E/ 10z pnl (2 = y) (K (t,y) — K(t,2))? pu(s — t) dedtdyds

IN

t
OZ / O nl(e =)o [ h(o.9)? dop(s — 1) dedyds

+CZ/ |6w pnl(z — y)/o [h(o,y) — h(o,2)]? do dxdtdy

15



Thus, one has that

t
EL,| < C(n) / / R(0,y)? dopi(r) dydtdr
DxR2 Jt+r
e /
Z R2d x]0, T

n)// // h(t + o,y)? dydt dop(r) dr

+Cz /wx]o T

Wl [ [ dontr)ar

—|—C’Z/ |02, pr|(2 / / (0,2 + 2) — h(o, x)]? do dzdtdz
R4 x]0,T'[

C(n), - _
< Mg + ey IR A———
1=1

|0z, pr| (2 )/0 [h(o, 2 4 2) — h(o,z))? do drdzdt

IN

|02, | (2 )/0 [h(o,x + 2) — h(o,2))? do dadtdz

IN

and the assertion of the Lemma follows. O

In a similar way,

o= [ ([ Pl + olK0) = K5, de) Vap o = ) ({0 2) = K(s.9) %
x@(s,y)pi(s —t) dpdq
uz(q)+o (K(t,2)—K(s,y))
- [([ ] £ [5) dn) Vapn(x — ) (K1) ~ K(s5,3) x

K(t,2)+A(q)
xo(s,y)pi(s — t) dpdgq

+ /Af'[/C(t ) + M) Vapn(z — y)(K(t, ) — K(s,9)) (s, y)pu(s — t) dpdg
= L1+ 1.

Since f’ is assumed to be a Lipschitz-continuous function, one has the following
estimate

d
Tal < 1 X2 [ 100l = 0)(KCs.9) = Kit.2))? ol u)on(s 1) dodg

and, in the same way as for El3, we can prove

Lemma 2. limsuplimsup |El, 1] <0.

n— o0 l—oo
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Next, note that,

hatls = [ els.nnts =0 +AG) x
X[Vapn(z —y)(K(s,y) — K(t,2)) — V,K(s,y)pn(z — y)] dpdg
== [ el sls = OFIC(5,0) + ALY, (o = 9) (5,) = K(t,2)] i
and that
atly = [ elspnts—0rK.o) + ) >
X[Vapn(z —y)(K(t,2) — K(s,9)) + Vo K(¢,2)pn(z — y)] dpdg
= /Acp(s, y)pi(s = F[K(E 2) + A(@)].Valpn (@ — ) (K(t,2) — K(s,9))] dpdq.

Thus,
Iso+1Ig+ 142+ I
- /A (s 9)o(s — FIK(E,2) + M@ Valpn(x — 9)(K (¢, 2) — K(s,9))] dpdg
- /A (s, y)pils — OF[K(s,9) + Ap)]. Yy lpn(x — 9) (K(s,y) — K(t, 2))] dpdg
= /A o(s,9)pi(s — F[K(t, 2) + Aq)]- Valpn(z — y) (K, x) — K(s,y))] dpdg
4 /A (5,915 — D (5, 9) + AW)]. Ty oz — y)(K(t, ) — K(s,))] dpdg
- /A (s, m)auls — DFC(E ) + Adg)] x
% [Vylon (e = ) (K1) = K(5,9))] + Velon(w — ) (K(t,2) ~ K(s,))]] dpdg
+ [ elsanls =0 [FIC() + AW = 1K 2) + Aa)]]
Xy [pn( — 1) (K(t,2) — K(5,))] dpdq
= Ji+Jo
Note that
|1

= | [ el O8I0 2) + A [VaK(t,0) = T,K(s,)]alx ~ ) dod
A
< ¢ [ wls.pnls = 0)lt) + A + 1[92t 2) ~ VKl v)lon(s ~ o) dpdg
A
since f’ is a Lipschitz-continuous function.

Lemma 3. limsuplimsup |EJ;| <0

n— oo l—o0
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Proof. Note that one has:

|EJi| <

IN

IN

IN

<

CE/API(S — )|V K(t, x) — Vo K(s, 7)| [VC(WU) +A(g)| + 1} pn(z —y) dpdg
+CP [ 19.K(5.2) = 9K (s, [[K(t.2) + Ao+ 1] ol = u)pr(s = 1) dod
cif pl(s—t)/ Vo h(o, )2 do dedtds]
, A .
<(E [ s = pule ~ ) [IK(t.2) + o) + 1] dpdg?
A
+C[/sz]0T / |V.h(o,z) — Vyh(o,y)|* dopn(z — y) dadyds]? x
<(E [ s = pule ~ ) [IK(t.2) + (o) + 1] dpdg)?
A
| /D ) /t+ V. k(o )2 do dedtdr]
) h — h g, T z 2 g z xraz S%
+C[/R2dx]o:r[/ |Veh(o,xz) — Vyh(o,x + 2)|° dopn(2) dedzds)]
0
C[/D RZpl(r)/ \Voh(t + o,2)| do dudtdr]?

+C’[/ pn(z)/ //\VJL(U,J;)—Vxﬁ(o,x+z)|2dadxdsdz]%
R4 10,7[ /R Jo

(o - - 1
\TZHhHLZ(R,Hl(Rd)) + C[/]Rd [IVA(.,.) = Vh(., .+ Z)H2L2(0,T,L2(Rd))0n(z) dz]?.

Therefore, limsup limsup |EJ;| < 0 thanks to the continuity of translations in
n— 00 l—o0
Lebesgue spaces. O
Moreover,

o= [ et~ 0[E 1K) + AG) - FKED) + )
A

X

—

XVylon(z = y)(K(t, x) — K(s,y))] dpdg

= Aw@@m@—ﬂ@hﬂﬂ+ﬂ&w—K@@%4WMM+KUM K(t,2)]] x

Vylon(z = y)(K(t, 2) = K(s,y))] dpdg
[

+/w@wM@—ﬂF[()+Kﬁy) K(t,)] = £us(a) + Kt ) = K(s, )] %
A

Vylon(z = y)(K(t, 2) — K(s,y))] dpdg

)
+Ap@wm@—ﬂk[<>+Kum (s, )]~ £'lua(a) + K(1,2) = K(5,9)]] x
)

Vylpn(z —y)(K(t, z) — K(s,y))] dpdq

= Jo1+Joo+ Jos.
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Then, one has that
|J2,1]

< 1[I0 /Q @5, 9)ouls = OIK(s, ) — Kl )| [V lon(x = 9) (K(t,2) — K(s,))]| dedtdyds
< 1[I /Q (s, m)ouls = K5, ) = Kt ) IK(E,2) = K(s,9) [V ypa — y)| dadtdyds
1 lloe /Q @l = DIC(s,y) — Kt ) a0 = )]V, K(s, )| dadedyds.

Thus,

Lemma 4. limsuplimsup |EJo 1| <0

n— oo l—o0

Proof. Indeed,

0 < E/Q2 e(s,y)pi(s — 1)K (s,y) — K, y)|[K(E, z) — K(s,9)|[Vpn(z — y)| dedtdyds
1
< JE /Q s )il — (s, ) — K(ty) |V pu(w — y)| ddidyds
1
+5B /Q2 o(s,y)pi1(s — K (t, x) = K(s,9)*|Vpn (2 — y)| dedtdyds,

and the terms on the right tend to 0 as first [ then n tend to 400, as has been
shown already in the study of integral I3 ;. Moreover,

E /Qz o(s,y)pi(s — VK (s,y) — K(t,y)|pnlz — y)|VyK(s,y)| drdtdyds
< [B /Q2 o(s.9)pi(s — BIK(s,y) — K(t,y)*on(z — y) dedtdyds)? x
X[E /Q s, m)oils = Ople — )V, Kls,y)|? dodedyds]
< [EB /Qz o(s,9)pi(s — K (s,y) — K(t,9)[>pn(e — y) dadtdyds)z C||K(s, )| | L2 x0)

a term of the same nature as the one studied already in connection with EJ;.
O
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Next, observe that

|23l < (1]l /QQ e(s,y)pi(s — 1)K (s, y) = K(s,2)[ [Vy[on(x — y) (K(t, 2) = K(s,9))]]
dxdtdyds

1" oo /Qz e(s,y)pi(s — 1)K (s, y) — K(s, 2) ||, 2) = K(s, y)[[Vypn(z = y)]
dxdtdyds

o /QQ e(s,y)pu(s — 1)K (s,y) — K(s, z)|pn(x — y)[VyK(s,y)| dxdtdyds,
and thus, we can prove

Lemma 5. limsuplimsup |EJz 3| <0

n— oo l—o0

Proof. Indeed,
0 < B /Q (s, w)s = OIK(s, ) = K(s, 2) K6 2) = (s, ) V(& — )| dededyds
< 3B /Q ol w)(s — OIK(s, ) = K(s,2) PV ypae = v)| deddyds
+3E /Q o5, uuls — DI 7) — K (s, )V ypn(e )| dededyds,

whose limits have been studied in the treatment of integral I3 ;.
Moreover,

E /Qz o(s,y)pi(s — |K(s,y) — K(s,2)|pn(z — y)|VyK(s,y)| dedtdyds

Nl

< [E /Q2 (s, y)pu(s — 1)K (s,y) — K(s,2)[*pn (2 — y) dudtdyds)
x[E /Qz o(s,9)pi(s — )pu (e — y)|VyK(s,y)[* drdtdyds)
< [E /QZ (s, y)pi(s — 1)K (s,y) — K(s,2)|*pn(z —y) da:dtdyds]%C((p)HlC(& Wl r2@x0)

whose limit is similar to the one studied in the treatment of integral EJ;. O
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Since G(t, z,.,.) € D([0, T[x D), by Gauss-Green, one has that
Joo = / F't [ul(p) + K(t,y) — K(t,x),uz(q) + K(t,y) — K(s,x)} X
(Q@x]0,1[)2
x@(8,y)pi1(s = )Vy[pn(x —y)(K(t, x) — K(s,y))] dpdg
- / (5 9)p1(5 — D)V [pnl — 9) (Kt 2) — K(5,9)] X
(@x]0,1[)2
B [ (p) + Kt ) = K(t,2), wala) + Kt y) — K(s, )]
—F'* [ur(p), uz(t, @, 8) + K{t,2) = K(s,)| } dpd
[ s = Dl — Ut 2) — K5IV (i) %
(@x]0,1[)2

x F'T {ul(p), uz(t,m, B) + K(t, ) — K(s, a:)} dpdq

Since f’ and F'* are Lipschitz-continuous functions, with a Lipschitz-constant
C' depending on ||f”|| o,

oo < C QMO1[w(s>y)pz(s—t)IVy[pn(w—y)(’C(w)—’C(S,y>)]|><

< {2AK(ty) ~ K(t2)| + Juzla) — wa(t, @, B)|} dudtdydsd3
e [ s = Dol — )IK(t) - K(s,p)] X
(@x]0,1[)2

X|u1(p) — ua(t,x,B) — K(t, z) + K(s, z)| dpdq.
Now, we can prove

Lemma 6. limsuplimsup |EJz 2| <0
n—oo l—o00

Proof. On the one hand, the last integral vanishes since it is lower than
CL[  orls = pula = pIK(t2) — Kls. ) dudedyds]
QZ
<[ s = Opale = pllur(p) — ualt,n,5) ~ Klt,) + Ks,2) P dpdg).
(@x]0,1])?

On the other hand, the first part of the first integral is similar to the one already
studied with Js 3, so we concentrate on

E ol o(s,9)pi(s — 1)|Vyl[on(z — v) (Kt ) — K(s,9))]|[u2(q) — ua(t, z, 8)| dzdtdg
< E/ o l[so(s,y)m(s —)|Vypn(z — y|IK(t,2) — K(s,9))||uz(q) — ua(t, z, B)| drdtdq

i / 25,9105 — Dpu(@ — ) VyK (5, 9)lluz(g) — us(t, z, B)] dedtdg (4)
Q2?x]0,1]
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As to the first term on the right, since |Vp,(z)| = %pn( ), one gets that

E/ e(s,y)pi(s — 1) Vypn(z — y)|[K(t,2) — K(s,y))[|u2(q) — uz(t, x, B)| dxdtdg
Q2x]0,1]

< 4E o(s,9)pi(s — t)pn (@ — y)|uz(q) — ua(t, z, B)[? ddtdg)? x

Q2%x]0,1]
ntlz —yl?

{ [ et =0 et~ 9

— K(s,2))|? dedtdyds)?

ntlx — y|? .
+[E /QQ o(s,y)pi(s — ) [z — | (@ — y)|K(s,2) — K(s,9))|? dmdtdydsp}

(In(z —y)[* = 1)
= 4A-B

Note that, if one still denotes by uo the same function extended by 0 outside Q,

we have

A < [E pl(r)pn(z)/ |U2(t+T,ZL’+Z7ﬁ) _u2(t1xaﬁ)|2dxdtd2drdﬂ]%v
Rd+1 R’H'l

which tends to 0 thanks to the continuity of translations in the Lebesgue spaces.

Let us prove that B is bounded. In order to do so, note that

ntlz —yl?

— — t 2(o,z) do dz 5|2
B Clf nls-tg ) [ o) do dedidyas

iz — 2
+C[/zpl(5t)(|n(xly)|2y| 4pn N /'hax (e

) |? do dzdtdyds)?

< 0[/ <>/ e AP pute )y [ (o.0) do drdvir]
r n o, z) do dxdtdr]?
= o™ o e =y i TP
+C 42|Z|2 7 /|hcr:c crx+z))|2dadxdzds]%
Rde]OT[(\nz| —-1)
¢
< n’C pl(r)/ h?* (o, x) do dxdt dr
D xR?
ntz?
+C’/ o 4p z/ / (o,2) — h(o, 2 + 2))? do dxds dz
e (Inz]? — R4 x10,T[
<

n*C Pl(r)/ h3(t + o,z) do dxdt dr
D xR?

4|Z|2 2
+C o (a2 = 1)1 pn ||h )5 ey |2|" dodsdz

n2C 4|z|4
< E sy + C / e

Therefore, limsup B becomes uniformly bounded with respect to n

l— o0
result holds.
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As to the second term on the right of (4), if one still denotes by us the same
function extended by 0 outside @), one has that

E / . o(s,9)p1(s = t)pn(z — )|V K(s,y)||uz(q) — ua(t, x, B)| drdtdydsdf

< 1| s n)(s —0ou(e— DIV Ko, ) drdiyds) »
x|E | [gp(s, Y)pi(s — t)pnlx — y)|ua(q) — ua(t, z, ﬁ)|2 dmdtdydsdﬁ]%.
Q2x]0,1
< OlIKlZ2ax0) X

X [E/ p1(1)pn(2) / lua(t + 7,2+ 2, 08) — us(t, x, ﬂ)|2 dxdtds dzdr]%.
Ri+1 Rd+1x]0,1]

Again, the result follows from the continuity of translations in the Lebesgue
spaces. O
Finally, let us show

n—oo l—o0

Lemma 7. limsuplimsup |El7| < / (1,0 — u2,0) (0, z)dz
D
2
Proof. Denote by ¢(t,z,y) = [, pi(—r)drp,(z—y)p(0,y) = Jint(e,2) P(=T)drpr (2=

y)p(0,y). Since it is a non-negative function of D([0,T[x D) for any y in D as
soon as n is large enough, and as u; is a solution, one gets that

[ (A= unalo) o-0pne — y)e(0.0)} dpdy
DxQx]0,1]

%
S/ / m(*r)dT{ — FH K4+ AK+us0(y)).Vou(z *y)w(O,y)}dpdy
DxQx]0,1[ Jinf(¢,2)

T
4 / / pr(=r)drpn (i — 1)(0, y)seni (A — wz o(y)) div £[KC + s, (y)] dpdy
DxQx]0,1[ /i

nf(t,?

=~

+ [ twnole) = unae)* [ (=rdrpu(z = )e(0.9) dady.

Thus,
limsup limsup E {(A =20 (0)) i (=D)pnle — 1)(0,9) } dpdy

n— 00 l—o0 DxQx]0,1]

S / (ul,O — U270)+(p(0, ) dl‘
D
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3.2 Global inequality
Proposition 3. For any positive ¢ in H*(Q),

+
0 < FE (ul(t,x,a)—uQ(t,m,ﬂ)) Oy dxdtdadf
Qx]0,1[

fE/ Ft (ul(t,z,a),UZ(t,a:,ﬂ)).ch dzdtdadﬂJr/ (1.0 — u20) " (0) da.
Qx10,1[2 D

Following J. Carrillo[6, 7, 8], choose a partition of unity subordinate to a
covering of D by balls B;, i = 0, ..., k satisfying By N 8D = (), and, for i > 0,
B; C B} with B} N 9D part of a Lipschitz graph.

Consider ¢ in D ([0, T[xR?) with suppy C B := B, for some i > 0.

Moreover, we choose a sequence of mollifiers p; in R with suppp; C] —2/1,0[
and a sequence of mollifiers p,, in RY such that y — p,(y — ) € D(D) for
all z € B3, 0,(y) = Jp pn(y — x)dzx is an increasing sequence for y € B, and
on(y) =1 for any y € B such that d(y, R4\ D) > ¢/n (with ¢ = C(i) depending
on B). Denote G(t,x,s,y) = ©(s,y)pn(y — x)p1(s — t).

Note that, for I, n sufficiently large, (t,z) — G(.,.,s,y) € D(]0,T[xD) for
any (s,y) € Q, and (s,y) — G(t,z,.,.) € D([0,T[xD) for any (t,z) € Q.
Moreover, the function

Gulss) = [ Gltaos,)dndt = o(s.) [ paly=addo [ pi(s=t)dt = pls.0)o(w)
Q D 10,7[
satisfies: G, € D([0,T[xD), 0< G, <Gpy1 < .
Therefore, a non-negative Borel function 1 exists such that the monotoni-
cally increasing sequence G,, converges to ¥ everywhere in B and 0 < ¢ < ¢.
For convenience set p = (¢, x,a), g = (s,y,8), A = u; — K and A=uy—K.

Since k = At (q) > 0, using that u; is a solution and G(t = 0) = 0, dP —a.s.

3For every i = 1, .., k, depending on the local representation of the boundary of D in B; as
the graph of a Lipschitz function, we can construct a vector 7; € R? such that the translated
sequence of mollifiers pn(z —y) = pn(z —y — %m) satisfies that y — pp(z —y — %m) € D(D)
for all x € B = B;, where p,, denotes the standard mollifier sequence, see J. Carrillo[6] or V.
Girault[16]
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leads to

0

IA

/ (A) ~A* (@) 2.Cdpdg
2x]0,1[2
- / Fr (IC(t, )+ A(p), K(t, z) + A+(q)) V.G dpdg
2]0,1[2
[ G (M) - A @) 1K) + A7 (). V.K(2) dpdg
Q2x]0,1[2
- / (A+ (p) — A+(q))+8tG dpdq
2x]0,1[2
-/ D A0, K ) + 4 @) 9. i
2x]0,1[2
# [ G () = A (@) 2) + A (@)].VK (e ) dpda
2x]0,1[2

Using that us is also a solution, with k = A(p)™ and y — G(t,s,x,y) €
D(D), one gets, dP — a.s.,

A +
0 < /MOJP <A+(p)fA(q)) asded“/QXm[/D(A*(p)uz,o(y))+G(t,x,o,y)dydp
[ P (K + A 0).K0) + A(0))-,G dpdg
Q*x]0,1[?
[ G (M)~ AWK 0) + A ()5, Ks,y) dpda
Q*x]0,1[?

Next note

Lemma 8. For any real a, b and c,

(@ =" = (a=b")"+(=b)" =(a" =b")" + (=),
Ft(c+at,c+b) = Ff(c+at,c+b")+F(c,c+b).
fllc+a ety = £()p<oy + ' (c+a )t cary — () fp<o<a)-
Therefore,
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< [{{(x ) - A7 @) 0.6~ F* (K(s.) + A" (0). K(5,9) + A (0)) .V, } dpdg

2 ,1[2

[ s (A 0) - @)K 0) + A ()-,K (5. 0) dpdg
Q?x]0,1[?

Q
X
S

+
@\

/ (A* (p) — w20 ()G (t, 2,0, y)dydp
x]0,1[ /D

+/Q y {(0 - A(Q))+8SG _Ft (IC(S, y) +0,K(s,y) + A(q)> .VyG} dpda

QICRC ) 0.6~ F* (K(s.0) + A (). K(5,9) + A7 (0)).V,C ) dpdg

O

2
@\*m
><
O
,:

Gy (AT () = A% (0) )£ 1K(5. ) + A™())-V, K s, ) dpdg
+/ / — uz,0(y)) T G(t, 2,0, y)dydp
Qx]0,1[JD
/ 0 A( q To.G— Pt (IC(s,y)+O,K(s,y)+A(q)>.VyG} dpdg
Q?x]0,1[2

0~ A@)) 'K (s, 9)]-V, K5, y) dpdg

F*(K(s,y) + A" (0), K(s,9) + A* () ).V, G } dpdg

(
+/Q ol G sgng (A )sgno (0 f\(q))f’[lC(&y)]-Vy’C(&y)dpdq
) .G -
Q2x]0,12

(

A (p) = A (@) [C(s, ) + A (p)]- VK (s, y) dpdg
o + ~
0 A@)) .Gy — F*(K(s,9) +0,K(s.9) + A(q) ).V, G L d

+/QX]01[{( (q)> ( (s,9) +0,K(s,9) + ((I)> } q
7/ Grsgnd (O fA(q))f’[lC(s,y)].Vle(s,y) dq

Qx10.1[
+/ GI'[K(s,y)].V4K(s,y) dpdg

{A<0<A}

/ / (AT (p) — u2,0(y)) T G(t,x,0,y)dydp
Qx]0,1]

_ /{ (A" ()~ A (g )) 0.G — F* (K(s,9) + A* (), K(s,) + A* (0))-V, G } dpdg
Q2x]0,12

[ G (A ) - At ))f[K(s,y)+A+(p)].Vle(s,y) dpdg
Q2x]0,1[2
/ / [(A™(p) — uz,0(y (0 — ug,0(y))F1G(t, 2,0, y)dydp
Qx]0,1[

+/ < fig ,Gn >dﬂ—|—/ GI'[K(s,y)].V4K(s,y) dpdq.
0 {A<0<A}



Therefore, with the first inequality, one gets that

0 < /QQX]OJP [(30) A7 @) @, +8)G } dpdg
- /sz]o,l[z {F+ (’C(&y) + AT (p),K(s,y) + A+(q)).vyc
+F* (Kt ) + A4 (9), K(t @) + A7 (0)) V.G | dpdg
+/sz]o,1[zGSgn°+ (A+(p) fﬁ(q)) [f’[iC(t,x) + A (q)].V.K(t, z)
—f'[K(s,y) + A+(p)].Vy/C(s,y)} dpdg

1
[ <iniGamast [ 100 0) — ukol) Gt 0. p)dydp
0 (/D

Qx]0,1
+ / G (s, ))-V, K (s, y) dpdq.
{A<0<A}
i.e.

0 < /622 o {(A+(P) - f\*(q))*@sgp(s,y)pn(y —z)p(s — t)} dpdq
_/ Ft (’C(&y) + A+(p),IC(s,y) + A+(q))-vy§0(3, y)pn(y _ x)pl(S _ t) dpdq
Q2?x]0,1[2

F (K(s,9) + AT (0), K(s,9) + A (@) ) 9(5,9) Vypuly — 2)pu(s — 1) dpdg

2x]0,1[?

+ F* (/C(t, x) + AT (p), K(t, x) + A*(q)) ©(5,9)Vypnly — x)pi(s — t) dpdgq

T~g

2x]o,1[?

+ G sgng (A (p) = A*(9) ) |F'IK(t,2) + AT (q)]. Vo K(t, )
/2 10,1[2 (
—f'[K(s,y) + AT (p)].V,K(s,y)| dpdg

1
+/ < fig,Gpn > dp+ [/ [(AT(p) — u;()(y))JrG(t,x,O,y)dydp
0 D

Qx]0,1

# [ GEIRE.w)V,K (s v) dpda.
{A<0<A}
1. First, the Lebesgue set properties ensure that

lim lim [E / s ont {<A+ (p) — A*(q))+85s0(s, Y)on(y —x)pi(s — t)} dpdq

n—ool—o0o
B[ P (K + A 0Kl 0) + (@) Dyl 0)paly — 2)ou(s — 0 dpd]
Q2x]0,1[2

- E (AT — AT) T 9, — F* (/C+A+,/c+[\+).w} dpdp.

Qx]0,12 {
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2. The expectation of the third and the fourth terms vanish following the
same arguments as the one proposed in the previous section.

3. Then, since fi; is a Radon measure in R?*1, the theorem of monotone
convergence ensures that
1 1
lim lim <ﬂg,Gn>dﬁ=/ < fig,¥ > dp.
n—ool— oo 0 0
T 2
4. Denote by ¢(t,z,y) = [, pu(=r)drpn(y—2)@(0,y) = [iir, 2y pi(=r)dron(y—

x)¢(0,y). Since ¢ is a non-negative function of D([0, T[x D) for any y in
D as soon as n is large enough, and as w; is a solution, one gets that

[ @) ot — e(0.0)} dody
DxQx]0,1]

= [ {0 @) a-paly — 2)0(0,1) } dpdy
DxQx]0,1]

A

</ [ e = PR+ ALK 5 (0) Dyl — 2)0(0.9) | dpdy
DxQx]0,1[ /i

nf(t,%)

+/ / pi(—r)drpn(y — )0, y)sgng (A — uz o (y)) div £[K + uz,0(y)] dpdy
DxQx]0,1[ Ji

2
nf(t,$

+ [ twnole) = o) [ (=rdrpaty = )p(0.9) dody.
Thus,

fimsup limsup £ [ {0~ ufo(0)" pi(~1)p(y — )p(0,8) } dpdy
DxQx]0,1]

n— oo l—o0

< / (w10 — u3,0)T(0,.) dz = / (ufp —uz,0) T (0,.) dz
D D
5[ G0V K)o
{A<0<A}

= / Leacg <oy 1K (s, ).V K(s,9)e(s, y)/ Liay>0ypi(s — t)pn(y — x) dpdq
@x]0,1] @xJ0,1]

— H{A<O<A}f'[IC].VICapdpdﬁ,

l—o0o,n—00 Q@x]0,1[2

Therefore we may conclude

0 < E {(A+ —[\+)+at<p—F+(/C+A+,K+A+).w} dpds3
Qx]o,1[2
1
+/ < fig,¥ >dB+ E/ f'[K].VKp dpd3 Jr/ (ufy — u3o)T(0,.) da.
0 {A<O<A} D
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Now, repeating the same arguments with u; replaced by —uso, us by —uq, £
by —f(—.), h by —h and for the initial conditions —us ¢ and —uq 9, lead to the
inequality:

0 < E o ([r—A*)+atgp—F+(/C—A*,/C—A*).wdpdﬁ

1
+/ <pd i >da—E Gf'[K].VK dpd3 + / (uzo —ur o) Te(0,.) da.
0 D

{A<0<A}

Summing up these two inequalities, one gets that
0 < E/ {(A—A)*@tgo—F*(IC+A,IC+[\).V¢} dpds3
Qx]0,1[?

1 1
+/ <ﬂa,w>dﬁ+/ <Mg,’¢>d0&+/ (’U,l,()—’u,g’o>+(p(0,.) dx.
0 0 D

Remind that (¢om)m C D([0,T[xD) with ¢o, = @ono, for m large
enough.
Thus, on the one hand, thanks to the proposition 2, one has that

+
0 < E (ul(t,x,a) —uQ(t,a:,ﬁ)) Oyp0, dxdtdad
Qx]0,1[2

-F Ft (u1 (t,x,a),uQ(t,m,ﬁ)).V[goam] dxdtdadf.
Qx]0,1[2

On the other hand, one has
0 < FE {(ul(t, z, ) —ua(t,z, B)) (1 — o) —
Qx]0,1[2

Ft (ul(t, z,q), us(t, x, 5)) Vgl — am)}} dpdg

1
[ <gw-an > s [ <ud o=, > da
0 0
+/ (u1,0 — u2,0)+<,0(0a35)(1 — o) dz.
D
Thus, for any n,

0 < F {i(t.2,0) —w(t,2,9) 0
Q@x]0,1[2

—F* (ul(t7 z,a), us(t, x, 6)) .Vgp} dpdf3
1

1
+/O <ﬂa,w(l—am)>dﬂ+/0 < pd (1 —0oy) > da

+ /D(ULO —u2,0)T(0,2)(1 — 0y,) da.
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Since G, (1 — o) = @o, — Yoo, = 0 for m large,

1
/0 < jg (1 — o) > dB

= lim {(0 - A(q)>+8an(1 —Om)

e JQx]0,1]

—FH(K(s,9) + 0,K(5,9) + Ma)) .V, [Gn(1 = 0,0)] } da
<[ Gal = asend (0 A@)EIK(s ), K5, ) do
Q@x]0,1{

+/D(—u0)+Gn(O,w)(1—am)daz
= 0.

Then, using the partition of unity, the result holds.

3.3 Uniqueness of the measure-valued solution, existence
of the solution

Proposition 4. The measure-valued solution is unique. Moreover, it is the
unique entropy solution.

Proof. Since for any positive ¢ in H(Q),

+
0 < FE (ul(t,x,a)—uQ(t,x,ﬂ)) Ovp dxdtdadf
Qx]0,1[2

*E/ F+ (ul(tv z, a)ﬂ u2(ta z, ﬂ)) VQD d:cdtdadﬁ + / (ul,O - U270)+90(0) dl’,
Qx]0,1[? D
if u; o = ug,0 and p(t,z) =T —t, one gets that

+
0 > FE (ul(t,x, a) — m(t,a:,ﬁ)) dxdtdadf,
Qx]0,1[2
and, by permutation of the solutions,
+
0 > FE (uz(t,x, a) — ul(t,m7ﬁ)) dxdtdad]3.

B Qx]0,1[2

Therefore, on the one hand, the uniqueness of the measure-valued solution is
proved and, on the other hand, u; (¢, z, o) = us(t, x, 8) for a.e o and § ensures
that the solution does not depend on « or 3. O

Proposition 5. Moreover, entropy solutions satisfy a comparison and a con-
traction principle:

1. If ur0 < ugp then uy < ug a.e. on Q, a.s. on §).
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2. E/ |U1 —’U,2|d$dt S/ |’U,1’() —u2,0|de’.
Q D

Proof. The first part of the proposition is proved in the same way as Propo-
sition 4.
For any positive ¢ in H'(0,T) with »(T) = 0, one has that

T
0 < / E/ (uy — uo) ™ day dt +/ (u1,0 — u2,0) T (0) dx
0 D D
T
= / E/ [(ul — u2)+ — (ul,O — u2’0)+] d.ﬁg@/ dt,
0 D
and the second assertion follows. O

3.4 A remark about locally Lipschitz f

Assume in this section that f is merely a locally Lipschitz-continuous function
with a Lipschitz-continuous derivative f’. Then, one has in particular:

1. 3C(f) > 0,Vx € R, |fi(z)] < C(f)(x? + 1) for any i € {1,..,d}.
2. By Sobolev embedding, Vw € H(D), f(w) € [LP(D)]? for some p > 1.

3. By truncation arguments, Vw € H(D), f'(w)Vw € LP(D) for some p > 1
and the chain rule holds: divf(w) = ' (w)Vw.

In this case, the definition of a solution has to be slightly modified in order to

give sense to the integrals: the test-functions ¢ need to belong to D(Q) instead
of HY(Q) or to D([0,T] x D) instead of L?(0,T; H}(D)).

The result of uniqueness holds in the same way with such f, as well as the
main part of the demonstrations of the existence section. If one assumes again
the existence of the solution to the viscous problem (2), it remains to prove
the property of uniform integrability of the sequence (f(u,)) needed when one
passes to the limit in the first term of I3, in (3). The aim of the following
lemma is to propose two different possible assumptions for that.

Lemma 9. If one of the following assumptions holds:

H3 36 €)0,2[, 3C > 0, such that Yz € R, |f(z)] < C(|z]° + 1)
or

H, Jpo > 2, h € LP(0,T; HY(D)) and uo € LP°(D)

then, (f(uy)) is uniformly integrable.

Proof. If Hj is assumed, the sequence is uniformly integrable since it is
bounded in L3 (J0, T[x x D) with 2 > 1.
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If Hy is assumed, thanks to the Sobolev embedding, there exists 2 < p < pg
such that h € LP(Q) and ug € LP(D). Then, for any positive M, Ito’s formula
leads to

/¢>Mun ) dx < E//h%Mun dxderE/ bar(ug) de

where ¢ (t) = p(p — ‘tl fo inf(M, 0P=2)dodr. Thus, one gets that

E [ 6x(un(®) do
D
1 ¢ p— 2 ¢ . _p_
< -F h? dxds + ——F inf(M72 |u,|P(s)) deds + [ |ug|? dx
P Jo Jp 2p o Jp D

< C—i—CE/Ot/quM(un(s)) dads.

Then, the lemma of Gronwall and the theorem of Beppo Levi ensure that (u,,)
is a bounded sequence in L>(]0,T[; LP(2 x D)). Since for any real z, |f(z)| <
C(f)(z* + 1), the result holds. O

4 A basic reminder of Young measures

In this section we recall some basic facts on Young measures and refer to E. J.
Balder[3], Ch. Castaing et al.[10], R. Eymard et al.[14], E. Y. Panov|[23], M.
Saadoune et al.[25] and M. Valadier[26] for more information.

Consider the space L'(Q, u, R) where (Q,F, ) is a measure space with a
positive bounded measure .
For u in L*(£2, u,R), the Young measure associated with u is 7, the measure
on Q x R image of u by z — (x,u(x)).
A general Young measure 7 is a positive measure on 2 x R such that, for any
Ain F, 7(A x R) = p(A).
A Young measure 7 is described by its disintegration which is the unique family
of probabilities on R, (d7,)zcq, such that for any 7—measurable function ¢ ,

T / Y(x, A) dr;(\) is p — measurable on 2 and
R

; ) |
to=0, [ war /Q /R B, ) drs (V) u(da)

Therefore, if 7 = 7, is the Young measure associated with the above function
u, then 7, = d,(y), the Dirac mass at u(z).

Another way to define Young measures on €2 x R is to consider the notion
of entropy process proposed by Th. Gallouét[14] or E. Yu. Panov[23]. For a
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Young measure 7 on 2 x R and F), the repartition function of 7., one considers
the function w, defined in 2x]0, 1[ by :

u(z, ) = inf{t € R, F,(¢) > a}.

It is a p x £ measurable function on £2x]0, 1[ and for any positive Carathéodory
function 1,

[ var= [ [ oy amoyuan) = [ [ vt ) do pta

A sequence of Young measure (7"),, is said to converge narrowly towards
7 if [, g% dr" converges towards [, % dr for all bounded Carathéodory
function .

Consider now (u,), C L'(Q, u,R) and denote by 7" the associated Young
measures.
If the sequence (uy), is assumed to be bounded in L!(f2), the theorem of Pro-
horov for Young measures (E. J. Balder[3], M. Saadoune et al.[25] and M.
Valadier[26]) ensures that a sub-sequence (7"*); of (™), and a Young mea-
sure 7 exist such that 7% converges narrowly towards .
Moreover:
i) for p-a.e. = in Q, supp(dr,) C N2 Un>p{un(2)}
ii) for any Carathéodory function ¢ such that the sequence of functions {1 (., un(.)) }n
is uniformly integrable,

/Q o un(@) pldz) — [ oA dr

QxR

(if the sequence (uy, ), is uniformly integrable, the above convergence still holds
if one assumes that [1(z, \)| < a(x) + k|A| where k > 0 and o € L1(Q)).

iii) for any measurable function v, l.s.c. with respect to its second variable and
such that {¢(.,u,(.))” }, is uniformly integrable,

lim inf /Qz/)(m,un(x)) p(dx) > Y(x, A) dr.

n—oo QxR

As a consequence, if u,, converges weakly to some u in L', it converges strongly
to w in L', if and only if 7" converges narrowly to 7,.
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