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Abstract

Under some non-degeneracy condition we show that sequences of entropy
solutions of a semi-linear ultra-parabolic equation are strongly pre-compact in
the general case of a Caratheodory flux vector and a diffusion matrix. The proofs
are based on localization principles for the parabolic H-measures corresponding
to sequences of measure-valued functions.

1 Introduction

Let €2 be an open subset of R™. In the domain 2 we consider the semi-linear ultra-
parabolic equation

divip(z,u) — D* - B(z,u) + ¢(z,u) = 0, (1)

where D?-B(z,u) = E)gim], bij(z,u), u = u(x) (we use the conventional rule of summation
over repeated indexes), B(z,u) = {bj(z,u)}},—; is a symmetric matrix. We shall
assume that the components of this matrix are Caratheodory functions: b;;(x,u) €
L (Q,C(R)), i,j = 1,...,n. This means that b;;(x,u) are measurable with respect

to x, continuous with respect to u, and |n|1ax |bij(z,uw)| € LE.(Q) VM > 0. In this case
ul| <M

the parabolicity of (1) is understood in the following sense
Ve € Qui,us € R, ug >uy  B(z,uy) — B(x,us) >0, (2)

that is, V€ € R" (B(z,u1) — B(x,u2))§ - £ > 0 ( here u - v denotes the scalar product
of vectors u,v € R™ ). We shall also assume that the matrix B(x,u) is degenerated
on a linear subspace X C R", that is, for all £ € X the function B(z,u) - £ does not
depend on u: B(x,u)¢-& = C(x). Hence, (1) is a semi-linear ultra-parabolic equation.

Concerning the convective terms, we suppose that ¢(x,u) =
(o1(z,u), ..., pn(z,u)) € L (Q,C(R,R")) is a Caratheodory vector. We also

assume that for any p € R the distribution
divep(z,p) — D} - B(w,p) = 7 € Mioe(9), (3)

where M;,.(€2) is the space of locally finite Borel measures on {2 with the standard
locally convex topology generated by semi-norms pe(p) = Var (®u), & = d(z) €
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Co(£2). The function ¢ (z,u) is assumed to be a Caratheodory function on  x R:
b(x,u) € L, (2, C(R)).

Let v, = 7, +7, be the decomposition of the measure 7, into the sum of regular and
singular measures, so that 7} = wy(z)dz, wy(x) € L, (), and 7} is a singular measure

(supported on a set of zero Lebesgue measure). We denote by || the variation of
the measure v, which is a non-negative locally finite Borel measure on 2. Denote, as

1, u>0,
usual, signu =< —1 | u <0,
0 , u=0.

Now, we introduce a notion of entropy solution of (1).
Definition 1. A measurable function u(z) on € is called an entropy solution of
equation (1) if ;(z,u(x)), by (z,u(x)), ¥ (z,u(x)) € L, (Q), 4,7 =1,...,n, and for all

p € R the Kruzhkov-type entropy inequality (see [10]) holds

div [sign(u(x) — p)((z,u(z)) — o(z,p))] —
D? - (sign(u(z) — p)(B(z,u(x)) — B(z,p))) +
sign(u(z) — p)lwp(2) + ¥ (z,u(z))] — || <0 (4)

in the sense of distributions on € (in the space D’(2)); that is, for all non-negative
functions f(z) € C§°(R2)

| stentu(e) = p)ele. u(@)) = ol ) - V(@) + (Blouw)) = Blo.p)) - D*f
(wple) + (o @) f@de + [ F@)dpgla) 2 0.

n
We use the notation D? f for the matrix {aimjf}’ifj:l and P-Q) = TrPQ = Z Dij i
ij=1
denotes scalar product of symmetric matrices P = {pi;}7,=1, @ = {q}7;=1- In
particular,

(B(z,u(z)) — B(z,p)) - D*f = (bij(x, u) — bi(w,p)) 0%, f-

In the case when the second-order term is absent ( B(x,u) = 0 ) our definition extends
the notion of the entropy solution for first-order balance laws introduced for the case
of one space variable in [7, 8]. If p(z,u), B(x,u) are smooth, and the strong ellipticity
condition A(x,u) = B)(x,u) > eF, € > 0 is satisfied then weak (variational) solutions
of (1) are entropy solutions as well. This fact will be demonstrated in last Section 5.2
(as a part of the proof of Theorem 2 ).

We also notice that we do not require u(z) to be a distributional solution of (1).
If u(z) € L>(Q2) and v, = 0 for all p € R then any entropy solution u(z) satisfies
(1) in D'(R2), i.e. u(x) is a distributional solution of (1). Indeed, this follows from (4)
with p = £||u||. But, generally, entropy solutions are not distributional ones, even in
the case when the singular measures v, are absent. For instance, as is easily verified,
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u(z) = signz|z|~'/? is an entropy solution of the first-order equation (ru?), = 0 on
the line Q = R, but it does not satisfy this equation in D'(R).

We assume that equation (1) is non-degenerate in the sense of the following defi-
nition.

Definition 2. Equation (1) is said to be non-degenerate if for almost all x € Q for
all € € X, € € X! such that € # 0, € # 0 the function A — &-¢(x,\), A — Bz, \)E-£

are not constant on non-degenerate intervals.

In this paper, we shall establish the strong pre-compactness property for sequences
of entropy solutions. This result generalizes the previous results of [12, 13, 14, 15, 16]
to the case of ultra-parabolic equations.

Theorem 1. Suppose that ui, k € N is a sequence of entropy solutions of
non-degenerate equation (1) such that |p(x,ur(x))| + | (x, ur(x))| + |B(x, up(z))] +
m(ug(x)) is bounded in L}, (Q), where m(u) is a nonnegative super-linear function (i.e.

m(u)/u — oo as u — o). Then there exists a subsequence of uy, which converges in

L} .(Q) to some entropy solution u(z).

We use here and everywhere below the notation |B| for the Euclidean norm of a
symmetric matrix B, that is |B]* = B - B = TrB%.

More generally, we establish the strong pre-compactness of approximate sequences
ug(x) for non-degenerate equation (1). The only assumption we need is that the
sequences of distributions

dive(z, sqp(uk(z))) — D?*. B(z, sq5(ur(z)))

are pre-compact in the anisotropic Sobolev space W lic_ 2((2) for some d > 1 and each
a,b € R, a < b where s,;(u) = max(a, min(u, b)) are cut-off functions, and the space
Wy, L72(Q) will be specified below, in Section 4. We do not require here that condition
(3) is satisfied.

Remark that the non-degeneracy condition is essential for the statement of The-
orem 1. For example, assume that (1) has the form divp(u) — D? - B(u) = 0
and & - p(u) = const on the segment [a,b] with & € X, £ # 0 then the sequence
ug(x) = [a+ b+ (b— a)sin(k - 2)]/2 of entropy solutions does not contain strongly
convergent subsequences.

We also stress that for sequences of distributional solutions ( without additional
entropy constraints ) the statement of Theorem 1 does not hold. For example, the
sequence u; = signsin kx consists of distributional solutions for the Burgers equation
u; + (u?), = 0 (‘as well as for the corresponding stationary equation (u?), = 0 ) and
converges only weakly, while the non-degeneracy condition is evidently satisfied.

Theorem 1 will be proved in the last section. The proof is based on general lo-
calization properties for parabolic H-measures corresponding to bounded sequences of
measure-valued functions. It also follows from these properties the strong convergence
of various approximate solutions for equation (1).

We describe below one useful approximation procedure. For simplicity we assume
that ¢¥(z,u) =0. Let {(s) € C§°(R) be a non-negative function with support in
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the segment [—1,1] such that [((s)ds = 1. We set (,(s) = m((ms) for m € N,
am(y) = H Cm(yi), y € R™ so that the sequence «, is an approximate unity on R™.

=1
We introduce the averaged functions
Bon(10) = (p(-,10) % ) () = / ol — g w)am(y)dy,
B(, 1) = (B(-,u) # ) () = / Bla — g, u)am(y)dy.

Then, by known properties of averaged functions, @ (z,u) € C*(Q,C(R,R")),
By(x,u) € C*(Q,C(R, Sym,)), where Sym, denotes the space of symmetric ma-
trices of order n, ¥, (z, p) = div,@n(z,p) — D2 B, (z,p) € C=(Q, C(R)) for all p € R,
and
@m<x’ ) - (,O(ZL', ) in leoc<Qv C(R’ Rn))’
Bm(xa ) — B(z,") in L?oc(Qﬂ C(R, Symy,)), (6)
Am(z,p) — 7, weakly in M;,.(€). (7)
Then, recall that v, = v, +7;, where 7] = w,(r)dz and therefore
T (2:0) = (Vp * Q) () = Yoy + Vo

where ), = Wy * Qm, Ty = Vp * Qi € C(82), and

77Tnp - wp n LZIOC(Q>7 (8)
Tl < [pl % com = || weakly in Mioe(€2). (9)

Now we average the vector @,, and the matrix B,, with respect to the variable u,
introducing for [ € N the functions

Pma(T,u) = (@m(z, ) * @) (u) = /<Pm(I, u—v)G(v)dv,
Boni(,0) = (Bu(a, )+ ) = [

Clearly, @pmi(z,u) € C°(QxR,R"), B, (z,u) € C®°(Q xR, Sym,) and for each fixed
m €N

@ml(l'a u) l—_>)oo @m(x> u)a Bm7l($a u) l—_>)oo Bm(xa u)7

divx@m,l(x7u) - Di : Bm,l(‘ra U’) = ﬁm(l’a ) * Cl(u> l__))ooﬁ/m(l‘au)



uniformly on compact subset of €2 x R. These relations allow to choose an increasing

sequence [ = l,,, in such a way that for v,,,(x,u) = @, (x,u), Bp(x,u) = By, (x,u)+
emuwFE, where a sequence ¢, > 0, ¢,, — 0, and E is the unit matrix, we have

‘pm(x>u) _@m(xju) — 0, Bm(%“) - _m(mvu) — 0, (10)
(divym (x, u) — Di - By (x, 1)) — (diveom(x, u) — Df: - Bp(z,u)) — 0 (11)

uniformly on compact subset of {2 x R. It follows from relations (10), (5), (6) that

me<x7 ) mjoogp(xv ) in leoc(Q7 O(Rv Rn))? (12)
Bu(w,:) — B(z,") in L (Q,C(R, Symy)). (13)

Now, observe that v, (z,p) = divewm(z,p) — D7 - B(x,p) = Vi, + Vinp» Where

777;117 = (dlvxwm(xvp) - D?z ' Bm(x>p)) -
(Vs (,p) = D2 B, ) + T —_pla) in L (©) (14)

in accordance with (11), (8).
Further, from relation (9) it follows that for each f(z) € Cy(2), f(x) >0

T [ @@l < [ f@dsgie). (15)
Remark that, as follows from the assumption (2) and the choice of our approximations,
Ay (z,u) = (Bp),(z,u) > e, F, and (A, (z,u) — e, E) =0 V¢ € X.

Let K be a compact subset of €2, M > 0. We introduce the sequence

M
I(K, M) =1+ / / (divapm(z,p) — D2 - By (x, p)|dpde.
K J-M

Generally, the sequence I,,(K, M) may tend to infinity as m — oo. Obviously, this
sequence does not depend on ¢,,, which allows to choose the sequence ¢,, > 0 in such
a way that

emIm (K, M) — 0 (16)

m—00

for each M > 0 and each compact K C (2.

Now, we consider the approximate equation
divip,, (v, u) — D? - By (z,u) = div[@,(z, u) — Ay (2, u)Vu] = 0, (17)
where @,,,(z,u) is a vector with coordinates
Gmi(T, 1) = Omi(2,u) — Op;(Bm)ij(z,u), i =1,...,n,
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where @i (z,u), (Bp)ij(z,u), i,j = 1,...,n, are components of the vectors ¢, (x,u)
and the matrix B,,(z,u), respectively.

We suppose that u = u,,(x) is a bounded weak solution of elliptic equation(17)
( for instance, we can take u = wu,(z) being a weak solution to the Dirichlet
problem with a bounded data at 9 ). This means ( see [11][Chapter 4] ) that
u € L®(Q) N Wy,,.(Q), where Wy,,.(Q) is the Sobolev space consisting of functions
whose generalized derivatives lay in L2 (€), and the following standard integral iden-

tity is satisfied: Vf = f(x) € C3(Q). .
/Q (2, u(2)) — A (i, u(2)) V()] - V f (2)d = 0. (18)

We also assume that the sequence w,, is bounded in L>(2). Under the above assump-
tions we establish the strong convergence of the approximations.

Theorem 2. Suppose that equation (1) is non-degenerate. Then the sequence
U () m:;ou(m) in L} (), where u = u(x) is an entropy and a distributional solution
of (1).

Remark that Theorem 2 allows to establish the existence of entropy solutions of
boundary value problems for equation (1) ( as well as initial or initial boundary value
problems for evolutionary equations of the kind (1) ).

For example, in [16] we use approximations and the strong pre-compactness prop-
erty in order to prove the existence of entropy solutions to the Cauchy problem for
an evolutionary hyperbolic equation with discontinuous multidimensional flux. This
extends results of [9], where the two-dimensional case is treated by the compensated
compactness method.

In the next section 2 we describe the main concepts, in particular the concept of
measure-valued functions. In sections 3,4 we introduce a notion of H-measure and
prove the localization property. Finally, in the last section 5, these results are applied
to prove our main Theorems 1,2.

2 Main concepts

Recall ( see [3, 4, 20] ) that a measure-valued function on € is a weakly measurable
map xr — v, of the set {2 into the space of probability Borel measures with compact
support in R. The weak measurability of v, means that for each continuous function
f(A) the function  — [ f(A\)dv,()) is Lebesgue-measurable on .

Remark 1. If v, is a measure-valued function then, as was shown in [13], the
functions [ g(\)dv,(\) are measurable in © for all bounded Borel functions g(\). More
generally, if f(z,\) is a Caratheodory function and g(\) is a bounded Borel function
then the function [ f(z, A\)g(\)dv,(\) is measurable. This follows from the fact that
any Caratheodory function is strongly measurable as a map * — f(z,:) € C(R)
(see [6], Chapter 2) and, therefore, is a pointwise limit of step functions fp,(z, \) =



> gmi(T)himi(A) with measurable functions g¢,,;(z) and continuous h,,;(A) so that for

A measure-valued function v, is said to be bounded if there exists M > 0 such
that supp v, C [—M, M] for almost all = € 2. We denote by ||v,]|~ the smallest value
of M with this property.

Finally, measure-valued functions of the form v, (\) = §(A — u(z)), where §(\ — u)
is the Dirac measure concentrated at u are said to be regqular; we identify them with
the corresponding functions u(x). Thus, the set MV (€2) of bounded measure-valued
functions on Q contains the space L(£2). Note that for a regular measure-valued
function v,(\) = §(A — u(x)) the value ||vz]loc = ||u]|oo- Extending the concept of
boundedness in L>(2) to measure-valued functions, we shall say that a subset A of
MV (Q) is bounded if sup,,_c 4 ||Vz|/o0 < 00.

Below we define the weak and the strong convergence of sequences of measure-
valued functions.

Definition 3. Let v* € MV(Q), k € N, and let v, € MV(Q). Then

1) the sequence v* converges weakly to v, if for each f(\) € C(R),

/f )dv( k—> /f()\)dl/x()\) weakly-* in  L°°();
2) the sequence v* converges to v, strongly if for each f()\) € C(R),

/ POV = [ FA)dr(y) in L, (@)

The next result was proved in [20] for regular functions v*. The proof can be easily
extended to the general case, as was done in [13].

Theorem T. Let v* k € N be a bounded sequence of measure-valued functions.
Then there exist a subsequence V% = v* k = k,, and a measure-valued function v, €
MV () such that v}, — v, weakly as r — oo.

Theorem T shows that bounded sets of measure-valued functions are weakly pre-
compact. If ug(x) € L*(Q) is a bounded sequence, treated as a sequence of regular
measure valued functions, and wuy(x) weakly converges to a measure valued function
v, then v, is regular, v,(\) = §(\ — u(x)), if and only if ug(x) — u(x) in Lj,.(Q) ( see
20] ). Obviously, if ug(z) converges to v, strongly then ug(z) — u(x) = [ Adv, () in
L .(9) and then v,(\) = 6(A — u(z)).

We shall study the strong pre-compactness property using Tartar’s techniques of

H-measures.
Let F(u)(§) = / e 2™ty (x)dr, € € R", be the Fourier transform extended as

unitary operator on the space u(z) € L*(R"), andlet S=S""!1={¢{eR" | |{|=1}
be the unit sphere in R”. Denote by u — u, u € C, the complex conjugation.

The concept of H-measure corresponding to some sequence of vector-valued func-
tions bounded in L?(Q2) was introduced by L. Tartar [21] and P. Gerdrd [5] on the
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basis of the following result. For [ € N let Uy(z) = (UL(z),...,Uk(z)) € L*(Q,R") be
a sequence weakly convergent to the zero vector.
Proposition 1. [see [21], Theorem 1.1] There exists a family of complex Borel

measures f1 = {,uij};j:l in Q xS and a subsequence U,(z) = Ug(x), k = k;, such that

£
€]

(1, By ()T D)) = Tim | P(Ui0,)() (U7 B) (€ ( )5 (19)

T—00 R

for all &1(x), Po(z) € Co(Q) and (&) € C(S).

The family p = {u¥ }i ;=1 is called an H-measure corresponding to Uy(z).

Recently in [1] the new concept of parabolic H-measures was introduced. Here we
present the more general variant of this concept. Suppose that X C R™ is a linear
subspace, X is its orthogonal complement, Py, P are orthogonal projections on X,
X+, respectively. We denote for £ € R” £ =P, = P¢, sothat € € X, € € X,
E=¢6+E Let Sy ={ R |[|€2+]E* =1 }. Then Sy is a compact smooth
manifold of codimension 1, in the case when X = {0} or X = R" it coincides with the
unit sphere S = {{ € R" | |{] =1 }. Let us define the projection mx : R™\ {0} — Sx:

= 5_ + — 5_ .
(1617 + €172 (€1 + g
Remark that in the case when X = {0} or X = R" nx(§) = £/|£]. We denote

p(€) = (J€]2 + |€]*)/4. The following useful property of the projection holds.
Lemma 1. Let {,n € R", max(p(§),p(n)) > 1. Then

6|& — 1)
max(p(), p(n))

mx(§) =

mx (&) = mx(n)] <

Proof. We define for £ € R", a > 0 &, = o + af. Observe that for all o > 0
mx (&) = mx(§). Without lose of generality we may suppose that p(§) > p(n), and
in particular p(§) > 1. Remark that 7x(§) = &, mx(n) = ng, where o = 1/p(§),
B =1/p(n). Therefore,

[Tx (&) —7x(M)] = [§a — 18| < |60 — Nal + 10 — | <
- _ 1/2
(0"l =P +a?E—l?) " + (8 — a®)2Ii* + (8 - o)) * <
€ =l + (8 — @) (B + )2l + [712) /.

Here we take into account that o < 1 and therefore a* < a?. Since

(20)

(B+ @) < 48> =4(Jil* + 9|~ < 4/|7],
we have the estimate

(B+ )i + |a® < 4(7] +17%) < 4 (A7 + [71")"* < 6(pm)%. (1)



Concerning the term 3 — «, we estimate it as follows

p(§) —p(n) _ €7 — 1l + €]* — 1"

ST @) HER @ e () + P
(8 +1ADIE — 7l + (€] + 1)UL + P)IE — 7l _
PP &) + (€ + b))
£+ i+ Q€+ DGR + 1)
POPIP(E) + ) (P + ) * " =
() + () + 0©) + p) ()P + ) _
PP (&) + ) ()2 + (p(n)) :
L p© +pl) le=nl _2e=nl

(
p&) +p(n)  pEpn) = p&)p(n)

Here we use that € < (p(€))°, € < p(€), 7 < (p(n))*, 7 < p(n), and that p(&)+p(n) = L.
Now it follows from (20), (21), (22) that

. € —nl  2V6lE—n] _6lE—n 6] -1
&) =l < T T T S T max (@) p()

as was to be proved.[]

Let b(z) € Co(R™), a(z) € C(Sx). Then we can define pseudo-differential operators
B, A with symbols b(x), a(mx(§)), respectively. These operators are multiplication
operators Bu(z) = b(x)u(z), F(Au)(§) = a(rx(§))F (u)(€). Obviously, the operators
B, A are well-defined and bounded in L?. As was proved in [21], in the case when
Sx = 8, mx (&) = £/[¢| the commutator [A, B] = AB — BA is a compact operator.
Using the assertion of Lemma 1 one can easily extend this result for the general case
(in the case dim X = 1 this was done in [1] ). For completeness we give below the
details for the general setting.

Lemma 2. The operator [ A, B] is compact in L*.

Proof. We can find sequences ax(z) € C*(Sx), bi(z) € C*(R"), k € N with the
following properties: F'(bg)(§) € Cg°(R™), and as k — oo ax(z) — a(z), b(x) — b(x)
uniformly on Sx, R", respectively. Then the sequences of the operators Ay, B with
symbols ag(7x(€)), br(x) converge as k — oo to the operators A, B, respectively (in
the operator norm). Therefore, [Ay, By] e [A, B] and it is sufficient to prove that the

operators [Ay, By] are compact for all £ € N ( then [A, B] is a compact operator as a
limit of compact operators ). Let u = u(z) € L?(R"). Then by the known property

F(bu)(§) = F(b) « F(u)(§) = [ F(b)(E — n)F(u)(n)dn,

F([Ay, Bylu)(§) = F(AeByu)(§) — F(BpAgu)(§) =
ap(mx (§))F (bru)(§) — F(bpAru)(§) =

| {an(mx(€)) = an(mx () F(Bu)€ ~ )P ()}
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We have to prove that the integral operator Kv(§) = 5. k(&,n)v(n)dn with the kernel

k(&n) = (ar(mx(§)) — ar(mx(n)))F(bx)(§ — n) is compact on L*(R").
Since ay, € C*°(Sx) then by Lemma 1

€ — 1]
max(p(£), p(n))
> 1, where C' = const. Thus for all £, € R"™ such that
>

|a(mx(€)) — ar(mx(n))] < C

ax(mx(€)) — ax(mx ()] < = Je —n). (23)

Let X, (&, 1) be the indicator function of the set { (£,7) € R*™ | max(p(¢),p(n)) < m },
and

ke (€,m) = x (& m)(ax(mx(§)) — ar(mx (1)) F(bk)(§ — ),
rm(&,m) = (1= x(&§,m)(arx(mx(§)) — ar(mx(n))) F(br) (€ —n).

Then k(&,n) = kn(&,n) + rn(§,n) and K = K, + R,,, where K,,, R,, are integral
operators with the kernels k,,(£,7n), 7, (&, 1), respectively. Since the function k., (&, n)
is bounded and compactly supported then the operator K, is a Hilbert-Schmidt op-
erator, which is compact. On the other hand, in view of (23)

Ruv(©) < = [ 1€ = mE@E ~ )lletn)ldn = [€FB0)] » o))

]R”|

and, by the Young inequality, for every v € L?(R")
C
1Rmoll2 < —EF (i) [1][v]l2-

Therefore, ||R,,|| < const/m and R,, — 0 as m — oo. We conclude that K,, — K
and therefore K is a compact operator, as a limit of compact operators. This complete
the proof. [

The parabolic H-measure u*, i,5 = 1,...,1 corresponding to a subspace X C R"
and a sequence U,(z) € L*(Q,R!) is defined on Q x Sx by the relation similar to (19):
V@i (x), Pa(z) € Co(2), ¥(§) € C(Sx)

7.y (@Bl (€)) = lim [ F@UEOF@UDE@v(ms(€)d. (24
The existence of the H-measure ;% is proved exactly in the same way as in [21], with
using the statement of Lemma 2. This H-measure satisfies the same properties as the
7usual” H-measure pP? (corresponding to the case X = {0} or X = R").
The concept of H-measure was extended in [13] ( see also [14, 15] ) to the case of
”continuous” indexes 7, 7. The similar extension can be also established for parabolic
H-measures. We study the properties of such H-measures in the next section.
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3 H-measures corresponding to bounded sequences
of measure-valued functions

Let v¥ € MV () be a bounded sequence of measure-valued functions weakly conver-
gent to a measure-valued function 12 € MV (Q). For z € Q and p € R we introduce
the distribution functions

ur(w,p) = Vi ((p, +00)), uo(x,p) = v ((p, +00)).

Then, as mentioned in Remark 1, for £ € NU{0} and p € R the functions u(z, p) are
measurable in x € Q; thus, ug(x,p) € L>(Q) and 0 < ug(z,p) < 1. Let

E=EW1) = { po € R | wo(z,p) e uo(x,po) in Ly,.(Q) } :

We have the following result, whose proof can be found in [13].
Lemma 3. The complement E =R\ E is at most countable and if p € E then
ug(z,p) — wuo(x,p) weakly-x in L>(Q).

k—o0

Let Up(x) = ug(x, p) —uo(x, p). Then, by Lemma 3, U} (z) — 0 as k — oo weakly-x*
in L>*(Q2) for p € E. Let X be a linear subspace of R™. The next result, similar to
Proposition 1, was also established in [13] in the case X = R™. The general case of
arbitrary X is proved exactly in the same way.

Proposition 2. 1) There exists a family of locally finite complex Borel measures
{1P1}, e i Q x Sx and a subsequence U,(v) = {UF(2)},cp, UF(x) = U (), k =k,
such that for all ®1(x), Pa(x) € Cp(Q) and Y (§) € C(Sx)

(W, @1 (2)Po(2)0(€)) = lim [ F(O1U7)(§) F(P2U7)(§)v(mx (€))dE.  (25)

r—0o0 [pn

2) The correspondence (p,q) — pP? is a continuous map from E X E into the space

Mloc(Q X S)

We call the family of measures {;ﬂ’q}Me g the H-measure corresponding to the
subsequence v = V¥ k= k,.

Remark 2. We can replace the function ¢ (7x (£)) in relation (25) (and in (24) ) to
a function ¢(¢) € C(R"), which equals ¥ (mx (€)) for large |¢|. Indeed, since U4 — 0

T—00

weakly-* in L>°(Q) we have F(®,U%)(£) — 0 point-wise and in L? (R") ( in view of

loc
the bound |F(®,U7) ()| < [|@2Uf||1 < const ). Taking into account that the function
X (&) = (&) — Y(mx(€)) is bounded and has a compact support, we conclude that

F(@U7)(E)x(€) — 0 in L*(R").

r—00

This implies that

lim [ F(®UP)(§) F(P2U7)(€)x(§)d€ = 0.

r—oo Jpn

11



Therefore

lim [ F(®1U7)(&)F(RU7)(£)(€)dé =

r—oo Jpn

lim [ F(®,U7) () F(P:U7) () (mx (§))dE = (u™, @1 (2) P2(2)(€)),

r—00 [Jpn

as required.

We point out the following important properties of an H-measure.

Lemma 4. (i) u?* > 0 for each p € E; (ii) pu*? = u® for all p,q € E; (iii)
forpi,....p0 € E and g1,...,9 € Co(Q x Sx) the matriv A = a;; = (uP%, 9,q;),
1,7 =1,...,1 is Hermitian and positive-definite.

Proof. We prove (iii). First let the functions ¢; = g;(z,£) be finite sums of
functions of the form ®(z)y (&), where ®(z) € Cy(2) and ¥(§) € C(Sx). Then it
follows from (25) that

a;; = lim [ Hi(&)H{(&)dE, (26)

where Hi(E) = Flo( mx(@)UP)Q).  Hence, seiting g,(r.€) = g(a€) =
14;2::1 O (2)Yr(€), we obtain
(&) = ZF(@kai>(£)¢k(7TX(£))'

k=1

It immediately follows from (26) that aj; = @;, ¢,7 = 1,...,l, which shows that A is
a Hermitian matrix. Further, for aq,...,q; € C we have

l l
S oty = im [ Qs 20, H,(€) = 30 i)
=1

3,7=1

which means that A is positive-definite.

In the general case when g; € Cy(2 x Sx) one carries out the proof of (iii) by
approximating the functions g;, ¢« = 1,...,l in the uniform norm by finite sums of
functions of the form ®(x)y ().

Assertions (i) and (ii) are easy consequences of (iii). Indeed, setting l =1, p; =p
and g; = g, we obtain the relation (1#?,|g|?) > 0, which holds for all g € Cy(Q2 x Sy),
thus showing that p*? is real and non-negative. To prove (ii) we represent an arbitrary
function g = g(z,&) with compact support in the form g = ¢192. Let [ =2, py = p
and py = ¢. In view of (iii),

</’quag> - </’quvglﬁ> - <:qu7925> - <’qu’§> = <W7 g)
and pP? = p9P. The proof is complete.[]

We consider now a countable dense index subset D C F.
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Proposition 3 (cf. [15]). There exists a family of complex finite Borel measures
wb? in Sx with p,q € D, x € QO where Q' is a subset of Q of full measure, such that
Pl = pPidx, that is, for all ®(x,€) € Co(2 X Sx) the function

v (), B, £)) = / B(z, €)dpt(€)

is Lebesgue-measurable on ), bounded, and

.0, 9) = [ 4i(6). 2.

Moreover, Var u2? <1 for all p,q € D.
Proof. We claim that prq|u??| < meas for p,q € E, where meas is the Lebesgue

measure on §2. Assume first that p = ¢. By Lemma 4, the measure p*? is non-negative.
Next, in view of relation (25) with ®,(z) = ®3(z) = ®(x) € Cp(Q2) and ¥(§) =1,

([ e@)?) = lim | F@UL)F@UDE) =
lim [ [Uz@PR@)Ps < [ )P

( we use here Plancherel’s equality and the estimate |UP(x)| <1 ). Thus, we see that
that prou? < meas.

Let p,q € E, A be a bounded open subset of Q, and g = g(z,¢{) € Co(A x Sx),
lg| < 1. Let also g1 = g/+/lg] (weset g = 0 for g = 0 ) and go = /[g]. Then
91,92 € Co(A x Sx), g = ¢193, |g1]* = |g2|* = |g| and the matrix

(<M”p,lgl> (1P, g) )
(pea, gy (u, |gl)

is positive-definite by Lemma 4; in particular,

(17, g)| < ({1, g} (12, 1g])) /> < (PP (A x Sx)u(A x S))'/? < meas(A).

We take into account the inequalities prgu”? < meas and prou?? < meas to obtain the
last estimate. Since g can be an arbitrary function in Cy(A x Sx), |g| < 1, we obtain
the inequality |uP?|(A x Sx) < meas(A). The measure p?? is regular, therefore this
estimate holds for all Borel subsets A of {2 and

pro|pP? < meas. (27)
It follows from (27) that for all (&) € C(Sx) we have
[pro ((E)p™ (2, €)) | < [[¢lloo - Prolp] < [|¢]o - meas. (28)

In view of (28) the measures prg (1 (&)pPi(z,§)) are absolutely continuous with respect
to the Lebesgue measure, and the Radon-Nikodym theorem shows that

pro (P(§)u™(x,€)) = hy (z) - meas,

13



where the densities A}/ (z) are measurable on 2 and, as seen from (28),

1755 (@)oo < (1] o (29)

We now choose a non-negative function K(z) € C§°(R") with support in the unit
ball such that [ K(z)dz = 1 and set K,,(z) = m"K(mz) for m € N. Clearly, the
sequence of K, converges in D'(R™) to the Dirac d-function ( that is, this sequence is
an approximate unity ).

Let Blim ¢, be a generalized Banach limit on the space [, of bounded sequences

m—00

¢ = {cm}men, i.e. L(c) = Blimc,, is a linear functional on [, with the property:

lim ¢, < L(c) < lim ¢,

m—oo m—0o0

( in particular for convergent sequences ¢ = {¢,,} L(¢) = lim ¢, ). For complex
m—0o0

sequences ¢,, = a,, + ib,, the Banach limits is defined by complexification: Blim¢,, =

m—0o0

L(a)+iL(b), where a = {a,,}, b = {bn,} are real and imaginary parts of the sequence
¢ = {cm}, respectively. Modifying the densities A} (z) on subsets of measure zero, for
instance, replacing them by the functions

Blim g h! (y) K (2 — y)dy
( obviously, the value hzq(a:) does not change for any Lebesgue point x of the function
il ), we shall assume that for all z € Q

i) = Blim | 1 (y) Kon(w = y)dy. (30)

Let Q' be the set of common Lebesgue points of the functions hJ(z), uo(z,p) =

V2((p, +00)), and ug (z,p) = V2([p, +00)) = lim wg(x,q), where p,q € D and v be-
a—p—

longs to F', some countable dense subset of C'(Sx). The family of (p, ¢, ) is countable,
therefore 2 is of full measure.

The dependence of A on 1, regarded as a map from C'(Sx) into L>(Q), is clearly
linear and continuous (in view of (29)), therefore it follows from the density of F' in
C(Sx) that x € ' is a Lebesgue point of the functions hyf(x) for all ¢(§) € C(Sx)
and p,q € D ( here we also take (30) into account ).

For p,q € D and = € Q' the equality I(¢)) = h}/(z) defines a continuous linear
functional in C'(Sx); moreover, ||I|| < 1in view of (29). By the Riesz-Markov theorem
this functional can be defined by integration with respect to some complex Borel
measure pP(€) in Sx and Var p2? = ||[|| < 1. Hence

W @) = (), = [ () (€) (31)
for all (&) € C(Sx).
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Equality (31) shows that the functions x — / »(&)dubi(€) are bounded and mea-
s
surable for all ¢(§) € C(Sx). Next, for ®(z) € Cy(2) and ¢ (§) € C(Sx) we have

[ ([ swwea)dr - [ awhe -

/ B (z)dpro ($(€)P7) = / B () (€)d (. ). (32)
Q OxSx

Approximating an arbitrary function ®(z,§) € Cy(2 X Sx) in the uniform norm by
linear combinations of functions of the form ®(z)1(¢), we derive from (32) that the

integral / O(x,&)dub(€) is Lebesgue-measurable with respect to x € €2, bounded,
Sx

/Q (/SX @(fﬂ,f)du’;q(f)) dr = /stx ®(z, &)dpP(z, €),

that is, pP? = pPidz. Recall that Var pf? < 1.0

and

The assumption that = € Q' are Lebesgue points of the functions wy(z, p), v, (z, p)
for all p € D will be used later. Observe that since p € D C F is a continuity point of
the map p — uo(z,p) in L}, (Q) then ugy (z, p) = ug(z, p) a.e. in Q. By the construction
x € Q' is a common Lebesgue point of the functions ug(z,p), v, (z,p), therefore

({p}) = ug (x,p) — ug(x,p) =0 Vpe D. (33)

Remark 3. a) Since the H-measure is absolutely continuous with respect to z-
variables identity (25) is satisfied for ®(z), ®3(x) € L*(Q2). Indeed, by Proposition 3
we can rewrite this identity in the form: V&, (z), Po(z) € Co(Q2), ¥(§) € C(Sx)

| @@, O = lim [ F@UDOF@ID (). (34
). a(a)) in L) x

Both sides of this identity are continuous with respect to (®;(z
(34) is satisfied for each

L?(2) and since Cy(Q) is dense in L*(Q2) we conclude that
©y(x), ©a(x) € L*(Q);
b) if z € ' is a Lebesgue point of a function ®(z) € L*(Q) then

() (", (€)= lim Tim | F(®D,,UP)(§) F(PmU7) ()1 (mx (€))dE (35)

m—00 r—00 Rn

for all ¥(¢) € C(Sx), where (99,,UP)(y) = ®(y)P,,(z — y)UP(y) and ($,,U9)(y) =
P (z — y)Ul(y).
Indeed, it follows from (34) that

lim [ F(@,,07)(€)F(®,UE)i(ry (€))d = / W) B(y) Ko (2 — y)dy. (36)

r—00 Jpn
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Now, since z € ' is a Lebesgue point of the functions AJ(y) and ®(y), and the
function th(y) is bounded, x is also a Lebesgue point for the product of these functions.
Therefore,

lim [ W2 (y)®(y) K (z — y)dy = ®(2)hb(x) = D(x) (127, 1(E)),

m—00 Q

and (35) follows from (36) in the limit as m — oo;

c) for z € Q' and each family p;, € D, ¢;(¢) € C(Sx), i = 1,...,] the matrix
(™ hiab;), 4,5 = 1,...,1 is positive definite. Indeed, as follows from Lemma 4(iii),
for aq,...,0qp € C

l

l

b2 = ¢q, wl(@ = w(f)/\/ |¢(§)| ( P =

=D,

P(€) € C(Sx), we obtain, as in the proof
i o) s )

(' ) (g [¥])

|2, )] < (P, ) - (s, )
and this easily implies that for any Borel set A C Sx

19| (A) < (pPP(A)pda(A))? (37)

We denote by 6(A) the Heaviside function:

Taking in the above property [ = 2, py
0 for ¢ = 0 ) and ¥»(§) = VI[¥(E)l,

of Proposition 3, that the matrix (

) is positive definite. In

particular,

o ={ o AZ0
Below we shall frequently use the following simple estimate
Lemma 5. Let po.p € D, x(N) = 00— ) =00 —p). Vo) = [ OVdlvj0) +
2(N), ®(y) € L2(Q), x € Q' is a Lebesque point of (®(y))?. Then

)

T T [[2,(2 — 9)B()Vi ()2 < 200 luo(w, po) — wol, )2 = 0.

mMm—00 r—00 p—Po

Proof. It is clear that

Vi(y) = ur(y, po) — ur(y,0) + uo(y, po) — uo(y, p)| =
sign(p — po) (ur (¥, po) — ur(y,p) + uo(y, po) — uo(y,p)) < 2

and, in particular, (V,(y))? < 2V,(y). Therefore,
1@ (z = y) (V- ()5 <
2sign(p — po) /(q’(y))sz(l’ — ) (ur(y, p0) = wr(y, p) + oy, o) — uo(y, p))dy.
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Since po,p € D C E, uy(y,po) — ur(y,p) — uo(y,p0) — uo(y,p) as r — oo weakly-* in
L>(€2) and we derive from the above inequality that

r—00

lim ||, (z—y)2(y)V:(»)]3 < 4sign(p—po)/(‘D(y))QKm(x—y)(uO(y,po)—uO(yvp))dy-

Now, passing to the limit as m — oo and taking into account that z € Q' is a
Lebesgue point of the bounded function ug(y,py) — uo(y,p) as well as the function
(®(y))? ( therefore, z is a Lebesgue point of the product of these functions), we find

lim lim [[®,(z — y)2(y)V; ()13 < 4(2(2))*|uo(w, po) — uo(w, p)].

m—00 r—0o0

This implies the required relation

lm Tim [|®,,(z — 1) @)V, (y)||2 < 2|8 (@)|uo(z, po) — uolz, p)|/2.

m—0o0 r—0o0

To complete the proof it only remains to observe that, in view of (33), v2({po}) = 0
and therefore ug(z, p) — uo(z,po) as p — po.0]

The following statement is rather well-known.
Lemma 6. Let U.(x) be a sequence bounded in L*(R™) N L*(R™) and weakly
convergent to zero, a(§) be a bounded function on R™ such that a(§) — 0 as || — oo.

Then a(§)F(U,) () = 0in L*(R").

Proof. First, observe that by the assumption a(§) — 0 at infinity for any € > 0
we can choose R > 0 such that |a(§)| < e for || > R. Then

/|4->R [a(©)PIP(U)(©)Pde < S| F (U, = 2[[U]> < C=, (38)

where C' = sup, ¢y ||U||2 is a constant independent of r.

Further, by our assumption U, — 0 as r — oo weakly in L!. This implies that
F(U,)(&) — 0 point-wise as r — oo. Moreover, |F(U,)(&)| < ||U.|l1 < const. Hence,
using the Lebesgue dominated convergence theorem, we find that

[ GRIACAGIREE (39)
lEI<R
as r — o0o. It follows from (38), (39) that

fm [ [a()PIF(U)(6) s < Ce2.

r—00 Jpn

Since € > 0 is arbitrary, we conclude that

lim | |a(&)[*1F(U;)(€)[*dg =0,

r—00 Jpn

that is, a(&)F(U,)(€) — 0 in L?*(R"). The proof is complete.[]

r—00
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We now fix © € ', po,p € D. Let L(p) C R" be the smallest linear subspace
containing supp p??°, and L = L(po).

As follows from (37), supp p#P° C supp pL°? and therefore L(p) C L.

Suppose that f(y, A) is a Caratheodory vector-function on 2 xR such that f(y, \) €
L} (9, C(R,R™)), that is,

VM >0 [[f(2,)llaree = max £ (2, M) < nr(@) € Lig()- (40)

Since the space C'(R,R") is separable with respect to the standard locally convex
topology generated by seminorms || - ||a7.00, then, by the Pettis theorem (see [6], Chap-
ter 3), the map x — F(x) = f(z,-) € C(R,R") is strongly measurable and in view
of estimate (40) we see that F(z) € L2 (Q,C(R,R")), |F(2)|* € L, .(Q,C(R)). In

particular (see [6], Chapter 3), the set Q; of common Lebesgue points of the maps
F(z),|F(x)|* has full measure. For z € Q; we have

VM >0 lim [ K,(x—y)||F(z)— F(y)||medy =0,

m—00

Since, evidently,

1F(z) = FW) 300 < 21F(@) = FW)llarooll F @) ar00 + 1F (@)]* = [F @) [lar,00

it follows from the above limit relations that for x € €2
lim [ Kon(x = y)|F(x) = F()|medy =0 VM > 0. (41)

Clearly, each © € Qy is a Lebesgue point of all functions x — f(z,\), A € R. Let
vr = vl — 2. Suppose that x € QN Qp, po € D, x(A) = 0\ — p1) — O(\ — p2), where
p1,p2 € D. For a vector-function h(y, A) on {2 x R, which is Borel and locally bounded
with respect to the second variable, we denote I,.(h)(y) = [ h(y, A)dy;(X). In view of
the strong measurability of F(z) and (40) we see that I, = I.(f - x)(y) € L}.(Q) ( see
Remark 1 ). We also denote by L, L the spaces obtained by orthogonal projections of
L on the subspaces X, X+, respectively: L = Py(L), L = Py(L).

Proposition 4. Assume that f(z,)\) € LY, and p(€) € C>*(R") is a function such
that 0 < p(€) < 1 and p(€) = 0 for [€P + |E[* < 1, p(€) = 1 for |EP + &]* > 2. Then
Vip(§) € C(Sx)

bt [ PO F@uL (7 -X))(E)

A R LU (€)= 0.

Here ®,, = ®,,,(x —y) = /Kn(x —y) and I.(f - x) are supposed to be functions of
the variable y € €.
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Proof. Note that

1 (y)] < /If(y, MIxNdlry[(A) < 20 (y), (42)
where M = sup ||V} ||o. Let us first show that for each m € N

i [ 208 FCal)(O
= Jan (IE2 + [El1)17

For that, it is sufficient to demonstrate that

__plOlEl o e
G g B O] 22 0 LR, (44)

F(®nUr°) ()¢ (mx (§))dE = 0. (43)

Remark that the sequence ®,,1,(y), r € N is bounded in L*(R™) and in L'(R") ( since
supp ®,,, is compact ) and weakly converges to zero ( in view of the weak convergence
vt — 12 ). Hence, (44) follows from Lemma 6. We only need to demonstrate that

o)l
(1€ + [€]4)/2
satisfies the assumptions of this Lemma. First, we show that a({) < 1. Indeed,
for |€]* + |€|* < 1 the value p(§) = 0 while in the case |£]* + [¢|* > 1 we have

the function

a(§) =

p&)I¢]
—_— 1 < 1.
(2 + gy = mn(eh e <
Then, observe that for [£]? + |¢[* > R* > 0
€] 2 1/4 1
< ——"——< + <R
6) < et < (6P )

Therefore, a(§) — 0 as |{| — oo. Thus, assumptions of Lemma 6 are satisfied and by
Lemma 6 we conclude that (44), (43) hold.
In view of (43),

lim lim

m—0o0 r—00

PE)E - F (@) () Frg Ty e (. (6) ) =
/n (|§|2+|§_|4)1/2 ( m )(5)7/’( (6)) 3

. POE - F( P l) () Framm 2 i
lim_lim / n (|5|2+|84)1/2 F (@, D)) (mx (€))de. (15)

Let g(A\) = f(z, ), Il = L( = [ g\ x(N)dvj(X), M = sup |1} [|c. Then

m—00 r—00

1< / F@ ) = F VR < 20F () — F@) arse.
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This and the Plancherel identity imply that

P(f)g'fj(q)m([r—fi))(f)w e (ENd
/n (€12 + [E[)1/2 (@ U) ()Y (mx (€))dE

[Plloo | (P (1 = L2 F(@mUr) 2 < [[¢]loo | @ (1 — L1)]]2 <

ot ([ Koo = 1P )~ Fl)

<

It follows from the above estimate and (41) that

| P8 F@ul)(©) e o -
o, / e T @nUREmx(€)de

/ pOE - F(@nI})(E)

no (€2 g2

/ POE - F(®u (I, — 1))(E)
n (€% + [€]4)*/2

and, in view of this relation and (45), it is sufficient to prove that

/ POE - F(@nl})(E)
no (€24 €2

The vector-function g(A) is continuous and does not depend on y. Therefore for any

F(®,U7) (€)1 (mx (£))dE

<

lim  lim F(®,Ur°)(§)v(mx (§))dE| = 0

m—00 r—00

lim lim

m—00 r—00

F(®,Ur°) () (mx (§))dE

—0. (46)

k
e > 0 there exists a vector-valued function h(\) of the form h(X) = > v;0(A — p;),
i=1

where v; € L+ and p; € D such that ||g- ¥ — h|s < € on R.
Using again the Plancherel’s identity and the fact that

I — I.(h)| = ‘/(g X~ h)(k)d%fj(k)' < /I(g X — ) A)d][ry[(A) < 2e,

we obtain
PEE - (@) ) T e (611
I o PP ()
POE P @l () oty ona
/ i PR e (@) <
[l B (g x = B2 < 22l l|@nlls = 250 (47)
Since

L(h)(y) = / (Z vf(A —p») dyy(A) =Y wiUP(y),

i=1 i=1
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it follows from (35) the limit relation

p(&)E - (@l (h))(E)

lim lim W Tx dé =
e Jan (G124 1[92 ( )(€)(mx(£))dE
D, (0 U(E)). (48)

Here we also take Remark 2 into account. Since p(&)Y(mx(§)) = ¥ (mx(€)) for large
€| then, by this Remark, for i =1,... k

lim P(f)é;viF(qﬁmei)(f)T T (ENdE =
tin [ e M P, T T (€)1

o [ & OnUP O F T (610 =
L T Rl

("7 (y, €), Km (2 = y)(vi - )Y (£)).

Now observe that supp p?#° C L(pg) = L, and for each £ € L v; 5 = 0 because f el
k

while v; L L. Hence Z(u’x’mo, (v - E)Y(€)) = 0, and it follows from (48) that
i=1

hm fim [ A (@l (7))
m—00T—00 Jpn (‘ | _|_|§| )1/2

F(®nU) (€)1 (mx(§))d§ = 0.

This relation together with (47) yields

lim lim

m—0o0 r—00

PO F @l )E) 7wy e ()
/n (1] + [E[H)V? (@, UP) ()Y (mx (£))dE| < 2¢e][9)]] oo,

and since € > 0 is arbitrary we claim that (46) holds. This completes the proof. [J

Let Q(z, \) be a Caratheodory matrix-valued function, which ranges in the space
Sym,, of symmetric matrices of order n such that Q(z,\) € L2 (9, C(R, Sym,,)).

Denote €2g the set of full measure consisting of common Lebesgue points of the
maps r — G(z) = Q(z,-) € C(R,Sym,), v — |G(z)]* € C(R). As can be easily
verified, for = € g the following relation similar to (41) holds

tim [ Fo(z — 9)|G(r) - G@)loudy =0 VM >0, (19)
Let a: e QN QQ, po,pl,pg € D, x(A\) = 0(A —p1) — 0(\ — p2), and let J.(y) =
= [ x(A A)dry;(A), p(§) be a function as in Proposition 4. Also assume
that for L L(po) )
Q(@,N)E- =0 VEe L =P(L)

21



(recall that P, is the orthogonal projection onto X*).
Proposition 5. Under the above notations for each (&) € C(Sx)

P(E)F (P J; ) (E)E - §Ww(ﬂx(g))d5 —0. (50)

Iim lim
meser= Jon (€2 + G2

Proof Denote Q(\) = Q(z,\) ( here z is the fixed above point ), J,(y) =
S x(N)Q(N)dv;(A). Then
9= 3= [ 100N = QL V) < 206() - Gl
where M = sup ||V/}||. This and the Plancherel identity imply that

/ POF (P (J; — J))()E - €5
" (I€12 + [€]4)1/2
[ llooll F (@ (S = TN 2IHE (@) l2 < ([ ]loo @ (Jr = )|z <

ol ([ Kote =160~ i)

It follows from the above estimate and (49) that

F(@nUr) () (mx (§))dE| <

it | [ SR |£|)()§)/§ 0, O €T mx(€))e
I @2,2(2 " a“fjf @ TPV (rx ()| <
tim_lim / p(&)F((ng(ﬁ - ;f)?/)?(&)f TP @ (e (€))de| = 0
and, in view of this relation we have to prove that
Jim i [ 6T g,)()’?f PP Qv ) =0. ()

Introduce the linear space Y of symmetric matrices A, satisfying the property A¢-§ = 0
for £ € L. Since the matrix-valued function Q(\) ranges in Y and does not depend on
k

y for every £ > 0 one can find a step function H(\) = Z (X — p;)Q;, where p; € D,
i=1

Q€Y for each i = 1,...,k such that |[y(\)Q(\) — H(\)| < e for all A\ € R. We

denote J/(y) = [ H(A d’yy ) and observe that
Ty) =3 Ur (1)@, (52)
[ e (y) = T (y)] < /IQ(A) — H)[Ix(N)dly|(A) < 2. (53)
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We also remark that

F(®,(J, — I))OE €
(1 + €102

The latter estimate and (53) imply that
R" (|§|2 €14
/ P E (P ;) ()
" (|§|2+|§|4)/
p(f)F(qu( r—J7)(©E) F(®,, UPY(E)ih(rx d
L e PP Y@ (€)de| <
[l |F (@ (T = TNl E(@mUE) [l = 9 ]|ocl| @ (e = T) |2l @mnUP° |2 <

1/2
(ol = Dl =il [ Kol = I3 = S ) < 2ol ()

' < F (@ (Jr=ID)NEIEP/EPHEY? < [F(@un(Jr—=T))(E)].

F(®nUr°) (§) 0 (mx (§))dE—

E _
2

£)
/
S @, U (€ (&))d&‘ -
é
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We also use that |UP°| <1 and therefore ||®,,UP°||; < 1. In view of (52)

p(E)F (P, J0)(E)E - Wﬂ'x g —
/n (€12 + [€]1)172 F(®,,Ur") (€)Y (mx (§))dE

: / p(E)F(®,,UP)(E)Qi - €
no (€2 + €

and by relation (35) and Remark 2 we find

it [ POF@uI)©E - €
mser=o e (€ + €177

F(@n,U) (&) (mx(€))ds,

=1

F(@nUr) ()¢ (mx (§))dE =

D (P P(§)Qi€ - €) =0 (55)

i=1

because supp pf? C L and therefore Qi€ - & =0 on supp pPiPo ( recall that Q;¢-& =0
for £ € L ).
By (54), (55) we obtain the relation

HOF @) E e mms (e
/n (12 + [€]4)1/2 F(@uUr) (€)1 (mx (§))dg | < 2e]|¢ o

and since € > 0 is arbitrary we conclude that (51) holds. The proof is complete.[]

lim lim

m—00 r—0o0

In the sequel we will need the following simple result.
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Lemma 7. Let { §| k= 1,...,1 } C L be a basis in L. Then there exists a
positive constant C' such that for every v € R™, () € Sym,,

o1 + Q1] < € max fiv- & + Q& - &l
where v; = Pv, Q1 = PQP, P, P are orthogonal projections on the spaces L, L,
respectively, and 1 =/ —1.
Proof. We introduce the linear spaces S = { Q € Sym,, | Q = PQP }, H = L®S
and remark that p(v, Q) = max, liv - & + Q& - &| is a norm in H. Indeed, it is clear

,,,,,

that p is a seminorm. To prove that p is a norm, suppose that p( ,Q) = 0. Then
v - fk = Q& - & = 0 and since vectors fk, &, generate spaces L, L, respectively, we
claim that v€ = 0 for all € € L and Q¢ - & =0 for all £ € L. Slnce v € L we see that
v = 0. Further, since Q € S we find that for every £ € R®

Q¢ &= PQPE- = QP PE=0,

and we conclude that ) = 0. It is well-known that any two norms in finite-dimensional
space are equivalent. Applying this property to the norms p(v,Q) and p;(v,Q) =
|v| + |@Q| and using the relations

V& =01 &, QG- & = QP& - PG = Qi &, k=1,...1,
we find that for some constant C' > 0

lu1] + |Q1| <C’ max |w1 §k+Q1§k §k| C’ max |w {k—i—Qﬁk §k|

as was to be proved. [J

Corollary 1. There exist functions ¢4 (§) € C(Sx), k=1,...,l =dim L and a
constant C' > 0 such that, in the notations of Lemma 7, for all v € R", Q € Sym,,
such that ) > 0

[r] + 1@ < € max (™, (iv - € + QE - )Y (€))]. (56)

.....

Proof. Remark that the measure p£o?° > 0. If p2"° = 0 then the both parts
of equality (56) equal zero, and this equality is evidently satisfied. Thus, suppose
that p2oPo(Sx) > 0. Since L is a linear span of supp pu2°?°, we can choose functions
Ui(§) € C(Sx), k=1,...,Isuch that (&) >0, [(&)durore =1forall k =1,...,1,
and the family &, = [ &y (E)dptoP, k = 1,...,1 is a basis in L. By Lemma 7 there
exists a constant C' > 0 such that for all v € R", Q) € Sym,,

lu1] + |@Q1] < C max |w & + Q& - &l (57)
where v; = Pv, Q; = PQP. Now, we observe that
&= [ En©dm ), &= [En@aeme).
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Therefore,
0= [ v Eo©dm o),
and if () > 0 then

Q6 -6 = Q [ Eon@awm©) - [n©drm© < [ Q€ en@anne

by Jensen’s inequality applied to the convex function & — Q¢ - €. In view of the above
relation, (56) readily follows from (57) ( we also take into account that for real a the
function f(z) = |ia + x| increases on [0,400) ). The proof is complete.[]

4 Localization principle and strong pre-
compactness of bounded sequences of measure-
valued functions

In this Section we need some results about Fourier multipliers in spaces L?, d > 1.
Recall that a function a(¢) € L*®(R") is a Fourier multiplier in L if the pseudo-
differential operator A with the symbol a(§), defined as F(Au)(&) = a(§)F(u)(§),
u = u(x) € L*(R") N LY(R") can be extended as a bounded operator on LI(R"), that
is

| Aullg < Cllullq Yu € L*(R™) N LYR"™), C = const.
We denote by M, the space of Fourier multipliers in L?. We also denote

R* = (R\{0)" ={ &= (&, &) | []&#0}

The following statement readily follows from the known Marcinkiewicz multiplier the-
orem (see [19][Chapter 4]).
Theorem 3. Suppose that a(§) € C”(R”) be a function such that for some con-
stant C
€D%< O VEeR” (58)

for every multi-index o = (o, ...,ap) such that |a| = ag + -+ a, < n. Then
a(§) € My for all d > 1.

n 9\ %
Here we use the standard notations £* =[]\, (&)*, D = H <8§ ) . Actually
i=1 ‘
(see [19]), it is sufficient to require that (58) is satisfied for multi-indexes a such that
oy € {0,1},221,,77,
We also need the following simple lemma.
Lemma 8. Let h(y, z) € C*((R' x R"")\ {0}) be such that for some k € N, v € R

Yt >0 h(thy,tz) = t'h(y, 2). (59)
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Then there ezists a constant C > 0 such that for each multi-indexes o = (o, ..., ),
B= B, Bu), la| + 8| <nand all yeR z€ R y,2#0

Dy DAy, 2)| < C|y[* + [2[**) 2 [y| |27,
Proof. In view of (59) for all t > 0
anp _ 4klal+|B]— a B k
D2 D2h(y, z) = tHeHB=Pl (Do DB R) (thy, t2).

Taking t = (Jy|® + |2[?*) "2 in this relation, we arrive at

y=kla|—|8]
2k

« 2 2k «
Dy DZh(y, 2) = (ly* + |2**) (DyDZh)(y', 2", (60)

where y' = thy, 2/ = tz, so that |[¢/|> + |2/|** = 1. Since the set of such (y/,2’) is a
compact subset of R™\ {0} the derivatives (D3 D?h)(y/, 2'), |a|+|3] < n, are bounded,
and relation (60) implies that for some constant C' > 0

Dy DZh(y, 2)| < C(lyl> + [2)3 (Jy [ + =) 71V2 (g + =) 7VED <

Oyl + [=*) 2 [y| 71|27
for all y, z # 0. The proof is complete. [

Now we can prove that some useful for us functions are Fourier multipliers. Namely,
assume that X is a linear subspace of R”, and 7y : R®™ — Sx be the projection defined
in Section 2.

Proposition 6. The following functions are multipliers in spaces Le for alld > 1:

(i) ax(€) = ¥(mx(€)) where ¥ € C7(S);

(it) az(§) = p(E)(L+[EP+IE[N 2 (1P +IE]*) 72, where p(€) € C=(R™) is a function
with the properties indicated in Proposition 4, namely: 0 < p(§) < 1, p(§) = 0 for
€12+ 1€ < 1, p(&) =1 for [§7 + [€|* > 2;

fiii) as(€) = (1+ 1€ P)V2(1 + &2 + 614 12;

(iv) ai(€) = (1 + €1 + [E192(1 + €)™,

Proof. Since the space M, is invariant under non-degenerate linear transforma-
tions of the variables £ ( see [2][Chapter 6] ) then we can assume that X = Rl = {¢ €
R™ | &€ = (y1,..,y,0,...,0) } while Xt ={£eR"|£=(0,...,0,21,...,2,1) }.
Since mx (t*y,t2) = 7x(y,z) for t > 0, y € X, z € X+ then h = a,(¢) = ¢Y(7x(€))
satisfies the assumptions of Lemma 8 with k& = 2, v = 0. By this Lemma for each
multi-indexes a, 3, |a] + |8 < n

|y‘|“‘|z||5‘\D§‘Dfa1(y, z)| < C' = const.

This, in particular, implies that assumption (58) of Theorem 3 is satisfied. By this
Theorem we conclude that a1(§) € My for each d > 1.

To prove that ay(£) € My we introduce the function hy (s, y, z) = (s2+|y|?+]z|*)/2,
s € R. This function satisfies the assumptions of Lemma 8 with y replaced by (s,y) €
R*1 and k = v = 2. By this Lemma

Dy D2ha(s,y, 2)| < C(s* + yl* + |2 ) 2]yl ~!]2| 7, € = const.
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Taking s = 1 in this relation, we arrive at the estimate
Dy Dl (1,y, 2)] < C(L+ [yl + [2]) 2yl 11277,

and by the Leibnitz formula we obtain that for each multi-indexes «,  such that
lal +[8] <n

DS D2p(y, 2)ha(Ly, 2)| < Cr(L+ gl + =) 2l |, €y = const  (61)

(‘we use that p(y,z) = 1 for |y|> + |2|* > 2 ). Let ho(y,2) = (Jy|> + |2|*)~/2. This
function satisfies (59) with £k = 2, v = —2. By Lemma 8 for some constant C and
every multi-indexes «, 3 such that |a| + |5] < n

Dy Dl ha(y. 2)| < Coly|* + [2|") =2y [ 71|27, (62)
By the Leibnitz formula we derive from (61), (62) the estimates

|D§D£p(ya Z)hl(l,y,Z)hg(y,Z)| <
Ca(L+ [yl + 212yl + 2172y 12|17 < 2Cs ]y |17V (63)

in the domain |y|? + |2]* > 1, here |a| + |3] < n, C3 = const. In view of (63) we
conclude that in this domain for each «, 3, |a| 4+ [5] < n

|y‘|a‘|z‘|m‘D;D£a2(y’ Z)’ < const.

Since as(y, z) = 0 for |y|* + |z|* < 1 we see that the requirements of Theorem 3 are
satisfied. Therefore, as(§) € My for all d > 1.

Now we introduce the functions hi(s,y,2) = (s2 + |[y|? + [2|)V2, ha(s,y,2) =
(7 + [P+ 22) 7 Dl 9,2) = (2 + [y + 2172, hals, y, 2) = (* + [y + [2[)"7%,
s€R ye X =R, 2 e Xt These functions satisfy (59) where y is replaced by
(s,y) € R*! with the parameters k = v = 1; k = 1,7 = —=2; k = 2,y = —2;
k =~ = 2, respectively. By Lemma 8 we find that for each «, 3, |a] + 5] < n

[y Dy DZh (1, y, )| < C(L+ [yl” + [2*) 2,
[y Dy DZho(1,y, 2) < O+ [yl* +12*) 7,
(|2 | Dy D ha(1,y, 2)| < C(L+|yf* + |2|*) 712,
[y“!I=|" Dy DZha(L,y, 2)| < O+ [yl + 2D,
where C' = const. Since a3(§) = hi(1,y,2)hs(1,y, 2), as(§) = ha(l,y,2)ha(1,y, 2)

where y = €, z = £ then, using again the Leibnitz formula, we derive the estimates:
for some constant C'

[y D5 D2as(y, 2)] < C(1+ |yP + )21+ [y + =) < 20,
[yl Dy Dlas(y, 2)] < CL+ [yl* + 127 (1 + [yl + 121" < 2C.
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Here we take into account the following simple inequalities

L+ |y + |2 L+ [yl” |2 N
T BT TP el T IR = il <2
(L+ [yl + 122 _ (A + )" 2,

LhfylP+ 2 7 1+ + P T+ [yl + =2

In view of Theorem 3, we conclude that as(€),as(€) € My for each d > 1. The proof
is now complete.[J

We define the anisotropic Sobolev space W, L2 consisting of distributions u(x)
such that (1+ €2+ [€]Y)"V2F(u)(€) = F(v)(€), v = v(z) € L4R"). This is a Banach
space with the norm ||u|| = ||v|lq. The following proposition claims that this space
lays between the spaces W, Uand W, 2,

Proposition 7. For each d >1 W;' c W; "2 ¢ W;? and the both embeddings
are continuous.

Proof. Let u € W;'. This means that (1 + |¢|?)7Y2F(u)(§) = F(w)(§), w =
w(z) € L4R™). By Proposition 6(iii) as(€) = (1 + |£[)V2(1 + [€)> + |£]Y)~/2 € M.
Therefore,

(L+ €2 + €))7 2F(u)(€) = as(§) F(w)(€) = F(v)(€), v(x) € LYR"),

that is, u € W; 7>, We claim that W;' ¢ W; 7. Since ||Jv||lq < C|lw|l4, C' = const
this embedding is continuous. 3 B

Now suppose that u € W, ""* Then (1 + | + S 2F(u)(€) = F(v)(8),
v =v(x) € L4R"™). By Proposition 6(iv) as(¢) = (1 + €2 + || Y2(1 + |€]2) 7 € My,
and

(1+ €)' F(u)(€) = as(§) F(v)(€) = F(w)(§), w € LY(R").

This means that u € W, 2. We established that w, L=2 W, 2. The continuity of
this embedding follows from the estimate ||w||q < C||v|lq, C = const. The proof is

complete.[]

We also introduce the local space W w72(Q) consisting of distributions u(x) such
that wf(z) belongs to W; 572 for all f(z) € C°(Q). The space Wczli’c_Q(Q) is a
locally convex space with the topology generated by the family of semi-norms v —

Hufﬂwd_l,_z, f(z) € C5°(€). Analogously we define the spaces W, (), W2 (). As
readily follows from Proposition 7, W ! C Wi, ﬁ;; ’c W; 2, and these embeddings

loc Jloc
are continuous.

Now we consider the bounded sequence of measure valued functions v*¥ € MV ()
and suppose that for some d > 1 and each a,b € R, a < b the sequence of distributions

div/cp(x, Sap(N))dvE(N) — D? - /B(a:, S5a5(N))dvE(N) is pre-compact in WCZIE’C_Q(Q).
(64)
Here s,5(u) = max(a, min(u, b)) is the cut-off function.
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We choose the subsequence v/ = vf k = k, weakly convergent to a bounded
measure-valued function v such that the parabolic H-measure p? = p&, p,q € E is
well defined. By Proposition 3 this H-measure can be represented in the form p?? =
widx, p,q € D, x € ), where Q' C Q is a set of full measure indicated in the proof
of Proposition 3. Define the set of full measure €2, consisting of common Lebesgue
points of the maps z — F(z) = ¢(x,-) € C(R,R"), z — |F(2)|* = |¢(z,")| € C(R).
Similarly, we define the set Q0 of common Lebesgue points of the maps z — G(x) =
B(z,-) € C(R, Sym,,), x — |G(z)]* € C(R). Clearly, the set Q" = Q' N Q, N Qp has
full Lebesgue measure. We fix = € Q.

Under the above assumptions we have the following localization principle

Theorem 4. Let L be a linear span of supp pb°Po. Then there exists & > 0 such
that

(¢, A) = @(x,po)) - € =0, (B(x,\) = B(z,po)) - € =
for all & € L, X € [py, po + 6].

Proof. As follows from (64) and the weak convergence v — v},

£3(0) = divy [ 9005w = D7 [ Bl sy (IE0) — 0in Wl @),
(65)

where 7 = 1] — v, As is easy to compute,

(Y, Spop(A) = ©(y,0) + (©(y, p) — (Y, p0)) (X — po) — (2(y, ) — 2y, \))x(N),
B(Y, $pop(A) = B(y,po) + (B(y,p) — B(y,p0))0(A — po) — (B(y,p) — By, A))x(\)

where x(A\) = (A — pg) — O(X — p) is the indicator function of the interval (po,p].
Therefore, L) = div,(P(y)) — - Qr(y) where the vector P.(y) and the matrix
Q,(y) = {( ) (y)}7,_, are as follows ( notice that [ dvy;(A) =0 ):

PA0) = [ (o(0) = o0 )00 = b)) -
[ etwn) = olu N ) =
UR @) (:0) — lu0) — [ (0l0:8) — 93 DX (66)
Qr(y) = U (y)(B(y,p) — B(y,po)) — /(B(y,p) — B(y, \)x(N)dv, (A). (67)

In particular, it follows from (67) that X C ker Q,.
For ®(y) € C§°(2) we consider the sequence

L, = divy(®(y) P (y)) + 2div(Q,(y) VE(y)) — D* - (2(y)Q:(y))
= divy (P(Y) P (y)) + 2(Py, (Qu) i1 (¥))y, — By (@) Q)i (y)) =
O(y)Ly(y) + Pr(y) - VO(y) + D*®(y) - Qr(y).
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Since the sequence P, (y)-V®(y)+D*®(y)-Q,(y) is bounded in L? and weakly converges
to zero as 7 — 00, this sequence converges to zero in W, lc w, 1,-2 ( we can suppose
that d < 2 ). Besides, in view of (65), ®(y)L,(y) — 0 in W% as well, and we
claim that L, — 0 in Wd_l’_z. Introduce the vector G,(y,\) = 2Q,(y)VP(y) with

r—00

components (G,)(y) = 2®,,(Q)u(y), k =1,...,n. Then the distributions L, can be
represented in the form L, = div, (PP, + G,) — D? - (®Q,.). Hence,

div,(®P, 4+ G,) — D*- (®Q,) — 0 in W; "2
Applying the Fourier transformation to this relation and then multiplying by
p(€)(|€% + [€]*)71/2, we arrive at
2mil - F(OP, A F (P .
(27 + Il =
(68)

( the function p(§) is indicated in Proposition 4 ). Indeed, (68) follows from the
representation

i _ PO+ S + €]
(ISP + lgl4)r2
the statement of Proposition 6(ii) and the definition of W, 7%, Let ¢(¢) € C™(Sx).
Then by Proposition 6(i) we see that the sequence F(®U)(&)Y(mx(§)) = F(h,),
where h, is bounded in L* (R"), d’ = d/(d — 1). This and (68) imply the relation
[ MOCTE R G 45 FHQ 66
" (ISP + lgI4)r2

pE) (€ +[€1) (1+ € + 1€l 7,

F(@UF)(€)h(mx (§))dE =

/ ) l,(x)h,(x)dz — 0. (69)

T—00

Now, we remark that the sequences ®(y)P,(y) and G,(y) are bounded in L? N L' and
weakly converge to zero. By Lemma 6 we have

POEFOP+GIE) o L2(RY) (70)
(‘5’2 + ‘§|4)1/2 r—00

because i N
oo O Il

(€2 + €12 — (1€ + 1€V —
and evidently a(§) — 0 as |{] — oo. Besides,

£ F(G,)(€) = 2/ e 2EY(Q ) (y) Py, (y)érdy =

n

| Q. wE- Vo —o. (1)
F(Q,)(€)E = / 2 EVD()Q, (y)Edy = 0 (72)

n
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since £ € X C ker@,. Taking into account relations (70), (71), (72), and the bound-
edness of the sequence F'(®U)(£) in L*(R™), we derive from (69) that

p(€)(2mi€ - F(PP,)(€) + 4n*F(9Q,)(€)E - &) =—rrres -
/n (12 + |E]4)1/2 F(oU) () (mx(€))dE — 0. (73)

Taking into account representations (66), (67) we can rewrite the last relation as
follows

i { / p(§) (2mi€ - F(BUP )(€) + 4n°F(RUP H) ()€ -E)
e Ve (€2 + €142

F(@U) () (mx (§))dE —
F(q)UfO)(é)@/)(ﬂx(f))df} =0, (74

/ p&)E - F(PVP)(E) + F(2GE)(E)E - §)
" (1€]2 + [¢]4)/2

where
F(9) = oy p) — oy, p0), VP(y) = 2 / (0 p) — oy )XV € R,
H(y) = By p) — Bly,po), C2(y) = 4n” / (Bly. p) — By, \)x(Ndy () € Sym.

In (74) we set ®(y) = ®,,,(x — y) , where the functions @, were defined in section 3
in the proof of Proposition 3, and pass to the limit as m — oo. By Remark 3 (see
equality (35)) we obtain

it [ AECTEF@URNE) + AT P(@nURH)EE E)
moer oo Jge (€17 +I¢])1/2
F(@nUP) (€)1 (mx ())dg = (™, (2mig - f(w) + 4m” H (2)€ - £)(€)),

therefore

N (o, (2i€ - f(2) + A H (2)€ - E00(E)) =

it [ PEOUE @V + F@nGDOE s o
Jm i [ (e P8 TP @ rx(€))de. (75)
Since the space C"(Sx) is dense in C'(Sy), it is clear that (75) holds for each (&) €
C(Sx). Let g(y,\) = Po(z, \), Bi(y,A) = PB(y, M) P, where P, P are operators of

orthogonal projections on the spaces L = Py(L), L = Py(L), respectively, L being the
linear span of supp p2°? ( see the notations of section 3 ). Obviously,

] (upore, (2mil - f(x )+47T2H(x)€~§)¢(€)> =
(uboro, (2mi€ - (g(x, p) — g(x, po)) + 47*(Bi(x,p) — Bi(x,po))E - E)(£)). (76)
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We denote h(y,A) = o(y,\) — g(y, M), Ba(y, ) = B(y, ) — Bi(y, A),
Vi) =27 [ (9(0.8) = oo XN ),
Vi) =27 [ (hly.p) ~ g )XONEEO)
G) =17 [ (Buly.p) = Bily )XV 0,
Glaly) =47 [ (Baly.) = By )X ).
In the notations of Propositions 4,5 VA(y) = L(fx)(y) with f(y, ) = 27(h(y, p)

h(y, A)), Ga(y) = J(Q)(y) with Q(y, A) = 47*(Ba(y,p) — Ba(y, A)). Since &+ f(y, A) =
0 for all £ € L, Q(y,\)§ =0 for all £ € L then by Propositions 4,5

pp [ POGE F(@nVE)(E) + F(@nGh)(E- &)
m—001—00 [pn (|€’2_‘_‘5|4)1/2

F(®,Ur°)(§)¢(mx(§))dE = 0
and (75) acquires the form

(oo, (2mi€ - (g(x,p) — g(2, o)) + 47> (Bi(2,p) — Bilx, ))& - ) (€)) =
i tim [ POUE PV + F(@0 GO &) pg—mmay o

Here we also use relation (76). Now we observe that

P& - F(2nV1)(€) + F(PuG)(OE-8)| _
(&[> + [¢]+)*72 -
[F(@n V)] + [F(@nGT) ()],

and therefore

pE)E - F(® V1) (€) + F(PunGl)()E - €)
(1€ + [€]4)/2 -

IE(@nVi)llz + [ F(@mGr)ll2 = [[PmVill2 + [[@m Gyl (78)

by Plancherel’s equality. Since |UF°| <1 then
IE(@nU) |2 = [[@nUr[l2 < 1,

and we derive from (77) with the help of Buniakovskii inequality and (78) that

(pbeme, (2mi€ - (9(x,p) — g(z, po)) + 47 (Bu(p) — Bi(po)) - E)¥(€))| <
[¥lloo lim Lim (@0 Vill2 + [|€mGTal2) - (79)
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Next, for M,(y) = )\IEI[II?X 19(y,p) — g(y, )

V2 ()] < 270 (y) / Y (V) + 20() =
QWMp(y) (ur(y7p0) - ur(yap) + UO(y7p0) - UO(y7p))

and by Lemma 5

T |V @nlls < 47y (2) (wo(, po) — uolz, p))>. (80)

m—00 r—00

Here we bear in mind that z is a Lebesgue point of the function (M,(y))? ( which
easily follows from the fact that x € Q, is a Lebesgue point of the maps y — ¢(y, -),
y — |o(y, )| into the spaces C(R,R"), C(R), respectively ). Further, the matrix
0 < Bi(y,p) — Bi(y,\) < By(y,p) — Bi(y,po) for each X\ € [po,p| ( since the matrix
Bi(y, \) — B1(y, po) is positive definite ). This implies the corresponding inequality for
the Euclidean norms |B;(y,p) — Bi(y, )| < |Bi(y,p) — Bi(y,po)|- Therefore,

G < 17 [ |Bu(w.p) — Buly DXV (50 + 050) <
47*| Bi(y. p) — Bi(y. po)l (ur (. po) — tr(y,p) + tto(y, o) — uo(y, p))-

By Lemma 5 again we claim that

lim lim ||G£1(I)m||2 < 87T2|Bl($,p) - Bl(%PO)KUo(%Po) - U0($7P))1/2- (81)

m—00 r—0o0

In view of (80), (81) we derive from (79) that

(urer, (2mi€ - (g(x,p) — g(x,po)) + 47 (By(z, p) — Bilw,po))€ - v ()| <
cl|th]|oo(Myp(z) + | Bi(w, p) — Bi(z,po)|)w(p), (82)

where ¢ = const and w(p) = (uo(z, po) — uo(x,p))/?> — 0 ( remind that p, € D is a

p—po
continuity point of the function p — wg(z,p) for x € ' ). Next, by Corollary 1, we
can choose functions ¥ (§) € C(Sx), k = 1,...,[ such that for some positive constant
C

lg(z,p) — g(x, po)| + | Bi(x, p) — Bi(z,po)| <

€ e |G (6 - (g(.p) — gl p0) + (Ba(r.p) — By . po)§ - ()]
Then, in view of (82), we find

|9(x, p) —g(x, po)|+|B1(z,p) — Bi(z, po)| < c(Mp(z)+|Bi(z, p) — Bi(z, po)| )w(p), (83)

where ¢ is a positive constant.
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We choose 0 > 0 such that 2cw(p) < e < 1 for all p € [pg, po + 6]. Then by (83) for
all p € [po,po+9d]ND

l9(z,p) — g(x, po)| + [Bi(x, p) — Bi(z,po)| <

% < max |g(z,p) — g(z,A)| + |Bi(z,p) — Bl(w,po)!) : (84)
A€E[po,p]
and since g(z,p), Bi(x, p) are continuous with respect to p and the set D is dense, the
estimate (84) holds for all p € [pg, po + 9]
Now we claim that g(x,p) = g(x,po), Bi(z,p) = Bi(z,po) for p € [po,po + 4]
Indeed, assume that for p’ € [pg, po + 9]

l9(z,p") — g(x, po)| = | nax l9(z, X) — g(z,po)|-
€[po,po+9)

Then for A € [po, p'] we have

9(x, ") — g(z, N)| < |g(z,A) — g(,po)| +
l9(z,p") — g(x, po)| < 2]g(x,p") — g(x,po)]

and

max |g(z,p") — gz, N)| < 2|g(z, p") — g(z., po)|-
AE[po,p']

We derive from (84) with p = p’ that

19, p")—g(z, po)|+|Bi(x, p')—Bi(z, po)| < e(|g(w,p")—g(x, po)|+|Bi(x,p)—Bi(z, po)l),

and since € < 1, this implies that

) ") — ) = a)‘ - ) =0.
l9(z,p") — g(x, po)| /\e[iﬂii(-i-é“g(x ) — g(z,po)|

This means that g(z, \) = g(z,po) for X € [po, po + 0]. Then, (84) acquires the form
£
|Bi(z,p) — Bi(w,po)| < §|Bl(l’7p) — Bi(2,po)|, <1

Hence By (z,p) = Bi(x,po) for every p € [po,po + 6]. By the definition of By(z,p) we
see that (B(z,p) — B(z,po))P = 0, that is L C ker(B(z,p) — B(x,po)) and (B(x,p) —

B(x,po))é = 0 for all p € [po,po + 9], £ € L. The relation P(p(x, \) — o(r,p)) =

9(x, ) = g(z,po) = 0 on [po, po+ 6] implies that for all { € L (¢(x, ) —¢(z,po)) - =0
on the segment A\ € [pg, po + d]. The proof is complete.l]

Under the non-degeneracy condition, indicated in Definition 2, Theorem 4 yields
the following result.

Theorem 5. Suppose that the non-degeneracy condition is satisfied. Then any
sequence V¥ weakly converging as k — oo to V0 and satisfying (64) strongly converges

0 T
to v,.
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Proof. Let 7 = v*, k = k,, be a subsequence such that the parabolic H-measure
{{*?}, 4eE, corresponding to the subspace X, is well defined. This H-measure admits
the representation p?? = pP?dz and, as directly follows from the assertion of Theorem 4
and non-degeneracy condition in Definition 2, u??° = 0 for a.e. x € €. Therefore,
puPoPo = pPoPody = (. Since an arbitrary py € E can be included in the set D we
conclude that i*? = 0 for all p € E. By relation (25) with ¢ = 1 we see that

UT<$,p) —>’U,0<l’,p) in leoc(Q)

as r — o00. Indeed, it follows from the definition of an H-measure and Plancherel’s
equality that
lim [|[UP®3 = (u, |®(2)[*) = 0

for all ®(x) € Cy(2) and p € E. Thus, for p € E we have

r—00

/ 6O — p)dvi(N) — [ 80— p)d2(N) in I2,(Q). (85)

Any continuous function can be uniformly approximated on any compact subset by
finite linear combinations of functions A\ — 6(A — p), p € E. Hence, it follows from
(85) that for all f(A) € C(R) we have

[~ [ sonaso) i 2@,

and therefore also in L}, .(Q2), that is, the subsequence v/

strongly converges to v2.
Finally, for each admissible choice of the subsequence v the limit measure-valued
function is uniquely defined, therefore the original sequence v/* is also strongly conver-

gent to 2. The proof is complete.[]

Taking into account Theorem T, one can give another formulation of Theorem 5:
each bounded sequence of measure-valued functions satisfying (64) is pre-compact in
the sense of strong convergence. Observe that in the regular case v*(\) = §(A —ug(x))
condition (64) has the form: for some d > 1 and each a,b € R, a <b

divp(z, sap(ug(z))) — D* - B(w, sq5(ur())) is pre-compact in WCZ;’C_Q(Q). (86)
In this case Theorem 5 yields the following

Corollary 2. Under the non-degeneracy condition, each bounded sequence ug(x) €
L>(Q) satisfying (86) contains a subsequence convergent in L, .(Q).

Proof. We only need to note that if the sequence u(z) converges to a measure-
valued function 10 strongly in MV (Q), then by the definition of strong convergence

k—o0

ur(z) — wp(z) = /Adyg()\) in L (Q)
( which also shows that v2(\) = 6(A — ug(z)) is regular in 2 ).00
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The statements of Theorems 4 and 5 remain true for sequences of unbounded
measure-valued (or usual) functions. For the proof we should apply the cut-off func-
tions s,,(u) = max(a, min(u,b)), a,b € R and derive that bounded sequences of
measure-valued functions s(*z’bl/g’j ( s;byf is the image of v* under the map s, ) satisfy
(64). Then, under the non-degeneracy condition, we obtain the strong pre-compactness
property for these sequences.

For instance, consider the sequence ux(z), kK € N of measurable functions on €.
Suppose that condition (86) and the non-degeneracy condition hold. Let a,( € R,
a < B, vg = Sa.p(ur) = max(a, min(uy, 5)). Then vy = vi(z) is a bounded sequence
in L>(§2) and for each a,b € R, a < b

divip(w, 845 (vi(2))) — D? - B(w, 844(v(2))) =
divp(z, sary (ur(2))) — D* - B(z, sy (ur()))

where a' = s, (), V' = s45(0). It follows from this identity and (86) that the sequence
div(z, sap(vi(z)))—D? B(x, s45(vi(x))) is pre-compact in H(lec;gz(Q). By Corollary 2
the sequences vy () = s, 5(ux) are pre-compact in L}, (Q) for every o, 8 € R, a < f3.
Using the standard diagonal extraction, we can choose a subsequence u,.(z) = g, (x)
such that for each m € N the sequence s_,,,(u,) converges as r — oo to some

function w,,(z) in L}, (). Obviously, a.e. in

| (z)] <m, and wy,(r) = s_pmm(wi(x)) VI > m.

This allows to define a unique (up to equality a.e.) measurable function u(z) €
R U {+£o0} such that w,(x) = s_pm(u(z)) ae. on Q. If a,b € R, a < b then for
m > max(|al, |b])

Sa,b(ur) = Sa,b(sfm,m(ur» rjoo 5a,b<wm) -

Sap(8—mm(u)) = sap(u) in Llloc(Q)'

In fact, we proved the following general statement.

Theorem 6. Suppose that the sequence of measurable functions uy(x) satisfies
(86) and the nondegeneracy condition holds. Then

a) there exists a measurable function u(z) € RU{+oo} such that, after extraction
of a subsequence u,, r € N, s,3(u,) — Sap(u) asr — oo in Li, () Va,b € R, a < b.

b) If, in addition, the following estimates are satisfied

/Km(uk(x))dx < Ck, (87)

for each compact set K C ), where m(u) is a positive Borel function, such that
m(u)/u — oo, then u(z) € L}, (Q) and u, — u in L}, () asr — oo.

Proof. We only need to prove b). Observe that, extracting a subsequence, if
necessary, we can assume that s_, ,,(u,) — s_p.m(u) as m — oo a.e. in 2 for every
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m € N. This implies that v, — u a.e. in Q and by Fatou lemma it follows from (87)
that

/Km(u(x))dx < C.

In particular, u(z) € L, .(©2). Now, fix a compact K C Q and ¢ > 0. By the assump-
tion m(u)/u — oo we can choose | € N such that |u|/m(u) < ¢e/(2Ck) for |u| > L.

Then
[ e = w(@lds < [ fsata (@) = s-niule)lde +
J @it @)] = o + [ Ju@)ipquto)] - s
< [ sl (e) = su(uto)de +

ﬁ ( /K m(u,(z))dz + /K m(u(:z:))dx) <
/K |s—i(ur(z)) — s—p(u())|dr + &

This implies that lim [ |u,(2) —u(z)|dz < & and since ¢ > 0 is arbitrary we conclude
r—00 K

(Q). The

that lim / |u,(z) —u(z)|dz = 0 for any compact K C Q, i.e. u, — win L},
r—00 K

proof is complete.[]

5 Proofs of Theorems 1,2

We need the following simple

Lemma 9. Suppose u = u(x) is an entropy solution of (1). Then for all a,b € R,
a<b

divip(z, sqp(u)) — D* - B(x, 504(u)) = Cap in D'(Q), (88)

where Cop € Mjoe(2). Moreover, for each compact set K C € we have Var (,,(K) <
C(K,a,b,1), where I = I(z) = |p(z, u(x))|+ [V (z, u(z))| + |B(z, u(z))] € Lj,(?) and
the map I — C(K,a,b,I) is bounded on bounded sets in L}, .(Q2).

Proof. By the known representation property for non-negative distributions we
derive from (4) that

divlsign(u(z) — p)(p(a, u(@))] — o(z,p)) — D? - [sign(u(z) — p)(B(x, u(x)) — B(,p))]
+sign(u(x) — plwy(@) + Uz, ul@))] - |33 = —k, n D),

where k, € My(2), K, > 0. Further, for a compact set K C Q we choose a non-
negative function fx(z) € C§°(2), which equals 1 on K. Then we have the estimate

rp(K) < /fK(x)dﬁp(x) = | len(u(z) = p)lp(@, u(@)) = ¢(z,p)) - Vfrc(w) +
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sign(u(z) — p)(B(x, u(z)) — B(x,p)) - D f(x) -
sign(u(z) — p)(wp(@) + ¥ (2, u(®))) fx (2)]dz + /QfK(x)dlvf;Krr) <
A(K,p.I) = /Q[I(fv) max(|fx ()|, |V fre(2)], |D? fic(2)]) + |o(z, p)| - |V fic ()] +
|B(,p)| - |1D? fre ()] + |wp ()] fre ()] dew + /QfK(:C)dWEI(ﬁ)-
Hence,
div(sign(u(z) — p)((z, u(z)) — (z,p))] -
D? - [sign(u(x) — p)(B(z,u(x)) — B(z,p))] = G (89)

where
G = |l = Kp = sign(u(z) — p)lwy(z) + ¥(z, u(z))] € Mo (I1).

In particular, taking into account the equality |y5| + |w,(z)|dz = |7,|, we obtain the
estimates for the measures (,: (| < kp + |7,| + ¢ (x, u(z))|dz.
Further, notice that

e(@, sap(u)) = (p(z,a) + p(z,b))/2 +

(sign(u — a)(p(z, u) — ¢(z,a)) —sign(u — b)(p(z, u) — ¢(z,0)))/2;

B(z, sqp(u)) = (B(x,a) + B(z,b))/2 + (sign(u — a)(B(z,u) — B(x,a)) —
sign(u — b)(B(x,u) — B(z,b)))/2,

and it follows from (89) that relation (88) holds with (.5 = (Co — & + Ve + V) /2
Moreover, we have

Var Cup(K) < O(K, a,b, 1) = (A(Ka[ +A(K, b, 1))/2 +
Fal() + nl() + [ ot ute) e

To complete the proof, it remains to note that for fixed K, a, b the constant C'(K, a, b, I)
is bounded on bounded sets of I(z) € L},.(Q).00

5.1 Proof of Theorem 1.

Taking into account that the sequence Ip(x) = |p(x,ur(z))| + |¢¥(x,ur(z))] +
|B(x,ux(x))| is bounded in L} (), we derive from Lemma 9 that for all a,b € R

loc
divip(w, sqp(up)) — D* - B(x, sap(us)) = Cfb in D'(2),

where C(’j’b is a bounded sequence in M;,.(2). Since M;,.(2) is compactly embedded
in Wy,..(Q) for each d € [1,n/(n — 1)) then, taking into account the statement of
Proposition 7, we see that condition (86) is satisfied. By our assumption condition

38



(87) is also satisfied. By Theorem 6 we conclude that some subsequence w, converges
as r — oo to a limit function u in L}, (). Extracting a subsequence if necessary, we
can assume that u, — w a.e. in . Passing to the limit as » — oo in relation (4) with

T—00

u = u,, we claim that the limit function u = u(x) satisfies this relation for all p such
that the level set u~!(p) has zero measure ( then sign(u, —p) — sign(u — p) as r — oo
a.e. in £ ). Since the set P of such p has full measure and, therefore, is dense, for an
arbitrary p € R we can choose sequences p. < p < p, p¥ € P, r € N convergent to
p. Summing relations (4) with p = p;” and p = p;I and passing to the limit as r — oo,
with the help of the point-wise relation sign(u — p;,’) + sign(u — p;) = 2sign(u — p),

we obtain that (4) holds for all p € R, i.e. u(z) is an entropy solution of (1).00

5.2 Proof of Theorem 2.

To simplify the notations, we temporarily drop the index m in equation (17), and
stress that the flux vector ¢(z,u) and the diffusion matrix A(z, ) in this equation are
smooth.

First we show that a weak solution u = u(z) of equation (17) is an entropy solution
in the sense of Definition 1. For this observe that in relation (18) we can choose
test functions f(z) € W3 (2), which have compact supports in Q. In particular, for
n(u) € C*R), f = f(x) € C°(Q) the function n'(u)f, u = u(z) is an admissible test
function, and we derive from (18) that

0= / (e, u) Vi (u) f — Al w)V () - Vi (w) f] dz =
Q

[ vpte. ) + ) £ A V- Y+
A(z,u)n' (u)Vu - V fldz. (90)

Introduce the vector (x,u) such that ¢, (z,u) = n'(u)@,, (xz,u). This vector is deter-
mined by the above equality up to an additive constant ¢ = ¢(z). We also introduce
the symmetric matrix Q(x, u) defined, up to an additive matrix constant C'(x), by the

equality @, (z, u) = 7'(u)A(z,u) = o' (u) B, (z, u).
Now we can transform the terms (divg(z, w))n'(u) f, A(x, w)n'(u)Vu-V f as follows
(dive(z, u))n'(u) f = (dive (2, u) + &, (z, u) - Vu)y'(u) f =
(0 (W divap(z, u)) f + (@, (2, u) - Vu) f =
fdivg(z, u) + (' (u)div,@(z, u) — div,g(z, u)) f;
Az, u)n (w)Vu - Vf = Q (z,u)Vu -V f = (Qi), (2, u)us, fo, =
(Qij (@, 1))z, fo, — (Qij), (@, u) fo,
(here Q;j, 4,7 = 1,...,n being components of the matrix ()). Putting these equalities
into (90) and integrating by parts, we obtain that

/Q () - V f + (divad(e, u) — ' (w)divad(z, u)) f+
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Q(z,u) - D*f — 0" (u) fA(z,w)Vu - Vu] dz = 0, (91)

where ¢(z,u) is a vector with components q;(x,u) = ¢;(x, u) + (Qij)s, (z,u). Observe
that

(@) (@, 0) = (i) (@, ) + Oy (Qi ) (w1, u) = 7' (W) (i + Or, b3y ) (2, w) = 17’ () (@3),, (2, w),

that is, ¢, (z,u) = n'(u)¢, (z, u).

We shall assume that 1”(u) has a compact support in R. Let R > 0 be such that
suppn’(u) C (=R, R) and L = (n'(—R) +n'(R))/2 ( evidently, L does not depend on
R ). Then we can choose ¢(x,u) in the following way

- [, - . .
ilo,n) = 5 [ sien(u = p)(ela.0) = Glop)dy () + L. (92

Indeed, taking R > |u| and integrating by parts, we obtain the equality
[ signtu = )(pte.0) = olap)in () =

R
[ stontu = p)(ee.0) — o)l () =

R

/ " (Bl w) — o, p))dn () — / ($(x,u) — 3z, p))dr (p) =

—R

/ " ) (p)dp / &z, p)f (p)dp —
R u

2L3(x,u) + @(z, —R)n' (= R) + ¢(z, R)n'(R).
We see that, up to a function which does not depend on u,

: / sign(u — p) (B(z, u) — G, p))dif (p) + LB(z, u) =

% (/; 2, (, p)n/ (p)dp — /uR %(x’pml(p)dp)

and therefore

0 (1 . . - . .
5 (5 /Slgn(u = p)(@(z, u) — (z,p))dn'(p) + L(, U)) =1/ ()¢, (z,u),
as required. In the similar way we find that, up to an additive matrix constant,

1

Q(x, u) = §/Sign(u —p)(B(z,u) — B(x,p))dn'(p) + LB(z, u). (93)

It follows from (92), (93) that
o) = 5 [ Sontu =)o) oo A G) + Lo (01
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Further, the function n'(u)div,@(z, u) — div,G(x,u) admits the representation

n (w)divep(z, u) — div.q(z,u) = %/Sign(u — p)div,@(x, p)dn (p). (95)

Indeed, in view of (92), we see that for sufficiently large R
u R

2aw0) = [ (plavu) = pap)in (p) ~ [ (Blaru) = Glap)d (p) + 2Lla,u) =
—R u

B, u) (1 (w) — 1/ (~R)) — / B, p)di (p) — B, ) (o (B) — 1 (u)) +

-R
R
[ ot )+ 2250 0) = 2 w)p(a. )~ [ signtu — p)ple,p)d ),
where we use the equality 2L = n/(R) + n'(—R). Applying the operator div, to the
above equality, we arrive at (95).

Now, we suppose that n”(u) > 0. We transform (91), using equalities (92), (93),
(95) and the identity

/Q{gp(x,u) -Vf+ B(x,u)- D*f}dx =0, (96)

following from (91) with n(u) = w ( then ¢(z,u) = ¢(z,u), Q(z,u) = B(z,u), and
q(z,u) = p(z,u) ). We find that for each f = f(x) € C§°(Q), f >0

/ / sign(u — p){(@(z, u) — (z,p) - Vf — fdivaG(z,p) +

(B(z,u) — B(x,p)) - D[} (p)dadp = 2 / " (u) Az, u) V- Vu > 0

and since n”(p) is an arbitrary finite continuous non-negative function on R we arrive
at

1(p) = / sign(u — p){(p(x,u) — p(z,p)) - Vf — fiva@(,p) +
(B(x,u) — Blx.p) - D*f)}de > 0 (97)

for all p € P, where the set P consists of points p such that the level set u=!(p) has
null Lebesgue measure. We use the fact that the function I(p) is continuous at any
point of P. In view of (97) for all p € P

div[sign(u - p)(@(xa U) - gO(iE,p))] +
sign(u — p)div,@(x, p) — D - [sign(u — p)(B(z,u) — B(x,p))] < 0 (98)

in D’'(§2). Since the set P has full measure and therefore is dense, for an arbitrary
p € R we can choose sequences p. < p < p}, pf € P, r € N convergent to p. Taking
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a sum of relations (98) with p = p and p = p;” and passing to the limit as r — oo, in
view of the point-wise relation sign(u — p, ) +sign(u—p) — 2sign(u—p), we obtain
r—o0

that (98) holds for all p € R. Taking into account that

div,3(z,p) = divyp(z,p) — D2 - B(z,p),

we conclude that u(x) is an entropy solution of (17).

We also need a-priori estimate of Vu. Choose M > ||ul|o and a function n(u) €
C2(R) such that n(u) = u?/2 on the segment [—M, M| and suppn(u) € [-M —1, M +
1]. Then for u = u(x) 7"(u) = 1 a.e. in Q and we derive from (91) that for each
f=1) e CEQ), f20

/ fA(x,u)Vu - Vudr <
Q

/Q [q(z,u) - Vf + (diveg(z, u) — 0 (u)dive@(z,w)) f + Q(z, u) - sz] de|.  (99)

It follows from (94), (93), (95) that

lg(z,u)] <C max fo(z,u)|, |Qz,u)] <C max [B(z,u),

lu|<M+1 |u|<M+1
M-+1

div,q(z, u) — 1f (w)dive@(z, u)| < C / dive3(z, p)|do,
—M-1

where C' is the constant depending only on the fixed function n. Putting these esti-
mates into (99), we get

/fA(x,u)Vu~Vudx§C’ { max |o(z,u)||Vf]+
0

|lu|<M+1

M+1
max |B(z, u)||D2f|}d:r+C// |div,@(z, p)|f(x)dpdz. (100)

|u|<M+1

Now we recall that ¢(z,u) = @n(z,u), B(z,u) = By(z,u), m € N. By our as-
sumptions these sequences converge as m — oo in L2 (2, C(R)) and in CY(R, Sym,,),
respectively. Therefore, the sequence

{ max |om(z,w)[VfI+ max [By(z,u)||D*f|}dz

o lul<M+1 lu|<M+1

is bounded by a constant depending only on f. Here we take M > sup,, ||tm|loo- It
follows from estimate (100) and the condition A,, > ¢,,E that

sm/ \Vun|* f(z)dx < / FAR(2,U) Vi, - Vugpde < Crlp (K, M + 1), (101)
Q Q
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with K = supp f, where the sequence
M
LK M) =1+ [ [ v, p)ldpde =
KJ-Mm

M
1+//IMWWWFD?%@MWM
K J—-M

was mentioned in Introduction. It follows from (101) and condition (16) that

(5m)2/ﬂ|Vum|2f(x)dx < Crepln(K,M+1) — 0 (102)

m—0o0

for all M, K and f.
Now we take a,b € R, a < b. Let us demonstrate that the sequence

Ly = divip(z, 80.(Um)) — D* - B(2, 8q(tm))

is pre-compact in W, i)c_ ? with some d > 1. For that, recall that um () is an entropy
solution of (17) and by Lemma 9 ( also see the proof of this Lemma )

divp, (2, Sap(Um)) — D* - Bu(, Sap(tm)) = ém

where &, is a bounded sequence in the space My,.(£2), which is compactly embedded
in WCZI})C(Q) for each d € [1,n/(n—1)). Further, we have L,, = Ly, + Loy, + &, where

Ly = div(o(2, Sa,p(tm)) = @m(T, Sap(Um))),
Loy = D* - (B (%, 80 (tm)) — B(, S0.p(Um))) -

In view of the estimate

[P(: 500 (tm)) = Pm (2, Sap(tm))| < MAX [P (2, ) = p(w,u)

and the condition ¢,,(z,u) — ¢(z,u) in L2 (Q,C(R,R™)) we have

loc
m—oo

(T, Sap(tm)) = Om(T, Sap(um)) — 0 in L1200<Q)'

m—00

Hence Ly, — 0 in WQ_ZIOC(Q). Concerning the sequence Ls,,, we represent it as follows

Loy = D? - (B (2, 8ap(tm)) — Bum(z,p) — B(x, Sap(um)) + B(x,p)) —
(diveom(x, p) — D* - Bp(x,p)) + (divasp(x, p) — D* - B(z,p)) +
divy (om(@,p) — ©(z,p)) = D* - Ry — 4" + 7 + diva(om(z,p) — ©(z,p))  (103)

where p is some fixed value, R,, = R,(x) = B,(z,sep(tm)) — Bn(z,p) —
B(z, sap(um)) + B(z,p) — 0 in L} (Q,C(R,Sym,)). The latter implies that for

loc

each ®(z) € C5°(Q) ®(z)Rn(z) — 0 in L*(Q,C(R, Sym,)). Observe that by the
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structure of our approximations (By,(z,u) — By (z,p) — em(u — p)E)§ = 0 for all
¢ € X. Therefore, (R,,(z) — emn(Sap(tm) —p)E) = 0 for £ = P&, £ € R™, and the
matrix H,,(x) = Ry (x) — em(Sap(um) — p)E satisfies the property

F(®H,,)(&)¢ € = s e I D (7)) H,y (2)E - Eda =

[ e @) w6 - o = FOH,)OE €
This implies that
(0 €2+ €1 2P (D @ H,0) ()| =
47 |(1+ |2 + 61) A F(@HA) ()€ - €] < IF(2H,W)(E)]
and by Plancherel’s equality
11+ 1€ + €14 2P(D - @ Ho) €l < IF(@Hw)(E) 2 = | ®Hnllz = 0

in L?(R"). This means that

D*. ®H,, — 0 in W, "2 (104)

m—00

Since

®D*- H,, = D*-®H,, — 2div(H,,V®) + H,, - D*® in D'(R")
and, evidently, the sequences div(H,,V®), H,, - D*® converges to zero as m — oo
in Wyt ¢ W, "2 then by (104) we claim that ®D? - H,, — 0 in W, ""?. Here
d(z) € C§°(R) is arbitrary and therefore

D*-H, — 0 in W,,.7*(Q). (105)

m—00

Further, using the chain rule, we find
emD? + (Sap(Um) — P)E = €ndivVsap(tm) = mdivx (tUm) V],

X () is the indicator function of the segment [a, b]. In view of estimate (102) &, Vu,,, —

0in L} () as m — oo. Hence

emD? - (Sap(tUm) —p)E — 0 in W2_,l1)c(Q> C WQ_J?—Z(Q).

m—00 ¢

This and (105) imply that

D* R, — 0 in W,07(9). (106)
It is clear that
div, (pm(z,p) — @(x,p)) m:>OOO in WQZIOC(Q) C nglo’;2(§2). (107)
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Finally, by (7) the sequence 7' — v, — 0 weakly in M, (§2). Therefore, for
de (1,n/(n—1))

Y =% — 0 in W loc(Q) - Wd_lloc_2<Q) (108)

m—00

In view of (106), (107), (108) we derive from representation (103) that Lo, — 0 as
m — oo in Wy, L72(Q) for some d > 1. As was demonstrated above, the same limit
relations fulfill for sequences Li,,, &, and we conclude that L,, = Ly, + Lopym + &m
is pre-compact in W, L72(Q) with some d > 1. Hence, assumption (86) is satisfied.
By Corollary 2 we see that the sequence wu,, converges in L},.(2) to some function
u = u(x) € L*®(Q). Obviously, ||ul]lcc < M. It only remains to demonstrate that
u is an entropy and distributional solution of (1). By relation (97) for each p € R,

f=f(x) € CPQ), f>0
/Q Sign(tim — P){ (@ (&, ) — o (2,p)) - Vf — f™() +
(Bm(x,up) — Bn(x,p)) - D2f}dx >0

where
'7;7771(93) = dive@m(r,p) = divepm(z, p) — D?. By (z,p).
Since 7" () = v (x) + Vpa(z) (see Introduction) the above relation implies that

/Q (sign(t — D)@ (@s ) — p(,0)) - VF — fI ) +

(Bun(@, tm) = Bu(z,p)) - D* f] + fl7pa(2)[}dz > 0. (109)

Passing to a subsequence, we may assume that u,,(x) — u(z) as m — oo a.e. in Q.
Then, in view of (12), (13),

sign(um — p)(om (@, um) = om(z,p)) — sign(u —p)(p(z,u) = ¢(z,p)
sign(Um — p)(Bm (2, tm) — Bm (1, p)) mjoo Slgn(u —p)(B(z,u) = B(z,p)

Y

sign(u,, —p) — sign(u — p)
a.e. in  and, as a consequence, in L}, (). The latter relation holds for p € R

such that the level set u~'(p) has zero Lebesgue measure. Besides, by our assump-
tions ( see relations (14), (15) ) 4 (x ) — wy(x) in L}, (Q), l1m fQ z) Yo (@) ]dr <

fQ z)d|v;|(x). Taking into account the above limit relatlons, we can pass to the limit
n (109) and obtain that

/Q sign(u — p){ (0@, tm) — () - VF — fup(z) +
(B(a,u) — Blx.p)) - D*f}de + / @) dngl(z) > 0 (110)
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for all p € R such that the level set u~!(p) has zero Lebesgue measure. Repeating
the arguments concluding the proof of Theorem 1, we obtain that (110) holds for all
p € R, i.e. u(z) is an entropy solution of (17). Finally, passing to the limit as m — oo
in relation (96)

/Q{gom(x,um) -V f+ Bz, uy)  D*fidx =0,

we obtain that for all f = f(x) € C§°(Q)

/Q{so(x,u) -V f+ B(z,u) - D*f}dz = 0.

Hence, u = wu(x) is a distributional solution of (1). This completes the proof of
Theorem 2. [J

Remark in conclusion that the strong pre-compactness property for equations of
Graetz-Nusselt type

div (p(z,u) — A(z)Vg(u)) + ¥(z,u) =0

was studied in [18, 17]. In particular, Theorems 1,2 was proved in [17] for such the
equation under the less restrictive non-degeneracy requirement:

fora.e. x € Q forall§ € R, € # 0, the functions u — &-p(z,u), u — g(u)A(x)E-&
are not constant simultaneously on non-degenerate intervals.
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