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Abstract

Under some non-degeneracy condition we show that sequences of entropy
solutions of a semi-linear ultra-parabolic equation are strongly pre-compact in
the general case of a Caratheodory flux vector and a diffusion matrix. The proofs
are based on localization principles for the parabolic H-measures corresponding
to sequences of measure-valued functions.

1 Introduction

Let Ω be an open subset of Rn. In the domain Ω we consider the semi-linear ultra-
parabolic equation

divϕ(x, u)−D2 ·B(x, u) + ψ(x, u) = 0, (1)

where D2·B(x, u) = ∂2
xixj

bij(x, u), u = u(x) (we use the conventional rule of summation
over repeated indexes), B(x, u) = {bij(x, u)}n

i,j=1 is a symmetric matrix. We shall
assume that the components of this matrix are Caratheodory functions: bij(x, u) ∈
L2

loc(Ω, C(R)), i, j = 1, . . . , n. This means that bij(x, u) are measurable with respect
to x, continuous with respect to u, and max

|u|≤M
|bij(x, u)| ∈ L2

loc(Ω) ∀M > 0. In this case

the parabolicity of (1) is understood in the following sense

∀x ∈ Ω, u1, u2 ∈ R, u1 > u2 B(x, u1)−B(x, u2) ≥ 0, (2)

that is, ∀ξ ∈ Rn (B(x, u1)−B(x, u2))ξ · ξ ≥ 0 ( here u · v denotes the scalar product
of vectors u, v ∈ Rn ). We shall also assume that the matrix B(x, u) is degenerated
on a linear subspace X ⊂ Rn, that is, for all ξ ∈ X the function B(x, u)ξ · ξ does not
depend on u: B(x, u)ξ · ξ = C(x). Hence, (1) is a semi-linear ultra-parabolic equation.

Concerning the convective terms, we suppose that ϕ(x, u) =
(ϕ1(x, u), . . . , ϕn(x, u)) ∈ L2

loc(Ω, C(R,Rn)) is a Caratheodory vector. We also
assume that for any p ∈ R the distribution

divxϕ(x, p)−D2
x ·B(x, p) = γp ∈ Mloc(Ω), (3)

where Mloc(Ω) is the space of locally finite Borel measures on Ω with the standard
locally convex topology generated by semi-norms pΦ(µ) = Var (Φµ), Φ = Φ(x) ∈

1The work was supported by the Russian Foundation for Basic Research (grant No. 09-01-00490-a)
and DFG project No. 436 RUS 113/895/0-1. This article was written as part of the the international
research program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at
the Norwegian Academy of Science and Letters in Oslo during the academic year 2008–09.

1



C0(Ω). The function ψ(x, u) is assumed to be a Caratheodory function on Ω × R:
ψ(x, u) ∈ L1

loc(Ω, C(R)).
Let γp = γr

p +γs
p be the decomposition of the measure γp into the sum of regular and

singular measures, so that γr
p = ωp(x)dx, ωp(x) ∈ L1

loc(Ω), and γs
p is a singular measure

(supported on a set of zero Lebesgue measure). We denote by |γs
p| the variation of

the measure γs
p, which is a non-negative locally finite Borel measure on Ω. Denote, as

usual, sign u =





1 , u > 0,
−1 , u < 0,
0 , u = 0.

Now, we introduce a notion of entropy solution of (1).
Definition 1. A measurable function u(x) on Ω is called an entropy solution of

equation (1) if ϕi(x, u(x)), bij(x, u(x)), ψ(x, u(x)) ∈ L1
loc(Ω), i, j = 1, . . . , n, and for all

p ∈ R the Kruzhkov-type entropy inequality (see [10]) holds

div [sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))]−
D2 · (sign(u(x)− p)(B(x, u(x))−B(x, p))) +

sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γs
p| ≤ 0 (4)

in the sense of distributions on Ω (in the space D′(Ω)); that is, for all non-negative
functions f(x) ∈ C∞

0 (Ω)
∫

Ω

sign(u(x)− p)[(ϕ(x, u(x))− ϕ(x, p)) · ∇f(x) + (B(x, u(x))−B(x, p)) ·D2f −

(ωp(x) + ψ(x, u(x)))f(x)]dx +

∫

Ω

f(x)d|γs
p|(x) ≥ 0.

We use the notation D2f for the matrix {∂2
xixj

f}n
i,j=1 and P ·Q = TrPQ =

n∑
i,j=1

pijqij

denotes scalar product of symmetric matrices P = {pij}n
i,j=1, Q = {qij}n

i,j=1. In
particular,

(B(x, u(x))−B(x, p)) ·D2f = (bij(x, u)− bij(x, p))∂2
xixj

f.

In the case when the second-order term is absent ( B(x, u) ≡ 0 ) our definition extends
the notion of the entropy solution for first-order balance laws introduced for the case
of one space variable in [7, 8]. If ϕ(x, u), B(x, u) are smooth, and the strong ellipticity
condition A(x, u) = B′

u(x, u) ≥ εE, ε > 0 is satisfied then weak (variational) solutions
of (1) are entropy solutions as well. This fact will be demonstrated in last Section 5.2
( as a part of the proof of Theorem 2 ).

We also notice that we do not require u(x) to be a distributional solution of (1).
If u(x) ∈ L∞(Ω) and γs

p = 0 for all p ∈ R then any entropy solution u(x) satisfies
(1) in D′(Ω), i.e. u(x) is a distributional solution of (1). Indeed, this follows from (4)
with p = ±‖u‖∞. But, generally, entropy solutions are not distributional ones, even in
the case when the singular measures γs

p are absent. For instance, as is easily verified,

2



u(x) = sign x|x|−1/2 is an entropy solution of the first-order equation (xu2)x = 0 on
the line Ω = R, but it does not satisfy this equation in D′(R).

We assume that equation (1) is non-degenerate in the sense of the following defi-
nition.

Definition 2. Equation (1) is said to be non-degenerate if for almost all x ∈ Ω for
all ξ̃ ∈ X, ξ̄ ∈ X⊥ such that ξ̃ 6= 0, ξ̄ 6= 0 the function λ → ξ̃ ·ϕ(x, λ), λ → B(x, λ)ξ̄ · ξ̄
are not constant on non-degenerate intervals.

In this paper, we shall establish the strong pre-compactness property for sequences
of entropy solutions. This result generalizes the previous results of [12, 13, 14, 15, 16]
to the case of ultra-parabolic equations.

Theorem 1. Suppose that uk, k ∈ N is a sequence of entropy solutions of
non-degenerate equation (1) such that |ϕ(x, uk(x))| + |ψ(x, uk(x))| + |B(x, uk(x))| +
m(uk(x)) is bounded in L1

loc(Ω), where m(u) is a nonnegative super-linear function (i.e.
m(u)/u →∞ as u →∞). Then there exists a subsequence of uk, which converges in
L1

loc(Ω) to some entropy solution u(x).

We use here and everywhere below the notation |B| for the Euclidean norm of a
symmetric matrix B, that is |B|2 = B ·B = TrB2.

More generally, we establish the strong pre-compactness of approximate sequences
uk(x) for non-degenerate equation (1). The only assumption we need is that the
sequences of distributions

divϕ(x, sa,b(uk(x)))−D2 ·B(x, sa,b(uk(x)))

are pre-compact in the anisotropic Sobolev space W−1,−2
d,loc (Ω) for some d > 1 and each

a, b ∈ R, a < b where sa,b(u) = max(a, min(u, b)) are cut-off functions, and the space
W−1,−2

d,loc (Ω) will be specified below, in Section 4. We do not require here that condition
(3) is satisfied.

Remark that the non-degeneracy condition is essential for the statement of The-
orem 1. For example, assume that (1) has the form divϕ(u) − D2 · B(u) = 0
and ξ · ϕ(u) = const on the segment [a, b] with ξ ∈ X, ξ 6= 0 then the sequence
uk(x) = [a + b + (b − a) sin(kξ · x)]/2 of entropy solutions does not contain strongly
convergent subsequences.

We also stress that for sequences of distributional solutions ( without additional
entropy constraints ) the statement of Theorem 1 does not hold. For example, the
sequence uk = sign sin kx consists of distributional solutions for the Burgers equation
ut + (u2)x = 0 ( as well as for the corresponding stationary equation (u2)x = 0 ) and
converges only weakly, while the non-degeneracy condition is evidently satisfied.

Theorem 1 will be proved in the last section. The proof is based on general lo-
calization properties for parabolic H-measures corresponding to bounded sequences of
measure-valued functions. It also follows from these properties the strong convergence
of various approximate solutions for equation (1).

We describe below one useful approximation procedure. For simplicity we assume
that ψ(x, u) ≡ 0. Let ζ(s) ∈ C∞

0 (R) be a non-negative function with support in
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the segment [−1, 1] such that
∫

ζ(s)ds = 1. We set ζm(s) = mζ(ms) for m ∈ N,

αm(y) =
n∏

i=1

ζm(yi), y ∈ Rn, so that the sequence αm is an approximate unity on Rn.

We introduce the averaged functions

ϕ̄m(x, u) = (ϕ(·, u) ∗ αm)(x) =

∫

Rn

ϕ(x− y, u)αm(y)dy,

B̄m(x, u) = (B(·, u) ∗ αm)(x) =

∫

Rn

B(x− y, u)αm(y)dy.

Then, by known properties of averaged functions, ϕ̄m(x, u) ∈ C∞(Ω, C(R,Rn)),
B̄m(x, u) ∈ C∞(Ω, C(R, Symn)), where Symn denotes the space of symmetric ma-
trices of order n, γ̄m(x, p)

.
= divxϕ̄m(x, p)−D2

x · B̄m(x, p) ∈ C∞(Ω, C(R)) for all p ∈ R,
and

ϕ̄m(x, ·) →
m→∞

ϕ(x, ·) in L2
loc(Ω, C(R,Rn)), (5)

B̄m(x, ·) →
m→∞

B(x, ·) in L2
loc(Ω, C(R, Symn)), (6)

γ̄m(x, p) →
m→∞

γp weakly in Mloc(Ω). (7)

Then, recall that γp = γr
p + γs

p, where γr
p = ωp(x)dx and therefore

γ̄m(x, p) = (γp ∗ αm)(x) = γ̄r
mp + γ̄s

mp,

where γ̄r
mp = ωp ∗ αm, γ̄s

mp = γs
p ∗ αm ∈ C∞(Ω), and

γ̄r
mp →

m→∞
ωp in L1

loc(Ω), (8)

|γ̄s
mp| ≤ |γs

p| ∗ αm →
m→∞

|γs
p| weakly in Mloc(Ω). (9)

Now we average the vector ϕ̄m and the matrix B̄m with respect to the variable u,
introducing for l ∈ N the functions

ϕ̄m,l(x, u) = (ϕ̄m(x, ·) ∗ ζl)(u) =

∫
ϕ̄m(x, u− v)ζl(v)dv,

B̄m,l(x, u) = (B̄m(x, ·) ∗ ζl)(x) =

∫
B̄m(x, u− v)ζl(v)dv.

Clearly, ϕ̄m,l(x, u) ∈ C∞(Ω×R,Rn), B̄m,l(x, u) ∈ C∞(Ω×R, Symn) and for each fixed
m ∈ N

ϕ̄m,l(x, u) →
l→∞

ϕ̄m(x, u), B̄m,l(x, u) →
l→∞

B̄m(x, u),

divxϕ̄m,l(x, u)−D2
x · B̄m,l(x, u) = γ̄m(x, ·) ∗ ζl(u) →

l→∞
γ̄m(x, u)

4



uniformly on compact subset of Ω× R. These relations allow to choose an increasing
sequence l = lm in such a way that for ϕm(x, u)

.
= ϕ̄m,lm(x, u), Bm(x, u)

.
= B̄m,lm(x, u)+

εmuE, where a sequence εm > 0, εm →
m→∞

0, and E is the unit matrix, we have

ϕm(x, u)− ϕ̄m(x, u) →
m→∞

0, Bm(x, u)− B̄m(x, u) →
m→∞

0, (10)

(divxϕm(x, u)−D2
x ·Bm(x, u))− (divxϕ̄m(x, u)−D2

x · B̄m(x, u)) →
m→∞

0 (11)

uniformly on compact subset of Ω× R. It follows from relations (10), (5), (6) that

ϕm(x, ·) →
m→∞

ϕ(x, ·) in L2
loc(Ω, C(R,Rn)), (12)

Bm(x, ·) →
m→∞

B(x, ·) in L2
loc(Ω, C(R, Symn)). (13)

Now, observe that γm(x, p)
.
= divxϕm(x, p)−D2

x ·Bm(x, p) = γr
mp + γ̄s

mp, where

γr
mp

.
= (divxϕm(x, p)−D2

x ·Bm(x, p))−
(divxϕ̄m(x, p)−D2

x · B̄m(x, p)) + γ̄r
mp →

m→∞
ωp(x) in L1

loc(Ω) (14)

in accordance with (11), (8).
Further, from relation (9) it follows that for each f(x) ∈ C0(Ω), f(x) ≥ 0

lim
m→∞

∫

Ω

f(x)|γ̄s
mp(x)|dx ≤

∫

Ω

f(x)d|γs
p|(x). (15)

Remark that, as follows from the assumption (2) and the choice of our approximations,

Am(x, u) = (Bm)′u(x, u) ≥ εmE, and (Am(x, u)− εmE)ξ = 0 ∀ξ ∈ X.

Let K be a compact subset of Ω, M > 0. We introduce the sequence

Im(K, M) = 1 +

∫

K

∫ M

−M

|divxϕm(x, p)−D2
x ·Bm(x, p)|dpdx.

Generally, the sequence Im(K, M) may tend to infinity as m → ∞. Obviously, this
sequence does not depend on εm, which allows to choose the sequence εm > 0 in such
a way that

εmIm(K, M) →
m→∞

0 (16)

for each M > 0 and each compact K ⊂ Ω.

Now, we consider the approximate equation

divϕm(x, u)−D2 ·Bm(x, u) = div[ϕ̃m(x, u)− Am(x, u)∇u] = 0, (17)

where ϕ̃m(x, u) is a vector with coordinates

ϕ̃mi(x, u) = ϕmi(x, u)− ∂xj
(Bm)ij(x, u), i = 1, . . . , n,
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where ϕmi(x, u), (Bm)ij(x, u), i, j = 1, . . . , n, are components of the vectors ϕm(x, u)
and the matrix Bm(x, u), respectively.

We suppose that u = um(x) is a bounded weak solution of elliptic equation(17)
( for instance, we can take u = um(x) being a weak solution to the Dirichlet
problem with a bounded data at ∂Ω ). This means ( see [11][Chapter 4] ) that
u ∈ L∞(Ω) ∩ W 1

2,loc(Ω), where W 1
2,loc(Ω) is the Sobolev space consisting of functions

whose generalized derivatives lay in L2
loc(Ω), and the following standard integral iden-

tity is satisfied: ∀f = f(x) ∈ C1
0(Ω).

∫

Ω

[ϕ̃m(x, u(x))− Am(x, u(x))∇u(x)] · ∇f(x)dx = 0. (18)

We also assume that the sequence um is bounded in L∞(Ω). Under the above assump-
tions we establish the strong convergence of the approximations.

Theorem 2. Suppose that equation (1) is non-degenerate. Then the sequence
um(x) →

m→∞
u(x) in L1

loc(Ω), where u = u(x) is an entropy and a distributional solution

of (1).
Remark that Theorem 2 allows to establish the existence of entropy solutions of

boundary value problems for equation (1) ( as well as initial or initial boundary value
problems for evolutionary equations of the kind (1) ).

For example, in [16] we use approximations and the strong pre-compactness prop-
erty in order to prove the existence of entropy solutions to the Cauchy problem for
an evolutionary hyperbolic equation with discontinuous multidimensional flux. This
extends results of [9], where the two-dimensional case is treated by the compensated
compactness method.

In the next section 2 we describe the main concepts, in particular the concept of
measure-valued functions. In sections 3,4 we introduce a notion of H-measure and
prove the localization property. Finally, in the last section 5, these results are applied
to prove our main Theorems 1,2.

2 Main concepts

Recall ( see [3, 4, 20] ) that a measure-valued function on Ω is a weakly measurable
map x → νx of the set Ω into the space of probability Borel measures with compact
support in R. The weak measurability of νx means that for each continuous function
f(λ) the function x → ∫

f(λ)dνx(λ) is Lebesgue-measurable on Ω.
Remark 1. If νx is a measure-valued function then, as was shown in [13], the

functions
∫

g(λ)dνx(λ) are measurable in Ω for all bounded Borel functions g(λ). More
generally, if f(x, λ) is a Caratheodory function and g(λ) is a bounded Borel function
then the function

∫
f(x, λ)g(λ)dνx(λ) is measurable. This follows from the fact that

any Caratheodory function is strongly measurable as a map x → f(x, ·) ∈ C(R)
(see [6], Chapter 2) and, therefore, is a pointwise limit of step functions fm(x, λ) =
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∑
i

gmi(x)hmi(λ) with measurable functions gmi(x) and continuous hmi(λ) so that for

x ∈ Ω fm(x, ·) →
m→∞

f(x, ·) in C(R).

A measure-valued function νx is said to be bounded if there exists M > 0 such
that supp νx ⊂ [−M, M ] for almost all x ∈ Ω. We denote by ‖νx‖∞ the smallest value
of M with this property.

Finally, measure-valued functions of the form νx(λ) = δ(λ− u(x)), where δ(λ− u)
is the Dirac measure concentrated at u are said to be regular; we identify them with
the corresponding functions u(x). Thus, the set MV (Ω) of bounded measure-valued
functions on Ω contains the space L∞(Ω). Note that for a regular measure-valued
function νx(λ) = δ(λ − u(x)) the value ‖νx‖∞ = ‖u‖∞. Extending the concept of
boundedness in L∞(Ω) to measure-valued functions, we shall say that a subset A of
MV (Ω) is bounded if supνx∈A ‖νx‖∞ < ∞.

Below we define the weak and the strong convergence of sequences of measure-
valued functions.

Definition 3. Let νk
x ∈ MV (Ω), k ∈ N, and let νx ∈ MV (Ω). Then

1) the sequence νk
x converges weakly to νx if for each f(λ) ∈ C(R),

∫
f(λ)dνk

x(λ) →
k→∞

∫
f(λ)dνx(λ) weakly-∗ in L∞(Ω);

2) the sequence νk
x converges to νx strongly if for each f(λ) ∈ C(R),

∫
f(λ)dνk

x(λ) →
k→∞

∫
f(λ)dνx(λ) in L1

loc(Ω).

The next result was proved in [20] for regular functions νk
x . The proof can be easily

extended to the general case, as was done in [13].
Theorem T. Let νk

x , k ∈ N be a bounded sequence of measure-valued functions.
Then there exist a subsequence νr

x = νk
x , k = kr, and a measure-valued function νx ∈

MV (Ω) such that νr
x → νx weakly as r →∞.

Theorem T shows that bounded sets of measure-valued functions are weak1y pre-
compact. If uk(x) ∈ L∞(Ω) is a bounded sequence, treated as a sequence of regular
measure valued functions, and uk(x) weakly converges to a measure valued function
νx then νx is regular, νx(λ) = δ(λ− u(x)), if and only if uk(x) → u(x) in L1

loc(Ω) ( see
[20] ). Obviously, if uk(x) converges to νx strongly then uk(x) → u(x) =

∫
λdνx(λ) in

L1
loc(Ω) and then νx(λ) = δ(λ− u(x)).

We shall study the strong pre-compactness property using Tartar’s techniques of
H-measures.

Let F (u)(ξ) =

∫
e−2πiξ·xu(x)dx, ξ ∈ Rn, be the Fourier transform extended as

unitary operator on the space u(x) ∈ L2(Rn), and let S = Sn−1 = { ξ ∈ Rn | |ξ| = 1 }
be the unit sphere in Rn. Denote by u → u, u ∈ C, the complex conjugation.

The concept of H-measure corresponding to some sequence of vector-valued func-
tions bounded in L2(Ω) was introduced by L. Tartar [21] and P. Gerárd [5] on the
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basis of the following result. For l ∈ N let Uk(x) =
(
U1

k (x), . . . , U l
k(x)

) ∈ L2(Ω,Rl) be
a sequence weakly convergent to the zero vector.

Proposition 1. [see [21], Theorem 1.1] There exists a family of complex Borel

measures µ = {µij}l
i,j=1 in Ω× S and a subsequence Ur(x) = Uk(x), k = kr, such that

〈µij, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (U i
rΦ1)(ξ)F (U j

r Φ2)(ξ)ψ

(
ξ

|ξ|
)

dξ (19)

for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ = {µij}l
i,j=1 is called an H-measure corresponding to Ur(x).

Recently in [1] the new concept of parabolic H-measures was introduced. Here we
present the more general variant of this concept. Suppose that X ⊂ Rn is a linear
subspace, X⊥ is its orthogonal complement, P1, P2 are orthogonal projections on X,
X⊥, respectively. We denote for ξ ∈ Rn ξ̃ = P1ξ, ξ̄ = P2ξ, so that ξ̃ ∈ X, ξ̄ ∈ X⊥,
ξ = ξ̃ + ξ̄. Let SX = { ξ ∈ Rn | |ξ̃|2 + |ξ̄|4 = 1 }. Then SX is a compact smooth
manifold of codimension 1, in the case when X = {0} or X = Rn it coincides with the
unit sphere S = {ξ ∈ Rn | |ξ| = 1 }. Let us define the projection πX : Rn \ {0} → SX :

πX(ξ) =
ξ̃

(|ξ̃|2 + |ξ̄|4)1/2
+

ξ̄

(|ξ̃|2 + |ξ̄|4)1/4
.

Remark that in the case when X = {0} or X = Rn πX(ξ) = ξ/|ξ|. We denote
p(ξ) = (|ξ̃|2 + |ξ̄|4)1/4. The following useful property of the projection holds.

Lemma 1. Let ξ, η ∈ Rn, max(p(ξ), p(η)) ≥ 1. Then

|πX(ξ)− πX(η)| ≤ 6|ξ − η|
max(p(ξ), p(η))

.

Proof. We define for ξ ∈ Rn, α > 0 ξα = α2ξ̃ + αξ̄. Observe that for all α > 0
πX(ξα) = πX(ξ). Without lose of generality we may suppose that p(ξ) ≥ p(η), and
in particular p(ξ) ≥ 1. Remark that πX(ξ) = ξα, πX(η) = ηβ, where α = 1/p(ξ),
β = 1/p(η). Therefore,

|πX(ξ)− πX(η)| = |ξα − ηβ| ≤ |ξα − ηα|+ |ηα − ηβ| ≤(
α4|ξ̃ − η̃|2 + α2|ξ̄ − η̄|2

)1/2

+
(
(β2 − α2)2|η̃|2 + (β − α)2|η̄|2)1/2 ≤

α|ξ − η|+ (β − α)
(
(β + α)2|η̃|2 + |η̄|2)1/2

. (20)

Here we take into account that α ≤ 1 and therefore α4 ≤ α2. Since

(β + α)2 ≤ 4β2 = 4(|η̃|2 + |η̄|4)−1/2 ≤ 4/|η̃|,

we have the estimate

(β + α)2|η̃|2 + |η̄|2 ≤ 4(|η̃|+ |η̄|2) ≤ 4
(
2(|η̃|2 + |η̄|4))1/2 ≤ 6(p(η))2. (21)
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Concerning the term β − α, we estimate it as follows

β − α =
p(ξ)− p(η)

p(ξ)p(η)
=

|ξ̃|2 − |η̃|2 + |ξ̄|4 − |η̄|4
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤

(|ξ̃|+ |η̃|)|ξ̃ − η̃|+ (|ξ̄|+ |η̄|)(|ξ̄|2 + |η̄|2)|ξ̄ − η̄|
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤

|ξ̃|+ |η̃|+ (|ξ̄|+ |η̄|)(|ξ̄|2 + |η̄|2)
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

|ξ − η| ≤
(p(ξ))2 + (p(η))2 + (p(ξ) + p(η))((p(ξ))2 + (p(η))2)

p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)
|ξ − η| ≤

1 + p(ξ) + p(η)

p(ξ) + p(η)

|ξ − η|
p(ξ)p(η)

≤ 2|ξ − η|
p(ξ)p(η)

. (22)

Here we use that ξ̃ ≤ (p(ξ))2, ξ̄ ≤ p(ξ), η̃ ≤ (p(η))2, η̄ ≤ p(η), and that p(ξ)+p(η) ≥ 1.
Now it follows from (20), (21), (22) that

|πX(ξ)− πX(η)| ≤ |ξ − η|
p(ξ)

+
2
√

6|ξ − η|
p(ξ)

≤ 6|ξ − η|
p(ξ)

=
6|ξ − η|

max(p(ξ), p(η))
,

as was to be proved.¤
Let b(x) ∈ C0(Rn), a(z) ∈ C(SX). Then we can define pseudo-differential operators

B,A with symbols b(x), a(πX(ξ)), respectively. These operators are multiplication
operators Bu(x) = b(x)u(x), F (Au)(ξ) = a(πX(ξ))F (u)(ξ). Obviously, the operators
B,A are well-defined and bounded in L2. As was proved in [21], in the case when
SX = S, πX(ξ) = ξ/|ξ| the commutator [A,B] = AB − BA is a compact operator.
Using the assertion of Lemma 1 one can easily extend this result for the general case
( in the case dim X = 1 this was done in [1] ). For completeness we give below the
details for the general setting.

Lemma 2. The operator [A,B] is compact in L2.
Proof. We can find sequences ak(z) ∈ C∞(SX), bk(x) ∈ C∞(Rn), k ∈ N with the

following properties: F (bk)(ξ) ∈ C∞
0 (Rn), and as k →∞ ak(z) → a(z), bk(x) → b(x)

uniformly on SX , Rn, respectively. Then the sequences of the operators Ak, Bk with
symbols ak(πX(ξ)), bk(x) converge as k → ∞ to the operators A, B, respectively (in
the operator norm). Therefore, [Ak,Bk] →

k→∞
[A,B] and it is sufficient to prove that the

operators [Ak,Bk] are compact for all k ∈ N ( then [A,B] is a compact operator as a
limit of compact operators ). Let u = u(x) ∈ L2(Rn). Then by the known property
F (bu)(ξ) = F (b) ∗ F (u)(ξ) =

∫
F (b)(ξ − η)F (u)(η)dη,

F ([Ak,Bk]u)(ξ) = F (AkBku)(ξ)− F (BkAku)(ξ) =

ak(πX(ξ))F (bku)(ξ)− F (bkAku)(ξ) =∫

Rn

(ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η)F (u)(η)dη.
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We have to prove that the integral operator Kv(ξ) =
∫
Rn k(ξ, η)v(η)dη with the kernel

k(ξ, η) = (ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η) is compact on L2(Rn).
Since ak ∈ C∞(SX) then by Lemma 1

|ak(πX(ξ))− ak(πX(η))| ≤ C
|ξ − η|

max(p(ξ), p(η))

for max(p(ξ), p(η)) ≥ 1, where C = const. Thus for all ξ, η ∈ Rn such that
max(p(ξ), p(η)) > m > 1

|ak(πX(ξ))− ak(πX(η))| ≤ C

m
|ξ − η|. (23)

Let χm(ξ, η) be the indicator function of the set { (ξ, η) ∈ R2n | max(p(ξ), p(η)) ≤ m },
and

km(ξ, η) = χ(ξ, η)(ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η),

rm(ξ, η) = (1− χ(ξ, η))(ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η).

Then k(ξ, η) = km(ξ, η) + rm(ξ, η) and K = Km + Rm, where Km, Rm are integral
operators with the kernels km(ξ, η), rm(ξ, η), respectively. Since the function km(ξ, η)
is bounded and compactly supported then the operator Km is a Hilbert-Schmidt op-
erator, which is compact. On the other hand, in view of (23)

|Rmv(ξ)| ≤ C

m

∫

Rn

|(ξ − η)F (bk)(ξ − η)||v(η)|dη = [|ξF (bk)| ∗ |v|](ξ)

and, by the Young inequality, for every v ∈ L2(Rn)

‖Rmv‖2 ≤ C

m
‖ξF (bk)‖1‖v‖2.

Therefore, ‖Rm‖ ≤ const/m and Rm → 0 as m → ∞. We conclude that Km → K
and therefore K is a compact operator, as a limit of compact operators. This complete
the proof. ¤

The parabolic H-measure µij, i, j = 1, . . . , l corresponding to a subspace X ⊂ Rn

and a sequence Ur(x) ∈ L2(Ω,Rl) is defined on Ω×SX by the relation similar to (19):
∀Φ1(x), Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX)

〈µij, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1U
i
r)(ξ)F (Φ2U

j
r )(ξ)ψ(πX(ξ))dξ. (24)

The existence of the H-measure µij is proved exactly in the same way as in [21], with
using the statement of Lemma 2. This H-measure satisfies the same properties as the
”usual” H-measure µpq (corresponding to the case X = {0} or X = Rn).

The concept of H-measure was extended in [13] ( see also [14, 15] ) to the case of
”continuous” indexes i, j. The similar extension can be also established for parabolic
H-measures. We study the properties of such H-measures in the next section.
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3 H-measures corresponding to bounded sequences

of measure-valued functions

Let νk
x ∈ MV (Ω) be a bounded sequence of measure-valued functions weakly conver-

gent to a measure-valued function ν0
x ∈ MV (Ω). For x ∈ Ω and p ∈ R we introduce

the distribution functions

uk(x, p) = νk
x((p, +∞)), u0(x, p) = ν0

x((p, +∞)).

Then, as mentioned in Remark 1, for k ∈ N∪{0} and p ∈ R the functions uk(x, p) are
measurable in x ∈ Ω; thus, uk(x, p) ∈ L∞(Ω) and 0 ≤ uk(x, p) ≤ 1. Let

E = E(ν0
x) =

{
p0 ∈ R | u0(x, p) →

p→p0

u0(x, p0) in L1
loc(Ω)

}
.

We have the following result, whose proof can be found in [13].
Lemma 3. The complement Ē = R \ E is at most countable and if p ∈ E then

uk(x, p) →
k→∞

u0(x, p) weakly-∗ in L∞(Ω).

Let Up
k (x) = uk(x, p)−u0(x, p). Then, by Lemma 3, Up

k (x) → 0 as k →∞ weakly-∗
in L∞(Ω) for p ∈ E. Let X be a linear subspace of Rn. The next result, similar to
Proposition 1, was also established in [13] in the case X = Rn. The general case of
arbitrary X is proved exactly in the same way.

Proposition 2. 1) There exists a family of locally finite complex Borel measures
{µpq}p,q∈E in Ω× SX and a subsequence Ur(x) = {Up

r (x)}p∈E, Up
r (x) = Up

k (x), k = kr

such that for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(SX)

〈µpq, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ. (25)

2) The correspondence (p, q) → µpq is a continuous map from E×E into the space
Mloc(Ω× S).

We call the family of measures {µpq}p,q∈E the H-measure corresponding to the

subsequence νr
x = νk

x , k = kr.
Remark 2. We can replace the function ψ(πX(ξ)) in relation (25) ( and in (24) ) to

a function ψ̃(ξ) ∈ C(Rn), which equals ψ(πX(ξ)) for large |ξ|. Indeed, since U q
r →

r→∞
0

weakly-∗ in L∞(Ω) we have F (Φ2U
q
r )(ξ) →

r→∞
0 point-wise and in L2

loc(Rn) ( in view of

the bound |F (Φ2U
q
r )(ξ)| ≤ ‖Φ2U

q
r ‖1 ≤ const ). Taking into account that the function

χ(ξ) = ψ̃(ξ)− ψ(πX(ξ)) is bounded and has a compact support, we conclude that

F (Φ2U
q
r )(ξ)χ(ξ) →

r→∞
0 in L2(Rn).

This implies that

lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)χ(ξ)dξ = 0.

11



Therefore

lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ̃(ξ)dξ =

lim
r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ = 〈µpq, Φ1(x)Φ2(x)ψ(ξ)〉,

as required.

We point out the following important properties of an H-measure.
Lemma 4. (i) µpp ≥ 0 for each p ∈ E; (ii) µpq = µqp for all p, q ∈ E; (iii)

for p1, . . . , pl ∈ E and g1, . . . , gl ∈ C0(Ω × SX) the matrix A = aij = 〈µpipj , gigj〉,
i, j = 1, . . . , l is Hermitian and positive-definite.

Proof. We prove (iii). First let the functions gi = gi(x, ξ) be finite sums of
functions of the form Φ(x)ψ(ξ), where Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(SX). Then it
follows from (25) that

aij = lim
r→∞

∫

Rn

H i
r(ξ)H

j
r (ξ)dξ, (26)

where H i
r(ξ) = F (gi(·, πX(ξ))Upi

r )(ξ). Hence, setting gi(x, ξ) = g(x, ξ) =
m∑

k=1

Φk(x)ψk(ξ), we obtain

H i
r(ξ) =

m∑

k=1

F (ΦkU
pi
r )(ξ)ψk(πX(ξ)).

It immediately follows from (26) that aji = aij, i, j = 1, . . . , l, which shows that A is
a Hermitian matrix. Further, for α1, . . . , αl ∈ C we have

l∑
i,j=1

aijαiαj = lim
r→∞

∫

Rn

|Hr(ξ)|2dξ ≥ 0, Hr(ξ) =
l∑

i=1

H i
r(ξ)αi,

which means that A is positive-definite.
In the general case when gi ∈ C0(Ω × SX) one carries out the proof of (iii) by

approximating the functions gi, i = 1, . . . , l in the uniform norm by finite sums of
functions of the form Φ(x)ψ(ξ).

Assertions (i) and (ii) are easy consequences of (iii). Indeed, setting l = 1, p1 = p
and g1 = g, we obtain the relation 〈µpp, |g|2〉 ≥ 0, which holds for all g ∈ C0(Ω× SX),
thus showing that µpp is real and non-negative. To prove (ii) we represent an arbitrary
function g = g(x, ξ) with compact support in the form g = g1g2. Let l = 2, p1 = p
and p2 = q. In view of (iii),

〈µpq, g〉 = 〈µpq, g1g2〉 = 〈µqp, g2g1〉 = 〈µqp, g〉 = 〈µqp, g〉

and µpq = µqp. The proof is complete.¤
We consider now a countable dense index subset D ⊂ E.
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Proposition 3 (cf. [15]). There exists a family of complex finite Borel measures
µpq

x in SX with p, q ∈ D, x ∈ Ω′ where Ω′ is a subset of Ω of full measure, such that
µpq = µpq

x dx, that is, for all Φ(x, ξ) ∈ C0(Ω× SX) the function

x → 〈µpq
x (ξ), Φ(x, ξ)〉 =

∫

SX

Φ(x, ξ)dµpq
x (ξ)

is Lebesgue-measurable on Ω, bounded, and

〈µpq, Φ(x, ξ)〉 =

∫

Ω

〈µpq
x (ξ), Φ(x, ξ)〉dx.

Moreover, Var µpq
x ≤ 1 for all p, q ∈ D.

Proof. We claim that prΩ|µpq| ≤ meas for p, q ∈ E, where meas is the Lebesgue
measure on Ω. Assume first that p = q. By Lemma 4, the measure µpp is non-negative.
Next, in view of relation (25) with Φ1(x) = Φ2(x) = Φ(x) ∈ C0(Ω) and ψ(ξ) ≡ 1,

〈µpp, |Φ(x)|2〉 = lim
r→∞

∫

Rn

F (ΦUp
r )(ξ)F (ΦUp

r )(ξ)dξ =

lim
r→∞

∫

Ω

|Up
r (x)|2|Φ(x)|2dx ≤

∫

Ω

|Φ(x)|2dx

( we use here Plancherel’s equality and the estimate |Up
r (x)| ≤ 1 ). Thus, we see that

that prΩµpp ≤ meas.
Let p, q ∈ E, A be a bounded open subset of Ω, and g = g(x, ξ) ∈ C0(A × SX),

|g| ≤ 1. Let also g1 = g/
√
|g| ( we set g1 = 0 for g = 0 ) and g2 =

√
|g|. Then

g1, g2 ∈ C0(A× SX), g = g1g2, |g1|2 = |g2|2 = |g| and the matrix
( 〈µpp, |g|〉 〈µpq, g〉

〈µpq, g〉 〈µqq, |g|〉
)

is positive-definite by Lemma 4; in particular,

|〈µpq, g〉| ≤ (〈µpp, |g|〉〈µqq, |g|〉)1/2 ≤ (µpp(A× SX)µqq(A× S))1/2 ≤ meas(A).

We take into account the inequalities prΩµpp ≤ meas and prΩµqq ≤ meas to obtain the
last estimate. Since g can be an arbitrary function in C0(A× SX), |g| ≤ 1, we obtain
the inequality |µpq|(A × SX) ≤ meas(A). The measure µpq is regular, therefore this
estimate holds for all Borel subsets A of Ω and

prΩ|µpq| ≤ meas . (27)

It follows from (27) that for all ψ(ξ) ∈ C(SX) we have

|prΩ (ψ(ξ)µpq(x, ξ)) | ≤ ‖ψ‖∞ · prΩ|µpq| ≤ ‖ψ‖∞ ·meas . (28)

In view of (28) the measures prΩ(ψ(ξ)µpq(x, ξ)) are absolutely continuous with respect
to the Lebesgue measure, and the Radon-Nikodym theorem shows that

prΩ (ψ(ξ)µpq(x, ξ)) = hpq
ψ (x) ·meas,
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where the densities hpq
ψ (x) are measurable on Ω and, as seen from (28),

‖hpq
ψ (x)‖∞ ≤ ‖ψ‖∞. (29)

We now choose a non-negative function K(x) ∈ C∞
0 (Rn) with support in the unit

ball such that
∫

K(x)dx = 1 and set Km(x) = mnK(mx) for m ∈ N. Clearly, the
sequence of Km converges in D′(Rn) to the Dirac δ-function ( that is, this sequence is
an approximate unity ).

Let B lim
m→∞

cm be a generalized Banach limit on the space l∞ of bounded sequences

c = {cm}m∈N, i.e. L(c) = B lim
m→∞

cm is a linear functional on l∞ with the property:

lim
m→∞

cm ≤ L(c) ≤ lim
m→∞

cm

( in particular for convergent sequences c = {cm} L(c) = lim
m→∞

cm ). For complex

sequences cm = am + ibm the Banach limits is defined by complexification: B lim
m→∞

cm =

L(a) + iL(b), where a = {am}, b = {bm} are real and imaginary parts of the sequence
c = {cm}, respectively. Modifying the densities hpq

ψ (x) on subsets of measure zero, for
instance, replacing them by the functions

B lim
m→∞

∫

Ω

hpq
ψ (y)Km(x− y)dy

( obviously, the value hpq
ψ (x) does not change for any Lebesgue point x of the function

hpq
ψ ), we shall assume that for all x ∈ Ω

hpq
ψ (x) = B lim

m→∞

∫

Ω

hpq
ψ (y)Km(x− y)dy. (30)

Let Ω′ be the set of common Lebesgue points of the functions hpq
ψ (x), u0(x, p) =

ν0
x((p, +∞)), and u−0 (x, p) = ν0

x([p, +∞)) = lim
q→p−

u0(x, q), where p, q ∈ D and ψ be-

longs to F , some countable dense subset of C(SX). The family of (p, q, ψ) is countable,
therefore Ω′ is of full measure.

The dependence of hpq
ψ on ψ, regarded as a map from C(SX) into L∞(Ω), is clearly

linear and continuous (in view of (29)), therefore it follows from the density of F in
C(SX) that x ∈ Ω′ is a Lebesgue point of the functions hpq

ψ (x) for all ψ(ξ) ∈ C(SX)
and p, q ∈ D ( here we also take (30) into account ).

For p, q ∈ D and x ∈ Ω′ the equality l(ψ) = hpq
ψ (x) defines a continuous linear

functional in C(SX); moreover, ‖l‖ ≤ 1 in view of (29). By the Riesz-Markov theorem
this functional can be defined by integration with respect to some complex Borel
measure µpq

x (ξ) in SX and Var µpq
x = ‖l‖ ≤ 1. Hence

hpq
ψ (x) = 〈µpq

x (ξ), ψ〉 =

∫

SX

ψ(ξ)dµpq
x (ξ) (31)

for all ψ(ξ) ∈ C(SX).
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Equality (31) shows that the functions x →
∫

S

ψ(ξ)dµpq
x (ξ) are bounded and mea-

surable for all ψ(ξ) ∈ C(SX). Next, for Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(SX) we have

∫

Ω

(∫

SX

Φ(x)ψ(ξ)dµpq
x (ξ)

)
dx =

∫

Ω

Φ(x)hpq
ψ (x)dx =

∫

Ω

Φ(x)dprΩ (ψ(ξ)µpq) =

∫

Ω×SX

Φ(x)ψ(ξ)dµpq(x, ξ). (32)

Approximating an arbitrary function Φ(x, ξ) ∈ C0(Ω × SX) in the uniform norm by
linear combinations of functions of the form Φ(x)ψ(ξ), we derive from (32) that the

integral

∫

SX

Φ(x, ξ)dµpq
x (ξ) is Lebesgue-measurable with respect to x ∈ Ω, bounded,

and ∫

Ω

(∫

SX

Φ(x, ξ)dµpq
x (ξ)

)
dx =

∫

Ω×SX

Φ(x, ξ)dµpq(x, ξ),

that is, µpq = µpq
x dx. Recall that Var µpq

x ≤ 1.¤
The assumption that x ∈ Ω′ are Lebesgue points of the functions u0(x, p), u−0 (x, p)

for all p ∈ D will be used later. Observe that since p ∈ D ⊂ E is a continuity point of
the map p → u0(x, p) in L1

loc(Ω) then u−0 (x, p) = u0(x, p) a.e. in Ω. By the construction
x ∈ Ω′ is a common Lebesgue point of the functions u0(x, p), u−0 (x, p), therefore

ν0
x({p}) = u−0 (x, p)− u0(x, p) = 0 ∀p ∈ D. (33)

Remark 3. a) Since the H-measure is absolutely continuous with respect to x-
variables identity (25) is satisfied for Φ1(x), Φ2(x) ∈ L2(Ω). Indeed, by Proposition 3
we can rewrite this identity in the form: ∀Φ1(x), Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX)

∫

Ω

Φ1(x)Φ2(x)〈ψ(ξ), µpq
x (ξ)〉dx = lim

r→∞

∫

Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ. (34)

Both sides of this identity are continuous with respect to (Φ1(x), Φ2(x)) in L2(Ω) ×
L2(Ω) and since C0(Ω) is dense in L2(Ω) we conclude that (34) is satisfied for each
Φ1(x), Φ2(x) ∈ L2(Ω);

b) if x ∈ Ω′ is a Lebesgue point of a function Φ(x) ∈ L2(Ω) then

Φ(x)〈µpq
x , ψ(ξ)〉 = lim

m→∞
lim
r→∞

∫

Rn

F (ΦΦmUp
r )(ξ)F (ΦmU q

r )(ξ)ψ(πX(ξ))dξ (35)

for all ψ(ξ) ∈ C(SX), where (ΦΦmUp
r )(y) = Φ(y)Φm(x − y)Up

r (y) and (ΦmU q
r )(y) =

Φm(x− y)U q
r (y).

Indeed, it follows from (34) that

lim
r→∞

∫

Rn

F (ΦΦmUp
r )(ξ)F (ΦmU q

r )(ξ)ψ(πX(ξ))dξ =

∫

Ω

hpq
ψ (y)Φ(y)Km(x− y)dy. (36)

15



Now, since x ∈ Ω′ is a Lebesgue point of the functions hpq
ψ (y) and Φ(y), and the

function hpq
ψ (y) is bounded, x is also a Lebesgue point for the product of these functions.

Therefore,

lim
m→∞

∫

Ω

hpq
ψ (y)Φ(y)Km(x− y)dy = Φ(x)hpq

ψ (x) = Φ(x)〈µpq
x , ψ(ξ)〉,

and (35) follows from (36) in the limit as m →∞;
c) for x ∈ Ω′ and each family pi ∈ D, ψi(ξ) ∈ C(SX), i = 1, . . . , l the matrix

〈µpipj
x , ψiψj〉, i, j = 1, . . . , l is positive definite. Indeed, as follows from Lemma 4(iii),

for α1, . . . , αl ∈ C
l∑

i,j=1

〈µpipj
x , ψiψj〉αiαj = lim

m→∞

l∑
i,j=1

〈µpipj(y, ξ), Φm(x− y)ψi(ξ)Φm(x− y)ψj(ξ)〉αiαj ≥ 0.

Taking in the above property l = 2, p1 = p , p2 = q, ψ1(ξ) = ψ(ξ)/
√
|ψ(ξ)| ( ψ1 =

0 for ψ = 0 ) and ψ2(ξ) =
√
|ψ(ξ)|, ψ(ξ) ∈ C(SX), we obtain, as in the proof

of Proposition 3, that the matrix

( 〈µpp
x , |ψ|〉 〈µpq

x , ψ〉
〈µpq

x , ψ〉 〈µqq
x , |ψ|〉

)
is positive definite. In

particular,
|〈µpq

x , ψ〉| ≤ (〈µpp
x , |ψ|〉 · 〈µqq

x , |ψ|〉)1/2

and this easily implies that for any Borel set A ⊂ SX

|µpq
x |(A) ≤ (µpp

x (A)µqq
x (A))1/2 . (37)

We denote by θ(λ) the Heaviside function:

θ(λ) =

{
1, λ > 0,
0, λ ≤ 0.

Below we shall frequently use the following simple estimate

Lemma 5. Let p0, p ∈ D, χ(λ) = θ(λ− p0)− θ(λ− p), Vr(y) =

∫
|χ(λ)|d(νr

y(λ) +

ν0
y(λ)), Φ(y) ∈ L2(Ω), x ∈ Ω′ is a Lebesgue point of (Φ(y))2. Then

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ 2|Φ(x)||u0(x, p0)− u0(x, p)|1/2 →
p→p0

0.

Proof. It is clear that

Vr(y) = |ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)| =
sign(p− p0)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)) ≤ 2

and, in particular, (Vr(y))2 ≤ 2Vr(y). Therefore,

‖Φm(x− y)Φ(y)Vr(y)‖2
2 ≤

2 sign(p− p0)

∫
(Φ(y))2Km(x− y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))dy.
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Since p0, p ∈ D ⊂ E, ur(y, p0)− ur(y, p) → u0(y, p0)− u0(y, p) as r →∞ weakly-∗ in
L∞(Ω) and we derive from the above inequality that

lim
r→∞

‖Φm(x−y)Φ(y)Vr(y)‖2
2 ≤ 4 sign(p−p0)

∫
(Φ(y))2Km(x−y)(u0(y, p0)−u0(y, p))dy.

Now, passing to the limit as m → ∞ and taking into account that x ∈ Ω′ is a
Lebesgue point of the bounded function u0(y, p0) − u0(y, p) as well as the function
(Φ(y))2 ( therefore, x is a Lebesgue point of the product of these functions), we find

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2
2 ≤ 4(Φ(x))2|u0(x, p0)− u0(x, p)|.

This implies the required relation

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ 2|Φ(x)||u0(x, p0)− u0(x, p)|1/2.

To complete the proof it only remains to observe that, in view of (33), ν0
x({p0}) = 0

and therefore u0(x, p) → u0(x, p0) as p → p0.¤
The following statement is rather well-known.
Lemma 6. Let Ur(x) be a sequence bounded in L2(Rn) ∩ L1(Rn) and weakly

convergent to zero, a(ξ) be a bounded function on Rn such that a(ξ) → 0 as |ξ| → ∞.
Then a(ξ)F (Ur)(ξ) →

r→∞
0 in L2(Rn).

Proof. First, observe that by the assumption a(ξ) → 0 at infinity for any ε > 0
we can choose R > 0 such that |a(ξ)| < ε for |ξ| > R. Then

∫

|ξ|>R

|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ ε2‖F (Ur)‖2 = ε2‖Ur‖2 ≤ Cε2, (38)

where C = supr∈N ‖Ur‖2 is a constant independent of r.
Further, by our assumption Ur → 0 as r → ∞ weakly in L1. This implies that

F (Ur)(ξ) → 0 point-wise as r → ∞. Moreover, |F (Ur)(ξ)| ≤ ‖Ur‖1 ≤ const. Hence,
using the Lebesgue dominated convergence theorem, we find that

∫

|ξ|≤R

|a(ξ)|2|F (Ur)(ξ)|2dξ → 0 (39)

as r →∞. It follows from (38), (39) that

lim
r→∞

∫

Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ Cε2.

Since ε > 0 is arbitrary, we conclude that

lim
r→∞

∫

Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ = 0,

that is, a(ξ)F (Ur)(ξ) →
r→∞

0 in L2(Rn). The proof is complete.¤
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We now fix x ∈ Ω′, p0, p ∈ D. Let L(p) ⊂ Rn be the smallest linear subspace
containing supp µpp0

x , and L = L(p0).
As follows from (37), supp µpp0

x ⊂ supp µp0p0
x and therefore L(p) ⊂ L.

Suppose that f(y, λ) is a Caratheodory vector-function on Ω×R such that f(y, λ) ∈
L2

loc(Ω, C(R,Rn)), that is,

∀M > 0 ‖f(x, ·)‖M,∞ = max
|λ|≤M

|f(x, λ)| ≤ αM(x) ∈ L2
loc(Ω). (40)

Since the space C(R,Rn) is separable with respect to the standard locally convex
topology generated by seminorms ‖ · ‖M,∞, then, by the Pettis theorem (see [6], Chap-
ter 3), the map x → F (x) = f(x, ·) ∈ C(R,Rn) is strongly measurable and in view
of estimate (40) we see that F (x) ∈ L2

loc(Ω, C(R,Rn)), |F (x)|2 ∈ L1
loc(Ω, C(R)). In

particular (see [6], Chapter 3), the set Ωf of common Lebesgue points of the maps
F (x), |F (x)|2 has full measure. For x ∈ Ωf we have

∀M > 0 lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖M,∞dy = 0,

lim
m→∞

∫
Km(x− y)‖|F (x)|2 − |F (y)|2‖M,∞dy = 0.

Since, evidently,

‖F (x)− F (y)‖2
M,∞ ≤ 2‖F (x)− F (y)‖M,∞‖F (x)‖M,∞ + ‖|F (x)|2 − |F (y)|2‖M,∞,

it follows from the above limit relations that for x ∈ Ωf

lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖2

M,∞dy = 0 ∀M > 0. (41)

Clearly, each x ∈ Ωf is a Lebesgue point of all functions x → f(x, λ), λ ∈ R. Let
γr

x = νr
x − ν0

x. Suppose that x ∈ Ω ∩ Ωf , p0 ∈ D, χ(λ) = θ(λ− p1)− θ(λ− p2), where
p1, p2 ∈ D. For a vector-function h(y, λ) on Ω×R, which is Borel and locally bounded
with respect to the second variable, we denote Ir(h)(y) =

∫
h(y, λ)dγr

y(λ). In view of
the strong measurability of F (x) and (40) we see that Ir = Ir(f ·χ)(y) ∈ L2

loc(Ω) ( see
Remark 1 ). We also denote by L̃, L̄ the spaces obtained by orthogonal projections of
L on the subspaces X, X⊥, respectively: L̃ = P1(L), L̄ = P2(L).

Proposition 4. Assume that f(x, λ) ∈ L̃⊥, and ρ(ξ) ∈ C∞(Rn) is a function such
that 0 ≤ ρ(ξ) ≤ 1 and ρ(ξ) = 0 for |ξ̃|2 + |ξ̄|4 ≤ 1, ρ(ξ) = 1 for |ξ̃|2 + |ξ̄|4 ≥ 2. Then
∀ψ(ξ) ∈ C(SX)

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)ξ · F (ΦmIr(f · χ))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ = 0.

Here Φm = Φm(x − y) =
√

Km(x− y) and Ir(f · χ) are supposed to be functions of
the variable y ∈ Ω.
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Proof. Note that

|Ir(y)| ≤
∫
|f(y, λ)||χ(λ)|d|γr

y |(λ) ≤ 2αM(y), (42)

where M = sup ‖νr
x‖∞. Let us first show that for each m ∈ N

lim
r→∞

∫

Rn

ρ(ξ)ξ̄ · F (ΦmIr)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ = 0. (43)

For that, it is sufficient to demonstrate that

ρ(ξ)|ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

|F (ΦmIr)(ξ)| →
r→∞

0 in L2(Rn). (44)

Remark that the sequence ΦmIr(y), r ∈ N is bounded in L2(Rn) and in L1(Rn) ( since
supp Φm is compact ) and weakly converges to zero ( in view of the weak convergence
νr

x →
r→∞

ν0
x ). Hence, (44) follows from Lemma 6. We only need to demonstrate that

the function

a(ξ) =
ρ(ξ)|ξ̄|

(|ξ̃|2 + |ξ̄|4)1/2

satisfies the assumptions of this Lemma. First, we show that a(ξ) ≤ 1. Indeed,
for |ξ̃|2 + |ξ̄|4 ≤ 1 the value ρ(ξ) = 0 while in the case |ξ̃|2 + |ξ̄|4 > 1 we have

ρ(ξ)|ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

≤ min(|ξ̄|, 1/|ξ̄|) ≤ 1.

Then, observe that for |ξ̃|2 + |ξ̄|4 ≥ R4 > 0

a(ξ) ≤ |ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

≤ (|ξ̃|2 + |ξ̄|4)−1/4 ≤ R−1.

Therefore, a(ξ) → 0 as |ξ| → ∞. Thus, assumptions of Lemma 6 are satisfied and by
Lemma 6 we conclude that (44), (43) hold.

In view of (43),

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)ξ · F (ΦmIr)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ =

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)ξ̃ · F (ΦmIr)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ. (45)

Let g(λ) = f(x, λ), I ′r = Ir(gχ)(y) =
∫

g(λ)χ(λ)dγr
y(λ), M = sup ‖νr

y‖∞. Then

|Ir − I ′r| ≤
∫
|f(y, λ)− f(x, λ)|d|γr

y |(λ) ≤ 2‖F (y)− F (x)‖M,∞.
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This and the Plancherel identity imply that
∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (Φm(Ir − I ′r))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

‖ψ‖∞‖F (Φm(Ir − I ′r))‖2‖F (ΦmUp0
r )‖2 ≤ ‖ψ‖∞‖Φm(Ir − I ′r)‖2 ≤

2‖ψ‖∞
(∫

Rn

Km(x− y)‖F (y)− F (x)‖2
M,∞

)1/2

.

It follows from the above estimate and (41) that

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (ΦmIr)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ−
∫

Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (Φm(Ir − I ′r))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0

and, in view of this relation and (45), it is sufficient to prove that

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0. (46)

The vector-function g(λ) is continuous and does not depend on y. Therefore for any

ε > 0 there exists a vector-valued function h(λ) of the form h(λ) =
k∑

i=1

viθ(λ − pi),

where vi ∈ L̃⊥ and pi ∈ D such that ‖g · χ− h‖∞ ≤ ε on R.
Using again the Plancherel’s identity and the fact that

|I ′r − Ir(h)| =
∣∣∣∣
∫

(g · χ− h)(λ)dγr
y(λ)

∣∣∣∣ ≤
∫
|(g · χ− h)(λ)|d||γr

y |(λ) ≤ 2ε,

we obtain
∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ−
∫

Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

‖ψ‖∞‖ΦmIr(g · χ− h)‖2 ≤ 2ε‖ψ‖∞‖Φm‖2 = 2ε‖ψ‖∞. (47)

Since

Ir(h)(y) =

∫ (
k∑

i=1

viθ(λ− pi)

)
dγr

y(λ) =
k∑

i=1

viU
pi
r (y),
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it follows from (35) the limit relation

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ =

k∑
i=1

〈µpip0
x , (vi · ξ̃)ψ(ξ)〉. (48)

Here we also take Remark 2 into account. Since ρ(ξ)ψ(πX(ξ)) = ψ(πX(ξ)) for large
|ξ| then, by this Remark, for i = 1, . . . , k

lim
r→∞

∫

Rn

ρ(ξ)ξ̃ · viF (ΦmUpi
r )(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ =

lim
r→∞

∫

Rn

ξ̃ · viF (ΦmUpi
r )(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ =

〈µpip0(y, ξ), Km(x− y)(vi · ξ̃)ψ(ξ)〉.

Now observe that supp µpip0
x ⊂ L(p0) = L, and for each ξ ∈ L vi · ξ̃ = 0 because ξ̃ ∈ L̃

while vi⊥L̃. Hence
k∑

i=1

〈µpip0
x , (vi · ξ̃)ψ(ξ)〉 = 0, and it follows from (48) that

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ = 0.

This relation together with (47) yields

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤ 2ε‖ψ‖∞,

and since ε > 0 is arbitrary we claim that (46) holds. This completes the proof. ¤
Let Q(x, λ) be a Caratheodory matrix-valued function, which ranges in the space

Symn of symmetric matrices of order n such that Q(x, λ) ∈ L2
loc(Ω, C(R, Symn)).

Denote ΩQ the set of full measure consisting of common Lebesgue points of the
maps x → G(x) = Q(x, ·) ∈ C(R, Symn), x → |G(x)|2 ∈ C(R). As can be easily
verified, for x ∈ ΩQ the following relation similar to (41) holds

lim
m→∞

∫
Km(x− y)‖G(x)−G(y)‖2

M,∞dy = 0 ∀M > 0. (49)

Let x ∈ Ω′ ∩ ΩQ, p0, p1, p2 ∈ D, χ(λ) = θ(λ − p1) − θ(λ − p2), and let Jr(y) =
Jr(Q)(y) =

∫
χ(λ)Q(y, λ)dγr

y(λ), ρ(ξ) be a function as in Proposition 4. Also assume
that for L = L(p0)

Q(x, λ)ξ · ξ = 0 ∀ξ ∈ L̄ = P2(L)
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(recall that P2 is the orthogonal projection onto X⊥).

Proposition 5. Under the above notations for each ψ(ξ) ∈ C(SX)

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|2)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ = 0. (50)

Proof. Denote Q̃(λ) = Q(x, λ) ( here x is the fixed above point ), J̃r(y) =∫
χ(λ)Q̃(λ)dγr

y(λ). Then

|Jr − J̃r| ≤
∫
|Q(y, λ)−Q(x, λ)|d|γr

y |(λ) ≤ 2‖G(y)−G(x)‖M,∞

where M = sup ‖νr
x‖∞. This and the Plancherel identity imply that

∣∣∣∣∣
∫

Rn

ρ(ξ)F (Φm(Jr − J̃r))(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

‖ψ‖∞‖F (Φm(Jr − J̃r))‖2‖F (ΦmUp0
r )‖2 ≤ ‖ψ‖∞‖Φm(Jr − J̃r)‖2 ≤

2‖ψ‖∞
(∫

Rn

Km(x− y)‖G(y)−G(x)‖2
M,∞

)1/2

.

It follows from the above estimate and (49) that

lim
m→∞

lim
r→∞

∣∣∣∣
∫

Rn

ρ(ξ)F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ−

∫

Rn

ρ(ξ)F (ΦmJ̃r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)F (Φm(Jr − J̃r))(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0

and, in view of this relation we have to prove that

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)F (ΦmJ̃r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ = 0. (51)

Introduce the linear space Y of symmetric matrices A, satisfying the property Aξ·ξ = 0
for ξ ∈ L̄. Since the matrix-valued function Q̃(λ) ranges in Y and does not depend on

y for every ε > 0 one can find a step function H(λ) =
k∑

i=1

θ(λ− pi)Qi, where pi ∈ D,

Qi ∈ Y for each i = 1, . . . , k such that |χ(λ)Q̃(λ) − H(λ)| < ε for all λ ∈ R. We
denote J ′r(y) =

∫
H(λ)dγr

y(λ) and observe that

J ′r(y) =
k∑

i=1

Upi
r (y)Qi, (52)

|J̃r(y)− J ′r(y)| ≤
∫
|Q̃(λ)−H(λ)||χ(λ)|d|γr

y |(λ) ≤ 2ε. (53)

22



We also remark that
∣∣∣∣∣
F (Φm(J̃r − J ′r))(ξ)ξ̄ · ξ̄

(|ξ̃|2 + |ξ̄|4)1/2

∣∣∣∣∣ ≤ |F (Φm(J̃r−J ′r))(ξ)||ξ̄|2/(|ξ̃|2+|ξ̄|4)1/2 ≤ |F (Φm(J̃r−J ′r))(ξ)|.

The latter estimate and (53) imply that

∣∣∣∣∣
∫

Rn

ρ(ξ)F (ΦmJ̃r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ−

∫

Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣ =

∣∣∣∣∣
∫

Rn

ρ(ξ)F (Φm(J̃r − J ′r))(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤

‖ψ‖∞‖F (Φm(J̃r − J ′r))‖2‖F (ΦmUp0
r )‖2 = ‖ψ‖∞‖Φm(J̃r − J ′r)‖2‖ΦmUp0

r ‖2 ≤

‖ψ‖∞‖Φm(J̃r − J ′r)‖2 = ‖ψ‖∞
(∫

Rn

Km(x− y)|J̃r(y)− J ′r(y)|2dy

)1/2

≤ 2ε‖ψ‖∞. (54)

We also use that |Up0
r | ≤ 1 and therefore ‖ΦmUp0

r ‖2 ≤ 1. In view of (52)

∫

Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ =

k∑
i=1

∫

Rn

ρ(ξ)F (ΦmUpi
r )(ξ)Qiξ̄ · ξ̄

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmUp0

r )(ξ)ψ(πX(ξ))dξ,

and by relation (35) and Remark 2 we find

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ =

k∑
i=1

〈µpip0
x ψ(ξ)Qiξ̄ · ξ̄〉 = 0 (55)

because supp µpip0
x ⊂ L and therefore Qiξ̄ · ξ̄ = 0 on supp µpip0

x ( recall that Qiξ̄ · ξ̄ = 0
for ξ̄ ∈ L̄ ).

By (54), (55) we obtain the relation

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫

Rn

ρ(ξ)F (ΦmJ̃r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤ 2ε‖ψ‖∞

and since ε > 0 is arbitrary we conclude that (51) holds. The proof is complete.¤
In the sequel we will need the following simple result.
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Lemma 7. Let { ξk| k = 1, . . . , l } ⊂ L be a basis in L. Then there exists a
positive constant C such that for every v ∈ Rn, Q ∈ Symn

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv · ξ̃k + Qξ̄k · ξ̄k|,

where v1 = P̃ v, Q1 = P̄QP̄ , P̃ , P̄ are orthogonal projections on the spaces L̃, L̄,
respectively, and i =

√−1.
Proof. We introduce the linear spaces S̄ = { Q ∈ Symn | Q = P̄QP̄ }, H = L̃⊕ S̄

and remark that p(v, Q) = max
k=1,...,l

|iv · ξ̃k + Qξ̄k · ξ̄k| is a norm in H. Indeed, it is clear

that p is a seminorm. To prove that p is a norm, suppose that p(v, Q) = 0. Then
v · ξ̃k = Qξ̄k · ξ̄k = 0 and since vectors ξ̃k, ξ̄k generate spaces L̃, L̄, respectively, we
claim that vξ̃ = 0 for all ξ ∈ L̃ and Qξ · ξ = 0 for all ξ ∈ L̄. Since v ∈ L̃ we see that
v = 0. Further, since Q ∈ S̄ we find that for every ξ ∈ Rn

Qξ · ξ = P̄QP̄ ξ · ξ = QP̄ξ · P̄ ξ = 0,

and we conclude that Q = 0. It is well-known that any two norms in finite-dimensional
space are equivalent. Applying this property to the norms p(v,Q) and p1(v, Q) =
|v|+ |Q| and using the relations

v · ξ̃k = v1 · ξ̃k, Qξ̄k · ξ̄k = QP̄ ξ̄k · P̄ ξ̄k = Q1ξ̄k · ξ̄k, k = 1, . . . l,

we find that for some constant C > 0

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv1 · ξ̃k + Q1ξ̄k · ξ̄k| = C max
k=1,...,l

|iv · ξ̃k + Qξ̄k · ξ̄k|,

as was to be proved. ¤
Corollary 1. There exist functions ψk(ξ) ∈ C(SX), k = 1, . . . , l = dim L and a

constant C > 0 such that, in the notations of Lemma 7, for all v ∈ Rn, Q ∈ Symn

such that Q ≥ 0

|v1|+ |Q1| ≤ C max
k=1,...,l

|〈µp0p0
x , (iv · ξ̃ + Qξ̄ · ξ̄)ψk(ξ)〉|. (56)

Proof. Remark that the measure µp0p0
x ≥ 0. If µp0p0

x = 0 then the both parts
of equality (56) equal zero, and this equality is evidently satisfied. Thus, suppose
that µp0p0

x (SX) > 0. Since L is a linear span of supp µp0p0
x , we can choose functions

ψk(ξ) ∈ C(SX), k = 1, . . . , l such that ψk(ξ) ≥ 0,
∫

ψk(ξ)dµp0p0
x = 1 for all k = 1, . . . , l,

and the family ξk =
∫

ξψk(ξ)dµp0p0
x , k = 1, . . . , l is a basis in L. By Lemma 7 there

exists a constant C > 0 such that for all v ∈ Rn, Q ∈ Symn

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv · ξ̃k + Qξ̄k · ξ̄k|, (57)

where v1 = P̃ v, Q1 = P̄QP̄ . Now, we observe that

ξ̃k =

∫
ξ̃ψk(ξ)dµp0p0

x (ξ), ξ̄k =

∫
ξ̄ψk(ξ)dµp0p0

x (ξ).
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Therefore,

v · ξ̃k =

∫
v · ξ̃ψk(ξ)dµp0p0

x (ξ),

and if Q ≥ 0 then

Qξ̄k · ξ̄k = Q

∫
ξ̄ψk(ξ)dµp0p0

x (ξ) ·
∫

ξ̄ψk(ξ)dµp0p0
x (ξ) ≤

∫
Qξ̄ · ξ̄ψk(ξ)dµp0p0

x (ξ)

by Jensen’s inequality applied to the convex function ξ → Qξ̄ · ξ̄. In view of the above
relation, (56) readily follows from (57) ( we also take into account that for real a the
function f(x) = |ia + x| increases on [0, +∞) ). The proof is complete.¤

4 Localization principle and strong pre-

compactness of bounded sequences of measure-

valued functions

In this Section we need some results about Fourier multipliers in spaces Ld, d > 1.
Recall that a function a(ξ) ∈ L∞(Rn) is a Fourier multiplier in Ld if the pseudo-
differential operator A with the symbol a(ξ), defined as F (Au)(ξ) = a(ξ)F (u)(ξ),
u = u(x) ∈ L2(Rn) ∩ Ld(Rn) can be extended as a bounded operator on Ld(Rn), that
is

‖Au‖d ≤ C‖u‖d ∀u ∈ L2(Rn) ∩ Ld(Rn), C = const.

We denote by Md the space of Fourier multipliers in Ld. We also denote

Ṙn = (R \ {0})n = { ξ = (ξ1, . . . , ξn) |
n∏

k=1

ξk 6= 0 }.

The following statement readily follows from the known Marcinkiewicz multiplier the-
orem (see [19][Chapter 4]).

Theorem 3. Suppose that a(ξ) ∈ Cn(Ṙn) be a function such that for some con-
stant C

|ξαDαa(ξ)| ≤ C ∀ξ ∈ Ṙn (58)

for every multi-index α = (α1, . . . , αn) such that |α| = α1 + · · · + αn ≤ n. Then
a(ξ) ∈ Md for all d > 1.

Here we use the standard notations ξα =
∏n

i=1(ξi)
αi , Dα =

n∏
i=1

(
∂

∂ξi

)αi

. Actually

(see [19]), it is sufficient to require that (58) is satisfied for multi-indexes α such that
αi ∈ {0, 1}, i = 1, . . . , n.

We also need the following simple lemma.
Lemma 8. Let h(y, z) ∈ Cn((Rl×Rn−l)\{0}) be such that for some k ∈ N, γ ∈ R

∀t > 0 h(tky, tz) = tγh(y, z). (59)
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Then there exists a constant C > 0 such that for each multi-indexes α = (α1, . . . , αl),
β = (β1, . . . , βn−l), |α|+ |β| ≤ n and all y ∈ Rl z ∈ Rn−l, y, z 6= 0

|Dα
y Dβ

z h(y, z)| ≤ C(|y|2 + |z|2k)
γ
2k |y|−|α||z|−|β|.

Proof. In view of (59) for all t > 0

Dα
y Dβ

z h(y, z) = tk|α|+|β|−|γ|(Dα
y Dβ

z h)(tky, tz).

Taking t = (|y|2 + |z|2k)−
1
2k in this relation, we arrive at

Dα
y Dβ

z h(y, z) = (|y|2 + |z|2k)
γ−k|α|−|β|

2k (Dα
y Dβ

z h)(y′, z′), (60)

where y′ = tky, z′ = tz, so that |y′|2 + |z′|2k = 1. Since the set of such (y′, z′) is a
compact subset of Rn\{0} the derivatives (Dα

y Dβ
z h)(y′, z′), |α|+ |β| ≤ n, are bounded,

and relation (60) implies that for some constant C > 0

|Dα
y Dβ

z h(y, z)| ≤ C(|y|2 + |z|2k)
γ
2k (|y|2 + |z|2k)−|α|/2(y|2 + |z|2k)−|β|/(2k) ≤

C(|y|2 + |z|2k)
γ
2k |y|−|α||z|−|β|

for all y, z 6= 0. The proof is complete. ¤
Now we can prove that some useful for us functions are Fourier multipliers. Namely,

assume that X is a linear subspace of Rn, and πX : Rn → SX be the projection defined
in Section 2.

Proposition 6. The following functions are multipliers in spaces Ld for all d > 1:
(i) a1(ξ) = ψ(πX(ξ)) where ψ ∈ Cn(SX);
(ii) a2(ξ) = ρ(ξ)(1+|ξ̃|2+|ξ̄|4)1/2(|ξ̃|2+|ξ̄|4)−1/2, where ρ(ξ) ∈ C∞(Rn) is a function

with the properties indicated in Proposition 4, namely: 0 ≤ ρ(ξ) ≤ 1, ρ(ξ) = 0 for
|ξ̃|2 + |ξ̄|4 ≤ 1, ρ(ξ) = 1 for |ξ̃|2 + |ξ̄|4 ≥ 2;

(iii) a3(ξ) = (1 + |ξ|2)1/2(1 + |ξ̃|2 + |ξ̄|4)−1/2;
(iv) a4(ξ) = (1 + |ξ̃|2 + |ξ̄|4)1/2(1 + |ξ|2)−1.
Proof. Since the space Md is invariant under non-degenerate linear transforma-

tions of the variables ξ ( see [2][Chapter 6] ) then we can assume that X = Rl = {ξ ∈
Rn | ξ = (y1, . . . , yl, 0, . . . , 0) } while X⊥ = {ξ ∈ Rn | ξ = (0, . . . , 0, z1, . . . , zn−l) }.
Since πX(t2y, tz) = πX(y, z) for t > 0, y ∈ X, z ∈ X⊥ then h = a1(ξ) = ψ(πX(ξ))
satisfies the assumptions of Lemma 8 with k = 2, γ = 0. By this Lemma for each
multi-indexes α, β, |α|+ |β| ≤ n

|y||α||z||β||Dα
y Dβ

z a1(y, z)| ≤ C = const.

This, in particular, implies that assumption (58) of Theorem 3 is satisfied. By this
Theorem we conclude that a1(ξ) ∈ Md for each d > 1.

To prove that a2(ξ) ∈ Md we introduce the function h1(s, y, z) = (s2+|y|2+|z|4)1/2,
s ∈ R. This function satisfies the assumptions of Lemma 8 with y replaced by (s, y) ∈
Rl+1, and k = γ = 2. By this Lemma

|Dα
y Dβ

z h1(s, y, z)| ≤ C(s2 + |y|2 + |z|4)1/2|y|−|α||z|−|β|, C = const.
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Taking s = 1 in this relation, we arrive at the estimate

|Dα
y Dβ

z h1(1, y, z)| ≤ C(1 + |y|2 + |z|4)1/2|y|−|α||z|−|β|,

and by the Leibnitz formula we obtain that for each multi-indexes α, β such that
|α|+ |β| ≤ n

|Dα
y Dβ

z ρ(y, z)h1(1, y, z)| ≤ C1(1 + |y|2 + |z|4)1/2|y|−|α||z|−|β|, C1 = const (61)

( we use that ρ(y, z) = 1 for |y|2 + |z|4 ≥ 2 ). Let h2(y, z) = (|y|2 + |z|4)−1/2. This
function satisfies (59) with k = 2, γ = −2. By Lemma 8 for some constant C2 and
every multi-indexes α, β such that |α|+ |β| ≤ n

|Dα
y Dβ

z h2(y, z)| ≤ C2(|y|2 + |z|4)−1/2|y|−|α||z|−|β|. (62)

By the Leibnitz formula we derive from (61), (62) the estimates

|Dα
y Dβ

z ρ(y, z)h1(1, y, z)h2(y, z)| ≤
C3(1 + |y|2 + |z|4)1/2(|y|2 + |z|4)−1/2|y|−|α||z|−|β| ≤ 2C3|y|−|α||z|−|β| (63)

in the domain |y|2 + |z|4 ≥ 1, here |α| + |β| ≤ n, C3 = const. In view of (63) we
conclude that in this domain for each α, β, |α|+ |β| ≤ n

|y||α||z||β||Dα
y Dβ

z a2(y, z)| ≤ const.

Since a2(y, z) = 0 for |y|2 + |z|4 < 1 we see that the requirements of Theorem 3 are
satisfied. Therefore, a2(ξ) ∈ Md for all d > 1.

Now we introduce the functions h1(s, y, z) = (s2 + |y|2 + |z|2)1/2, h2(s, y, z) =
(s2 + |y|2 + |z|2)−1, h3(s, y, z) = (s2 + |y|2 + |z|4)−1/2, h4(s, y, z) = (s2 + |y|2 + |z|4)1/2,
s ∈ R, y ∈ X = Rl, z ∈ X⊥. These functions satisfy (59) where y is replaced by
(s, y) ∈ Rl+1 with the parameters k = γ = 1; k = 1, γ = −2; k = 2, γ = −2;
k = γ = 2, respectively. By Lemma 8 we find that for each α, β, |α|+ |β| ≤ n

|y||α||z||β||Dα
y Dβ

z h1(1, y, z)| ≤ C(1 + |y|2 + |z|2)1/2,

|y||α||z||β||Dα
y Dβ

z h2(1, y, z)| ≤ C(1 + |y|2 + |z|2)−1,

|y||α||z||β||Dα
y Dβ

z h3(1, y, z)| ≤ C(1 + |y|2 + |z|4)−1/2,

|y||α||z||β||Dα
y Dβ

z h4(1, y, z)| ≤ C(1 + |y|2 + |z|4)1/2,

where C = const. Since a3(ξ) = h1(1, y, z)h3(1, y, z), a4(ξ) = h2(1, y, z)h4(1, y, z)
where y = ξ̃, z = ξ̄ then, using again the Leibnitz formula, we derive the estimates:
for some constant C

|y||α||z||β||Dα
y Dβ

z a3(y, z)| ≤ C(1 + |y|2 + |z|2)1/2(1 + |y|2 + |z|4)−1/2 ≤ 2C,

|y||α||z||β||Dα
y Dβ

z a4(y, z)| ≤ C(1 + |y|2 + |z|2)−1(1 + |y|2 + |z|4)1/2 ≤ 2C.
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Here we take into account the following simple inequalities

1 + |y|2 + |z|2
1 + |y|2 + |z|4 =

1 + |y|2
1 + |y|2 + |z|4 +

|z|2
1 + |y|2 + |z|4 ≤ 1 + min(|z|2, |z|−2) ≤ 2,

(1 + |y|2 + |z|4)1/2

1 + |y|2 + |z|2 ≤ (1 + |y|2)1/2

1 + |y|2 + |z|2 +
|z|2

1 + |y|2 + |z|2 ≤ 2.

In view of Theorem 3, we conclude that a3(ξ), a4(ξ) ∈ Md for each d > 1. The proof
is now complete.¤

We define the anisotropic Sobolev space W−1,−2
d consisting of distributions u(x)

such that (1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = F (v)(ξ), v = v(x) ∈ Ld(Rn). This is a Banach
space with the norm ‖u‖ = ‖v‖d. The following proposition claims that this space
lays between the spaces W−1

d and W−2
d .

Proposition 7. For each d > 1 W−1
d ⊂ W−1,−2

d ⊂ W−2
d and the both embeddings

are continuous.
Proof. Let u ∈ W−1

d . This means that (1 + |ξ|2)−1/2F (u)(ξ) = F (w)(ξ), w =
w(x) ∈ Ld(Rn). By Proposition 6(iii) a3(ξ) = (1 + |ξ|2)1/2(1 + |ξ̃|2 + |ξ̄|4)−1/2 ∈ Md.
Therefore,

(1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = a3(ξ)F (w)(ξ) = F (v)(ξ), v(x) ∈ Ld(Rn),

that is, u ∈ W−1,−2
d . We claim that W−1

d ⊂ W−1,−2
d . Since ‖v‖d ≤ C‖w‖d, C = const

this embedding is continuous.
Now suppose that u ∈ W−1,−2

d . Then (1 + |ξ̃|2 + |ξ̄|4)−1/2F (u)(ξ) = F (v)(ξ),
v = v(x) ∈ Ld(Rn). By Proposition 6(iv) a4(ξ) = (1 + |ξ̃|2 + |ξ̄|4)1/2(1 + |ξ|2)−1 ∈ Md,
and

(1 + |ξ|2)−1F (u)(ξ) = a4(ξ)F (v)(ξ) = F (w)(ξ), w ∈ Ld(Rn).

This means that u ∈ W−2
d . We established that W−1,−2

d ⊂ W−2
d . The continuity of

this embedding follows from the estimate ‖w‖d ≤ C‖v‖d, C = const. The proof is
complete.¤

We also introduce the local space W−1,−2
d,loc (Ω) consisting of distributions u(x) such

that uf(x) belongs to W−1,−2
d for all f(x) ∈ C∞

0 (Ω). The space W−1,−2
d,loc (Ω) is a

locally convex space with the topology generated by the family of semi-norms u →
‖uf‖W−1,−2

d
, f(x) ∈ C∞

0 (Ω). Analogously we define the spaces W−1
d,loc(Ω), W−2

d,loc(Ω). As

readily follows from Proposition 7, W−1
d,loc ⊂ W−1,−2

d,loc ⊂ W−2
d,loc and these embeddings

are continuous.

Now we consider the bounded sequence of measure valued functions νk
x ∈ MV(Ω)

and suppose that for some d > 1 and each a, b ∈ R, a < b the sequence of distributions

div

∫
ϕ(x, sa,b(λ))dνk

x(λ)−D2 ·
∫

B(x, sa,b(λ))dνk
x(λ) is pre-compact in W−1,−2

d,loc (Ω).

(64)
Here sa,b(u) = max(a, min(u, b)) is the cut-off function.
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We choose the subsequence νr
x = νk

x , k = kr weakly convergent to a bounded
measure-valued function ν0

x such that the parabolic H-measure µpq = µpq
X , p, q ∈ E is

well defined. By Proposition 3 this H-measure can be represented in the form µpq =
µpq

x dx, p, q ∈ D, x ∈ Ω′, where Ω′ ⊂ Ω is a set of full measure indicated in the proof
of Proposition 3. Define the set of full measure Ωϕ consisting of common Lebesgue
points of the maps x → F (x) = ϕ(x, ·) ∈ C(R,Rn), x → |F (x)|2 = |ϕ(x, ·)| ∈ C(R).
Similarly, we define the set ΩB of common Lebesgue points of the maps x → G(x) =
B(x, ·) ∈ C(R, Symn), x → |G(x)|2 ∈ C(R). Clearly, the set Ω′′ = Ω′ ∩ Ωϕ ∩ ΩB has
full Lebesgue measure. We fix x ∈ Ω′′.

Under the above assumptions we have the following localization principle
Theorem 4. Let L be a linear span of supp µp0p0

x . Then there exists δ > 0 such
that

(ϕ(x, λ)− ϕ(x, p0)) · ξ̃ = 0, (B(x, λ)−B(x, p0))ξ̄ · ξ̄ = 0

for all ξ ∈ L, λ ∈ [p0, p0 + δ].
Proof. As follows from (64) and the weak convergence νr

y → ν0
y ,

Lr
p(y) = divy

∫
ϕ(y, sp0,p(λ))dγr

y(λ)−D2 ·
∫

B(y, sp0,p(λ))dγr
y(λ) →

r→∞
0 in W−1,−2

d,loc (Ω),

(65)
where γr

y = νr
y − ν0

y . As is easy to compute,

ϕ(y, sp0,p(λ)) = ϕ(y, p0) + (ϕ(y, p)− ϕ(y, p0))θ(λ− p0)− (ϕ(y, p)− ϕ(y, λ))χ(λ),

B(y, sp0,p(λ)) = B(y, p0) + (B(y, p)−B(y, p0))θ(λ− p0)− (B(y, p)−B(y, λ))χ(λ)

where χ(λ) = θ(λ − p0) − θ(λ − p) is the indicator function of the interval (p0, p].
Therefore, Lr

p = divy(Pr(y)) − D2 · Qr(y) where the vector Pr(y) and the matrix
Qr(y) = {(Qr)kl(y)}n

kl=1 are as follows ( notice that
∫

dγr
y(λ) = 0 ):

Pr(y) =

∫
(ϕ(y, p)− ϕ(y, p0))θ(λ− p0)dγr

y(λ)−
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr
y(λ) =

Up0
r (y)(ϕ(y, p)− ϕ(y, p0))−

∫
(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr

y(λ); (66)

Qr(y) = Up0
r (y)(B(y, p)−B(y, p0))−

∫
(B(y, p)−B(y, λ))χ(λ)dγr

y(λ). (67)

In particular, it follows from (67) that X ⊂ ker Qr.
For Φ(y) ∈ C∞

0 (Ω) we consider the sequence

Lr = divy(Φ(y)Pr(y)) + 2div(Qr(y)∇Φ(y))−D2 · (Φ(y)Qr(y)) =

= divy(Φ(y)Pr(y)) + 2(Φyl
(Qr)kl(y))yk

− ∂2
ykyl

(Φ(y)(Qr)kl(y)) =

Φ(y)Lr
p(y) + Pr(y) · ∇Φ(y) + D2Φ(y) ·Qr(y).
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Since the sequence Pr(y)·∇Φ(y)+D2Φ(y)·Qr(y) is bounded in L2 and weakly converges
to zero as r →∞, this sequence converges to zero in W−1

d ⊂ W−1,−2
d ( we can suppose

that d ≤ 2 ). Besides, in view of (65), Φ(y)Lr
p(y) →

r→∞
0 in W−1,−2

d as well, and we

claim that Lr →
r→∞

0 in W−1,−2
d . Introduce the vector Gr(y, λ) = 2Qr(y)∇Φ(y) with

components (Gr)k(y) = 2Φyl
(Qr)kl(y), k = 1, . . . , n. Then the distributions Lr can be

represented in the form Lr = divy(ΦPr + Gr)−D2 · (ΦQr). Hence,

divy(ΦPr + Gr)−D2 · (ΦQr) →
r→∞

0 in W−1,−2
d .

Applying the Fourier transformation to this relation and then multiplying by
ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/2, we arrive at

ρ(ξ)(2πiξ · F (ΦPr + Gr)(ξ) + 4π2F (ΦQr)(ξ)ξ · ξ)
(|ξ̃|2 + |ξ̄|4)1/2

= F (lr)(ξ), lr →
r→∞

0 in Ld(Rn)

(68)
( the function ρ(ξ) is indicated in Proposition 4 ). Indeed, (68) follows from the
representation

ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/2 =
ρ(ξ)(1 + |ξ̃|2 + |ξ̄|4)1/2

(|ξ̃|2 + |ξ̄|4)1/2
(1 + |ξ̃|2 + |ξ̄|4)−1/2,

the statement of Proposition 6(ii) and the definition of W−1,−2
d . Let ψ(ξ) ∈ Cn(SX).

Then by Proposition 6(i) we see that the sequence F (ΦUp0
r )(ξ)ψ(πX(ξ)) = F (hr),

where hr is bounded in Ld′(Rn), d′ = d/(d− 1). This and (68) imply the relation
∫

Rn

ρ(ξ)(2πiξ · F (ΦPr + Gr)(ξ) + 4π2F (ΦQr)(ξ)ξ · ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0
r )(ξ)ψ(πX(ξ))dξ =

∫

Rn

lr(x)hr(x)dx →
r→∞

0. (69)

Now, we remark that the sequences Φ(y)Pr(y) and Gr(y) are bounded in L2 ∩L1 and
weakly converge to zero. By Lemma 6 we have

ρ(ξ)ξ̄ · F (ΦPr + Gr)(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
→

r→∞
0 in L2(Rn) (70)

because

a(ξ) =
ρ(ξ)|ξ̄|

(|ξ̃|2 + |ξ̄|4)1/2
≤ |ξ̄|

(|ξ̃|2 + |ξ̄|4)1/4
≤ 1

and evidently a(ξ) → 0 as |ξ| → ∞. Besides,

ξ̃ · F (Gr)(ξ) = 2

∫

Rn

e−2πiξ·y(Qr)kl(y)Φyl
(y)ξ̃kdy =

∫

Rn

e−2πiξ·yQr(y)ξ̃ · ∇Φ(y)dy = 0, (71)

F (ΦQr)(ξ)ξ̃ =

∫

Rn

e−2πiξ·yΦ(y)Qr(y)ξ̃dy = 0 (72)
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since ξ̃ ∈ X ⊂ ker Qr. Taking into account relations (70), (71), (72), and the bound-
edness of the sequence F (ΦUp0

r )(ξ) in L2(Rn), we derive from (69) that

∫

Rn

ρ(ξ)(2πiξ̃ · F (ΦPr)(ξ) + 4π2F (ΦQr)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0
r )(ξ)ψ(πX(ξ))dξ →

r→∞
0. (73)

Taking into account representations (66), (67) we can rewrite the last relation as
follows

lim
r→∞

{∫

Rn

ρ(ξ)(2πiξ̃ · F (ΦUp0
r f)(ξ) + 4π2F (ΦUp0

r H)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

×

F (ΦUp0
r )(ξ)ψ(πX(ξ))dξ −

∫

Rn

ρ(ξ)(iξ̃ · F (ΦV p
r )(ξ) + F (ΦGp

r)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0
r )(ξ)ψ(πX(ξ))dξ

}
= 0, (74)

where

f(y) = ϕ(y, p)− ϕ(y, p0), V p
r (y) = 2π

∫
(ϕ(y, p)− ϕ(y, λ))χ(λ)dγr

y(λ) ∈ Rn,

H(y) = B(y, p)−B(y, p0), Gp
r(y) = 4π2

∫
(B(y, p)−B(y, λ))χ(λ)dγr

y(λ) ∈ Symn.

In (74) we set Φ(y) = Φm(x− y) , where the functions Φm were defined in section 3
in the proof of Proposition 3, and pass to the limit as m → ∞. By Remark 3 (see
equality (35)) we obtain

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)(2πiξ̃ · F (ΦmUp0
r f)(ξ) + 4π2F (ΦmUp0

r H)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

×

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ = 〈µp0p0

x , (2πiξ̃ · f(x) + 4π2H(x)ξ̄ · ξ̄)ψ(ξ)〉,

therefore

〈µp0p0
x , (2πiξ̃ · f(x) + 4π2H(x)ξ̄ · ξ̄)ψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)(iξ̃ · F (ΦmV p
r )(ξ) + F (ΦmGp

r)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ. (75)

Since the space Cn(SX) is dense in C(SX), it is clear that (75) holds for each ψ(ξ) ∈
C(SX). Let g(y, λ) = P̃ϕ(x, λ), B1(y, λ) = P̄B(y, λ)P̄ , where P̃ , P̄ are operators of
orthogonal projections on the spaces L̃ = P1(L), L̄ = P2(L), respectively, L being the
linear span of supp µp0p0

x ( see the notations of section 3 ). Obviously,

〈µp0p0
x , (2πiξ̃ · f(x) + 4π2H(x)ξ̄ · ξ̄)ψ(ξ)〉 =

〈µp0p0
x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(x, p)−B1(x, p0))ξ̄ · ξ̄)ψ(ξ)〉. (76)
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We denote h(y, λ) = ϕ(y, λ)− g(y, λ), B2(y, λ) = B(y, λ)−B1(y, λ),

V p
r1(y) = 2π

∫
(g(y, p)− g(y, λ))χ(λ)dγr

y(λ),

V p
r2(y) = 2π

∫
(h(y, p)− h(y, λ))χ(λ)dγr

y(λ),

Gp
r1(y) = 4π2

∫
(B1(y, p)−B1(y, λ))χ(λ)dγr

y(λ),

Gp
r2(y) = 4π2

∫
(B2(y, p)−B2(y, λ))χ(λ)dγr

y(λ).

In the notations of Propositions 4,5 V p
r2(y) = Ir(fχ)(y) with f(y, λ) = 2π(h(y, p) −

h(y, λ)), Gp
r2(y) = Jr(Q)(y) with Q(y, λ) = 4π2(B2(y, p)−B2(y, λ)). Since ξ ·f(y, λ) =

0 for all ξ ∈ L̃, Q(y, λ)ξ = 0 for all ξ ∈ L̄ then by Propositions 4,5

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)(iξ̃ · F (ΦmV p
r2)(ξ) + F (ΦmGp

r2)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ = 0

and (75) acquires the form

〈µp0p0
x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(x, p)−B1(x, p0))ξ̄ · ξ̄)ψ(ξ)〉 =

lim
m→∞

lim
r→∞

∫

Rn

ρ(ξ)(iξ̃ · F (ΦmV p
r1)(ξ) + F (ΦmGp

r1)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmUp0
r )(ξ)ψ(πX(ξ))dξ.(77)

Here we also use relation (76). Now we observe that

∣∣∣∣∣
ρ(ξ)(iξ̃ · F (ΦmV p

r1)(ξ) + F (ΦmGp
r1)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

∣∣∣∣∣ ≤

|F (ΦmV p
r1)(ξ)|+ |F (ΦmGp

r1)(ξ)|,

and therefore
∥∥∥∥∥
ρ(ξ)(iξ̃ · F (ΦmV p

r1)(ξ) + F (ΦmGp
r1)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

∥∥∥∥∥
2

≤

‖F (ΦmV p
r1)‖2 + ‖F (ΦmGp

r1)‖2 = ‖ΦmV p
r1‖2 + ‖ΦmGp

r1‖2 (78)

by Plancherel’s equality. Since |Up0
r | ≤ 1 then

‖F (ΦmUp0
r )‖2 = ‖ΦmUp0

r ‖2 ≤ 1,

and we derive from (77) with the help of Buniakovskii inequality and (78) that

∣∣∣〈µp0p0
x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(p)−B1(p0))ξ̄ · ξ̄)ψ(ξ)〉

∣∣∣ ≤
‖ψ‖∞ lim

m→∞
lim
r→∞

(‖ΦmV p
r1‖2 + ‖ΦmGp

r1‖2) . (79)
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Next, for Mp(y) = max
λ∈[p0,p]

|g(y, p)− g(y, λ)|

|V p
r1(y)| ≤ 2πMp(y)

∫
χ(λ)d

(
νr

y(λ) + ν0
y(λ)

)
=

2πMp(y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))

and by Lemma 5

lim
m→∞

lim
r→∞

‖Ṽ p
r1Φm‖2 ≤ 4πMp(x)(u0(x, p0)− u0(x, p))1/2. (80)

Here we bear in mind that x is a Lebesgue point of the function (Mp(y))2 ( which
easily follows from the fact that x ∈ Ωϕ is a Lebesgue point of the maps y → ϕ(y, ·),
y → |ϕ(y, ·)|2 into the spaces C(R,Rn), C(R), respectively ). Further, the matrix
0 ≤ B1(y, p) − B1(y, λ) ≤ B1(y, p) − B1(y, p0) for each λ ∈ [p0, p] ( since the matrix
B1(y, λ)−B1(y, p0) is positive definite ). This implies the corresponding inequality for
the Euclidean norms |B1(y, p)−B1(y, λ)| ≤ |B1(y, p)−B1(y, p0)|. Therefore,

|Gp
r1(y)| ≤ 4π2

∫
|B1(y, p)−B1(y, λ)|χ(λ)d

(
νr

y(λ) + ν0
y(λ)

) ≤
4π2|B1(y, p)−B1(y, p0)|(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)).

By Lemma 5 again we claim that

lim
m→∞

lim
r→∞

‖Gp
r1Φm‖2 ≤ 8π2|B1(x, p)−B1(x, p0)|(u0(x, p0)− u0(x, p))1/2. (81)

In view of (80), (81) we derive from (79) that

∣∣∣〈µp0p0
x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(x, p)−B1(x, p0))ξ̄ · ξ̄)ψ(ξ)〉

∣∣∣ ≤
c‖ψ‖∞(Mp(x) + |B1(x, p)−B1(x, p0)|)ω(p), (82)

where c = const and ω(p) = (u0(x, p0) − u0(x, p))1/2 →
p→p0

0 ( remind that p0 ∈ D is a

continuity point of the function p → u0(x, p) for x ∈ Ω′ ). Next, by Corollary 1, we
can choose functions ψk(ξ) ∈ C(SX), k = 1, . . . , l such that for some positive constant
C

|g(x, p)− g(x, p0)|+ |B1(x, p)−B1(x, p0)| ≤
C max

k=1,...,l

∣∣∣〈µp0p0
x , (iξ̃ · (g(x, p)− g(x, p0)) + (B1(x, p)−B1(x, p0))ξ̄ · ξ̄)ψk(ξ)〉

∣∣∣ .

Then, in view of (82), we find

|g(x, p)−g(x, p0)|+|B1(x, p)−B1(x, p0)| ≤ c(Mp(x)+|B1(x, p)−B1(x, p0)|)ω(p), (83)

where c is a positive constant.
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We choose δ > 0 such that 2cω(p) ≤ ε < 1 for all p ∈ [p0, p0 + δ]. Then by (83) for
all p ∈ [p0, p0 + δ] ∩D

|g(x, p)− g(x, p0)|+ |B1(x, p)−B1(x, p0)| ≤
ε

2

(
max

λ∈[p0,p]
|g(x, p)− g(x, λ)|+ |B1(x, p)−B1(x, p0)|

)
, (84)

and since g(x, p), B1(x, p) are continuous with respect to p and the set D is dense, the
estimate (84) holds for all p ∈ [p0, p0 + δ].

Now we claim that g(x, p) = g(x, p0), B1(x, p) = B1(x, p0) for p ∈ [p0, p0 + δ].
Indeed, assume that for p′ ∈ [p0, p0 + δ]

|g(x, p′)− g(x, p0)| = max
λ∈[p0,p0+δ]

|g(x, λ)− g(x, p0)|.

Then for λ ∈ [p0, p
′] we have

|g(x, p′)− g(x, λ)| ≤ |g(x, λ)− g(x, p0)|+
|g(x, p′)− g(x, p0)| ≤ 2|g(x, p′)− g(x, p0)|

and
max

λ∈[p0,p′]
|g(x, p′)− g(x, λ)| ≤ 2|g(x, p′)− g(x, p0)|.

We derive from (84) with p = p′ that

|g(x, p′)−g(x, p0)|+|B1(x, p′)−B1(x, p0)| ≤ ε(|g(x, p′)−g(x, p0)|+|B1(x, p′)−B1(x, p0)|),

and since ε < 1, this implies that

|g(x, p′)− g(x, p0)| = max
λ∈[p0,p0+δ]

|g(x, λ)− g(x, p0)| = 0.

This means that g(x, λ) = g(x, p0) for λ ∈ [p0, p0 + δ]. Then, (84) acquires the form

|B1(x, p)−B1(x, p0)| ≤ ε

2
|B1(x, p)−B1(x, p0)|, ε < 1.

Hence B1(x, p) = B1(x, p0) for every p ∈ [p0, p0 + δ]. By the definition of B1(x, p) we
see that (B(x, p)−B(x, p0))P̄ = 0, that is L̄ ⊂ ker(B(x, p)−B(x, p0)) and (B(x, p)−
B(x, p0))ξ̄ = 0 for all p ∈ [p0, p0 + δ], ξ ∈ L. The relation P̃ (ϕ(x, λ) − ϕ(x, p0)) =
g(x, λ)−g(x, p0) = 0 on [p0, p0 +δ] implies that for all ξ ∈ L (ϕ(x, λ)−ϕ(x, p0)) · ξ̃ = 0
on the segment λ ∈ [p0, p0 + δ]. The proof is complete.¤

Under the non-degeneracy condition, indicated in Definition 2, Theorem 4 yields
the following result.

Theorem 5. Suppose that the non-degeneracy condition is satisfied. Then any
sequence νk

x weakly converging as k →∞ to ν0
x and satisfying (64) strongly converges

to ν0
x.
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Proof. Let νr
x = νk

x , k = kr, be a subsequence such that the parabolic H-measure
{µ̃pq}p,q∈E, corresponding to the subspace X, is well defined. This H-measure admits
the representation µpq = µpq

x dx and, as directly follows from the assertion of Theorem 4
and non-degeneracy condition in Definition 2, µp0p0

x = 0 for a.e. x ∈ Ω. Therefore,
µp0p0 = µp0p0

x dx = 0. Since an arbitrary p0 ∈ E can be included in the set D we
conclude that µ̃pp = 0 for all p ∈ E. By relation (25) with ψ ≡ 1 we see that

ur(x, p) → u0(x, p) in L2
loc(Ω)

as r → ∞. Indeed, it follows from the definition of an H-measure and Plancherel’s
equality that

lim
r→∞

‖Up
r Φ‖2

2 = 〈µpp, |Φ(x)|2〉 = 0

for all Φ(x) ∈ C0(Ω) and p ∈ E. Thus, for p ∈ E we have

∫
θ(λ− p)dνr

x(λ) →
r→∞

∫
θ(λ− p)dν0

x(λ) in L2
loc(Ω). (85)

Any continuous function can be uniformly approximated on any compact subset by
finite linear combinations of functions λ → θ(λ − p), p ∈ E. Hence, it follows from
(85) that for all f(λ) ∈ C(R) we have

∫
f(λ)dνr

x(λ) →
r→∞

∫
f(λ)dν0

x(λ) in L2
loc(Ω),

and therefore also in L1
loc(Ω), that is, the subsequence νr

x strongly converges to ν0
x.

Finally, for each admissible choice of the subsequence νr
x the limit measure-valued

function is uniquely defined, therefore the original sequence νk
x is also strongly conver-

gent to ν0
x. The proof is complete.¤

Taking into account Theorem T, one can give another formulation of Theorem 5:
each bounded sequence of measure-valued functions satisfying (64) is pre-compact in
the sense of strong convergence. Observe that in the regular case νk

x(λ) = δ(λ−uk(x))
condition (64) has the form: for some d > 1 and each a, b ∈ R, a < b

divϕ(x, sa,b(uk(x)))−D2 ·B(x, sa,b(uk(x))) is pre-compact in W−1,−2
d,loc (Ω). (86)

In this case Theorem 5 yields the following
Corollary 2. Under the non-degeneracy condition, each bounded sequence uk(x) ∈

L∞(Ω) satisfying (86) contains a subsequence convergent in L1
loc(Ω).

Proof. We only need to note that if the sequence uk(x) converges to a measure-
valued function ν0

x strongly in MV (Ω), then by the definition of strong convergence

uk(x) →
k→∞

u0(x) =

∫
λdν0

x(λ) in L1
loc(Ω)

( which also shows that ν0
x(λ) = δ(λ− u0(x)) is regular in Ω ).¤
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The statements of Theorems 4 and 5 remain true for sequences of unbounded
measure-valued (or usual) functions. For the proof we should apply the cut-off func-
tions sa,b(u) = max(a, min(u, b)), a, b ∈ R and derive that bounded sequences of
measure-valued functions s∗a,bν

k
x ( s∗a,bν

k
x is the image of νk

x under the map sa,b ) satisfy
(64). Then, under the non-degeneracy condition, we obtain the strong pre-compactness
property for these sequences.

For instance, consider the sequence uk(x), k ∈ N of measurable functions on Ω.
Suppose that condition (86) and the non-degeneracy condition hold. Let α, β ∈ R,
α < β, vk = sα,β(uk) = max(α, min(uk, β)). Then vk = vk(x) is a bounded sequence
in L∞(Ω) and for each a, b ∈ R, a < b

divϕ(x, sa,b(vk(x)))−D2 ·B(x, sa,b(vk(x))) =

divϕ(x, sa′,b′(uk(x)))−D2 ·B(x, sa′,b′(uk(x)))

where a′ = sa,b(α), b′ = sa,b(β). It follows from this identity and (86) that the sequence
divϕ(x, sa,b(vk(x)))−D2 ·B(x, sa,b(vk(x))) is pre-compact in H−1,−2

d,loc (Ω). By Corollary 2
the sequences vk(x) = sα,β(uk) are pre-compact in L1

loc(Ω) for every α, β ∈ R, α < β.
Using the standard diagonal extraction, we can choose a subsequence ur(x) = ukr(x)
such that for each m ∈ N the sequence s−m,m(ur) converges as r → ∞ to some
function wm(x) in L1

loc(Ω). Obviously, a.e. in Ω

|wm(x)| ≤ m, and wm(x) = s−m,m(wl(x)) ∀l > m.

This allows to define a unique (up to equality a.e.) measurable function u(x) ∈
R ∪ {±∞} such that wm(x) = s−m,m(u(x)) a.e. on Ω. If a, b ∈ R, a < b then for
m > max(|a|, |b|)

sa,b(ur) = sa,b(s−m,m(ur)) →
r→∞

sa,b(wm) =

sa,b(s−m,m(u)) = sa,b(u) in L1
loc(Ω).

In fact, we proved the following general statement.
Theorem 6. Suppose that the sequence of measurable functions uk(x) satisfies

(86) and the nondegeneracy condition holds. Then
a) there exists a measurable function u(x) ∈ R∪ {±∞} such that, after extraction

of a subsequence ur, r ∈ N, sa,b(ur) → sa,b(u) as r →∞ in L1
loc(Ω) ∀a, b ∈ R, a < b.

b) If, in addition, the following estimates are satisfied

∫

K

m(uk(x))dx ≤ CK , (87)

for each compact set K ⊂ Ω, where m(u) is a positive Borel function, such that
m(u)/u →

u→∞
∞, then u(x) ∈ L1

loc(Ω) and ur → u in L1
loc(Ω) as r →∞.

Proof. We only need to prove b). Observe that, extracting a subsequence, if
necessary, we can assume that s−m,m(ur) → s−m,m(u) as m → ∞ a.e. in Ω for every
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m ∈ N. This implies that ur → u a.e. in Ω and by Fatou lemma it follows from (87)
that ∫

K

m(u(x))dx ≤ CK .

In particular, u(x) ∈ L1
loc(Ω). Now, fix a compact K ⊂ Ω and ε > 0. By the assump-

tion m(u)/u →
u→∞

∞ we can choose l ∈ N such that |u|/m(u) ≤ ε/(2CK) for |u| > l.

Then ∫

K

|ur(x)− u(x)|dx ≤
∫

K

|s−l,l(ur(x))− s−l,l(u(x))|dx +
∫

K

|ur(x)|θ(|ur(x)| − l)dx +

∫

K

|u(x)|θ(|u(x)| − l)dx

≤
∫

K

|s−l,l(ur(x))− s−l,l(u(x))|dx +

ε

2CK

(∫

K

m(ur(x))dx +

∫

K

m(u(x))dx

)
≤

∫

K

|s−l,l(ur(x))− s−l,l(u(x))|dx + ε.

This implies that lim
r→∞

∫

K

|ur(x)−u(x)|dx ≤ ε and since ε > 0 is arbitrary we conclude

that lim
r→∞

∫

K

|ur(x)−u(x)|dx = 0 for any compact K ⊂ Ω, i.e. ur → u in L1
loc(Ω). The

proof is complete.¤

5 Proofs of Theorems 1,2

We need the following simple
Lemma 9. Suppose u = u(x) is an entropy solution of (1). Then for all a, b ∈ R,

a < b
divϕ(x, sa,b(u))−D2 ·B(x, sa,b(u)) = ζa,b in D′(Ω), (88)

where ζa,b ∈ Mloc(Ω). Moreover, for each compact set K ⊂ Ω we have Var ζa,b(K) ≤
C(K, a, b, I), where I = I(x) = |ϕ(x, u(x))|+ |ψ(x, u(x))|+ |B(x, u(x))| ∈ L1

loc(Ω) and
the map I → C(K, a, b, I) is bounded on bounded sets in L1

loc(Ω).
Proof. By the known representation property for non-negative distributions we

derive from (4) that

div[sign(u(x)− p)(ϕ(x, u(x))]− ϕ(x, p))−D2 · [sign(u(x)− p)(B(x, u(x))−B(x, p))]

+ sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γs
p| = −κp in D′(Ω),

where κp ∈ Mloc(Ω), κp ≥ 0. Further, for a compact set K ⊂ Ω we choose a non-
negative function fK(x) ∈ C∞

0 (Ω), which equals 1 on K. Then we have the estimate

κp(K) ≤
∫

fK(x)dκp(x) =

∫

Ω

[sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p)) · ∇fK(x) +

37



sign(u(x)− p)(B(x, u(x))−B(x, p)) ·D2fK(x)−
sign(u(x)− p)(ωp(x) + ψ(x, u(x)))fK(x)]dx +

∫

Ω

fK(x)d|γs
p|(x) ≤

A(K, p, I) =

∫

Ω

[I(x) max(|fK(x)|, |∇fK(x)|, |D2fK(x)|) + |ϕ(x, p)| · |∇fK(x)|+

|B(x, p)| · |D2fK(x)|+ |ωp(x)|fK(x)]dx +

∫

Ω

fK(x)d|γs
p|(x).

Hence,

div[sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))]−
D2 · [sign(u(x)− p)(B(x, u(x))−B(x, p))] = ζp, (89)

where
ζp = |γs

p| − κp − sign(u(x)− p)[ωp(x) + ψ(x, u(x))] ∈ Mloc(Π).

In particular, taking into account the equality |γs
p| + |ωp(x)|dx = |γp|, we obtain the

estimates for the measures ζp: |ζp| ≤ κp + |γp|+ |ψ(x, u(x))|dx.
Further, notice that

ϕ(x, sa,b(u)) = (ϕ(x, a) + ϕ(x, b))/2 +

(sign(u− a)(ϕ(x, u)− ϕ(x, a))− sign(u− b)(ϕ(x, u)− ϕ(x, b)))/2;

B(x, sa,b(u)) = (B(x, a) + B(x, b))/2 + (sign(u− a)(B(x, u)−B(x, a))−
sign(u− b)(B(x, u)−B(x, b)))/2,

and it follows from (89) that relation (88) holds with ζa,b = (ζa − ζb + γa + γb)/2.
Moreover, we have

Var ζa,b(K) ≤ C(K, a, b, I) = (A(K, a, I) + A(K, b, I))/2 +

|γa|(K) + |γb|(K) +

∫

K

|ψ(x, u(x))|dx.

To complete the proof, it remains to note that for fixed K, a, b the constant C(K, a, b, I)
is bounded on bounded sets of I(x) ∈ L1

loc(Ω).¤

5.1 Proof of Theorem 1.

Taking into account that the sequence Ik(x) = |ϕ(x, uk(x))| + |ψ(x, uk(x))| +
|B(x, uk(x))| is bounded in L1

loc(Ω), we derive from Lemma 9 that for all a, b ∈ R

divϕ(x, sa,b(uk))−D2 ·B(x, sa,b(uk)) = ζk
a,b in D′(Ω),

where ζk
a,b is a bounded sequence in Mloc(Ω). Since Mloc(Ω) is compactly embedded

in W−1
d,loc(Ω) for each d ∈ [1, n/(n − 1)) then, taking into account the statement of

Proposition 7, we see that condition (86) is satisfied. By our assumption condition
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(87) is also satisfied. By Theorem 6 we conclude that some subsequence ur converges
as r →∞ to a limit function u in L1

loc(Ω). Extracting a subsequence if necessary, we
can assume that ur →

r→∞
u a.e. in Ω. Passing to the limit as r →∞ in relation (4) with

u = ur, we claim that the limit function u = u(x) satisfies this relation for all p such
that the level set u−1(p) has zero measure ( then sign(ur− p) → sign(u− p) as r →∞
a.e. in Ω ). Since the set P of such p has full measure and, therefore, is dense, for an
arbitrary p ∈ R we can choose sequences p−r < p < p+

r , p±r ∈ P , r ∈ N convergent to
p. Summing relations (4) with p = p−r and p = p+

r and passing to the limit as r →∞,
with the help of the point-wise relation sign(u− p−r ) + sign(u− p+

r ) →
r→∞

2 sign(u− p),

we obtain that (4) holds for all p ∈ R, i.e. u(x) is an entropy solution of (1).¤

5.2 Proof of Theorem 2.

To simplify the notations, we temporarily drop the index m in equation (17), and
stress that the flux vector ϕ̃(x, u) and the diffusion matrix A(x, u) in this equation are
smooth.

First we show that a weak solution u = u(x) of equation (17) is an entropy solution
in the sense of Definition 1. For this observe that in relation (18) we can choose
test functions f(x) ∈ W 1

2 (Ω), which have compact supports in Ω. In particular, for
η(u) ∈ C2(R), f = f(x) ∈ C∞

0 (Ω) the function η′(u)f , u = u(x) is an admissible test
function, and we derive from (18) that

0 = −
∫

Ω

[ϕ̃(x, u)∇η′(u)f − A(x, u)∇(u) · ∇η′(u)f ] dx =
∫

Ω

[(divϕ̃(x, u))η′(u)f + η′′(u)fA(x, u)∇u · ∇u +

A(x, u)η′(u)∇u · ∇f ]dx. (90)

Introduce the vector q̃(x, u) such that q̃′u(x, u) = η′(u)ϕ̃′u(x, u). This vector is deter-
mined by the above equality up to an additive constant c = c(x). We also introduce
the symmetric matrix Q(x, u) defined, up to an additive matrix constant C(x), by the
equality Q′

u(x, u) = η′(u)A(x, u) = η′(u)B′
u(x, u).

Now we can transform the terms (divϕ̃(x, u))η′(u)f , A(x, u)η′(u)∇u ·∇f as follows

(divϕ̃(x, u))η′(u)f = (divxϕ̃(x, u) + ϕ̃′u(x, u) · ∇u)η′(u)f =

(η′(u)divxϕ̃(x, u))f + (q̃′u(x, u) · ∇u)f =

fdivq̃(x, u) + (η′(u)divxϕ̃(x, u)− divxq̃(x, u))f ;

A(x, u)η′(u)∇u · ∇f = Q′
u(x, u)∇u · ∇f = (Qij)

′
u(x, u)uxj

fxi
=

(Qij(x, u))xj
fxi

− (Qij)xj
(x, u)fxi

(here Qij, i, j = 1, . . . , n being components of the matrix Q). Putting these equalities
into (90) and integrating by parts, we obtain that

∫

Ω

[q(x, u) · ∇f + (divxq̃(x, u)− η′(u)divxϕ̃(x, u))f+
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Q(x, u) ·D2f − η′′(u)fA(x, u)∇u · ∇u
]
dx = 0, (91)

where q(x, u) is a vector with components qi(x, u) = q̃i(x, u) + (Qij)xj
(x, u). Observe

that

(qi)
′
u(x, u) = (q̃i)

′
u(x, u) + ∂xj

(Qij)
′
u(x, u) = η′(u)(ϕ̃i + ∂xj

bij)
′
u(x, u) = η′(u)(ϕi)

′
u(x, u),

that is, q′u(x, u) = η′(u)ϕ′u(x, u).
We shall assume that η′′(u) has a compact support in R. Let R > 0 be such that

supp η′′(u) ⊂ (−R, R) and L = (η′(−R) + η′(R))/2 ( evidently, L does not depend on
R ). Then we can choose q̃(x, u) in the following way

q̃(x, u) =
1

2

∫
sign(u− p)(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) + Lϕ̃(x, u). (92)

Indeed, taking R > |u| and integrating by parts, we obtain the equality
∫

sign(u− p)(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) =

∫ R

−R

sign(u− p)(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) =

∫ u

−R

(ϕ̃(x, u)− ϕ̃(x, p))dη′(p)−
∫ R

u

(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) =

∫ u

−R

ϕ̃′u(x, p)η′(p)dp−
∫ R

u

ϕ̃′u(x, p)η′(p)dp−
2Lϕ̃(x, u) + ϕ̃(x,−R)η′(−R) + ϕ̃(x,R)η′(R).

We see that, up to a function which does not depend on u,

1

2

∫
sign(u− p)(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) + Lϕ̃(x, u) =

1

2

(∫ u

−R

ϕ̃′u(x, p)η′(p)dp−
∫ R

u

ϕ̃′u(x, p)η′(p)dp

)

and therefore

∂

∂u

(
1

2

∫
sign(u− p)(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) + Lϕ̃(x, u)

)
= η′(u)ϕ̃′u(x, u),

as required. In the similar way we find that, up to an additive matrix constant,

Q(x, u) =
1

2

∫
sign(u− p)(B(x, u)−B(x, p))dη′(p) + LB(x, u). (93)

It follows from (92), (93) that

q(x, u) =
1

2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u). (94)
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Further, the function η′(u)divxϕ̃(x, u)− divxq̃(x, u) admits the representation

η′(u)divxϕ̃(x, u)− divxq̃(x, u) =
1

2

∫
sign(u− p)divxϕ̃(x, p)dη′(p). (95)

Indeed, in view of (92), we see that for sufficiently large R

2q̃(x, u) =

∫ u

−R

(ϕ̃(x, u)− ϕ̃(x, p))dη′(p)−
∫ R

u

(ϕ̃(x, u)− ϕ̃(x, p))dη′(p) + 2Lϕ̃(x, u) =

ϕ̃(x, u)(η′(u)− η′(−R))−
∫ u

−R

ϕ̃(x, p)dη′(p)− ϕ̃(x, u)(η′(R)− η′(u)) +

∫ R

u

ϕ̃(x, p)dη′(p) + 2Lϕ̃(x, u) = 2η′(u)ϕ̃(x, u)−
∫

sign(u− p)ϕ̃(x, p)dη′(p),

where we use the equality 2L = η′(R) + η′(−R). Applying the operator divx to the
above equality, we arrive at (95).

Now, we suppose that η′′(u) ≥ 0. We transform (91), using equalities (92), (93),
(95) and the identity

∫

Ω

{ϕ(x, u) · ∇f + B(x, u) ·D2f}dx = 0, (96)

following from (91) with η(u) ≡ u ( then q̃(x, u) = ϕ̃(x, u), Q(x, u) = B(x, u), and
q(x, u) = ϕ(x, u) ). We find that for each f = f(x) ∈ C∞

0 (Ω), f ≥ 0

∫ ∫

Ω

sign(u− p){(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ̃(x, p) +

(B(x, u)−B(x, p)) ·D2f}η′′(p)dxdp = 2

∫

Ω

η′′(u)fA(x, u)∇u · ∇u ≥ 0

and since η′′(p) is an arbitrary finite continuous non-negative function on R we arrive
at

I(p)
.
=

∫

Ω

sign(u− p){(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ̃(x, p) +

(B(x, u)−B(x, p)) ·D2f)}dx ≥ 0 (97)

for all p ∈ P , where the set P consists of points p such that the level set u−1(p) has
null Lebesgue measure. We use the fact that the function I(p) is continuous at any
point of P . In view of (97) for all p ∈ P

div[sign(u− p)(ϕ(x, u)− ϕ(x, p))] +

sign(u− p)divxϕ̃(x, p)−D2 · [sign(u− p)(B(x, u)−B(x, p))] ≤ 0 (98)

in D′(Ω). Since the set P has full measure and therefore is dense, for an arbitrary
p ∈ R we can choose sequences p−r < p < p+

r , p±r ∈ P , r ∈ N convergent to p. Taking
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a sum of relations (98) with p = p−r and p = p+
r and passing to the limit as r →∞, in

view of the point-wise relation sign(u−p−r )+sign(u−p+
r ) →

r→∞
2 sign(u−p), we obtain

that (98) holds for all p ∈ R. Taking into account that

divxϕ̃(x, p) = divxϕ(x, p)−D2
x ·B(x, p),

we conclude that u(x) is an entropy solution of (17).
We also need a-priori estimate of ∇u. Choose M ≥ ‖u‖∞ and a function η(u) ∈

C2
0(R) such that η(u) = u2/2 on the segment [−M, M ] and supp η(u) ∈ [−M −1,M +

1]. Then for u = u(x) η′′(u) = 1 a.e. in Ω and we derive from (91) that for each
f = f(x) ∈ C∞

0 (Ω), f ≥ 0

∫

Ω

fA(x, u)∇u · ∇udx ≤
∣∣∣∣
∫

Ω

[
q(x, u) · ∇f + (divxq̃(x, u)− η′(u)divxϕ̃(x, u))f + Q(x, u) ·D2f

]
dx

∣∣∣∣ . (99)

It follows from (94), (93), (95) that

|q(x, u)| ≤ C max
|u|≤M+1

|ϕ(x, u)|, |Q(x, u)| ≤ C max
|u|≤M+1

|B(x, u)|,

|divxq̃(x, u)− η′(u)divxϕ̃(x, u)| ≤ C

∫ M+1

−M−1

|divxϕ̃(x, p)|dp,

where C is the constant depending only on the fixed function η. Putting these esti-
mates into (99), we get

∫

Ω

fA(x, u)∇u · ∇udx ≤ C

∫

Ω

{ max
|u|≤M+1

|ϕ(x, u)||∇f |+

max
|u|≤M+1

|B(x, u)||D2f |}dx + C

∫

Ω

∫ M+1

−M−1

|divxϕ̃(x, p)|f(x)dpdx. (100)

Now we recall that ϕ(x, u) = ϕm(x, u), B(x, u) = Bm(x, u), m ∈ N. By our as-
sumptions these sequences converge as m →∞ in L2

loc(Ω, C(R)) and in C1(R, Symn),
respectively. Therefore, the sequence

∫

Ω

{ max
|u|≤M+1

|ϕm(x, u)||∇f |+ max
|u|≤M+1

|Bm(x, u)||D2f |}dx

is bounded by a constant depending only on f . Here we take M ≥ supm ‖um‖∞. It
follows from estimate (100) and the condition Am ≥ εmE that

εm

∫

Ω

|∇um|2f(x)dx ≤
∫

Ω

fAm(x, um)∇um · ∇umdx ≤ CfIm(K, M + 1), (101)
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with K = supp f , where the sequence

Im(K,M) = 1 +

∫

K

∫ M

−M

|divxϕ̃m(x, p)|dpdx =

1 +

∫

K

∫ M

−M

|divxϕm(x, p)−D2
x ·Bm(x, p)|dpdx

was mentioned in Introduction. It follows from (101) and condition (16) that

(εm)2

∫

Ω

|∇um|2f(x)dx ≤ CfεmIm(K,M + 1) →
m→∞

0 (102)

for all M , K and f .
Now we take a, b ∈ R, a < b. Let us demonstrate that the sequence

Lm = divϕ(x, sa,b(um))−D2 ·B(x, sa,b(um))

is pre-compact in W−1,−2
d,loc with some d > 1. For that, recall that um(x) is an entropy

solution of (17) and by Lemma 9 ( also see the proof of this Lemma )

divϕm(x, sa,b(um))−D2 ·Bm(x, sa,b(um)) = ξm

where ξm is a bounded sequence in the space Mloc(Ω), which is compactly embedded
in W−1

d,loc(Ω) for each d ∈ [1, n/(n−1)). Further, we have Lm = L1m +L2m + ξm, where

L1m = div(ϕ(x, sa,b(um))− ϕm(x, sa,b(um))),

L2m = D2 · (Bm(x, sa,b(um))−B(x, sa,b(um))) .

In view of the estimate

|ϕ(x, sa,b(um))− ϕm(x, sa,b(um))| ≤ max
|u|≤M

|ϕm(x, u)− ϕ(x, u)|

and the condition ϕm(x, u) →
m→∞

ϕ(x, u) in L2
loc(Ω, C(R,Rm)) we have

ϕ(x, sa,b(um))− ϕm(x, sa,b(um)) →
m→∞

0 in L2
loc(Ω).

Hence L1m → 0 in W−1
2,loc(Ω). Concerning the sequence L2m, we represent it as follows

L2m = D2 · (Bm(x, sa,b(um))−Bm(x, p)−B(x, sa,b(um)) + B(x, p))−
(divxϕm(x, p)−D2 ·Bm(x, p)) + (divxϕ(x, p)−D2 ·B(x, p)) +

divx(ϕm(x, p)− ϕ(x, p)) = D2 ·Rm − γm
p + γp + divx(ϕm(x, p)− ϕ(x, p)) (103)

where p is some fixed value, Rm = Rm(x) = Bm(x, sa,b(um)) − Bm(x, p) −
B(x, sa,b(um)) + B(x, p) →

m→∞
0 in L2

loc(Ω, C(R, Symn)). The latter implies that for

each Φ(x) ∈ C∞
0 (Ω) Φ(x)Rm(x) →

m→∞
0 in L2(Ω, C(R, Symn)). Observe that by the
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structure of our approximations (Bm(x, u) − Bm(x, p) − εm(u − p)E)ξ = 0 for all
ξ ∈ X. Therefore, (Rm(x) − εm(sa,b(um) − p)E)ξ̃ = 0 for ξ̃ = P1ξ, ξ ∈ Rn, and the
matrix Hm(x) = Rm(x)− εm(sa,b(um)− p)E satisfies the property

F (ΦHm)(ξ)ξ · ξ =

∫

Rn

e−2πiξ·xΦ(x)Hm(x)ξ · ξdx =
∫

Rn

e−2πiξ·xΦ(x)Hm(x)ξ̄ · ξ̄dx = F (ΦHm)(ξ)ξ̄ · ξ̄.

This implies that
∣∣∣(1 + |ξ̃|2 + |ξ̄|4)−1/2F (D2 · ΦHm)(ξ)

∣∣∣ =

4π2
∣∣∣(1 + |ξ̃|2 + |ξ̄|4)−1/2F (ΦHm)(ξ)ξ̄ · ξ̄

∣∣∣ ≤ |F (ΦHm)(ξ)|

and by Plancherel’s equality

‖(1 + |ξ̃|2 + |ξ̄|4)−1/2F (D2 · ΦHm)(ξ)‖2 ≤ ‖F (ΦHm)(ξ)‖2 = ‖ΦHm‖2 →
m→∞

0

in L2(Rn). This means that

D2 · ΦHm →
m→∞

0 in W−1,−2
2 . (104)

Since
ΦD2 ·Hm = D2 · ΦHm − 2div(Hm∇Φ) + Hm ·D2Φ in D′(Rn)

and, evidently, the sequences div(Hm∇Φ), Hm · D2Φ converges to zero as m → ∞
in W−1

2 ⊂ W−1,−2
2 then by (104) we claim that ΦD2 · Hm →

m→∞
0 in W−1,−2

2 . Here

Φ(x) ∈ C∞
0 (Ω) is arbitrary and therefore

D2 ·Hm →
m→∞

0 in W−1,−2
2,loc (Ω). (105)

Further, using the chain rule, we find

εmD2 · (sa,b(um)− p)E = εmdiv∇sa,b(um) = εmdiv[χ(um)∇um],

χ(u) is the indicator function of the segment [a, b]. In view of estimate (102) εm∇um →
0 in L2

loc(Ω) as m →∞. Hence

εmD2 · (sa,b(um)− p)E →
m→∞

0 in W−1
2,loc(Ω) ⊂ W−1,−2

2,loc (Ω).

This and (105) imply that

D2 ·Rm →
m→∞

0 in W−1,−2
2,loc (Ω). (106)

It is clear that

divx(ϕm(x, p)− ϕ(x, p)) →
m→∞

0 in W−1
2,loc(Ω) ⊂ W−1,−2

2,loc (Ω). (107)
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Finally, by (7) the sequence γm
p − γp → 0 weakly in Mloc(Ω). Therefore, for

d ∈ (1, n/(n− 1))

γm
p − γp →

m→∞
0 in W−1

d,loc(Ω) ⊂ W−1,−2
d,loc (Ω). (108)

In view of (106), (107), (108) we derive from representation (103) that L2m → 0 as
m → ∞ in W−1,−2

d,loc (Ω) for some d > 1. As was demonstrated above, the same limit
relations fulfill for sequences L1m, ξm and we conclude that Lm = L1m + L2m + ξm

is pre-compact in W−1,−2
d,loc (Ω) with some d > 1. Hence, assumption (86) is satisfied.

By Corollary 2 we see that the sequence um converges in L1
loc(Ω) to some function

u = u(x) ∈ L∞(Ω). Obviously, ‖u‖∞ ≤ M . It only remains to demonstrate that
u is an entropy and distributional solution of (1). By relation (97) for each p ∈ R,
f = f(x) ∈ C∞

0 (Ω), f ≥ 0

∫

Ω

sign(um − p){(ϕm(x, um)− ϕm(x, p)) · ∇f − fγm
p (x) +

(Bm(x, um)−Bm(x, p)) ·D2f}dx ≥ 0

where
γm

p (x) = divxϕ̃m(x, p) = divxϕm(x, p)−D2 ·Bm(x, p).

Since γm
p (x) = γm

pr(x) + γ̄m
ps(x) (see Introduction) the above relation implies that

∫

Ω

{sign(um − p)[(ϕm(x, um)− ϕm(x, p)) · ∇f − fγm
pr(x) +

(Bm(x, um)−Bm(x, p)) ·D2f ] + f |γ̄m
ps(x)|}dx ≥ 0. (109)

Passing to a subsequence, we may assume that um(x) → u(x) as m → ∞ a.e. in Ω.
Then, in view of (12), (13),

sign(um − p)(ϕm(x, um)− ϕm(x, p)) →
m→∞

sign(u− p)(ϕ(x, u)− ϕ(x, p)),

sign(um − p)(Bm(x, um)−Bm(x, p)) →
m→∞

sign(u− p)(B(x, u)−B(x, p)),

sign(um − p) →
m→∞

sign(u− p)

a.e. in Ω and, as a consequence, in L1
loc(Ω). The latter relation holds for p ∈ R

such that the level set u−1(p) has zero Lebesgue measure. Besides, by our assump-
tions ( see relations (14), (15) ) γm

pr(x) →
m→∞

ωp(x) in L1
loc(Ω), lim

m→∞
∫

Ω
f(x)|γ̄s

mp(x)|dx ≤∫
Ω

f(x)d|γs
p|(x). Taking into account the above limit relations, we can pass to the limit

in (109) and obtain that

∫

Ω

sign(u− p){(ϕ(x, um)− ϕ(x, p)) · ∇f − fωp(x) +

(B(x, u)−B(x, p)) ·D2f}dx +

∫

Ω

f(x)d|γs
p|(x) ≥ 0 (110)
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for all p ∈ R such that the level set u−1(p) has zero Lebesgue measure. Repeating
the arguments concluding the proof of Theorem 1, we obtain that (110) holds for all
p ∈ R, i.e. u(x) is an entropy solution of (17). Finally, passing to the limit as m →∞
in relation (96)

∫

Ω

{ϕm(x, um) · ∇f + Bm(x, um) ·D2f}dx = 0,

we obtain that for all f = f(x) ∈ C∞
0 (Ω)

∫

Ω

{ϕ(x, u) · ∇f + B(x, u) ·D2f}dx = 0.

Hence, u = u(x) is a distributional solution of (1). This completes the proof of
Theorem 2. ¤

Remark in conclusion that the strong pre-compactness property for equations of
Graetz-Nusselt type

div (ϕ(x, u)− A(x)∇g(u)) + ψ(x, u) = 0

was studied in [18, 17]. In particular, Theorems 1,2 was proved in [17] for such the
equation under the less restrictive non-degeneracy requirement:

for a.e. x ∈ Ω for all ξ ∈ Rn, ξ 6= 0, the functions u → ξ ·ϕ(x, u), u → g(u)A(x)ξ ·ξ
are not constant simultaneously on non-degenerate intervals.
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[1] N. Antonić, M. Lazar, H-measures and variants applied to parabolic equations, J. Math.
Anal. Appl. 343(2008) 207–225.
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