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Abstract. We propose, analyze, and demonstrate a discontinuous Galerkin
method for fractional conservation laws. Various stability estimates are es-
tablished along with error estimates for regular solutions of linear equations.
Moreover, in the nonlinear case and when piecewise constant elements are uti-
lized, we prove a rate of convergence toward the unique entropy solution. We
present numerical results for different types of solutions of linear and nonlinear
fractional conservation laws.

1. Introduction

We consider the fractional conservation law

(1.1)
{

∂tu(x, t) + ∂xf(u(x, t)) = gλ[u(x, t)] (x, t) ∈ R× (0, T )
u(x, 0) = u0(x) x ∈ R

where f : R → R is a Lipschitz continuous function and gλ is the nonlocal fractional
Laplace operator −(−∂2

x)λ/2 for λ ∈ (0, 2). This operator can be formally defined
by Fourier transform as

̂gλ[ϕ(x)](ξ) = −|ξ|λϕ̂(ξ),(1.2)

or, equivalently, by a singular integral (see [27, 20]) as

gλ[ϕ(x)] = cλ

�
|z|>0

ϕ(x + z)− ϕ(x)
|z|1+λ

dz for some cλ > 0.

For the sake of brevity, we will often write g instead of gλ in what follows.
Nonlocal partial differential equations appear in different areas of engineering

and sciences. For example, the linear nonlocal partial differential equation

(1.3) ∂tu− ∂2
xu− ∂xu + u = gλ[u],

is a nonlocal generalizations of the famous Black-Scholes’ equation in finance (see
[15]), and have received a lot of attention in the last decade. In recent years,
attention has also been given to nonlinear nonlocal equations like

(1.4) ∂tu + u∂xu = gλ[u],

known as the fractional Burgers’ equation. Equation (1.4) finds application in cer-
tain models of detonation of gases (see [30]) characterized by an anomalous diffusive
behavior which can be described by means of the fractional Laplacian. We refer
the reader to [2, 3, 18], and the references therein, for further applications in hy-
drodynamics, molecular biology, semiconductor growth and dislocation dynamics.
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Many authors, see [2, 3, 5, 6, 7, 8, 20, 23], have contributed to settle issues like
well-posedness and regularity of solutions for the fractional conservation law (1.1).
In the case λ ∈ (1, 2), (1.1) is the natural nonlocal generalization of the viscous con-
servation law ∂tu + ∂xf(u) = ∂2

xu. Such equations turn a merely bounded initial
datum into a unique stable smooth solution (see [19]). The case λ ∈ (0, 1) is more
delicate. Alibaud’s entropy formulation is needed to guarantee well-posedness [2],
and the solutions may develop shocks in finite time [3]. The diffusion is no longer
strong enough to counterbalance the convection, and equation (1.1) fails to regu-
larize the initial datum. In the critical case λ = 1, Alibaud’s entropy formulation
is still needed to ensure well-posedness, however, solutions should be smooth as in
the case λ ∈ (1, 2) – see Kiselev et al. [25] for the case of the fractional Burgers’
equation.

A vast literature is available on numerical methods for nonlocal linear equations
like (1.3). The interested reader could see, for example, [12, 11, 10, 17, 29, 4, 14].
However, numerical methods for nonlocal nonlinear equations like (1.1) are far
from being abundant. Dedner et al. introduced in [16] a general class of differences
methods for a nonlinear nonlocal equation similar to (1.1) coming from a specific
problem in radiative hydrodynamics. Droniou [18] was the first to analyze a general
class of difference methods for (1.1). He proved convergence to Alibaud’s entropy
solution, but produced no results regarding the rate of convergence of his methods.

In this paper we will study a discontinuous Galerkin (DG) approximation of (1.1).
The DG method is a well established numerical method for the pure conservation
law ∂tu + ∂xf(u) = 0. Some of the important features of this method are stability
and high-order accuracy. Moreover, when piecewise constant elements are used, the
DG method reduces to a conservative monotone difference method (see [22]) which
converges to the entropy solution with rate 1/2 (see Kuznetsov [26]). For a detailed
presentation of the DG method for pure conservation laws, we refer Cockburn [13].

In this paper we propose a DG approximation of (1.1) in the case λ ∈ (0, 1), and
prove that we retain the main features of the DG method in our nonlocal setting.
We show L2-stability, we prove high-order accuracy for linear equations, and we
prove that when piecewise constant elements are used, the method is equivalent
to a conservative monotone difference method which converges towards Alibaud’s
entropy solution with rate 1/2. To prove the rate 1/2, we generalize the Kuznetsov
argument (see [26]) to our nonlocal setting. As a byproduct, we obtain the following
theoretical result: Alibaud’s entropy formulation and what Alibaud himself in [2]
calls the intermediate formulation are equivalent for all integrable initial data of
bounded variation. This equivalence has been recently remarked by Karlsen et al.
[24] in a more general context using different arguments.

Finally, several numerical experiments have been performed to illustrate the de-
veloped theory. Among other things, we are able to reproduce the theoretical results
(absence of smoothing effect due to persistence of discontinuities and formations of
shocks) obtained by [3, 25] for the fractional Burgers’ equation.

2. A semidiscrete method

Let us introduce the space grid xi = i∆x, i ∈ Z, and let us label Ii = (xi, xi+1).
We call P k(Ii) the set of polynomials of degree k ∈ N0 = {0, 1, 2, . . .} with support
on the interval Ii, and consider the Legendre polynomials (see [13] for details)

{ϕ0,i, ϕ1,i, . . . , ϕk,i}, ϕj,i ∈ P j(Ii) for all j = 0, 1, . . . , k.

Each ϕ ∈ P k(Ii) is a linear combination of the functions {ϕ0,i, ϕ1,i, . . . , ϕk,i}.
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If we multiply (1.1) by an arbitrary ϕ ∈ P k(Ii), integrate over the interval Ii,
integrate by parts, and replace the flux f by a numerical flux F , we get�

Ii

utϕ−
�

Ii

f(u)ϕx + F (u(xi+1))ϕ(x−i+1)− F (u(xi))ϕ(x+
i ) =

�
Ii

g[u]ϕ.(2.1)

As usual for DG methods, the numerical flux F (ui) = F (u(x−i ), u(x+
i )) satisfies the

following assumptions:

A1 : F is Lipschitz continuous on R× R,
A2 : F (a, a) = f(a) for all a ∈ R,
A3 : F is non-decreasing with respect to its first variable,
A4 : F is non-increasing with respect to its second variable.

The goal is to find a function ũ : R× [0, T ] → R,

(2.2) ũ(x, t) =
∑
i∈Z

k∑
p=0

Up,i(t)ϕp,i(x),

which satisfies (2.1) for all ϕ ∈ P k(Ii), i ∈ Z. Let us fix ϕ(x) =
∑k

q=0 αq,iϕq,i(x)
and plug (2.2) into (2.1) to get

k∑
q=0

αq,i

{
wqU

′
q,i

}
=

k∑
q=0

αq,i

{�
Ii

f(ũ)ϕ′q,i + (−1)qF (ũi)− F (ũi+1) +
�

Ii

g[ũ]ϕq,i

}

where F (ũi) = F (
∑k

p=0 Up,i−1,
∑k

p=0 Up,i(−1)p). To derive the above expression,
we have used some well know properties of the Legendre polynomials: for all i ∈ Z,�

Ii

ϕ2
q,idx = ωq,

�
Ii

ϕp,iϕq,idx = 0 (p 6= q), ϕp,i(x−i+1) = 1 and ϕp,i(x+
i ) = (−1)p.

The semidiscrete method we study is the following: for all q = 0, 1, . . . , k and i ∈ Z,

wqU
′
q,i =

�
Ii

f(ũ)ϕ′q,i + (−1)qF (ũi)− F (ũi+1) +
�

Ii

g[ũ]ϕq,i(2.3)

Uq,i(0) =
2q + 1
∆x

�
Ii

u0(x)ϕq,i(x)dx.(2.4)

3. Non-linear L2 stability and convergence in the linear case

As usual for the DG method, let us introduce some integrability into our formu-
lation. Let us require the function (2.2) to be such that

(3.1) ũ(·, t) ∈ V k = {u : ‖u‖Hλ/2(R) < ∞ and u|Ii ∈ P k(Ii) for all i ∈ Z}

where we have introduced the fractional Sobolev norm (see [1])

(3.2) ‖u‖2Hλ/2(R) = ‖u‖2L2(R) +
�

R

�
R

(u(z)− u(x))2

|z − x|1+λ
dzdx.

Note that the space V k also contains discontinuous piecewise polynomials, see e.g.
Lemma 6.5 in [21].

Theorem 3.1. (Stability) Let u0 ∈ L2(R). Then,

‖ũ(·, T )‖L2(R) ≤ ‖u0‖L2(R).

The above result generalizes a well known feature of the DG method for pure
conservation laws (see [13], Proposition 2.1 and Theorem 4.2, for details).
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Proof. For brevity, write u instead of ũ. By construction, u(·, t) satisfies (2.1) for
all ϕ ∈ P k(Ii). Sum over all i ∈ Z, and rearrange the terms in the sum to get�

R
utu =

∑
i∈Z

[
F (ui)

(
u(x+

i )− u(x−i )
)

+
�

Ii

f(u)ux

]
+

�
R

g[u]u.

Note that
�

Ii
f(u)ux =

�
Ii

(
� u(x)

f)x =
� u(x−i+1) f −

� u(x+
i )

f where
� u

f is a primi-
tive of f(u)ux. Thus, after having rearranged the terms in the sum,

�
R

utu =
∑
i∈Z

[
F (ui)

(
u(x+

i )− u(x−i )
)
−

� u(x+
i )

u(x−i )

f(x)dx
]

+
�

R
g[u]u.

It is well known that a flux satisfying A2 -A4 is an E-flux (see [13]), i.e.

F (ui)
(
u(x+

i )− u(x−i )
)
−

� u(x+
i )

u(x−i )

f(x)dx ≤ 0 for all i ∈ Z.

Thus, by Corollary A.4,

‖u(·, T )‖2L2(R) +
� T

0

�
R

�
R

(u(z, t)− u(x, t))2

|z − x|1+λ
dzdxdt ≤ ‖u0‖L2(R).

�

In the linear case, problem (1.1) reduces to

(3.3) ∂tu + c∂xu = g[u]

where c ∈ R. Let us recall the following result.

Proposition 3.2. Let u0 ∈ Hk+1(R) for k ≥ 0. Then, there exists a unique
function u ∈ Hk+1(R× [0, T ]) which solves (3.3). Moreover,

(3.4) ‖u(·, t)‖Hk+1(R) ≤ ‖u0‖Hk+1(R).

Proof. Since (3.3) is linear, its Fourier transform, ∂tû+ iξcû = −|ξ|λû, has solution

û(ξ, t) = û0(ξ)e−(iξc+|ξ|λ)t.

This implies existence plus, using Plancherel theorem, L2-stability and uniqueness.
L2-stability for (weak) higher derivatives can be obtained as follows: take the de-
rivative of (3.3), and repeat the above procedure; iterate until the kth derivative.
Regularity in time can be shown by using equation (3.3) and regularity in space. �

As pointed out by Cockburn in [13], in the linear case all relevant numerical
fluxes (Godunov, Engquist-Osher, Lax-Friedrichs, etc.) reduce to

(3.5) F (a, b) =
c

2
(a + b)− |c|

2
(b− a).

We use this flux to prove the following result: the order of semidiscrete method
(2.3)-(2.4) increases along with the degree k of the polynomial basis used.

Theorem 3.3. (Convergence) Let u0 ∈ Hk+1(R), k ≥ 0, and u ∈ Hk+1(R× [0, T ])
be the unique solution of (3.3). Then, there exists ck,T > 0 such that

‖u(·, T )− ũ(·, T )‖L2(R) ≤ ck,T (∆x)k+ 1
2 .

The above result, called high-order accuracy, generalizes a well known feature of
the DG method for pure conservation laws (see [13], Theorem 2.1, for details).
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Proof. By construction, for all ϕ such that ϕ|Ii ∈ P k(Ii) where i ∈ Z,�
R

ũtϕ +
∑
i∈Z

(
F (ũ(xi))

(
ϕ(x−i )− ϕ(x+

i )
)
−

�
Ii

cũϕx

)
=

�
R

g[ũ]ϕ.

Note that u satisfies an analogous expression. That is,

(3.6)
�

R
utϕ +

∑
i∈Z

(
F (u(xi))

(
ϕ(x−i )− ϕ(x+

i )
)
−

�
Ii

cuϕx

)
=

�
R

g[u]ϕ.

To prove the above relation, multiply (3.3) by a function ϕ ∈ P k(Ii) and integrate
over the interval Ii. Since u is continuous (by Sobolev imbedding since u(·, t) ∈
Hk+1(R) for k ≥ 0) and the numerical flux is chosen such that F (a, a) = f(a) for
all a ∈ R, we get that�

Ii

(ut + cux − g[u])ϕ

=
�

Ii

utϕ−
�

Ii

cuϕx + F (u(xi+1))ϕ(x−i+1)− F (u(xi))ϕ(x+
i )−

�
Ii

g[u]ϕ.

We obtain (3.6) by summing over all i ∈ Z and rearranging the terms in the sum.
Introduce the bilinear form

B(e, ϕ) =
�

R
etϕ +

∑
i∈Z

(
F (e(xi))

(
ϕ(x−i )− ϕ(x+

i )
)
−

�
Ii

ceϕx

)
−

�
R

g[e]ϕ

where e = u− ũ. Call e the L2-projection of e into the set of piecewise polynomials.
That is: for all i ∈ Z, e|Ii

∈ P k(Ii) and�
Ii

(
e(x)− e(x)

)
ϕji(x)dx = 0 for all j = 0, 1, . . . , k.

Since B(e, e) = 0, then B(e, e) = B(e− e, e) = B(u− u, e) or� T

0

�
R
ete =

� T

0

�
R
(u− u)te−

� T

0

∑
i∈Z

(
F (e(xi))

(
e(x−i )− e(x+

i )
)
−

�
Ii

ceex

)
+

� T

0

∑
i∈Z

(
F ((u− u)(xi)

(
e(x−i )− e(x+

i )
)
−

�
Ii

c(u− u)ex

)
+

� T

0

�
R

g[e]e−
� T

0

�
R

g[e− e]e.

As shown in [13], Theorem 2.1, the local terms are less than ck,T (∆x)2k+1. Thus,� T

0

�
R
ete ≤ ck,T (∆x)2k+1 +

� T

0

�
R

g[e]e−
� T

0

�
R

g[e− e]e

Denote by I what it is left to estimate on the right-hand side. By Corollary A.4,

I =
1
2

� T

0

�
R

g[e]e +
1
2

� T

0

�
R

g[e]e− 1
2

� T

0

�
R

g[e− e](e− e)

≤
� T

0

‖(u− u)(·, t)‖2Hλ/2(R)dt,

by Lemma A.2,

‖(u− u)(·, t)‖2Hλ/2(R) ≤ ‖(u− u)(·, t)‖2−λ
L2(R)‖(u− u)(·, t)‖λ

H1(R),

and, see [9] (Section 4.4),

‖(u− u)(·, t)‖L2(R) ≤ ck‖u(·, t)‖Hk+1(R)(∆x)k+1,

‖(u− u)(·, t)‖H1(R) ≤ ck‖u(·, t)‖Hk+1(R)(∆x)k.
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Thus, by (3.4),
� T

0

�
R
ete ≤ ck,T

[
(∆x)2k+1 + (∆x)2k+2−λ

]
Since e(x, 0) = 0 and ‖e‖ = ‖(u− ũ)− (u− u)‖ ≥ ‖e‖ − ‖u− u‖,

‖e(·, T )‖2L2(R) ≤ ck,T

[
(∆x)2k+1 + (∆x)2k+2−λ + (∆x)2k+2

]
≤ ck,T (∆x)2k+1.

�

4. Convergence in the nonlinear case

We study the nonlinear case by using only piecewise constant elements (k = 0):

{ϕ0,i, ϕ1,i, . . . , ϕk,i} ≡ {ϕ0,i}, ϕ0,i(x) = 1Ii
(x)

where 1Ii : R → R is the indicator function of the interval Ii = (xi, xi+1). Start-
ing from the semidiscrete method (2.3)-(2.4), we derive a conservative monotone
method which, by adapting Kuznetsov’s techniques (see [26]) to our nonlocal set-
ting, we prove converges to Alibaud’s entropy solution with rate 1/2. Note that
in the nonlinear case, even when pure conservation laws are considered, no results
concerning the convergence rate are available for high-order polynomials (k > 0).

Let us introduce the time grid tn = n∆t, n = 0, 1, . . . , N where N∆t = T and
discretize the semidiscrete method (2.3)-(2.4) in time to obtain the explicit method

Un+1
i = Un

i −
∆t

∆x

[
F (Un

i , Un
i+1)− F (Un

i−1, U
n
i )
]

+ ∆tg〈Un〉i(4.1)

U0
i =

1
∆x

�
Ii

u0(x)dx(4.2)

where the nonlocal operator

g〈Un〉i =
1

∆x

�
Ii

g[Ūn(x)]dx

and Ūn : R → R is the step function associated with Un : Z → R.

Proposition 4.1. For all i ∈ Z, g〈U〉i = 1
∆x

∑
j∈Z mjUi+j where the weights

mj(λ, ∆x) =
�

I0

gλ[1Ij (x)]dx,∑
j∈Z |mj | < ∞,

∑
j∈Z mj = 0, m−j = mj > 0 for all j 6= 0, m0 = −dλ∆x1−λ and

dλ = cλ

(�
|z|<1

1
|z|λ

dz +
�
|z|>1

1
|z|1+λ

dz

)
> 0.

Proof. See appendix. �

Let us point out two consequences of Proposition 4.1. In the first place, the
numerical method (4.1)-(4.2) is conservative. Indeed, since

∑
j∈Z |mj | < ∞,

(4.3)
∑
i∈Z

∑
j∈Z

|mjUi+j | =
∑
j∈Z

|mj |
∑
i∈Z

|Ui| < ∞

whenever
∑

i∈Z |Ui| < ∞, and, since
∑

j∈Z mj = 0,∑
i∈Z

g〈U〉i =
1

∆x

∑
i∈Z

∑
j∈Z

mjUi+j =
1

∆x

∑
j∈Z

mj

∑
i∈Z

Ui = 0.
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Thus, for all n ≥ 0, we have the conservative behavior
∑

i∈Z Un+1
i =

∑
i∈Z Un

i . In
the second place, we can make the numerical method (4.1)-(4.2) monotone by using
the following CFL condition:

(f1 + f2)
∆t

∆x
+ dλ

∆t

∆xλ
≤ 1

where f1, f2 are the Lipschitz constants of F with respect to its first and second
variable. Monotonicity means that, for all i ∈ Z and n ≥ 0, (4.1) is increasing in
all Un. In what follows, the above CFL condition is assumed to be satisfied.

Let us introduce the time discretization into (2.2) as follows:

ũ(x, t) = Un
i for all (x, t) ∈

[
i∆x, (i + 1)∆x

)
×
[
n∆t, (n + 1)∆t

)
.

Theorem 4.2. (Stability) Let u0 ∈ L∞(R) ∩ L1(R) ∩BV (R). Then,
i) ‖ũ(·, t)‖L∞(R) ≤ ‖ũ0‖L∞(R),
ii) ‖ũ(·, t)‖L1(R) ≤ ‖ũ0‖L1(R),
iii) |ũ(·, t)|BV (R) ≤ |ũ0|BV (R).

Proof. Monotonicity plus
∑

j∈Z mj = 0 implies i). The proof of ii) and iii) follows
word by word the one of Theorem 3.6 in Holden et al. [22]. �

Let us recall the entropy formulation for problem (1.1).

Definition 4.1. A function u : R× [0, T ] → R, u ∈ L∞(R× (0, T ]), is an entropy
solution of (1.1) provided that, for all k ∈ R and all nonnegative ϕ ∈ C∞

c (R×[0, T ]),

Λ[u, ϕ, k] =
� T

0

�
R

ηk(u)ϕt + qk(u)ϕx + ηk(u(x, t))g[ϕ(x, t)]dxdt

+
�

R
ηk(u0(x))ϕ(x, 0)dx−

�
R

ηk(u(x, T ))ϕ(x, T )dx ≥ 0(4.4)

where ηk(u) = |u− k| and qk(u) = sgn(u− k)(f(u)− f(k)).

The above definition is different from the one introduced by Alibaud in [2]. Al-
ibaud’s definition implies Definition 4.1, but the opposite could be false for general
initial data u0 ∈ L∞(R). However, as shown by Karlsen et al. in [24], Definition 4.1
is equivalent to Alibaud’s definition for all initial data u0 ∈ L∞(R)∩L1(R)∩BV (R).

Theorem 4.3. Let u0 ∈ L∞(R) ∩ L1(R) ∩ BV (R). Then, there exists a unique
entropy solution of (1.1). Moreover,

i) ‖u(·, t)‖L∞(R) ≤ ‖u0‖L∞(R),
ii) ‖u(·, t)‖L1(R) ≤ ‖u0‖L1(R),
iii) |u(·, t)|BV (R) ≤ |u0|BV (R).

Proof. Uniqueness follows from an easy modification of the results in [24]. Alter-
natively, Theorem 4.5 can be used: indeed, assume, by contradiction, that u, v are
both entropy solutions; then, by adding and subtracting the numerical solution ũ,

‖u(·, t)− v(·, t)‖L1(R) ≤ ct

√
∆x

for all ∆x > 0. Existence and stability follow from [2, 24]. �

The following lemma generalizes to our nonlocal setting a result due to Kuznetsov
(see [26]). We will use it in the proof of Theorem 4.5.

Lemma 4.4. Let u0 ∈ L∞(R)∩L1(R)∩BV (R), u : R× [0, T ] → R be the entropy
solution of (1.1), and ũ : R × [0, T ] → R the solution of the numerical method
(4.1)-(4.2). Let us introduce the function

ϕ(x, x′, t, t′) = ωε(x− x′)ωδ(t− t′)
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where ωα ∈ C∞
c (R), α > 0, can be built as follows: choose ω ∈ C∞

c (R) such that
0 ≤ ω(x) ≤ 1 for all x ∈ R, ω(x) = 0 for all |x| > 1 and

�
R ω(x)dx = 1; then define

ωα(x) = ω(x/α)/α. Moreover, starting from (4.4), let us call

Λε,δ[ũ, u] =
� T

0

�
R

Λ[ũ, ϕ(·, x′, ·, t′), u(x′, t′)]dx′dt′.

Then, for all ε > 0 and 0 < δ < T , there exists c > 0 such that

‖u(·, T )− ũ(·, T )‖L1(R) ≤ c(ε + δ + ∆x)− Λε,δ[ũ, u].

Proof. See appendix. �

Theorem 4.5. (Convergence) Let u0 ∈ L∞(R)∩L1(R)∩BV (R), u : R×[0, T ] → R
be the entropy solution of (1.1), and ũ : R× [0, T ] → R the solution of the numerical
method (4.1)-(4.2). Then, there exist cT > 0 such that

‖u(·, T )− ũ(·, T )‖L1(R) ≤ cT

√
∆x.(4.5)

The above result generalizes the convergence rate obtained by Kuznetsov in [26]
for difference methods for pure conservation laws to the nonlocal numerical method
(4.1)-(4.2) for fractional conservation laws.

Proof. Recall Lemma 4.4: to obtain (4.5), −Λε,δ[ũ, u] has to be estimated.
First part. Introduce the notation a ∧ b = min{a, b}, a ∨ b = max{a, b}. Fix

(x′, t′) ∈ R×(0, T ). Call k = u(x′, t′), ηn
i = |Un

i −k| and qn
i = f(Un

i ∨k)−f(Un
i ∧k).

Note that −Λε,δ[ũ, u] can be rewritten as

−Λε,δ[ũ, u] =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

[
(ηn+1

i − ηn
i )

� xi+1

xi

ϕ(x, tn+1)dx

+ (qn
i − qn

i−1)
� tn+1

tn

ϕ(xi, t)dt
]

(4.6)

−
∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

g[ϕ(x, t)]dxdt

}
dx′dt′.

Indeed,

−
∑
i∈Z

{
N−1∑
n=0

� tn+1

tn

� xi+1

xi

ηn
i ϕt(x, t) + qn

i ϕx(x, t)dxdt

+ η0
i

� xi+1

xi

ϕ(x, 0)dx− ηN
i

� xi+1

xi

ϕ(x, T )dx

}

=−
∑
i∈Z

{
N−1∑
n=0

ηn
i

� xi+1

xi

[
ϕ(x, tn+1, )− ϕ(x, tn, )

]
dx

+
N−1∑
n=0

qn
i

� tn+1

tn

[
ϕ(xi+1, t)− ϕ(xi, t)

]
dt

+ η0
i

� xi+1

xi

ϕ(x, 0)dx− ηN
i

� xi+1

xi

ϕ(x, T )dx

}

=
∑
i∈Z

N−1∑
n=0

[
(ηn+1

i − ηn
i )

� xi+1

xi

ϕ(x, tn+1)dx

+ (qn
i − qn

i−1)
� tn+1

tn

ϕ(xi, t)dt
]
.
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Second part. Use monotonicity to get

Un+1
i ∨ k ≤ Un

i ∨ k − ∆t

∆x

[
F (Un

i ∨ k, Un
i+1 ∨ k)− F (Un

i−1 ∨ k, Un
i ∨ k)

]
+ ∆tg〈Un ∨ k〉i,

Un+1
i ∧ k ≥ Un

i ∧ k − ∆t

∆x

[
F (Un

i ∧ k, Un
i+1 ∧ k)− F (Un

i−1 ∧ k, Un
i ∧ k)

]
+ ∆tg〈Un ∧ k〉i.

Call

Qn
i = F (Un

i ∨ k, Un
i+1 ∨ k)− F (Un

i ∧ k, Un
i+1 ∧ k).

Since |a− b| = a ∨ b− a ∧ b, subtracting Un+1
i ∧ k from Un+1

i ∨ k yields

ηn+1
i − ηn

i +
∆t

∆x
(Qn

i −Qn
i−1)−∆tg〈ηn〉i ≤ 0.

Thus, using the above inequality in (4.6),

−Λε,δ[ũ, u] ≤
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

[
(qn

i − qn
i−1)

� tn+1

tn

ϕ(xi, t)dt

− ∆t

∆x
(Qn

i −Qn
i−1)

� xi+1

xi

ϕ(x, tn+1)dx
]

+ ∆t
∑
i∈Z

N−1∑
n=0

g〈ηn〉i
� xi+1

xi

ϕ(x, tn+1)dx(4.7)

−
∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

g[ϕ(x, t)]dxdt

}
dx′dt′.

Third part. In order to proceed, the following result is needed. Its proof follows.
Let v ∈ l∞(Z) and w ∈ l1(Z). Then,∑

i∈Z
g〈v〉iwi =

∑
i∈Z

g〈w〉ivi.(4.8)

As a consequence of Proposition 4.1, g : l∞(R) → l∞(R), and, as shown in (4.3),
g : l1(R) → l1(R). Thus, both sides of (4.8) are finite. Moreover,∑

i∈Z
g〈v〉iwi =

1
∆x

∑
i∈Z

∑
j∈Z

mj−ivjwi =
1

∆x

∑
j∈Z

vj

∑
i∈Z

mi−jwi =
∑
j∈Z

g〈w〉jvj

since m−j = mj for all j ∈ Z.
Fourth part. Write ϕ̄n

i =
� xi+1

xi
ϕ(x, tn)dx where

� xi+1

xi
= 1

∆x

� xi+1

xi
. By (4.8),∑

i∈Z
g〈ηn〉iϕ̄n

i =
∑
i∈Z

g〈ϕ̄n〉iηn
i .

Recall that g〈ϕ̄n〉i =
� xi+1

xi
g[ϕ̄(x, tn)]dx where ϕ̄(·, tn) : R → R is the step function

associated with ϕ̄n : Z → R. Thus, (4.7) turns into

−Λε,δ[ũ, u] ≤
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

[
(qn

i − qn
i−1)

� tn+1

tn

ϕ(xi, t)dt

− ∆t

∆x
(Qn

i −Qn
i−1)

� xi+1

xi

ϕ(x, tn+1)dx
]

+ ∆t
∑
i∈Z

N−1∑
n=0

ηn
i

� xi+1

xi

g[ϕ̄(x, tn+1)]dx

−
∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

g[ϕ(x, t)]dxdt

}
dx′dt′.
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From the book by Holden et al. (see [22], Example 3.14),
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

[
(qn

i − qn
i−1)

� tn+1

tn

ϕ(xi, t)dt(4.9)

− ∆t

∆x
(Qn

i −Qn
i−1)

� xi+1

xi

ϕ(x, tn+1)dx
]}

dx′dt′ ≤ cT

(
∆x

ε
+

∆x

δ

)
.

Thus, −Λε,δ[ũ, u] ≤ cT

(
∆x
ε + ∆x

δ

)
+ I where

I =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

g[ϕ̄(x, tn+1)− ϕ(x, t)]dxdt

}
dx′dt′.

Fifth part. The idea is to split the integral term I into the integrals M and N .
Integration by parts is needed to handle M, the integral containing the singularity.

Write g = H + h where

H[ϕ(x)] = cλ

�
|z|<1

ϕ(x + z)− ϕ(x)
|z|1+λ

dz,

h[ϕ(x)] = cλ

�
|z|>1

ϕ(x + z)− ϕ(x)
|z|1+λ

dz.

Then, I = M+N where

M =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� xi+1

xi

� tn+1

tn

H[ϕ̄(x, tn+1)− ϕ(x, t)]dxdt

}
dx′dt′(4.10)

≤ cT

(
∆x

ε
+

∆x

δ

)
,

N =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� xi+1

xi

� tn+1

tn

h[ϕ̄(x, tn+1)− ϕ(x, t)]dxdt

}
dx′dt′(4.11)

≤ cT

(
∆x

ε
+

∆x

δ

)
.

The proofs of the estimates (4.10) and (4.11) can be found in the appendix.
Final part. Use (4.9), (4.10), (4.11) and Lemma 4.4 to get

‖u(·, T )− ũ(·, T )‖L1(R) ≤ cT

(
ε + δ + ∆x +

∆x

ε
+

∆x

δ

)
.

Set ε = δ =
√

∆x to conclude. �

5. Numerical experiments

We have implemented the numerical method (2.3)-(2.4) in the cases k = 0, 1, 2.
To perform computations, we have set the numerical solution to zero outside the
region Ω = {(x, t) : |x| < 1.5, t ≥ 0}. In all the plots, the red solid line represents
the initial datum while the black dotted one the numerical solution at t = T .

Remark 5.1. Due to infinite speed of propagation (see [2]), solutions of (1.1) do not
have, in general, compact support. Therefore, the use of the region Ω introduces a
new error which we have not considered in Theorem 3.3 and Theorem 4.5.
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(a) T = 0.5 (b) T = 1.3

(c) T = 0.5 (d) T = 1.3

Figure 1. Solutions of the pure fractional equation (λ = 0.5)
using the numerical method (4.1)-(4.2) with ∆x = 1/160.

Example 5.1. Let us consider the pure fractional equation ∂tu = g[u]. From
e.g. [28], it follows that the solution of this equation is given by the convolution
product u(x, t) = (K ∗ u0)(x, t) where K is the kernel of g. Using the properties
of the kernel, it can be shown that this equation has a regularizing effect on the
initial datum (see e.g. [3]). This regularization appears clearly in the numerical
experiments presented in Figure 1.

Example 5.2. Let us consider the fractional transport equation ∂tu + ∂xu = g[u].
Our numerical results suggest that, as done by ∂tu+∂xu = ∂2

xu, this equation regu-
larizes and transports the initial datum. Our numerical experiments are presented
in Figure 2. The numerical flux (3.5) has been used.

Example 5.3. Let us consider the fractional Burgers’ equation ∂tu+u∂xu = g[u].
Our numerical experiments in Figure 3 confirm what has been shown by [3, 25]:
this equation does not regularize the initial condition. Discontinuities in the initial
datum can persist in the solution, and shocks can develop from smooth initial data.
Figure 4 shows how the behavior of the solution changes with λ: as λ → 0, our
numerical solution approaches the solution of the pure Burgers’ equation with a
source, ∂tu + u∂xu = u; as λ → 1, our numerical solution approaches the smooth
solution of the fractional Burgers’ equation with λ = 1 (see [25]). Figure 5 clearly
shows how a shock can develop and vanish in a finite time. Figure 6 shows how
the accuracy of the semidiscrete method (2.3)-(2.4) improves with k = 0, 1, 2. A
third order Runge-Kutta (RK3) time discretization and slope limiters (see [13])
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(a) T = 0.1 (b) T = 0.2

(c) T = 0.1 (d) T = 0.2

Figure 2. Solutions of the fractional transport equation (λ = 0.5)
using the numerical method (4.1)-(4.2) with ∆x = 1/160.

have been deployed in Figure 6. We have used the Lax-Friedrichs flux

F (a, b) =
1
2
[f(a) + f(b)− c(b− a)] c = max{|f ′(a)| : |a| ≤ ‖u0‖L∞(R)}

Let us note that the above numerical flux does not fulfill assumption A1. However,
this assumption can be replaced with a milder one: it is enough to ask F (a, b) to
be Lipschitz continuous on {(a, b) : |a| ≤ ‖u0‖L∞(R) and |b| ≤ ‖u0‖L∞(R)}.

To give an idea about the speed of convergence of our experiments, we have
computed their rate of convergence in Table 1. We have measured the error

E∆x,p = ‖ũ∆x(·, T )− ũe(·, T )‖Lp(R)

(ũe is the numerical solution which has been computed using ∆x = 1/640), the rel-
ative error R∆x,p = E∆x,p/‖ũe(·, T )‖Lp(R) and the approximate rate of convergence
α∆x,p = c(log E∆x,p − log E∆x/2,p) where c = 1/ log 2.

Appendix A. Technical lemmas

Lemma A.1. Let ϕ ∈ L1(R) ∩BV (R). Then, there exists Cλ > 0 such that

‖gλ[ϕ]‖L1(R) ≤ cλ

�
R

�
|z|>0

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dzdx ≤ Cλ‖ϕ‖1−λ
L1(R)|ϕ|

λ
BV (R).
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(a) u0(x) = sgn(x) (b) u0(x) = −arctan(15x)/90

(c) u0(x) = −sgn(x) (d) u0(x) = sin(2πx)

Figure 3. Solutions of the fractional Burgers’ equation (λ = 0.5)
for different initial data using (4.1)-(4.2); T = 0.5 and ∆x = 1/160.

Table 1. Method (4.1)-(4.2) (left) as in Figure 3 (c) and RK3
method (2.3)-(2.4) (right) as in Figure 6 (b).

∆x E∆x,1 R∆x,1 α∆x,1 E∆x,2 R∆x,2 α∆x,2

1/10 0.1990 0.1109 0.5726 0.4580 0.3765 1.0714
1/20 0.1338 0.0746 0.4711 0.2180 0.1792 1.2024
1/40 0.0965 0.0538 0.3964 0.0947 0.0779 1.1717
1/80 0.0734 0.0409 0.4399 0.0421 0.0346 1.0881
1/160 0.0541 0.0301 0.7235 0.0198 0.0163
1/320 0.0327 0.0183

Proof. For all ε > 0,�
|z|<ε

�
R

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dxdz ≤ ε1−λ|ϕ|BV (R)

�
|z|<1

1
|z|λ

dz,

�
|z|>ε

�
R

|ϕ(x + z)− ϕ(x)|
|z|1+λ

dxdz ≤ 2ε−λ‖ϕ‖L1(R)

�
|z|>1

1
|z|1+λ

dz.

Set ε = ‖ϕ‖L1(R)|ϕ|−1
BV (R). �

Lemma A.2. For all ϕ ∈ Hλ(R),

‖ϕ‖Hλ(R) ≤ ‖ϕ‖1−λ
L2(R)‖ϕ‖

λ
H1(R).
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(a) λ = 0.01 (b) λ = 0.3

(c) λ = 0.7 (d) λ = 0.99

Figure 4. Solutions of the fractional Burgers’ equation for differ-
ent values of λ using the method (4.1)-(4.2); T = 0.5 and ∆x =
1/200.

Proof. Instead of (3.2), use the equivalent norm (see [21])

‖ϕ‖2Hλ(R) =
�

R
(1 + ξ2)λϕ̂2(ξ)dξ.(A.1)

Call Aξ = (1 + ξ2). Then, for all ε > 0,

‖ϕ‖2Hλ(R) =
�
{ξ:Aξ<ε}

Aλ
ξ ϕ̂2(ξ)dξ +

�
{ξ:Aξ>ε}

Aλ−1
ξ Aξϕ̂

2(ξ)dξ

≤ ελ

�
|ξ|<ε

ϕ̂2(ξ)dξ + ελ−1

�
|ξ|>ε

Aξϕ̂
2(ξ)dξ.

Set
√

ε = ‖ϕ‖H1(R)‖ϕ‖−1
L2(R). �

Lemma A.3. Let ϕ, φ ∈ L∞(R) ∩ L1(R) ∩BV (R). Then,
�

R
ϕ(x)g[φ(x)]dx =

�
R

g[ϕ(x)]φ(x)dx.

In particular,
�

R
ϕ(x)gλ[ϕ(x)]dx = −1

2

�
R

�
R

(ϕ(z)− ϕ(x))2

|z − x|1+λ
dzdx.
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(a) T = 0.1 (b) T = 0.7

(c) T = 1.7 (d) T = 2.9

Figure 5. Solutions of the fractional Burgers’ equation (λ = 0.5)
at different times T using the method (4.1)-(4.2) with ∆x = 1/200.

Proof. By Lemma A.2, Fubini’s theorem can be used to get�
R

ϕ(x)g[φ(x)]dx =
1
2

�
R

�
R

(φ(x)− φ(z))(ϕ(z)− ϕ(x))
|z − x|1+λ

dzdx =
�

R
g[ϕ(x)]φ(x)dx.

�

Corollary A.4. Lemma A.3 holds true for all ϕ, φ ∈ Hλ/2(R).

Proof. Lemma A.3 holds true, in particular, for all ϕn, φn step functions with com-
pact support. Thus,

(A.2)
�

R
ϕn(x)g[φn(x)]dx =

�
R

g[ϕn(x)]φn(x)dx.

Choose, by density, ϕn, φn → ϕ, φ in Hλ/2(R). Since g[ϕn], g[φn] → g[ϕ], g[φ] in
H−λ/2(R), (A.2) still holds true in the limit. Indeed, using (1.2) and (A.1),

‖g[ϕn]− g[φ]‖H−λ/2(R) =
�

R
(1 + ξ2)−λ/2ξ2λ(ϕ̂n(ξ)− ϕ̂(ξ))2dξ

≤
�

R
(1 + ξ2)λ/2(ϕ̂n(ξ)− ϕ̂(ξ))2(ξ)dξ = ‖ϕn − φ‖Hλ/2(R)

since (1 + ξ2)−λ/2ξ2λ ≤ (1 + ξ2)λ/2 for all ξ ∈ R (indeed, call ξ2 = x, and multiply
both sides by (1 + x)1−λ/2 to get xλ ≤ (1 + x)λ which holds true for all x ≥ 0). �
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(a) Method (4.1)-(4.2)

(b) RK3 (2.3)-(2.4) with k = 1

(c) RK3 (2.3)-(2.4) with k = 2

Figure 6. Solutions of the fractional Burgers’ equation at T =
1/10 using different values of k = 0, 1, 2; ∆x = 1/10.

Appendix B. Proof of Proposition 4.1

Call Gi
j =

�
R 1Ii(x)g[1Ij (x)]dx. By Lemma A.3,

Gi
j =

�
R
1Ii(x)g[1Ij (x)]dx =

�
R
1Ij (x)g[1Ii(x)]dx = Gj

i

Thus, by Lemma A.1,
∑

j∈Z |Gi
j | ≤

�
R |g[1Ii(x)]|dx < ∞ and, by symmetry,∑

j∈Z
Gi

j = cλ

�
R

�
R

1Ii(z)− 1Ii(x)
|z − x|1+λ

dzdx = 0
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All diagonal elements are equal and negative. Indeed,

Gi
i = cλ

�
Ii

�
|z|>0

1Ii(x + z)− 1Ii(x)
|z|1+λ

dzdx = cλ

�
|z|>0

ξ(z)
|z|1+λ

dz

where

ξ(z) =
{
−|z| z ∈ (−∆x,∆x)
−∆x otherwise

Thus,

Gi
i = −cλ

(�
|z|<1

1
|z|λ

dz +
�
|z|>1

1
|z|1+λ

dz

)
∆x1−λ

All elements outside the diagonal are positive. Moreover, Gi+1
j+1 = Gi

j for all i, j ∈ Z.
Indeed, whenever i 6= j,

Gi
j = cλ

�
Ii

�
|z|>0

1Ij (x + z)
|z|1+λ

dzdx

Therefore, (Gi
j)i,j∈Z can be built by repeatedly shifting (G0

j )j∈Z by one position.
Thus, (mj)j∈Z = (G0

j )j∈Z are the weights we were looking for.

Appendix C. Proof of Lemma 4.4

The idea is to use the symmetry of ϕ. Namely, ϕt = −ϕt′ , ϕx = −ϕx′ and�
|z|>0

ϕ(x + z, x′)− ϕ(x, x′)
|z|1+λ

dz = −
�
|z|>0

ϕ(x, x′ + z)− ϕ(x, x′)
|z|1+λ

dz.

Thus,

Λε,δ[ũ, u] = −Λε,δ[u, ũ]

−
� T

0

�
R

�
R

ϕ(x, x′, t, T )

(
|ũ(x, T )− u(x′, t)|+ |u(x′, T )− ũ(x, t)|

)
dxdx′dt

+
� T

0

�
R

�
R

ϕ(x, x′, t, 0)

(
|u(x′, 0)− ũ(x, t)|+ |ũ(x, 0)− u(x′, t)|

)
dxdx′dt.

Since u is an entropy solution of (1.1), Λε,δ[u, ũ] ≥ 0 and, from this point on, the
proof follows the one contained in the book by Holden et al. ([22], Theorem 3.11).
Proposition C.1 is needed there.

Proposition C.1. Let u0 ∈ L∞(R) ∩ L1(R) ∩ BV (R), u : R × [0, T ] → R be the
entropy solution of (1.1) and ũ : R×[0, T ] → R the solution of the numerical method
(4.1)-(4.2). Then, there exist c > 0 such that

i) ‖u(·, t + δ)− u(·, t)‖L1(R) ≤ cδ
ii) sup|τ |≤δ ‖ũ(·, t + τ)− ũ(·, t)‖L1(R) ≤ c(∆x + δ)

Proof. Item i). Choose 0 < a < b < T and let 1ε
[a,b] : R → R be a smooth

approximation of 1[a,b]. Call ϕε(x, t) = φ(x)1ε
[a,b](t) where φ ∈ C∞

c (R). Thus,
� T

0

�
R

uϕε
t + f(u)ϕε

x + ug[ϕε]dxdt = 0

since u is an entropy solution of (1.1) (and so a weak solution, see [2] for more
details about the above equality). The limit for ε → 0 is, cf. [22] (Theorem 7.10),

�
R

φ(x)
(
u(x, a)− u(x, b)

)
dx +

� b

a

�
R

f(u)φx + ug[φ]dxdt = 0
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As shown in [22], Theorem 7.10,

‖u(·, b)− u(·, a)‖L1(R) = sup
|φ|≤1

�
R

φ(x)
(
u(x, b)− u(x, a)

)
dx

= sup
|φ|≤1

{
−

� b

a

�
R
(f(u)φx + ug[φ])dxdt

}

≤ c|u0|BV (R)‖f‖Lip(b− a) + sup
|φ|≤1

{
−

� b

a

�
R

ug[φ]dxdt

}
In order to conclude the proof, the following estimate is needed:

sup
|φ|≤1

{
−

� b

a

�
R

ug[φ]dxdt

}
= sup

|φ|≤1

{
−

� b

a

�
R

φg[u]dxdt

}
≤

� b

a

�
R

∣∣g[u]
∣∣dxdt

≤ c(b− a)|u0|λBV (R)‖u0‖1−λ
L1(R)

where Lemma A.3, Lemma A.1, and Theorem 4.2 have been used. Use the same
ideas in the proof of ii). Start from the numerical method (4.1)-(4.2) to get

‖ũ(·, tn+1)− ũ(·, tn)‖L1(R) ≤ c

{
‖F‖Lip|u0|BV (R) + |u0|λBV (R)‖u0‖1−λ

L1(R)

}
∆x.

�

Appendix D. Proof of estimate (4.10)

Recall that ϕ̄(·, t) : R → R is the step function generated by ϕ̄t : Z → R,
ϕ̄t

i =
� xi+1

xi
ϕ(x, t)dx. That is to say,

ϕ̄(x, x′, t, t′) = ω̄ε(x− x′)ωδ(t− t′)

where ω̄ε : R → R is the step function generated by ω̄ε : Z → R, ω̄i
ε =

� xi+1

xi
ωε(x)dx.

The following estimate is going to be used:

‖ωε − ω̄ε‖L1(R) ≤ c|ωε|BV (R)∆x ≤ c
∆x

ε
.(D.1)

In the above expression and in what follows, c > 0 is a large number.
By adding and subtracting identical terms, M = M1 +M2 where

M1 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

H[ϕ̄(x, tn+1)− φ(x, tn+1)]dxdt

}
dx′dt′,

M2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

H[φ(x, tn+1)− ϕ(x, t)]dxdt

}
dx′dt′.

The function φ(x, x′, t, t′) = ν(x− x′)ωδ(t− t′) where ν is a smooth approximation
of the step function ω̄ε such that

(D.2) ‖ω̄ε − ν‖L1(R) ≤ c|ωε|BV (R)

(∆x

ε

) 1
1−λ

.

The strategy to estimate M2 is the following: integration by parts is performed to
pass a derivative from H to ηn

i (which becomes ηn
i+1− ηn

i ); then, use the inequality∑
i∈Z

|ηn
i+1 − ηn

i | ≤
∑
i∈Z

|Un
i+1 − Un

i | ≤ |u0|BV (R).

However, integration by parts can be used only with smooth functions; thus, the
auxiliary smooth function ν, which approximate the step function ω̄ε, is introduced.
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In order to use Lemma A.1 to estimate the remaining M1, the smooth approxima-
tion ν has to be chosen suitably close to ω̄ε in L1-norm (cf. (D.2)).

Estimate of M1. M1 ≤M1,1 +M1,2 where

M1,1 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|Un
i |

� tn+1

tn

� xi+1

xi

∣∣H[ϕ̄(x, tn+1)− φ(x, tn+1)]
∣∣dxdt

}
dx′dt′,

M1,2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|u|
� tn+1

tn

� xi+1

xi

∣∣H[ϕ̄(x, tn+1)− φ(x, tn+1)]
∣∣dxdt

}
dx′dt′.

First, for all x ∈ (xi, xi+1),� T

0

�
R

∣∣H[ϕ̄(x, x′, tn+1, t
′)− φ(x, x′, tn+1, t

′)]
∣∣dx′dt′

=
� T

0

ωδ(tn+1 − t′)dt′
�

R

�
|z|<1

|ω̄ε(x + z − x′)− ν(x− x′)|
|z|1+λ

dzdx′

≤ c‖ω̄ε − ν‖1−λ
L1(R)|ω̄ε − ν|λBV (R)

by Lemma A.1. Thus, by (D.2) and Theorem 4.2,

M1,1 ≤ c‖ω̄ε − ν‖1−λ
L1(R)|ω̄ε − ν|λBV (R)

∑
i∈Z

N−1∑
n=0

|Un
i |∆x∆t ≤ cT

∆x

ε
‖u0‖L1(R).

Second, for all (x′, t′) ∈ R× (0, T ), we similarly find∑
i∈Z

N−1∑
n=0

� tn+1

tn

� xi+1

xi

∣∣H[ϕ̄(x, x′, tn+1, t
′)− φ(x, x′, tn+1, t

′)]
∣∣dx

= ∆t

N−1∑
n=0

ωδ(tn+1 − t′)
�

R

�
|z|<1

|ω̄ε(x + z − x′)− ν(x− x′)|
|z|1+λ

dzdx

≤ c‖ω̄ε − ν‖1−λ
L1(R)|ω̄ε − ν|λBV (R).

Thus, M1,2 ≤ c‖ω̄ε − ν‖1−λ
L1(R)|ω̄ε − ν|λBV (R)

� T

0

�
R |u(x′, t′)|dx′dt′ ≤ cT ∆x

ε ‖u0‖L1(R).
Estimate of M2. Note that, for all ϕ ∈ C∞

c (R), integration by parts yields

H[ϕ(x)] = −cλsgn(z)
λ|z|λ

[ϕ(x + z)− ϕ(x)]
∣∣∣
|z|=1

+
cλ

λ

�
|z|<1

ϕ′(x + z)
|z|λ

sgn(z)dz

= −cλ

λ
[ϕ(x + 1) + ϕ(x− 1)− 2ϕ(x)] +

d

dx
ρ[ϕ(x)]

where ρ[ϕ(x)] = cλ

λ

�
|z|<1

ϕ(x+z)
|z|λ sgn(z)dz. Thus, M2 ≤M2,1 +M2,2 where

M2,1 = c

� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

|φ(x, tn+1)− ϕ(x, t)|dxdt

}
dx′dt′,

M2,2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

ηn
i

� tn+1

tn

� xi+1

xi

∂xρ[φ(x, tn+1)− ϕ(x, t)]dxdt

}
dx′dt′.

To estimate M2,1 proceed as done in the proof of the estimate (4.11).
Estimate of M2,2. Integration by parts has made the term M2,2 suitable for

summation by parts. Indeed,

M2,2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

(ηn
i+1 − ηn

i )
� tn+1

tn

ρ[φ(xi, tn+1)− ϕ(xi, t)]dt

}
dx′dt′.
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Thus, M2,2 ≤M2,2,1 +M2,2,2 where

M2,2,1 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|ηn
i+1 − ηn

i |
� tn+1

tn

∣∣ρ[φ(xi, tn+1)− φ(xi, t)]
∣∣dt

}
dx′dt′,

M2,2,2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|ηn
i+1 − ηn

i |
� tn+1

tn

∣∣ρ[φ(xi, t)− ϕ(xi, t)]
∣∣dt

}
dx′dt′.

First, for all t ∈ (tn, tn+1),
� T

0

�
R

∣∣ρ[φ(xi, x
′, tn+1, t

′)− φ(xi, x
′, t, t′)]

∣∣dx′dt′

=
� T

0

|ωδ(tn+1 − t′)− ωδ(t− t′)|dt′
�

R

�
|z|<1

ν(xi + z − x′)
|z|λ

sgn(z)dzdx′

≤ c∆x|ωδ|BV (R).

Thus, using |ηn
i+1 − ηn

i | ≤ |Un
i+1 − Un

i | (D.1) and Theorem 4.2,

M2,2,1 ≤ c∆x|ωδ|BV (R)∆t

N−1∑
n=0

∑
i∈Z

|Un
i+1 − Un

i | ≤ cT
∆x

δ
|u0|BV (R).

Second, for all t ∈ (tn, tn+1),
� T

0

�
R

∣∣ρ[φ(xi, x
′, t, t′)− ϕ(xi, x

′, t, t′)]
∣∣dx′dt′

=
� T

0

ωδ(t− t′)dt′
�

R

�
|z|<1

|(ν − ωε)(xi + z − x′)− (ν − ωε)(xi − x′)|
|z|λ

sgn(z)dzdx′

≤ c‖ωε − ν‖L1(R).

Thus, using (D.1) (D.2) and Theorem 4.2,

M2,2,2 ≤ c‖ωε − ν‖L1(R)∆t

N−1∑
n=0

∑
i∈Z

|Un
i+1 − Un

i | ≤ cT
∆x

ε
|u0|BV (R).

Appendix E. Proof of estimate (4.11)

By adding and subtracting identical terms, N ≤ N1 +N2 +N3 +N4 where

N1 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|Un
i |

� tn+1

tn

� xi+1

xi

∣∣h[ϕ̄(x, tn+1)− ϕ̄(x, t)]
∣∣dxdt

}
dx′dt′,

N2 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|u|
� tn+1

tn

� xi+1

xi

∣∣h[ϕ̄(x, tn+1)− ϕ̄(x, t)]
∣∣dxdt

}
dx′dt′,

N3 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|Un
i |

� tn+1

tn

� xi+1

xi

∣∣h[ϕ̄(x, t)− ϕ(x, t)]
∣∣dxdt

}
dx′dt′,

N4 =
� T

0

�
R

{∑
i∈Z

N−1∑
n=0

|u|
� tn+1

tn

� xi+1

xi

∣∣h[ϕ̄(x, t)− ϕ(x, t)]
∣∣dxdt

}
dx′dt′.

In what follows, c > 0 is a large number.
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First, for all (x, t) ∈ (xi, xi+1)× (tn, tn+1),� T

0

�
R

∣∣h[ϕ̄(x, x′, tn+1, t
′)− ϕ̄(x, x′, t, t′)]

∣∣dx′dt′

=
� T

0

|ωδ(tn+1 − t′)− ωδ(t− t′)|dt′
�

R

�
|z|>1

|ω̄ε(x + z − x′)− ω̄ε(x− x′)|
|z|1+λ

dzdx′

≤ c∆x|ωδ|BV (R).

Thus, by (D.1) and Theorem 4.2,

N1 ≤ c∆x|ωδ|BV (R)

∑
i∈Z

N−1∑
n=0

|Un
i |∆x∆t ≤ cT

∆x

δ
‖u0‖L1(R).

Second, for all (x′, t′) ∈ R× (0, T ), we similarly find∑
i∈Z

N−1∑
n=0

� tn+1

tn

� xi+1

xi

∣∣h[ϕ̄(x, x′, tn+1, t
′)− ϕ̄(x, x′, t, t′)]

∣∣dxdt ≤ c∆x|ωδ|BV (R).

Thus, N2 ≤ c∆x|ωδ|BV (R)

� T

0

�
R |u(x′, t′)|dx′dt′ ≤ cT ∆x

δ ‖u0‖L1(R).
Third, for all (x, t) ∈ (xi, xi+1)× (tn, tn+1),� T

0

�
R

∣∣h[ϕ̄(x, x′, t, t′)− ϕ(x, x′, t, t′)]
∣∣dx′dt′

=
� T

0

ωδ(t− t′)dt′
�

R

�
|z|>1

|(ω̄ε − ωε)(x + z − x′)− (ω̄ε − ωε)(x− x′)|
|z|1+λ

dzdx′

≤ c‖ω̄ε − ωε‖L1(R).

Thus, by (D.1) and Theorem 4.2,

N3 ≤ c‖ω̄ε − ωε‖L1(R)

∑
i∈Z

N−1∑
n=0

|Un
i |∆x∆t ≤ cT

∆x

ε
‖u0‖L1(R).

Fourth, for all (x′, t′) ∈ R× (0, T ), we similarly find� T

0

�
R

∣∣h[ϕ̄(x, x′, t, t′)− ϕ(x, x′, t, t′)]
∣∣dxdt ≤ c‖ω̄ε − ωε‖L1(R).

Thus, N4 ≤ c‖ω̄ε − ωε‖L1(R)

� T

0

�
R |u(x′, t′)|dx′dt′ ≤ cT ∆x

ε ‖u0‖L1(R).
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