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Abstract The linear appearance theorem states that, for a wide class of non linear hyperbolic
systems, when a source term occurs, some solutions are also solutions to a linear homogeneous
system, which means that the corresponding profiles are simply translated with a constant velocity.
This allows to solve some problems by combining a sequence of such profiles separated by shock
waves. Several examples are reported, such as the roll waves in hydraulics, acoustics waves as
solution of gas dynamics systems in a duct, or a rarefaction wave in fluids, seen as limit of kinds
of saw waves towards a Riemann invariant, as for the nonlinear homogeneous case. Some new
numerical schemes adapted to the source terms are presented, and tested on examples.

1 The class of hyperbolic systems

Let ¢ > 0 a quantity transported by a flux m in a one dimension context, which is ruled by the
transport equation
q+m, = 0. (1.1)

The vector (¢, m) is named an admissible state, belonging to some set € of the phase plane.
We look for hyperbolic systems whose first equation is (1.1). The second equation has the form

my + Agy + Bmg + S(qg, m, z,t) =0,

with A and B such that the eigenvalues of the flux matrix (g ;) , denoted by A\; and A,, are real

and different (we choose Ay > A1), and S a given source term. Let ¢ = 2222 (> (), u = P2
then A = -\ )Xy =2 —u? and B = \; + \y = 2u, and the second equation reads

my + (¢ — u?) ¢u + 2umy, + S(g,m,z,t) =0 . (1.2)

We shall restrict the study to the case that u, ¢ and S depend only on the states (¢, m), (that is,
not on (z,t) directly)

Definition 1.1 The source term S is essentially non-zero when in any open set of () there is a

state (g, m) for which S(q, m)70.



In the next section the theorem of linear appearence is proved in a general case, and the restric-
tion to the conservative form is studied in Section3. Section 4 is devoted to shock waves analysis and
relaxation by contact discontinuities, and Section 5 to some elementary waves, as these provided by
the "bow patterns” similar to wavelets, or complex waves, similar to saw waves. The other sections
deal with examples: the roll waves in hydraulics in Section 6, the similarity between acoustics and
fluid dynamics in a duct in Section 7, and the shock tube with friction in Section 8, a fundamental
example of a Riemann invariant becoming the limit of tiny saw waves. Then Section 9 is devoted
to te construction of new numerical schemes and some tests.

2 The Theorem of Linear Appearance

We consider the waves for which ¢ and m are linked by e relation of the form m = m(q), which
seems a restrictive hypothesis. Indeed, this boils down to suppose that some changing of variables
&(x,t), n(z,t) exists and both ¢ and m depends on £ only. For instance, in the homogeneous case,
the variable £ = (z — x¢)/(t — to) does work. We shall see later (Remark 3.7) that this hypothesis
is really relevant from the physical point of view.

Proposition 2.1 When m = m(q), the quantity A(q) = m/(q) satisfies the Burgers equation

A+ A4, = 0. (2.1)

Proof Since ¢, + m(q), = 0 , we multiply by m”(¢) and notice that
m"(q)q = Ay, m"(q)m(q)q. = AA,.
This remark will be used later in a numerical scheme

Theorem 2.2 Let c,u, S € C°Q), with S essentially non-zero on Q. Then for any reqular wave
for which m = m(q), ¢ and m are locally solution to the same advection equation

g +Ap =0, mi+Am, =0, (2.2)

and linked together by the relation m = Aq — B, with some constants A and B to be determined
from the context.

Proof Since the wave is regular, and using the relation m = m(q), we get
My =m'(Q)ge My =m'(q)g = —m'(q)my = —m'(q)*¢s -

Thus (1.2) becomes (¢? — (m'(q) — u)?) ¢z + S(g,m) =0 , or

GL=1. (2.3)



Since u = u(q,m(q)) and ¢ = ¢(¢g,m(q)), we can introduce a function ¢)(¢) whose derivative is given
by

(m'(q) — u(g,m(q)))” — c(g,m(q))?

S(q,m(q)) ’ (24

V'(q) =

and replace (2.3) by
V(q) ¢ =1. (2.5)

Integrating with respect to x gives 1(q) = z — K (t) , with K(¢) depending on the second variable t.
Then the derivation with respect to ¢ gives ¢'(q) ¢4 = —K'(t), where ¢ = —m/(q)q,. Using (2.3) it
remains m'(q) = K'(t) , and the derivation with respect to x gives m”(q) ¢, = 0 . Since from (2.3)
7,70, one gets m"(q) = 0, that is

m(q) =A¢q— B, K(t)=At—-C (2.6)
for some constants A, B and C. Using m = Ag— B in (1.1) gives the two advection equations (2.2).
Corollary 2.3 The profile of the solution is determined by
() =x—At+C, (2.7)
to be inverted to get the profiles of ¢ and m = Aq — B with respect to x at each time t.
The proof is obvious.

Remark 2.4 The relation m = Aq — B tells us that in the phase plane the authorized values of
the state (q,m) belongs to the same straight line. Following [2] the corresponding waves are called
source waves.

3 The conservative form
Definition 3.1 Equation (1.2) is conservative when it can be written as

my + F(q,m), + S(g,m) =0 (3.1)

with F € C*(Y) , called the conservative flux.

OF oF 0*F 0 0 0
As a consequence, 8—(] = ¢ — u?, — = 2u, which implies dadm = 268; 8;2 a—Z ,

" Om

reads also

The Galilean Invariance is checked by using the following substitution of variables: s = t, y =
x —at , with a constant, corresponding to the velocity of a new observer. Equations (1.1) and (1.2)
become



gs +(m —aq), =0, my + (¢ —u?) gy + (2u — a) my + S(g,m) = 0.

The eigenvalues of the new matrix of flux are y; = v — ¢ — @ and s = u + ¢ — a, which preserves
1

1
c=3 (2 — 1) but change u into u = 3 (1 + p2) —a . We get 26 =0, 9¢ = —1 , which also reads

Oc  Ocdq  Oc Om ou Oudq Oudm
——t— =0, —=——+———=-1. (3.3)
Oda 0qda Om Oa da  0qda  Om Oa
The Galilean Invariance ensures that this substitution does not change the profile of the wave, which
dc 0 ou 0
makes for instance % = 0. In this case, (3.3) becomes geoam _y , guom _ 4 ,which implies
5 @ om Oa om Oa
a_c = 0 . We propose the following definition for the Galilean Invariance.
m
0
Definition 3.2 The system (1.1), (1.2) has the property of Galilean Invariance when a_c =0.
m

. o . 0
Remark 3.3 When c is not a constant, this is equivalent to 9 _ 0, and has the advantage to

a
implicate no substitution of variables. When c is a constant, this definition must be adapted, for
instance by taking the limit of a sequence of q—depending c,(q).

The Galilean invariance together with the conservativity leads to
Ju n ou 0
- u— = ,
Jq om
which is the well known Burgers equation with = replaced by m and ¢ replaced by g¢.

Definition 3.4 The system (1.1), (1.2) has the property of the zero-flux vacuum when

q=0= m=0.

Theorem 3.5 Suppose the hypotheses of Theorem 2.2 fullfilled, that the system (1.1), (1.2) is
conservative and has the properties of Galilean invariance and zero-flux vacuum. Then

m=qu, (3.4)
the profile function Y'(q) in (2.4) becomes
B> — ¢*c(g)®
' (q , 3.5
(9 4> S(¢, Aqg — B) 35)
and the conservative flux is given by
m? T
Pla,m) ="+ [ e(e) de (3.6)
0



Proof From the Galilean invariance (3.2) reduces to the Burgers equation in the phase plane, to be
solved along a characteristic coming from the origin (0,0) by the zero-flux vacuum property. This

characteristic is a straight line of equation m = qu. Then the profile equation becomes (3.5) since
u=A—- B/Q, and

(A-A+B/q)" —cle)® B~ q’c(q)’

V() = = .
W S(q, Aq — B) ¢* S(¢, Aq — B)
OF > OF
Next, 50 = c(q)? — 22 e p , which leads to (3.6) (the integration constant is chosen equal
q q m

to zero in order to preserve the zero-flux vacuum when u is bounded).
Definition 3.6 The primitive P(q) = [ c(€)?d¢ is called the pressure.

Remark 3.7 The hypothesis m = m(q) in Section 2 has lead to the relation w = m/q which is
expected in all the physical apllications. Since by construction, u depends only on q and m, this
relation reads m = q u(q,m), which implies locally a relation of the form m = m(q). Thus this
hypothesis is not in the least a restrictive one, since it appears now as a necessary condition.

From now on, we suppose that the hypotheses of Theorem 3.5 are fullfilled.

4 The shock waves

Let (X) a discontiuity curve of ¢ and m in the conservative case (equations (1.1) and (3.1)), whose
equation has the form x = z(¢) in the z — ¢ plane. Integrating (1.1) and (3.1) on any set crossed by
(X) and using the Green-Riemann formula gives the two Rankine Hugoniot conditions

2(t) Aq=Am , 2'(t) Am = AF(¢,m) ,

by denoting Ag = g3 — ¢; the jump of ¢ along (X), Am = my — my the jump of m and AF(q, m) =
F(q2,ma) — F(q1,my) the jump of the conservative flux F(g,m). This involves a compatibility
condition:

(Am)2 = Aq AF(q,m) ,
which reads

2
APAq = (Am)® — AgA (mu) = ( ﬂmg - q—2m1>
42 il

in the case of the hypotheses of Theorem 3.5. This ensures APAq > 0, which allows to write the

jump condition
APA
Au= x| =1 (4.1)
9192

where the sign is linked to the velocity of the wave. As a matter of fact, we have

x/(t):Am:U1+U2 Q1+Q2%:U1+U2i%+(h AP
Aq 2 2 Ag 2 2V \| Ag



AP
Nt g —— which

2Vqg2 || Ag
is positive and has the dimension and the form of the wave velocity Ay (named a As-shock wave).
Uy + Usg

+ Us

u . P
The sign + involves a velocity of the form ! + c(q1, q2), with ¢(q1, q2) =

The sign — involves a velocity of the form — ¢(q1,¢2), corresponding to the wave velocity

A1 (named a Aj-shock wave).

The Entropy condition: All shock waves are not allowed to develop. Since a shock wave is created
by the intersection of the characteristics coming from the initial data. The entropy condition
states the principle that no new characteristic can be created after the initial time. In other
words, the characteristics must enter a shock waves, never take out from it. This corresponds
for a Aj-shock wave to the conditionu; — ¢(q1) > 2'(t) > us — ¢(go) and, for a Ay-shock wave to
uy + c(q1) > 2'(t) > ug + ¢(ga) , by assigning the index 1 to the left side of the shock wave and the
index 2 to the right side.

When ¢c(q) is an increasing function of ¢, a A;-shock wave must correspond to an increasing
part of the profile of ¢ and a Ay-shock wave must correspond to a decreasing part of this profile.

4.1 The relaxation by contact discontinuities
Since P; = ¢(q)*q; and P, = c¢(q)?q,, multiplying (1.1) by ¢(q)? provides a third equation
P, +uPy, + qc(q)*u, = 0 (4.2)

called the Hooke Law similarly to the equation for strains in materials. The new system of three
equations made of (1.1), (3.1) transformed as

S(q, qu)
q

q; + ugy + quy = 0, ut+uux+éPm+ =0,

and the Hooke law (4.2) has a flux matrix with three differenteigenvalues, namely u — ¢(q), u
and u + ¢(q). This allows the possibility of another kind of wave, of velocity u, called a contact
discontinuity which may relax the system in some too strained configuration though it cannot
appear in the two equation context. Such contact discontinuities are characterized by the conditions
Au =0, Ag#0, thus AP = 0 from (4.1). Note that equation (4.2) is not different from the tranport
equation (1.1), and no new equation has been added. We simply have used it twice to get this new
wave and forgotten the linkage P(q) = [ ¢(£)*d€ between P and c¢(g). The shock conditions for
contact discontinuities (that is Au = 0, AP =0, Ag#0 ) can be derived even when the system is
not written under conservative form (see [3]). However a conservative form can always be derived
from (4.2), using (1.1) and (3.1), when ¢(g) has the form ¢(q) = Cyq”, with Cy and v given positive
constants, and introducing a new variable corresponding to the total energy in practice.

5 Sequences of elementary waves

In the sequence we suppose that ¢c(q) is an increasing function of g. The main difference with the
usual homogeneous case is that the constant solutions do not exist when S#0. The profile of the



2 In the phase plane

c'=q
S, =0.2
A=2

The profile of g

Figure 1: The profile of a sequence of waves

solution is made of a sequence of source waves, given by (2.5), with ¢'(¢) from (3.5), separated by
shock waves. Figure 1 below presents a sequence of 4 source waves separated by 3 shock waves.

The source waves MyM,, MyMs, MsMs and MgMs propagate with the same velocity A = 2,
and the profiles are computed with ¢ = /g and S(q,m) = Sy = 0.2 (constant). The velocities of
the shock waves (M My, M3M, and MsMs) are all different, and also different from A. The profile
corresponds to a path in the phase plane, from the left to the right side of the sequence of curves.
Indeed, the positions of the shocks at each time are fixed by the mass conservation (1.1).

5.1 The possible connexions to a given state: the source waves

Let My = (qo, mo) an admissible state in the phase plane. We set ug = mq/qo, co = ¢(qo). We look
for the set of all the attainable states from M, by either a source wave (that is, with m = Aq — B)
or a shock wave. We propose to name elementary waves those waves. The set of attainable states

by a shock wave is
RH.(My) = { M = (g,m) | m=quo+ [ -APAq ) (5.1)

corresponding to the Rankine-Hugoniot compatibility condition, with the sign — for a A;—shock
wave and the sign + for a Ay—shock wave. This set is represented by a concave (A;—wave) or a
convex (Ap—wave) curve passing through M, on Figure 2. The tangent straight lines to RHy (M)
at My = (qo, mo) are

Dy (My) = {m = (uo + o) ¢ — qoco}, D_(Mo) = {m = (uo — co) ¢ + qoco} (5.2)
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Figure 2: Attainable states from to a given state

according to the sign. The set D, (M) describes the states M such that the resulting source wave

will move with the velocity ug + ¢y (a Ag—source wave). The set D_(Mj) describes the states M

such that the resulting source wave will move with the velocity ug — ¢y (a Aj—source wave).
Therefore all admissible states M such that My € Dy (M) are attainable with a source wave

and we set
K. (My) ={M | My e DL(M)}. (5.3)

These sets are described on Figure 2, and corresponds to a concave curve for a A\; — wave and to
a convex curve for a Ay — wave. Both pass throught the origin and throught M, with the same
tangent D (M) according to the sign.

For any M € K.(M,) the whole straight line D, (M) belongs to the set of attainable states
from Mj,. Therefore this set is the union of the two subsets

{(g.m) | m>wueq, 0<q<qo}, {(g.m) | m <wueq, ¢>qo}

and the point M itself, for the A\;—waves, and the two subsets

{(g.m) |m <upq, 0<q<q}, {(¢m)|m>wugq, ¢>q}

with the point M for the \y—waves. In each subset the curve K (M) separates the states corre-
sponding to an increasing ¢—profile from the states corresponding to a decreasing ¢—profile. This is
shown on Figure 2, with different levels of grey, when the source term is positive. When the source
term is negative the sign of ¢, must be changed.

Since D (M) corresponds to the equation ‘fi—rg = wug &£ ¢y, we consider the envelope of these
straight lines whose equation is ‘Z—’Z; = % +¢(q) , passing throught M,. Solving these equations gives

m = qug + q fq‘i %cﬁ , which are the equations (according to the sign) of the Riemann Invariants
of the homogeneous version of our model. We introduce the two sets

RIL(My) ={ M = (q,m) | m:qugj:q/qc(g—g)df }, (5.4)



which are the two Riemann Invariants passing throught M, considered here as the envelope of
the straight lines D (M).

Among the source waves, the stationary waves correpond to the waves of null velocity, that
is when A = 0, and the equation reduces to m = —B, a constant.

5.2 The ”bow pattern”

We consider now the case of a source term becoming null along a curve X on the phase plane.

Bow pattern
in the phase plane

The profile of q M,

Figure 3: A bow pattern and the associate wave

We consider a \y—wave. The case of a A\ —wave is similar. Let My € X such as the line D, (M)
crosses once X (the tangent case is ruled out). Then the expression of ¢'(¢) in (3.5) may be defined
for ¢ = qq since the numerator and the denaminator have both a single root. We get

20'((]0)(]0 + 26((]0)2

@/J’((Jo) = - .
9o (g—‘g(%; Ago — B) + Ag—i(%a Aqo — B))

For other lines crossing ¥ in My than D, (M) (or D_(M,)) ¢'q) is not defined for ¢ = go. Since
the numerator and the denaminator in 1)'(¢q) change their sign in qo, the expression of ¢'(q) keeps
its sign. Let My = (q1,m1) € D, (M) with ¢; > qo and suppose for instance that M; belongs to
Y. ={M=¢q,m)|S(g,m) <0} as presented on Figure 3.

Then for ¢y < q < q1, we have ¢2c(q0)? — ¢*c(q)? < 0 and +'(¢) > 0, which implies ¢, > 0,
the corresponding profile of ¢ in the associate source wave in increasing. On the other side, for
My = (g2, m2) € Dy (M), with go < qo, belonging to X, = {M = ¢, m) | S(q,m) > 0} we also have
an increasing profile of ¢ for ¢ < ¢ < qq. It is also possible to draw the Rankine-Hugoniot curve



RH (M) (see (5.1)) which cut D, (M) in some point M, with g2 < o, in some applications.
That way, we get a profile made of two source waves separated by a shock wave, propagating with
the same constant velocity A = mg/qo + ¢(qo), and allways keeping the same shape. The wave
(see Figure 3, down) seems to be of null sum, which is not true and makes the difference from the
wavelets. In the phase plane the straight section M,M; looks like the string of a bow shaped by the
section of RH, (M) linking M; back to M,. The state My does not correspond to the middle of the
straight segment M;M; in general. An example of this phenomenon arises in hydraulics, known as
the roll waves, and is detailed in the next section.

5.3 The Riemann invariant as limit of saw waves

In the phase plane, the Riemann invariant is the set of the admissible values for a regular wave in
the homogeneous case.

(S>0)

Riemann >

invariant
~._source

wave

/ Wave profile 7
Riemann
invariant > source

wave

"

shock

Figure 4: A saw wave

For a problem with initial data, in the non homogeneous case, the influence of the source term
comes gradually and is small for the first times. That way, the starting values are the same as for
the homogeneous case, and described by the Riemann invariant in the phase plane. Each admissible
point of the Riemann invariant is the starting point of a regular wave, according to (3.5). However,
the transport equation (1.1) implies the conservation of the quantity ¢ (which is the mass when ¢
is a density) and the development of the regular wave will modify this mass, which is not possible
from physics laws. The reaction will be the immediate emergence of a shock wave. It is possible to
construct a sequence of shocks and source waves along the Riemann invariant as shown on Figure 4,
which respects the Entropy principle, even with a high frequency. The shocks may be also contact
discontinuities. Such a wave is called a saw wave, whose values are close to the Riemann invariant.
Thus the Riemann invariant appears as the limit of these saw waves.

In such waves the source term seems to have no action, which is not true. Indeed, the action
of the source term is immediately tranformed in entropy and lost in the shock wave. An example

10



of such saw wave is proposed in Section 8, for the shock tube with friction in gas dynamics, whose
solution seems to be close to the one for the homogeneous case.

6 The Saint-Venant model and the Roll Waves

The one dimension flow of a river corresponds to the transport of the height of water h with a flux
m which leads to a system of the form (1.1), (1.2). By taking a constant ratio ¢?/h, whose value
is the gravity constant g we get ¢ = ¢(h) = y/gh and the Galilean invariance is fullfilled. Next, we
claim that the system is conservative and that the zero flux vacuum property is true, from obvious
physical principles, and both theorems 2.1 and 3.5 can apply. As a consequance, we get that the
ratio m/h = u, the velocity. We get the One dimension Saint-Venant model (SV1)

2

h
ht+m$:(],mt+<qu2+g?> + S(hym)=0, (m=hu). (6.1)

Remark that this construction does not need any argument of shallowness, thus the model SV1 is
applicable even for deep water when the domain is sufficiently large.
We consider here the case of a river of constant bottom slope p < 0 and a constant Strickler

friction coefficient £ > 0, that is
S(h,m) = ghp+k|u|u ,

where u > 0 is expected.This source term is null along the curve ghp + ku? = 0. By introducing the
parameter A = |/—7, this equation becomes A = £% , the Froude number.

Theorem 6.1 In permanent regime the Froude number |u| /c of a river satisfies

bl [

C

=3

(6.2)

The proof is obvious since the permanent regime necessarily corresponds to S(h,m) = 0. The
formula (6.2) has a very important application: the value of the Strickler’s coefficient k is easily
obtained from the values of the river slope p, the water velocity v and the height of water h, since
¢ = +/gh , which are all easy to measure.

Let Y the curve corresponding to S(h, m) = 0 in the phase plane (h,m). Let My = (hg,mg) €
Yo and uy = mg/ho, co = /gho. We look for possible bow patterns for \y—waves, drawn from Mj.
Since a decreasing shock wave is expected, the straight line D, (M) must cut ¥y by going from the
set {S(h, m) > 0} towards the set {S(h, m) < 0}. Since the slope of D, (M) is ug+co = ¢o (1 + A)
and the tangent slope of Xq at My is 3A¢y/2, the crossing is possible only for ¢o (1 + ) < 3A¢q/2,
which reads A > 2. We have proved the following

Theorem 6.2 A necessary condition for a bow pattern in the SV1-model is A > 2 .

This condition requires a fast torrential flood.

11



6.1 The profile of the Roll wave
From (3.5), we have here
ghi — gh® 1 h3—h3

Vi) = B2 (ghp + ku2) k(1 + A)h— ho)® — A2h? (6

and since h = hg is a root of both numerator and denominator, we get
Sk = 12 <1+ h + hohy1 + h2, h3 + hohys + h2, ) |
k)\ (h - hrl)(hrl - hr2) (h - th)(hr2 - hrl)

142X — V1+4X 142X+ V1 +4)
X ho (> 0) and hy9 = - h
2 2)

o . After integration we get

with h,r 1=

1 h2 + hohy1 + h? h2 + hohys + h?
h)=——(h+ =2 = in|h - h, 0 =2 In|h— h, 4
() = i (o PR R gy PR )

to be inserted into (2.7) and inverted to have h as a function of z. The profiles of source waves
presented on Figure 5 are computed that way.

{S<0}

the bow
pattern

The wave
profile

Figure 5: A Roll wave

In the inserted window, the distance between RH(M;) and D, (My) has been strongly emphasized.
Otherwise the difference is imperceptible.

The simplification by (h — hg) in (6.3) was already done by Dressler in [1], together with the
condition A > 2. However the constant velocity of the waveseems to appear for the first time in [2].
A Roll wave is a combination of two source waves (6.4), one for h < hq followed by another with
h > hy and separated by a shock wave whose velocity is necessarily the same, A = (1 + A)¢y. A
concatenation of a sequence of Roll waves is possible, even with different amplitudes, and travelling
with the same velocity A.
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7 From Gas dynamics to Acoustics: a wind instrument
model

A sound is expected to correspond to the solution to a linear wave equation. However the Euler
equations in Gas dynamics compose a non linear hyperbolic system with a source term corresponding
to the friction and the geometry of the flow. We consider here the example of a sound tube and
deduce the better shapes which provide sounds.

Sound tube

(Isometric scale)

kpZ75Y K

Length 1 m

x0=1.1m

“r\q‘ Wave profile

/’ \
"\ level g,

Figure 6: The shape and the wave

The tube is supposed to have a cylindrical symetry and a length L > 0, with a cross section
denoted a(z) for 0 < z < L. The equation of conservation of the mass reads

alw)py + (alx)pu), = 0. (7.1)

where p is the density of the gas and u the velocity, both supposed to be uniform on a cross section.
By writing ¢ = a(x)p and m = a(z)pu the equation (7.1) is the same as the transport equation (1.1).
The system is completed by an equation of the form (3.1) with a source term S given by

d'(x)
a(z)”
where v = 1.4 (adiabatic constant), K = 69259.5 M K S units and k a friction coefficient (depending

on the nature of the material of the tube, wood or brass for example). This source term becomes
independent on x when

S(g;m,x) = klufu—~vK

q’, (7.2)

! D2
@) = Constant (denoted k—) ,
a(x)Y K
with D constant. Then the shape must be of the form
1
VK o
_ 7.3
= (—im=a) =

13



where x( is another constant, to be chosen > L. This shape depends on two parameters xq and D
and is drawn on Figure 6. The usual shape of wind instruments is recognizable, for clarinets or
horns (in this case z is the curvilinear abscissa).

Equation (3.1) reads here

2
my + (% + c%q) +k(u”—D*") =0 (7.4)

by taking ¢(q) = ¢y whose value is given by ¢y = /vK,T with K, = 287.06 MK S units and T

the ambient temperature in °K. The profiles of the source waves are computed from (2.5) which is
here written as 09 o
¢ (90— 7)

E((14X)g — q)* G — D2q+?)

with A\ = (;:—COO , for a given state My = (qo, mo). The roots of the source term belong to the set g
of equation m = Dq't7/2 and correspond to the stationary states. Figure 6 presents a sequence of
3 source waves built from two near states My and M, = (q., m.) of Xg, with gy < ¢. and My, M, €
D (My). Tt is also possible to build a bow pattern whose string is on D, (My) when My € Xy satisfies

ug+co < D(1+1) qg/z,with ug = mg/qo. The bow connects My = (q1,my) € Dy (M) with ¢; > qo,
to My € Dy(Mo) by the shock curve RH, (M) of equation m = Lm; + \/qzl(q — q1) ¢o. In this

case the profile of the wave is similar to a roll wave as on Figure 3.

Gz =1,

8 The shock tube with friction

The Euler equations with a Strickler friction are

m2
pt+m$:O,mt+<7+P0p7> +kluju=0, (8.1)

where p is the density, u the velocity, m = pu the flux, and the three conctant: P, a reference
pressure, k the Strickler friction coefficient and v = 1.4 the adiabatic constant. The sound velocity
is ¢ = c(p) = /yPop? 1.

The problem for the shock tube consists into solving (8.1) for ¢ > 0, € R by starting from
the initial condition

p(z,o):{ﬁfz sy 0 =0, (8.2)
with p;, > pr > 0. The two states M} = (pr, m;) and Mr = (pr, mg) are constant stationary states
as roots of the source term S(p, m) = k |u| u = k |m|m/p* . The shaping of two waves is expected,
a front wave propagating forwards, on the right direction, and a rarefaction wave propagating
backwards, on the left direction.

The action of the source term is perceptible only after a while and the solution is first shaped as
the solution of the homogeneous problem with the shock curve RH(Mpg) intersecting the Riemann
invariant RI1_ (M) at a state My = (pg, mg) with mg > 0. At the next time, each state M = (p, m) of
RI_(M;p) with py < p < p; will generate a source wave, immediately broken by a shock wave, which
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corresponds to a saw wave. On the front side, let Dp be the secant to RH, (Mp) which extends
the straight segment MgzM,. A source wave valued on Dy , with p > py, will move at the same
velocity Ar = pOT‘;)R as the front shock wave. It remains to connect a state from Dpg to a state
of RI_(Mp) to get the whole solution. This can be done by combining a stationary wave and a
contact discontinuity, whose position is controlled by the mass conservation principle.

The stationary wave links RI_(Mj) to My and beyond, with values along the line m = my.
Thus

2 +1
! _Tno_f)/POIO’y _B_ 7P0 y+2
and from (2.7), p is obtained by solving 1 (p) = = + ¥(po) -

Since the equation of Dg is m = Ag(p — pr), with Agr = we have

p )

ARpf — vPop"!
kA% (p— pr)’

to be integrated numerically to get ¥(p). We obtain ¢(p) = 1(py) + x — Agt , since the wave
propagates with the velocity Ag.

V'(p) =

’

RI=Riemann Invariant (Saw wave)
level P .ML SSW=Stationary Source Wave

CD=Contact discontinuity

RH=Rankine-Hugoniot
SW=Source Wave
S=Shock

MS Mz M
3 level pO
160 M,
140] M SW ssw s
1201 o=" phase level pg
1001 .
30] R plane M,
601 N
s RH SSW oom
207 M
01 -~
00 02 04 06 08 10

Figure 7: The shock tube with friction (t=0.1, k=0.00125)

It remains to join a state M; of the stationary wave to a state M, of Dg, at some point x
determined such that the mass conservation is preserved, as shown on Figure 7 .

The profile is made, from left to right, of a constant stationary level p;, then a saw wave from
My, to Mj, a combination of a source wave and a contact discontinuity (see the small circle on
Figure 7) to link M; to My, a stationary level from M, to M;, a contact discontinuity from M to
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M , then a source wave from M, to M3 and a shock wave from M; to My where another constant
stationary level pg is found. Between M, and M3 the mass over the level py, balances the lack of
mass under this level, which determines the position of the contact discontinuity.

The saw wave is the limit odf a sequence of small contact discontinuities separated by small
shocks, with a profile analogue to Figure 4.
Remark: This example gives some ideas for the construction of new Riemann solvers for non
homogeneous systems, since the states My (bottom of the rarefaction wave) and Mj (top of the
shock) coincide. A Riemann solver can be described as follows. First, solve the Riemann problem
for the homogeneous equations, which give My = Mj. Next, draw the source wave associated to
the straight line of slope Agr (shock velocity) passing through M;(= M) and the stationary source
wave (slope zero in the phase plane) passing through My(= M3), and then compute the position of
the contact discontinuity linking these two waves in such a way that the mass balance is preserved.
This solver is different from the ones proposed in [4] for Well Balanced (WB) schemes.

9 Two numerical methods

9.1 The method of stationary profiles (SP-scheme)

The previous example tells us that the usual Riemann solver (that is the one for the homogeneous
case) can be used even for the non homogeneous case. The Godunov method can be adapted
this way. However the constants are no more solutions and the idea of the stationary profiles
method, or SP-scheme consists into interpreting the solution in each cell as a stationary solution.
By denoting ¢., m, the data in the middle x, of the considered cell, the profile solution is shaped
such that m = m,, constant, and ¥(q) = ¥ (q.) + © — x,, with z in the cell.

Consider a uniform mesh with cells of length Az, centered at z; = jAz, j € Z, and two
adjacent cells of index j and j + 1. We first compute ¢;r such that 1(q¢;r) = ¥(g;) + % , then we
compute g, 1 rsuch that (gj11,0) = ¥(gjs1) — % and next we solve the Riemann problem with
(¢jr,m;) as the left data and (g;41,z, mj11) as the right data along the line x = z; + % . We get
that way the two constants g;;1/2 and m; /5. Eventually we approximate the projections on the
cells at the next time (n is the index for the time) by the Godunov formulae:

At At
G = = 5 (e = mi_ye) s miT = ml = = (Flys = Filip) — ALS], 0 (9.1)
with F7', 5 = F(qj’ﬁrl/Q, m?+1/2) and ST an approximation of S(s}, m}) corresponding to a numerical
scheme consistant with the differential equation m’ = —S(q, m).

Figure 9 represents a computation with the SP scheme, for ¢ = /g and S(q,m) =k |u|u (k = 0.2).

The discretisation of the differential equation m' = —k |uju = —k'rz# used the exact scheme

Yn+1= m for the model equation y' = —k |y|y. The CFL number is rather small at

the end of the computation and then, combined with the friction, the front waves are smoothed.
We notice that the static equilibrium is restored behind the wave, which is a property of stability,
as for the well balanced schemes (see [4]) though the method is very different here.
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t=0

q profiles

t=0.2
CFL=0.67

Figure 8: Profiles of ¢ and m from the SP scheme

9.2 The method of dynamical profiles (DP-scheme)

The previous method of stationary profiles is unable to catch some waves, as the ones produced by a
bow pattern for instance. We propose now a new scheme, called the dynamical profiles method,
or DP scheme, which computes the value of the wave velocity A at each step, stores them in each
cell to use them for the next time step.

The main idea is to use the velacity field A = m’(q) in each cell at each time step, denoted Al
with the same numerical notations as before. We suppose that the initial values A? are available,
then the Godunov method for the Burgers equation (2.1) works. At the level time nAt, we first use
the Riemann solver

0 if A7 <0< A7,
A7 if A} >0, A7+ A7, >0, (9.2)
Ajyin if A <0, A7+ A7, <O0.

n i
j+1/2 =

Next we compute the values at the time level (n + 1)At by

AT = an - g <A?+1/2>2; (A;LI/Q) ‘ (9.3)

2

This scheme requires the CFL condition
At
Mazx |A?| — < 1. 9.4
ax |A7| - < (9-4)

Next, the values ¢} and m are obtained by using the velocity field A7. Since ¢(q) satisfies ¢'q)q, =
1, it is often easier to project 1)(¢) which is linearly depending on ¢ than ¢ itself. By multiplying
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the tranport equation (1.1) by ¢’(q) we get either 1y + A = 0, or ¢y + A, = 0, since A = m/(q).
Using the advection equation, we get the ¢7 by using the following scheme

(Ui Ai ( 1/aWi1 e = A1 ¥l 2)
¢?+1 _ J+1/275+1/ /275-1/ (9.5)
v (A;l+1/2 Ag—ug)
where . .
) v i Ay = A
j+1/2 = T/Jj+1 if A]+1/2 Ajt1

unused, for example 0 if Ag+1/2 0.

Then the values ¢} are obtained by solving the implicit equations

W(gy) =45 . (9.6)

The fluxes m are also advected by the velocity field A7 and are obtained by the same scheme as

(9.5) for 1. If necessary the values B} are deduced from B} = Afjq} —m].

CFL=0.99

=0 {1 1=1.26
m / \ m

Figure 9: A roll wave computed by the DP scheme

Figure 10 presents a computation for the case of a bow pattern, with ¢ = /g and S(¢q,m) =
pq + k |u|u, for p = —1.40625 and k = 0.1. This example is especially simple since A (= 4.75) is a
constant. Then (9.5) reduces to the usual donner cell scheme

A
Yt =g = AW ) (9.7)
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The same scheme works for tthe computation of the m; we can also use the relation mj = Aqj — B,
since B is here too a constant. We notice a strong diffusion effect though the CFL condition was
fullfilled close to one.

The scheme (9.5) is refered as the scheme weighted by the deformation rates. It preserves
the L*° norm and the variation. The results can be greatly improved by using an antidiffusion

technique.Note that when A;‘1+1/2 = 0 the DP scheme coincides with the SP scheme.

10 Conclusions

First, remind that the hypothesis m = m(q) is really not a restriction (Remark 3.7), which provides
to this study a very large field of applications. The modelling of physical phenomenons involving a
transport equation can be strongly reduced by using very simple and obvious hypotheses together
with a mathematical reasoning, for example here for the Saint-Venant model in hydraulics. The
apparent linearity of waves has often conduced the modelizers to write linear models, sometimes in
opposition against supporters of nonlinearity. The present results will reduce this revalry between
the two opinions since both can be right with the same model...

However, the examples of the shock tube and the saw waves proved that a priori estimates are
probably difficult to settle, as well as uniqueness. It appears that to work in the phase plane can
often help for the construction of solutions to a wide class of non homogeneous hyperbolic systems.
The equilibria are hardly maintained during computations with usual schemes. Indeed, as shown
here, the action of the source term is sometimes strongly reduced by the shocks, mainly in some
behaviour as the saw waves or the relaxation by contact discontinuities. Solving locally, as for
the Riemann solvers, will filter some phenomenons which must be considered in their wholeness,
in order to preserve the established equilibria. This is the case when a bow pattern accurs, that
usual schemes are often unable to capture.. The source waves have many other applications in
environment modelling, for hydraulic phenemenons (Rogue wave or Tsunami) and also for shock
waves in fluids or solids (earthquakes) or atmospheric applications (winds and hurricanes) and the
theorem of linear appearence applies, even in two or three dimensions. Several papers on such
applications are available on the Conservation Law Server (2004/014, 2005/048, 2008/019).
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