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Abstract

We consider a sequential approach for the solutioan elliptic-hyperbolic system of

partial differential equations, which models a flaf two incompressible phases in
porous media. The elliptic equation describes tiesgure distribution in the domain, and
the hyperbolic equation is the mass conservatiarateap for one of the phases. We
propose to estimate an optimal number of the presspdates using an analytical
solution to a special 1D initial boundary value lgemn (IBVP) for the coupled system.
We provide two procedures aimed at the estimatfoanooptimal set of time steps, and
show that the resulting distribution of time stepelds better results than using
equidistant time steps. We also show that the @egfeoupling of the 1D IBVP can be
guantitatively estimated using a normalized diffexe of the exact solution and its
sequential approximation with a single time step.

Introduction

One well-established method for numerical solutbrthe equations for the multiphase
flow in porous media is a sequential approach, Wwiscbased on a re-formulation of the
mass conservation equations and Darcy’'s law (sge [&]). For the case of two
incompressible phases with negligible capillarysgtege and gravity effects (in this note
we will restrict ourselves to this case), the re¥folated system of governing equations
consists of the Laplace equation with variable ficiehts for pressure, and the
hyperbolic equation for the saturation of one @f pihases.

In the sequential approach, the solution to theplsal elliptic-hyperbolic system is
sought in two stages: Firstly, the elliptic pregsequation with frozen coefficients is
solved, and the corresponding Darcy velocity fisddfiound; secondly, the hyperbolic
saturation transport equation is solved over aagegeriod of time using a frozen Darcy
velocity field, so that the coefficients of theiglic equation can be computed; and the
process repeats. A specific choice of the disagtim technique for the elliptic and



hyperbolic parts gives rise to a particular nunarimoethod. Examples of the sequential
method include IMPES-type methods [1, 2] and théhour of streamlines [3].

One important question in the specification of seguential approach is the choice of
time instants at which the pressure field shouldipgated. In standard IMPES method,
pressure is re-computed at each time step usetdaolution to the hyperbolic transport
equation, and the length of this common time siep & determined from CFL-like
stability conditions [1, 2, 4]. In practice, thiarcrequire an excessive number of pressure
updates for a simulation, which can make these odsttomputationally expensive. In
the streamline method, one typically needs to edérthe number and length of pressure
time steps before the actual computation. Thissi@tiis often based on engineering
intuition.

It has been noted (see e.g. [5]) that pressurm@other in time than the saturation, and
that one may use larger time steps for pressuratapdhan for the saturation transport.
In [6], the authors obtained the convergence rates finite element method when the
pressure time step is chosen as a fixed multipléhefsaturation time step. Different

pressure and saturation time steps are intrinsibéanethod of streamlines, see e.g. [6]
for an overview. Ama posteriori CFL-like estimate for the length of pressure tisteps

in the streamline method is proposed in [7]. Finathere is a variety of heuristic

estimates for the length of pressure time stepsladla in the literature, based on

maximum allowed pressure and saturation changejetgance criteria, etc.—see e.g. [1,
2].

To the best of our knowledge, currently there aréheoreticahl priori estimates on the
length of pressure time steps. This note is intdriddill this gap to some extent. To this
goal, we restrict ourselves to a simple physicdtirag we consider a flow of two
incompressible fluids with negligible capillary peeire and gravity effects, whereas the
relative permeability curves are straight lines.rétver, let the flow be 1D, either in
Cartesian geometry, or for cylindrically or sphalig symmetric cases. For the resulting
elliptic-hyperbolic system, we consider the followi initial boundary-value problem
(IBVP): piecewise constant initial data for satioaf and constant pressure boundary
conditions. The initial and boundary conditions ah®sen in such a way that a single
shock-type solution is admissible. Then, we forrteulan ordinary differential equation
(ODE) for the motion of the interface, separatirdt land right states of constant
saturation, and find its exact analytical solutidhis is done in a way similar to Muskat
[8]. For the case of Cartesian geometry, we pregentdimensionless form of the IBVP
of interest, and show that its single shock-typetgm can be completely determined by
specifying three dimensionless parameters: the lihpliatio, the initial interface
position, and a parameter related to the shapsedBtickley—Leverett flux function.

The sequential approach of the elliptic-hyperbsiistem can be represented as a forward
Euler integration of the ODE for the motion of ih&erface. Consequently, the sequential
solution is a piecewise-linear approximation to éxact solution, and the vertices of this
polygonal approximation correspond to the pressiume steps. We can estimate the
accuracy of the polygonal approximation by e.g.sibering its relative distance from the



exact solution. Based on this error estimate, vap@se two algorithms for an optimal
time step selection:

1. Given an approximation error per time step whichageee to tolerate, we find
the time instants at which the pressure updateldhmperformed.

2. Given a total number of pressure updates, we fiedtime instants at which the
pressure updates should be performed. These amerchoy minimizing the
approximation error using a nonlinear optimizatmathod—the downhill simplex
method, see e.g. [9].

Finally, we propose to quantitatively estimate tlegree of coupling of the 1D elliptic-
hyperbolic IBVP using a normalized difference oé thxact solution and its sequential
approximation with a single time step. The funcéiodependence of the decoupling error
with respect to the three dimensionless determipergmeters is illustrated on a sample
test problem.

The rest of the paper is organized as follows.dati®n 1, we formulate the mathematical
problem of interest. In Section 2, we present theesponding one-dimensional IBVP,
integrate the ODE for the interface motion, andvigte the admissibility conditions for
the single shock-type solution, for Cartesian geloyre:nd for cylindrically or spherically
symmetric cases. For the case of Cartesian geoywatrpresent the dimensionless form
of the IBVP and show that its solution is deterrdiby three dimensionless parameters.
In Section 3 we describe two algorithms for anropt time step selection for the IBVP
of interest. In Section 4 we define the decoupkngr of the elliptic-hyperbolic system
and illustrate this concept on a sample test pmobM/e end up with conclusions and
outlook in Section 5.

1. Problem formulation

In this work, we restrict ourselves to the casenaf-phase incompressible fluids: oil and
water. For the sake of simplicity we assume thah Bloiids differ in viscosity only and
the rock is incompressible, and consider homogenewdia only, i.e. both porosity and
permeability are constant. Furthermore, we negjetity and capillary forces.
The mass conservation equations are

0S, i

E+Dﬁuj=0, ] =w,0 (1)
where the subscripte and ostand for water and oil respectively, is porosity,S; and
u, are the phase saturations and velocities, respéctiThe system (1) is closed by

Darcy’s law
u;, =-KA,0p, (2)

where A; =k, / i, are the phase mobilitiek; =k, (S, 3Jre the relative permeability
functions, y; are viscosities, an&K =diag(K)is the permeability tensor. Throughout
this work, we use the linear relative permeabgitaly, i.e.k,(S;)=S;.



Taking into account the above-mentioned assumpt@amsessure-saturation formulation
of the system (1)—(2) reads

Of-KAOp)=0 3)
¢aa—st”+uDDfW:O 4)

for tO[0,T,], whered = A, + A, is the total mobility, u=u, +u, is the total velocity,
and f,=A,/A is the Buckley—Leverett flux function. The syst¢8)—(4) is a coupled
elliptic-hyperbolic system for the variable®,S,): (3) is Laplace’s equation with
variable coefficientsd = A(S,) , and (4) is a transport equation with=u(S,,Jp) from
Darcy’s law (2). The degree to which the equati(@)sand (4) are coupled with each
other is determined by how strong the dependércg(S,) is. In the limiting case when
A does not depend of, at all, the system (3)—(4) decouples.

The sequential approach to the solution of the system (3)—(4) consistéidimg a set of
time stepsAt,,...,At, (called thepressure time steps) with At =t —t_,, i=1...,N,

t, =0, t, =T,, and using the following procedure:

Fori=0to N-1do
1. Find the pressure distributiom(t;) by solving the equation (3) with frozen

coefficientsA(S,(t;)); Compute the corresponding velocity fiela(t,) from
Darcy’s law (2).

2. Find the saturation distributio, (t,;, Dy solving the equation (4) with frozen
velocity field u(t, ).

A specific numerical method, based on this seqakagpproach, is determined by the
discretization used for the pressure equation anthé saturation transport. In this work,
we will mention only two numerical methods whichifito the sequential framework.

One well-known method is IMPES (see e.g. [1]), wmheEmploys an implicit finite-

difference method for the solution of the pres(®g and an explicit finite-difference
method for the solution of the saturation equatin In this method, the time instants
t,....ty-, are found from CFL-like stability conditions fdre explicit method. This can

require an excessive number of computationally espe pressure updates, which often
can make the overall method inefficient.

Another method of sequential solution is the stiesmmethod, see e.qg. [3]. Here, the
pressure is typically solved with a finite-diffeenor finite-element method, and a set of
streamlines is computed based on the correspondengy velocity field. The 3D
saturation equation (4) is re-formulated along #gieeamlines, thus becoming a 1D
equation. Then, the saturations are updated fet afsstreamlines, and mapped back to
the 3D grid. There are two distinct sets of timepstin this method: time steps between
the pressure updates, and time steps for the @olatisaturation transport.



Since the pressure is generally smoother in tiraa the saturation, it is natural to choose
larger time stepd\t,,..., At than those dictated by stability conditions fog #aturation

transport. To the best of our knowledge, the mgjaf work devoted to the choice of
pressure time steps is relatedatposteriori estimates; see e.g. [2, 6, 7]. Available a priori
estimates usually use heuristic arguments, likeimmamx allowed pressure and saturation
change, convergence criteria, etc.—see e.g. [1, 2].

The goal of this paper is to provide apriori estimate for an optimal choice of pressure
time steps for the sequential solution of the sys{g8)—(4). Below we will give an exact
definition of what we mean by “optimal” in this demxt.

The starting point in our considerations is théofeing. Imagine for the moment that we
are able to solve both steps of the sequentialoagpranalytically. Then the accuracy of
the sequential approach (i.e., how well does irexdmate the analytical solution of the
coupled system (3)—(4)) is completely determinedHh®y choice of pressure time steps.
Next, observe that the number of pressure timesgtepded to achieve a certain level of
accuracy is directly related to the degree of cogpdf the system (3)—(4). Indeed, in the
limiting case when the equations (3) and (4) ammpletely decoupled, the sequential
approach with just one pressure time stdp=T, —t, gives the exact solution to the

coupled system (3)—(4). When the coupling of equti(3) and (4) is weak, we will need
to use several pressure time steps to achieveathe saccuracy. Finally, in the extreme
case when the system (3)—(4) is strongly couplezlywwll need to update pressure with
high frequency.

In subsequent section, we revise an analyticakisolloy Muskat [8] for a 1D restriction
of the system (3)—(4). This will allow us to givepeecise definition of terms “optimal
choice of time steps” and “degree of coupling af gystem” somewhat vaguely used
above.

2. One-dimensional initial boundary-value problem

Consider the 1D formulation of the system (3)—(4gase of Cartesian geometry, and for
cylindrically and spherically symmetrical cases. e

X i[— KX @j =0 (5)
dx dx
0S of
Z+u=-=0, 6
¢ ot 0x ©)

where in (6) we have dropped the subscupfor brevity. In (5),a =0 corresponds to
the Cartesian geometryy =1 and a =2 correspond to cylindrically and spherically
symmetrical cases respectively, withbeing the radial distance. Let us use the follgwin
initial and boundary conditions for the system (B)=

S,asx<h

S(X’t):{a, n<xp, P@EDTRL PO ™



Here O<a<b, h,0(ab) is fixed, and the subscriptsand r refer to left and right
states, respectively. The initial data in (7) cep@nd to a sharp interface located at
X =h, and separating the left and right states with @oris(water) saturation§ and

S , respectively.

Physically, the solution to the initial boundaryw@problem (IBVP) (5)—(7) describes an
evolution of the interface, originally located &§, under the action of the pressure

difference p, — p, #0. In what follows, we will seek a solution to thBMP (5)—(7)

which actuallypreserves the discontinuity inS = S(x,t) , i.e. the solution has a form of a
single jump (or shock), connectin§ to S, see Figure 1. We will postpone the
discussion on the admissibility of such a solutiniil the end of the subsequent section.
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Figure 1. A snapshot of a single shock-type solution, propagating in the domain under the action of
pressure difference.

2.1. A single shock-type solution

Assume for the moment that for all1[0,T,] the solution to the IBVP (5)—(7) for the

saturation has the form
S(x,t):{S’aS)Kh @®)
S, h<xs<b,
where h = h(t) is the current position of the interface. Them, tbefficientA = A(x,t) in
the pressure equation (5) becomes discontinuous,
/l(x,t):{/]" asx<h ©)
A, h<x<b,
where we have introduced, , =A(S,). Since by the assumption the interface at
h=h(t) separates constant valugsand S, the values),, are constant as well.



For the integration of the pressure equation (5) need to augment the boundary
conditions in (7) by the following compatibility nditions across the interface:

d d
p(h.) = p(h.), Al =Al

X[ dx|,,
where h, refer to the states to the right and to the léthe interface, respectively. The

equations (10) express the conditions that thespresand Darcy’s velocity should be
continuous across the interface. Now the solutiotiné pressure equation (5) reads

(10)

pr - pl -a+l -a+l
A X -a )+ p, a<x<h
_ r Ar (h—a+1 _ a—a+l) _ /]| (h—a+l _ b—a+l) ( ) Y
p= i (12)
A pr pl (X—a+l _ b—a+l)+ pr’ h < X< b

| Ar (h—a+l _ a—a+1) _ /]| (h—a+1 _ b—a+1)
for a #1, and
A, P~ B (nx-Ina)+p, a<x<h

A (Inh=Ina)-A (nh-Inb)
p= ] (12)
A P~ P (Inx-Inb)+p,, h<x<b

A (Inh=Ina)-A (nh-Inb)
for a =1. The corresponding Darcy’s velocity is

— pr - pl -a
u=-KAA1 -a+1)x 13
177 /1r (h—a+1 _ a—a+l) _ Al (h—a+l _ b—a+l) ( ) ( )

for o #1, and
U= KA P~ P 1 (14)
A (Inh-Ina)-A (nh-Inb) x
for a =1.

The speed of propagation of the interface locatetl ah(t) is given by the Rankine—
Hugoniot jump condition (see e.g. [10]):

dh_uh) 1(S)-1(S) (15)

ad ¢ S-9
where we have used that the total Darcy veloaityu,, +u, iS continuous across the

interface, cf. (13) and (14). Note that the inteefespeeddh/dt does not necessarily
coincide with phase velocities, and u,. Consequently, our results on the interface

motion (see below) will slightly differ from the mesponding results of Muskat [8], who
has used an assumption that an interface is ale@yposed of the same fluid particles.

With the initial data

h(t=0)=h, (16)
we can easily integrate the autonomous ordinafergiftial equation (ODE) (15), using
the expression (13) or (14) for Darcy'’s velocitye\Wave

— 1 M-1 2 _R2 i —a+l _ —a+l \(|ha+l _ pa+l
t_(—cr+1)D( 2 (h h°)+a+1( Ma )(h " )j a7




for a #1, and

=1 M—_l(hzlnh—hglnho—l(hz—h§)j+1(|nb—|v| ina)(h? - h) (18)
D{ 2 2 2

for a =1. HereM = A, / A is themobility ratio, and

_ K f(S)-£(S)
D=-—A(p, - p)— 22 19
P (19)

For the Cartesian caser £ 0) the equation (17) can be easily resolved to abtiae

dependency of the fornh O/t . For the cylindrically symmetrical caser €1) the
equation (18) cannot be resolved in the classahehtary functions with respect to
For the spherically symmetrical case £2) from equation (17) we can obtain a
functional dependenck = h(t) using Cardano’s formula.

The solution to the ODE (15) with the initial d4i#) is equivalent to a single shock-type
solution to the coupled elliptic-hyperbolic systg®), (6) with the initial data (7).
Knowing the interface positioh = h(t) from (17) or (18), the single shock-type solution

to the IBVP (5)—(7) is given by (8) and either (bt)12), depending on the value @f.

Now let us investigate on the admissibility of #iegle shock-type solution, determined
by the relations (17) or (18). By assumptions anghape of relative permeability curves,
the flux function has the form

_ HoS
f(S) = 0 : 20
O st ua-9) 20)
This is either a strictly convex, or a strictly cawe function depending on the sign of the
viscosity differencey, — . Therefore, we can use the Lax admissibility cite (see
e.g. [10]):
uh) of[  dh_uh) df| (21)
¢ dSg,, d ¢ dSlg,,
where h, refer to the states to the right and to the lethe interface, respectively. Since
u is continuous across the interface, we hage ) =u(h,) =u(h). By assumption, the
interface separates the states with constant valjesnd S, so S(h.)=§ and
S(h,) =S . Using this in (21), we obtain the following adsikslity conditions:
u(h)i 2u(h)—f (5)-1(S) zu(h)i . (22)
dSig S-S dSlg
Considering different cases of the double inequ#iR), we establish that the interface
h = h(t) is admissible if and only if one of subsequentditbons holds:

p>p (>0, M>L §<§ (v>]) (23)
pl > pr (U>0)1 M >11 S >Sr (V<1) (24)
pl < pr (U<0)’ M <11 S >Sr (V>1) (25)

pl < pr (U<0)1 M <11 S <Sr (V<1)' (26)



Here we have introduced the viscosity ramie 1/, / 1, . Admissibility conditions (23)—

(26) can be summarized as follows: For an admessitierface the mobility ahead of the
interface is to be greater than the mobility beltimel front. This a well-known interface
stability criterion, related to viscous fingerirgge e.g. [11].

2.2. Dimensionless for mulation

In subsequent sections it will be convenient to disgensionless form of the IBVP (5)-
(7). From here on we will restrict ourselves te ttase of Cartesian geomeiny=0
only; the cylindrically and spherically symmetricalses can be treated analogously.

Let us undimensionalize the IBVP (5)—(7) with tizalgg
g=X"2 5_ PR F_4 g_ K 27)
b-a |pr - p|| A K

where K, is a constant reference absolute permeabilitychvinill be specified later.
The choice for the dimensionless pressprémplies that the pressure gradients (and thus

the Darcy velocities) for both dimensional and disienless cases have the same sign.

If one of the admissibility conditions (23)—(26) lti® true, the dimensionless pressure
satisfies the equation

i(id—,‘fj:o, x0[0Y, 1= {]‘ Osx<h (28)
dx\  dx M,h<xX<1l

augmented with the compatibility conditions (10heTboundary conditions for the
pressure equation (28) depend on the sign of tiferelnce p, — p,. If we introduce the
function sign(d)=1 if o0>0 and sign(d) =-1 otherwise (0=p, - p #0), the
boundary conditions for (28) take the form(0) =0 and p(l) =sign(p, — p;) - Then, the
solution to (28) is

. M ~ - =
sign - =X, 0<X<h
g(pr pl)h(M _1)+1

(29)

ol
I

sign(p, — (X —1)+1J h<X<l

M (s
P h(M -1) +1

Using the scaling (27) in 1D version of Darcy’'s Ig®), we obtain the following
expression for dimensionless Darcy’s velocity

7= Yy =k PPl (30)
U,of b-a
With this definition, the dimensionless form of Dgls law is
ag=-ki %P (31)

X’



so that the dimensionless Darcy’s velocity is
KM

h(M -1)+1’ (32)

u =-sign(p, — p)

Substituting the definitions (27) and (30) into #guation for the saturation transport (6),
we obtain the following expression for the dimengss transport equation:

0S _of
—+u—=0, 33
¢ ot 0X (33)
where we have introduced the dimensionless time
~ t b-a
t=— ) re = . 34
= iy (34)

ref ref

A single shock solution to the elliptic-hyperbotigstem of dimensionless equations (28),
(33) satisfies the Rankine—Hugoniot condition

dh _G(h) F(S)-(S) = _mor

i s-s h(t, =0) = h,. (35)
This canPe rewrijten as

dh _ DM S

dt  h(M -1 +1’ "6=0=h, =
where N

S e K 1(S)-1(S)

D=- -p)—~—>L 27

sign(p, ~P) ¢ 5

The ODE (36) can be integrated to give

E:M%E@kSM(M—DF+QM—DHH4Y—@, M #1. (37)

Here T O[0,T,], and the dimensionless final tinig =T, /T,, is chosen from the

condition that the interfaceﬁ:ﬁ(ff) remains in the domain [0,1]. Knowing the

ef

interface positionﬁzﬁ(f) from (37), we can obtain the saturations and press
distribution for all X T [01] analogously to the dimensional case above.

The solution (37) is valid for non-degenerate cabes1 only. In the limiting case
M =1 the system (28), (33) decouples. Indeed, udihg-1 in (29) we see that the
solution to the pressure equation (28) does noemtn the instantaneous position of
the interfaceh = ﬁ(?) . Then, a single shock solution to the to the fartsequation (33)
is a straight line

h=h+DT. (38)
The number of dimensionless parameters, determihi@golution to the equation (37),
can be reduced by using an appropriate definitfotn® reference absolute permeability
K., see (27). Namely, if we define

ref 1



Kref - Z , (39)
so that the fraction2/¢ =1, then we have

= e _ (&)= 1(S)

D =-sign(p, - p) s-5 (40)

Thus, the complete solution to the system of equat(28), (33) is fully determined by
three dimensionless parameters: the mobility rafig the initial interface positiorh,,

and the parametdf), related to the shape of the Buckley—Leverett function f .

3. Optimal time step selection for the one-dimensional
case
The sequential approach for solving the dimensgmi@DE (35) is precisely the forward

Euler method
= _r . Anu(h) £(S)-1(S)
ha=h+af SIS ZTE
¢ S -9
whereh =h(X)=h(t,X) and At =t —t_, are the pressure time steps. Indeed, in this
1D case the solution to the saturation transpattiges to an update of the interface
position. As we have seen in Section 2, from theeetu interface position we can obtain

the complete solution of the dimensionless equati¢®8), (33) and thus to the
dimensional IBVP (5)—(7).

,i=1...,N, (41)

The Euler method (41) provides a first order appnation to the exact solution of the
ODE (35). Therefore, the same is true also forséguential approach for the solution of
the IBVP (5)—(7).

Since the amount of work involved in the Euler noeth(41) is proportional to the
number of individual steps, one will attempt to obe the step sizeAt as large as
possible. On the other hand, they must not be chtuse large if one wants to keep the
discretization error small. Another constraint dre tstep sizesAt can come from
stability conditions, which is specifically the ea$or stiff ODEs. For the test cases
presented below, we did not experience any stalpliobblems with the Euler method
(41), and therefore did not investigate on its iitglproperties for the particular case of
the IBVP (28), (33). Instead, we concentrate orh@ice of a minimal set of time steps
At which result in certain accuracy of the Euler roet(41).

Graphically, the approximation (41) to the exactuson of the ODE (35) can be
represented as a piecewise-linear function, whidnsists of linear segments

(€ R (€. )] with S'Opesﬁ(;) f(sé) :;(S)

, I.e. the segments are aligned with the



integral curves of the ODE (35). As a measure oligacy of the Euler method (41) at
time instantt, we will use the difference

__|p@)-h
d(t) = u
where h(t) is the exact solution to the ODE (35) at timethe valuesh are furnished

by the Euler method (41), ard] ,, is the maximal difference between the sequentidl a
exact solutions. This difference is the worst cager which is achieved at final time

100%, (42)

t, =T, /T when the sequential method uses just one time step
=y (m, e _y Ul £(S)-f(S)
d_=lh(t)-|h +(t, - i . 43
max = N(ty) [ho (ty — ) 6 S-S (43)

It is illuminating to see how the different numhmdrtime steps affects the quality of the
sequential solution (41). For instance, let us @rghe following problem.

Problem 1. Interface motion in Cartesian geometry. In the domain witha=1m and
b=100m, an initial interface ath, = & separates the states with water saturation
S = 0.1 to the left andS = 0.9 to the right. The rock has porosigy= 0.3 and absolute
permeability K =500mD, and the fluids have viscositigg, = d® and y, = 5@P,

respectively. The interface moves right under tloiom of the pressure gradient:
p, = 200bar, p, = 15Mar. Since the flow satisfies the admissibility dibions (23), the

sharp interface remains in the solution, and istmm can be determined from (37).

The dimensionless formulation of this problem cetssiin specifying the parameters
M =3.28, h,=0.01, and D =0.77. In Figure 2 we compare the exact solution to

Problem 1 with two sequential solutions (41): Tine asing three equidistant time steps,
and another using just one time step. Obviouslysthgle step solution (a single linear
segment) yields the worst approximation to the esatution: the interface position at
final time is overestimated by factor 1.8. The sagial solution with 3 equidistant time
steps yields significantly better accuracy of 18 &0final time.

This behaviour can be easily understood from theEG@r the interface motion (36).
Observe that the Darcy velocity (32) and thus teevdtive dh/di takes maximal
values for smallh. Thus, the single step solution, i.e. the straigie with the slope
_ b
hy(M —1) +1
_ b
h(M -1)+1

, IS steeper than the exact solution (37) withgrsdually decreasing slope



Interface position vs. Time
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Figure 2. The analytical solution, the sequential solution using three equidistant time steps, and the
single step solution for Problem 1. Arrowsrepresent the slopefield for the ODE (35). Segments of the
sequential solution curve correspond to the pressuretime steps.

From Figure 2 it is quite obvious that the accurafythe Euler method (41) can be
improved by considering variable size time stepdeéd, in Figure 2 the curvature of the
exact solution decreases in time, so one wouldbg#er accuracy using smaller time
steps at the beginning of the simulation and lasteps at its end. In subsequent sections
we will propose two procedures for an optimizedalale time steps selection.

3.1. Fixed error time steps

A standard procedure used for the numerical solutbbODES consists in determining
the step sizedt and their total numbeN from the condition that an error over this step

does not exceed a prescribed tolerance, see Jg.Lt us impose a condition that an
error increase during a time step of the Euler oee(d1) is equal to a fixed level:

100 =¢. (44)

RO {R - T2 S 19))
This is a nonlinear equation for the time instanwhich is solved with Newton’s method
for t <t,. Typically, only several Newton iterations are f&iént to reach desired
accuracy, so the overall procedure is fast. Wit thsulting set ofN time steps

max




At =t —t_, the accuracy of the Euler method (41) at finaletity is not greater than
Ne.

Note that there is a possibility that the obtaisetlof N time steps does not necessarily
deliver a minimal error at the final timg,. The following procedure modifies the

instantsf. for given N, so that the final error is minimal among all sgtdN time steps.

3.2. Final error minimization

Let us fix the total number of time steps, and fix the initial and final time instants

andt, . We look for the set of time instants, i =1,...,N —1 such that the errod(t, )at
the final timet, is minimal, cf. (42). This is a multidimensionalmmization problem
with respect to the variablds..., t,_, under the obvious constraift< t,,.

The Euler method (41) yields the following predictifor the interface position at the
final time:

SR RICI L (CIR P
h, = -t~ L) At 45
ho+¢ S -5 ;U(h)t (45)
Let us cast the right-hand side of (45) in fornadtinction
R R C O IR C IR SN
HE G ) =Ry S =2 ) T, (46)

i.e., H:R"™" - R. We are interested in minimizing the erdit, atfinal timet,:

di|ﬁ(t~N)—H(ﬁ,'t;,...,t~N_1)| [100% > min . (47)

Although the function H = H(t,t,,...,t,, )is given in analytical form (46), the

expressions for its derivatives become extremeligybfor large N . For simplicity, we
elect to solve the minimization problem (47) usiagderivative-free Nelder—Mead
simplex method [9].

It is illuminating to consider the dependence @ fimal error on the choice of the time
steps for the case of Problem 1 (see page 12) ubimeg time stepsAt =t —t_,

i = 123. This means that we have to choose two intermediate instantst, and t,
such that the errod(t, ill be minimal. The plot of the surface(t; vs.t andt, is
presented in Figure 3, where the set of admisgilstantst, and t, is determined by the
constraintt, < t,. Observe that the graph of the final error hasdhpeaks: the first at
t =t, =0, the second at =0 and t, = t,, and the third at, = t, = t,. All these cases
correspond to a single step solution so that ther é42) is equal to 100%.



Final error using two time steps

100

Error at final time, %

Figure 3. Final error ininterface position for Problem 1 asafunction of timeinstants ﬂ and f;

The pair (t,t, ) which yields the minimal value of the final errat , is found

numerically using the Nelder—Mead simplex methdd $nce the graph in Figure 3 in a
neighbourhood of its minimum value is relativelatfl the method requires several
hundred iterations to converge. However, since eaeuation of the function (46) is
computationally inexpensive, the overall algoritignfast. From Figure 3 it becomes

obvious that a certain level >d_ corresponds to infinitely many paifg,t, . This
means that the same final accuraty d_,, of the Euler method (41) can be achieved
with infinitely many different combinations of tinstepsAt,, At, .

3.3. Comparison of the procedures

Let us apply the procedures from Section 3.1 aBd@.the solution of Problem 1 (page
12) in such a way that both procedures use oniyn8 steps. This will allow us to see the
advantages of these procedures over a simple chbeguidistant time steps, cf. Figure
2. The fixed error time steps procedure yieldsdlsteps if the error increase between
two time steps is set to e.g. 10%, and for thel fereor minimization procedure we
simply set the total number of time steps to thiidee comparison of results is presented
in Figure 4.



Interface position vs. Time
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Figure 4. Comparison of the exact solution of Problem 1 with its sequential solutions: The one with
equidistant time steps, the one using time stepsfrom the fixed error time steps procedur e of Section
3.1, and the one using time steps from the final error minimization procedure of Section 3.2.

The final errors (42) for the sequential methochgsiarious time steps distributions are
summarized in the following table.

Time step selection procedure  Final Error

Equidistant Steps 18.5%
Fixed Error Steps 16.2%
Final Error Minimization 15.4%

Table 1. Final errorsfor sequential solutions of Problem 1 using 3 time steps.

Figure 4 shows that after the first time step thguential solution using the fixed error
steps procedure is closer to the exact solution tha one with using the final error
minimization procedure. As expected, the final emainimization procedure indeed
gives better results for the final error, see

Table1.

Consider now the solution of Problem 1 with seqiaénhethod using 10 time steps,
whereas the time steps are either taken equidistarcomputed by the procedures of
Sections 3.1 and 3.2. The obtained final errordistied in the following table.



Time step selection procedure | Final Error
Equidistant Steps 4.26%
Fixed Error Steps 3.88%
Final Error Minimization 3.79%

Table2. Final errorsfor sequential solutions of Problem 1 using 10 time steps.

The results in

Table2 show the same qualitative behavior as in

Table 1, although the difference between various time step procedures becomes
smaller. As expected, the sequential method witlst&fs provides better approximation
to the exact solution than the one with 3 stepg distributions of time steps computed
by the fixed error steps procedure of Section 8rid by the final error minimization
procedure are presented in Figure 5.
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Figureb. Distribution of time stepsfor the sequential solution of Problem 1 using 10 steps. L eft: fixed
error steps procedure. Right: final error minimization procedure.

Both sets of time steps in Figure 5 exhibit simibe@haviour: At the beginning of the
computation, when the exact solution has a stesdppe (cf. Figure 4), smaller time steps
are required; when the solution becomes more flkter times, larger time steps can be
taken. The very last time step for the fixed estaps procedure is clipped so that the
computation is stopped exactly at final time.

4. Degree of coupling of the elliptic-hyperbolic system

The results from Sections 2 and 3 can be usedvi® gjiquantitative description to the
degree of coupling of the elliptic-hyperbolic IBMB)—(7). Indeed, as we have already
noticed in Section 2, the case of the mobilityaail =1 corresponds to the situation



when the dimensionless system (28), (33) (and thasdimensional system (5)—(7))
decouples. The exact solution fit =1 is a straight line (38), so the sequential apgroac
(41) with a single time step yields precisely thisact solution. One possible way of
estimating the degree of coupling of the systen), (38) for the cases witM #1 is to
use a difference between the exact solution ansinige step approximation at certain
time instant.

Let us define thelecoupling error of the system (28), (33) as the normalized waasec
error

L (48)
h(ty)

where d . is given by (43). In Section 2 we have shown thatexact solution to the
system (28), (33) can be expressed in terms ofethimensionless parameters: the
mobility ratio M , the initial interface positiorﬁo, and the parametelﬁ, related to the
shape of the Buckley—Leverett flux function. Congagly, the decoupling error is a

function of three variableg = E(M ﬁo 5) .

In what follows, we analyse this functional depamgefor a particular case of Problem 1
(page 12). As stated in Section 3, this problecorspletely determined by the following

values of dimensionless parametels:=3.28, h, =0.01, and D =0.77. The final time
is set toff =0.61

In

Figure 6 we present the exact solution (37) of Problem i Varying values of the
mobility ratio M , together with corresponding decoupling errors).(@serve that the
solution graph becomes steeper for increasvhg and the decoupling errors grow. For
the almost degenerate caske= 101 the exact solution approaches the straight lidg, (3
and the decoupling error is close to zero.

Interface position vs. Time for hD=D.D1 and 0=0.77 Decoupling errorvs. M for h.fﬂ-m and D=0 77
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Figure6. Left: Interface position vs. Timefor Problem 1 with varying mobility ratio M .
Right: corresponding decoupling errors.
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Figure 7. Left: Interface position vs. Timefor Problem 1 with varyinginitial interface position hO
Right: corresponding decoupling errors.

Figure7 illustrates the dependence of the exact solutfdProblem 1 on a change in the
initial interface position,, and the corresponding decoupling errors. Thetwap

Figure7 (left) become more flat with ali, increases, which result in smaller decoupling
errors in

Figure7 (right).
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Figure8. Left: Interface position vs. Timefor Problem 1 with varying parameter IS .
Right: corresponding decoupling errors.

Finally, in
Figures we present the exact solution of Problem 1 foyivay values of the parameter

D, and the corresponding decoupling errors. Thelgrap



Figures show qualitatively the same behaviour as the gréphthe case of varyiniyl .

5. Conclusions and outlook

In this work, we address the issue of an optimalaghof time steps during a sequential
solution of an elliptic-hyperbolic system of paltififferential equations, which describes
a flow of two incompressible phases in porous metiathis goal, we consider a one-
dimensional version of this system, augmented vgfecial initial and boundary

conditions, in Cartesian geometry, and cylindricahd spherically symmetrical cases.
For the resulting one-dimensional initial boundesjue problem (IBVP), we provide an

analytical solution and study its admissibility darons. Furthermore, we show that the
solution for the case of Cartesian geometry is detaly determined by three

dimensionless parameters: The mobility ratio, thial position of the interface between
two phases, and a parameter related to a shape Bckley—Leverett flux function.

The sequential solution of the one-dimensional IBiéPprecisely the forward Euler
method for the numerical solution of ordinary diffetial equations. We propose two
procedures for an optimal time step selection, tastithem on a sample problem for an
interface motion. We show that the resulting tirteps distribution yields a lower error at
the end of the computation than the one obtaindd @guidistant time steps.

Finally, we propose to estimate the degree of dogpdf the one-dimensional elliptic-
hyperbolic IBVP using a normalized difference oé texact solution and a single-step
sequential solution. We illustrate the change ia tecoupling error by varying the
determining dimensionless parameters of a samplagm for an interface motion.

This work is a first step towards an efficient tirsiepping selection for the sequential
solution of the system of equations for multiphfisgvs in porous media. Practically
important problems are inherently three-dimensicarall heterogeneous, so the direct
application of a priori estimates based on anaytane-dimensional models seems to
yield only a rough guideline for the time step seten. Nevertheless, we believe that
understanding of the solution on model problems amalysis of the decoupling error of
the system of governing equations is an importagteggjuisite for an efficient solution of
real-world problems.
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