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Abstract

For systems of hyperbolic conservation laws, a new Glimm functional

was recently constructed when the linearly degenerate manifold in each

characteristic field is either the whole space or it consists of a finitely

many smooth and transversal manifolds of co-dimension one. This new

functional leads to the neat consistency and convergence rate estimation

of the Glimm scheme. In this paper, by the motivation of the result in [2],

we show that the corresponding new Glimm functional can be constructed

for general systems only under the strict hyperbolicity assumption.

1 Introduction

Consider the Cauchy problem for a one dimensional system of conservation lawsut + fx(u) = 0, t ≥ 0, −∞ < x < ∞,

u(x, 0) = u0(x), −∞ < x < ∞,
(1.1)

where u ∈ Rn, u → f(u) is a smooth vector valued map defined in an open set

Ω ⊂ Rn.

As usual, the system in (1.1) is assumed to be strictly hyperbolic, that is,

for every u ∈ Ω the matrix A(u) = ∇uf(u) has n real distinct eigenvalues

λ1(u) < λ2(u) < . . . < λn(u).
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And correspondingly, there are n linearly independent right eigenvectors de-

noted by

r1(u), r2(u), . . . , rn(u).

One of the features of the hyperbolic systems is the formation of the shock

waves. For this, there have been extensive studies on the well-posedness theory

and the solution behavior, etc, cf. [4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 23, 24] and the

references therein.

In particular, the vanishing viscosity limit of the solutions to the hyperbolic

system with artificial viscosity was established in [4]. That is, the solutions uε

to the system uε
t + A(uε)uε

x = εuε
xx, t ≥ 0, −∞ < x < ∞,

uε(x, 0) = u0(x), −∞ < x < ∞,
(1.2)

converges to a unique solution of the hyperbolic Cauchy problem (1.1) under

the assumption of small total variation.

For later presentation, we firstly recall the following basic definition of the

characteristic fields, cf. [18].

Definition 1.1. For i ∈ {1, 2, . . . , n}, the i-th characteristic field is called gen-

uinely nonlinear in Ω if

∇λi · ri 6= 0, for all u ∈ Ω, (1.3)

while the i-th characteristic field is called linearly degenerate if

∇λi · ri = 0, for all u ∈ Ω. (1.4)

In the case when each characteristic field is either genuinely nonlinear or

linearly degenerate, the global existence was established in the fundamental

work of Glimm [12] in the framework of solutions with small total variation.

This is achieved by the introduction of the Glimm scheme and the use of the

Riemann problems as building blocks. Moreover, a deterministic version of the

Glimm scheme was later given in [19].

The Glimm functional introduced in [12] is a key component in the subse-

quent research in this direction. The functional measures the interaction poten-

tial of waves which is used to control the total variation of the solution. The
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decrease of the functional also plays an important role in the wave front tracking

algorithm.

Use {St; t > 0} to denote the standard Riemann semigroup generated by

(1.1) whose trajectory Stu0 is a solution to the Cauchy problem. The L1 sta-

bility theory, cf. [4, 6, 7, 16, 21], guarantees the existence of such a semigroup.

From the uniqueness of the solution to problem (1.1), the approximate solu-

tions constructed by the deterministic version of the Glimm scheme converge

to Stu0 as the mesh size tends to zero. The convergence rate was proved to

be o(1)s
1
2 |ln s| when each characteristic field is either genuinely nonlinear or

linearly degenerate, where s is the mesh size, [8].

For general systems, the solution to the Riemann problem has different struc-

ture so that the Cauchy problem exhibits richer nonlinear phenomena. To es-

timate the wave interactions, one uses the same Glimm functional for waves in

different families but a different one for waves in the same family.

More precisely, in [14, 20, 22], the systems under the following assumption

are studied:

(H)

For each characteristic field, the linear degenerate manifold

LDi ≡ {u : ∇λi(u) · ri(u) = 0} is either the whole space or it

consists of a finite number of smooth manifolds of codimen-

sion one, which are transversal to the characteristic vector

ri(u).

In fact, a “cubic” functional was introduced in [20] and was used in [22] in

order to take care of the wave interactions globally. The functional used in

[20, 22] is defined by the product of the strengths of two interacting waves and

their effective “interaction” angle. Based on this improvement to the classical

Glimm functional, the existence theory with the wave tracing argument for

general systems under the assumption (H) was established in [22]. However, this

functional is not satisfactory in proving the consistency and the convergence rate

of the Glimm scheme. In fact, the consistency of the Glimm scheme was proved

in [22] by carefully and artificially dividing the waves into groups according

to their wave strengths in comparison with the grid size to some power. And

the convergence rate of the Glimm scheme was shown to be o(1)s
1
4 |ln s| in [25]

and then o(1)s
1
3 |ln s| in [15], which are slower than the one given in [8] under

the condition that each characteristic field is genuinely nonlinear or linearly

degenerate.
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Recently, in [14], a new Glimm functional for wave interactions in the same

family is constructed so that the Glimm theory can now be presented in an

elegant way under the assumption (H). In fact, the new Glimm functional for

the wave interactions in the same family is optimal in the following sense. First,

it yields a clear and complete proof of the consistency of the Glimm scheme.

Then it leads to the proof of the same order of convergence rate for the general

systems under the condition (H) as for those under the condition that each

characteristic field is genuinely nonlinear or linearly degenerate. Finally, it

has the same decay effect as the classical one introduced by Glimm when the

assumption of genuine nonlinearity is imposed. Accordingly, the Glimm scheme

for general systems under the assumption (H) can be analyzed satisfactorily

without any artificial adjustment.

The motivation of this paper is the study on very general hyperbolic systems

given in [2, 3, 4]. In particular, a Glimm functional is constructed in [2, 3] for

the systems without the assumption (H), which can be viewed as an elegant

generalization of the one in [20,22] in the integral form except that every wave

in the same family is considered as approaching.

With the integral form of Glimm functional for systems without the assump-

tion (H) given in [2], we can now combine it with the new Glimm functional

introduced in [14] to define a Glimm functional for systems without the assump-

tion (H) so that all the properties induced by the new Glimm functional under

the assumption (H) can still hold without this assumption.

Precisely, the following Glimm type functional will be defined.

F (J) ≡ L(J) + MQ(J),

where

L(J) =
∑

{|α| : α any wave crossing J}, Q(J) = Qd(J) +
1
4
Qs(J),

Qd(J) =
∑

{|α| |β| : interacting waves α and β of distinct

characteristic fields crossing J},

Qs(J) =
n∑

i=1

Qi
s.

(1.5)

Here |α| is the wave strength of a wave α, M > 0 is a sufficiently large constant,

J is any space-like curve. An i-wave αi, that is, a wave in the i-th family, on

the left and a j-wave βj on the right are said to be approaching, if i > j.
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Figure 1: Shock splitting

The definition of Qs is complicated because it is closely related to the con-

struction of i-wave curve in the general system, cf. [2]. Thus, its definition is

postponed to the next section. Intuitively, its form can be illustrated by con-

sidering two i-th family shocks α, β (α, β of the same sign) with speeds σα, σβ

respectively. In this case, the interaction functional Qs corresponding to these

two waves is just

Qs(α, β) =

∫ |α|
0

∫ |β|
0

|σα(ξ)− σβ(ξ′)|dξdξ′

t.v.(α, β)i
, (1.6)

where t.v.(α, β)i is the sum of all i-waves lying between α and β, including α and

β, and the integral is along the re-defined i-wave curves for α and β introduced

by [2] which will be recalled in the next section.

However, the functional Qs =
∑

α,β Qs(α, β) with α, β being in the same

family may not be decreasing through wave interactions. Its value may increase

due to the shock splitting as shown in the following simple example, cf. Figure

1. That is, the denominator t.v.(α2, γ)i after shock splitting: α → α1 + α2

is smaller than the one before the shock splitting: t.v.(α, γ)i. Hence there is

an increase in the functional, and such increase can not be controlled by the

cancellation or decrease in the Glimm functional. One of the key observations in

this paper is that the increase in Qs due to shock splitting can be compensated

by shock merging and eventually the magnitude of oscillation of this kind in

Qs will be shown to be bounded. And this is essential for the use of the new

Glimm functional in the proof of consistency and convergence rate of the Glimm

scheme.

With the above preparation, the main theorem on the new Glimm functional

can be stated as follows.
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Figure 2: The wave interaction

Theorem 1.1. (i) Suppose that there is no shock splitting in the wave in-

teraction. Let ul, um and ur be three nearby states and the Riemann problem

(ul, um) and (um, ur) and (ul, ur) be solved by waves α1, · · · , αn, β1, · · · , βn and

δ1, · · · , δn respectively, see Figure 2. J+ and J− are two mesh curves. Denote

the interaction potential before and after the interaction by Q− and Q+ and

their difference Q+ −Q− by ∆Q. Similar definitions hold for L,F .

Then

∆F = ∆L + M∆Q ≤ −c {Q(α, β) + C(α, β)} , (1.7)

where C(α, β) is the total cancellation in the interaction and Q(α, β) is the

amount of interaction potential of α and β which will be given precisely in the

next section. Here, c is some positive constant depending only on the system.

(ii) On the other hand, if there exists shock splitting, F may increase. How-

ever, for any given time T > 0, we have

F (T )− F (0) ≤ O(1)(Tot.Var. u0)2. (1.8)

Remark 1.1. Note that the new Glimm functional may not be decreasing in

time because of the definition of Qs(t) given later. However, the new Glimm

functional consists of two parts, G(t) and S(t) as shown later in the proof. G

is non-increasing like the classical Glimm functional and the decrease of G can

be used to control the product of wave strength and variation of its propagation

speed. On the other hand, S(t) can be either positive or negative which represents

the oscillation in the interaction potential due to the shock splitting. And it will

be shown later that the absolute value of S(t) is uniformly bounded by the total

variation of the initial data to the second power.
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As an application of this Glimm functional, one obtain the optimal con-

vergence rate of Glimm scheme o(1)
√

s| ln(s)| for general hyperbolic systems as

in [8] for systems under the assumption (H). Here s is the grid size of the Glimm

scheme. Note that another work on this problem can be found in [1].

The rest of the paper will be arranged as follows. In the next section, we

will introduce the new Glimm functional and prove the interaction estimates.

The application of the new functional to the convergence rate will be given in

the last section.

2 Glimm Functional and Interaction Estimates

To study the Cauchy problem (1.1), it is important to understand the Riemann

problem first, in which the initial data has the following simple form:

u0(x) =

u−, for x < 0,

u+, for x > 0.
(2.1)

To solve the Riemann problem, let us recall the approach introduced in [3,4].

Consider a travelling wave for the viscous hyperbolic system

ut + A(u)ux = uxx,

with propagation speed σ. The equation can be written as a first order system

on Rn × Rn × R: 
u̇ = v,

v̇ = (A(u)− σ)v,

σ̇ = 0.

(2.2)

The center subspace N for the system linearized at (u0, 0, λ0
i ) consists of all

vectors (u, v, σ) ∈ Rn × Rn × R such that

Vj = 0, for all j 6= i,

where Vj = 〈l0j , v〉. Here l0j , r
0
j , are the left and right eigenvectors of A(u0) corre-

sponding to the eigenvalue λ0
i ≡ λi(u0). And these eigenvectors are normalized

as follows:

l0i r
0
j = δij , |r0

j | = 1, for all i, j = 1, · · · , n.
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For each i = 1, · · · , n, by the Center Manifold Theorem, there exists a

smooth manifold Mi ⊂ Rn+n+1, tangent to N at (u0, 0, λ0
i ), which is locally

invariant under the flow (2.2). This manifold can be written in the following

form

Mi = {(u, v, σi); v = vir̃i(u, vi, σi)}, with vi = 〈l0i , v〉, (2.3)

〈l0j , r̃i(u, vi, σi)〉 =

1, i = j,

0, i 6= j.
(2.4)

Given the manifold Mi, we can define the generalized eigenvalue λ̃i(u, vi, σi) =

〈l0i , A(u)r̃i(u, vi, σi)〉 corresponding to the generalized eigenvector r̃i(u, vi, σi).

The two smooth functions r̃i, λ̃i defined on the n + 2 variables (u, vi, σi) ∈
Rn × R× R have the following properties

r̃i(u0, 0, λ0
i ) = r0

i , λ̃i(u0, 0, λ0
i ) = λ0

i ,
∂

∂σi
λ̃i(u0, 0, λ0

i ) = 0.

And for some constant C0 > 0, it holds∣∣∣∣ ∂

∂vi
λ̃i(u, vi, σi)

∣∣∣∣ ≤ C0 |u− u0| ,
∣∣∣∣ ∂

∂σi
λ̃i(u, vi, σi)

∣∣∣∣ ≤ C0 |vi| |u− u0| . (2.5)

Given the functions r̃i, λ̃i and any fixed s and ū with |ū − u0| + |s| being

sufficiently small, a curve T i
s [ū] (i = 1, · · · , n) can be constructed by solving for

0 ≤ τ ≤ s the integral system
u(τ) = ū +

∫ τ

0
r̃i(u(ξ), vi(ξ), σi(ξ))dξ,

vi(τ) = f̃i(τ ; γ)− conv[0,s] f̃i(τ ; γ),

σi(τ) = d
dτ conv[0,s] f̃i(τ ; γ),

(2.6)

where f̃i is the scalar reduced flux function

f̃i(τ ; γ) ≡
∫ τ

0

λ̃i(u(ξ), vi(ξ), σi(ξ))dξ, γ(τ) = (u(τ), vi(τ), σi(τ)),

conv[a,b] g(τ) ≡ inf{θg(y) + (1− θ)g(z) : θ ∈ [0, 1], y, z ∈ [a, b], τ = θy + (1− θ)z}.

If s < 0, concave envelope of f̃i is considered.

For each i and some small parameter s, the above system defines a continuous

differentiable curve:

γ : τ 7→ (u(τ ; s, ū), vi(τ ; s, ū), σi(τ ; s, ū)), τ ∈ [0, s] or [s, 0],
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which is used to solve the Riemann problem. In the following, when there is no

ambiguity, we may omit the dependency of u, vi, σ on s, ū. Also for later use,

define T i
s [ū](τ) ≡ u(τ ; s, ū), τ ∈ [0, s] or [s, 0].

To solve the system (2.6), a general class of Lipschitz continuous curves is

studied:

Γi(s, ū) =
{

γ :γ(τ) = (u(τ), vi(τ), σi(τ)), such that |u(τ)− ū| = |τ |, vi(0) = 0,

|vi(τ)| ≤ δ1, |σi(τ)− λ0
i | ≤ 2C0δ1 ≤ 1, τ ∈ [0, s] or [s, 0]

}
,

for some small constant 0 < δ1 << 1 and C0 is defined in (2.5).

Definition 2.1 ( [3, 4]). Define the distance D(·, ·) in Γi(s, ū) by

D(γ, γ′) = δ1 ‖u− u′‖L∞ + ‖vi − v′i‖L1 + ‖viσi − v′iσ
′
i‖L1 ,

where

γ = (u, vi, σi) ∈ Γi(s, ū), γ′ = (u′, v′i, σ
′
i) ∈ Γi(s, ū).

And define the distance P (γ; γ′) for Γi(s, ū) and Γ′i(s
′, ū′) (ss′ ≥ 0) by

P (γ; γ′) = D(γ|I , γ′|I) + |s− s′|.

Here γ|I is the restriction of γ on the interval I and I is the common part of

[0, s] and [0, s′].

In [2, 3], it is proved that the map defined by the right hand side of (2.6) is

a contraction map in Γi(s, ū). So (2.6) can be solved uniquely to define a curve

γ : τ 7→ (u(τ), vi(τ), σi(τ)). Based on this, the Riemann problem can be solved

as follows.

Lemma 2.1. [3,4] Let A be a smooth, matrix valued map defined in a domain

Ω ⊂ Rn. γ : τ 7→ (u(τ), vi(τ), σi(τ)) is the solution to (2.6) defined in a

small neighborhood of zero. Define the right state u+ = u(s). Then the unique

vanishing viscosity solution of the Riemann problem (2.1) is the function

u(x, t) =


u−, if x/t < σi(0),

u(τ), if x/t = σi(τ),

u+, if x/t > σi(s).

(2.7)
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On the other hand, any i-wave (ul, T
i
s [ul](s)) can be associated with a curve

γ defined as the solution to (2.6).

Remark 2.1. From the construction of the solution to the Riemann problem,

it is easy to see that inside an i-wave, the speed σi(τ) is monotone increasing,

since conv[0,s] f̃i is convex for s > 0 while conc[s,0] f̃i is concave for s < 0. And

when the assumption (H) is imposed, the solution constructed can be reduced to

the one given in [20,22], which satisfies the Liu’s entropy condition.

Definition 2.2. [2] Given two points u0 and u′0, set u1 = T i
s1

[u0](s1), u′1 =

T i
s2

[u′0](s2), for some i ∈ {1, · · · , n}. Assume that s1 is positive. Let f̃1 be the

scalar reduced flux function for (2.6) with initial data u0 in [0, s1], f̃2 the reduced

flux function in [0, s2] if s2 ≥ 0 or in [s2, 0] if s2 < 0 and with initial data u′0.

The amount of interaction Ji for the i-waves s1, s2 is defined as follows:

1. if s2 ≥ 0,

Ji(s1, s2) =
∫ s1

0

∣∣∣conv[0,s1] f̃1(ξ)− conv[0,s1+s2](f̃1 ∪ f̃2)(ξ)
∣∣∣ dξ

+
∫ s1+s2

s1

∣∣∣conv[0,s2](f̃1(s1) + f̃2(ξ − s1))− conv[0,s1+s2](f̃1 ∪ f̃2)(ξ)
∣∣∣ dξ,

(2.8)

where f̃1 ∪ f̃2 is the function defined in [0, s1 + s2] as

(f̃1 ∪ f̃2)(s) =

f̃1(s), s ∈ [0, s1],

f̃1(s1) + f̃2(s− s1), s ∈ [s1, s2];

2. if −s1 ≤ s2 < 0,

Ji(s1, s2) =
∫ s1+s2

0

∣∣∣conv[0,s1] f̃1(ξ)− conv[0,s1+s2] f̃1(ξ)
∣∣∣ dξ

+
∫ s1

s1+s2

∣∣∣conv[0,s1] f̃1(ξ)− conc[s1+s2,s1] f̃1(ξ)
∣∣∣ dξ;

(2.9)

3. if s2 < −s1,

Ji(s1, s2) =
∫ 0

s1+s2

∣∣∣conc[s2,0] f̃2(ξ)− conc[s2,−s1] f̃2(ξ)
∣∣∣ dξ

+
∫ s1

0

∣∣∣conc[s2,0] f̃2(ξ)− conv[−s1,0] f̃2(ξ)
∣∣∣ dξ.

(2.10)
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Figure 3: The amount of Ji is represented in colored area, when s1, s2 ≥ 0

If s1 < 0, then concave envelope is used instead of convex envelope in the above

definition.

The amount of Ji is in fact the area bounded by conv f̃1, conv f̃2 and conv(f̃1∪
f̃2). When s1, s2 ≥ 0, the area is illustrated in Figure 3. For other cases, readers

are referred to [2].

In [2], the following Glimm type functional is defined.

Fo(J) ≡ L(J) + MQo(J),

where the subscript “o” is used in contrast to the new one which we will define

later. In the above definition,

Qo(J) = Qd(J) +
1
4
Qos(J),

Qos(J) =
n∑

i=1

Qi
os,

Qi
os =

∑
{
∫

[0,α]
or [α,0]

∫
[0,β]

or [β,0]

|σα(τ)− σβ(τ)|dτdτ ′ : α and β are i-waves crossing J}.

(2.11)

L(J), Qd are defined in (1.5). And σα(τ) ≡ σ(τ ;α, uα) is the solution of (2.6)

with initial state uα.

Remark 2.2. For two i-waves α, β with signed strengths also denoted by α and

β respectively, denote f̃i, f̃
′
i the corresponding reduced flux functions. Assume
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that αβ > 0. For simplicity, suppose further that α > 0. Then we can define

s = sup
{

τ ∈ [0, α] : conv[0,α] f̃i(ξ) = conv[0,α+β]

(
f̃i ∪ f̃ ′i

)
(ξ), ∀ξ ∈ [0, τ ]

}
,

s′ = inf
{

τ ∈ [0, β] : conv[0,β] f̃
′
i(ξ) = conv[0,α+β]

(
f̃i ∪ f̃ ′i

)
(α + ξ), ∀ξ ∈ [τ, β]

}
.

We call Q̃i
os(α, β) ≡ Qi

os(α−s, s′) the quantity of effective interaction potential.

By the definition of Ji(α, β), we can see that

Ji(α, β) = O(1)Q̃i
os(α, β). (2.12)

The functional Qo is non-increasing through the interaction. Indeed, the

following lemma holds.

Lemma 2.2. Let ul, um and ur be three nearby states and let the Riemann prob-

lems (ul, um), (um, ur) and (ul, ur) be solved by waves α1, · · · , αn, β1, · · · , βn

and δ1, · · · , δn respectively. The corresponding curves defined by (2.6) are γα,i, γβ,i, γδ,i

(i = 1, · · · , n). Denote the interaction potential before and after the interaction

by Q−
o and Q+

o .

Then for some positive constant c,

P (γα+β,i; γδ,i) = O(1)

∑
i>j

|αiβj |+
∑

i

Ji

 , (2.13)

n∑
i=1

|δi − (αi + βi)| = O(1)

∑
i>j

|αiβj |+
∑

i

Ji

 , (2.14)

n∑
i=1

|η(δi)− η(αi)− η(βi)| = O(1)

∑
i>j

|αiβj |+
∑

i

Ji

 , (2.15)

∆Qo = Q+
o −Q−

o ≤ −c

∑
i>j

|αiβj |+
∑

i

Ji

 . (2.16)

Here η(α) =
∫ α

0
σ(τ)dτ with σ(τ) = σ(τ ;α, uα) and uα is the left state of the

i-wave α. And

γα+β,i =


γα,i ∪ γβ,i, αi, βi ≥ 0,

γα,i|[0,αi+βi], −αi ≤ βi < 0,

γβ,i|[βi,αi+βi], βi ≤ −αi < 0,

for αi ≥ 0,

with γα,i ∪ γβ,i(τ) =

γα,i(τ), 0 ≤ τ ≤ αi,

γα,i(αi) + γβ,i(τ − αi), αi ≤ τ ≤ αi + βi.
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A similar definition can be given for αi < 0.

Proof. The estimates (2.13), (2.14) and (2.16) can be found in [2]. We only

prove (2.15) here.

Denote γ(τ) = (u(τ), vi(τ), σi(τ)), γ′(τ) = (u′(τ), v′i(τ), σ′i(τ)), γ′′(τ) =

(u′′(τ), v′′i (τ), σ′′i (τ)) the solutions to (2.6) corresponding to the i-waves δi, αi, βi

respectively. By the construction (2.6), we have

η(δi) =
∫ δi

0

σi(τ)dτ = f̃i(δi; γ) =
∫ δi

0

λ̃i(u(τ), vi(τ), σi(τ))dτ,

η(αi) =
∫ αi

0

σ′i(τ)dτ = f̃i(αi; γ′) =
∫ αi

0

λ̃i(u′(τ), v′i(τ), σ′i(τ))dτ,

η(βi) =
∫ βi

0

σ′′i (τ)dτ = f̃i(βi; γ′′) =
∫ βi

0

λ̃i(u′′(τ), v′′i (τ), σ′′i (τ))dτ.

It suffices to consider the case where αi, βi > 0. The other cases can be proved

similarly. In this case, we have

|η(δi)− η(αi)− η(βi)|

=O(1)

∑
i>j

|αiβj |+
∑

i

Ji


+
∫ αi

0

[λ̃i(u(τ), vi(τ), σi(τ))− λ̃i(u′(τ), v′i(τ), σ′i(τ))]dτ

+
∫ βi

0

[λ̃i(u(αi + τ), vi(αi + τ), σi(αi + τ))− λ̃i(u′′(τ), v′′i (τ), σ′′i (τ))]dτ

=O(1)

∑
i>j

|αiβj |+
∑

i

Ji

+ I1 + I2.

By the property of λ̃i (2.5), the integral I1 can be estimated as follows:

I1 ≤O(1)
∫ αi

0

[wwwDuλ̃i(u, vi, σi)
www

L∞[0,αi]

|u(τ)− u′(τ)|

+
wwwDvi

λ̃i(u, vi, σi)
www

L∞[0,αi]

|vi(τ)− v′i(τ)|

+

wwwwwDσi λ̃i(u, vi, σi)
|vi|

wwwww
L∞[0,αi]

|vi(τ)||σi(τ)− σ′i(τ)|
]
dτ

≤ O(1)max{|αi|, δ̄}
[
‖u− u′‖L∞[0,αi]

+ ‖vi − v′i‖L1
[0,αi]

+ ‖viσ − v′iσ
′
i‖L1

[0,αi]

]
,
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where δ̄ = sup0≤τ ′≤αi,0≤τ ′′≤βi
{|u′(τ ′)− u0|, |u′′(τ ′′)− u0|}. However, by (2.13)

and the definition of the norm P (· ; ·), we have

I1 ≤ O(1)

∑
i>j

|αiβj |+
∑

i

Ji

 .

The bound of I2 can be obtained similarly. So (2.15) holds.

Corollary 2.1. In the same setting as Lemma 2.2, for any constant σ̄, the

following holds when αiβi > 0, αk = βk = 0(k 6= i):∫ δi

0

|σi(τ)− σ̄|dτ −
∫ αi

0

|σ′i(τ)− σ̄|dτ −
∫ βi

0

|σ′′i (τ)− σ̄dτ | ≤ O(1)Ji. (2.17)

Proof. It suffices to consider the case when δi is a single shock. If this is not the

case, it is easy to see that either σi(τ) = σ′i(τ) or σi(δi− τ) = σ′i(βi− τ) outside

the shock. Therefore, the contribution of these parts to both sides of (2.17) is

zero.

From the monotonicity of σi(τ) and (2.15), we can compare σi, σ
′
i and σ′′i :

σ′i(τ) ≥ σi(s) = σi ≥ σ′′i (τ ′), for τ ∈ [0, αi], τ ′ ∈ [0, βi]. (2.18)

Now suppose that σi ≥ σ̄. The other cases can be treated similarly.

Since σ′i(τ) ≥ σi(s) ≥ σ̄, we have∫ δi

0

|σi(τ)− σ̄|dτ −
∫ αi

0

|σ′i(τ)− σ̄|dτ

=
∫ δi

0

(σi(τ)− σ̄)dτ −
∫ αi

0

(σ′i(τ)− σ̄)dτ

=η(δi)− η(αi)− σ̄(δi − αi).

(2.19)

By (2.14) and (2.15), the above equality can be estimated by∫ δi

0

|σi(τ)− σ̄|dτ −
∫ αi

0

|σ′i(τ)− σ̄|dτ = η(βi)− σ̄βi + O(1)Ji.

On the other hand,

η(βi)− σ̄βi =
∫ βi

0

(σ′′i (τ)− σ̄)dτ ≤
∫ βi

0

|σ′′i (τ)− σ̄|dτ.

Hence, (2.17) follows.
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Another lemma is borrowed from [2], which is useful to estimate the differ-

ence of σ.

Lemma 2.3. Let f, g be C1 functions on the interval [0, s]. Then we havewwd(conv[0,s] f)− d(conv[0,s] g)
ww

L1 ≤ ‖df − dg‖L1 . (2.20)

Inspired by the analysis in [14], we can improve the above interaction po-

tential in a way similar to (1.6). To do this, we define the following quantities

for an i-wave (ū, T i
s [ū](s)). For any τ ∈ [0, s] or [s, 0],

[τ ]+s,ū,i =


max[a,b]⊂[0,s]

a<b

{b : τ ∈ [a, b], such that d
dξ σ(ξ; s, ū) = 0 on [a, b]}, s > 0,

min[a,b]⊂[s,0]
a<b

{a : τ ∈ [a, b], such that d
dξ σ(ξ; s, ū) = 0 on [a, b]}, s < 0,

[τ ]−s,ū,i =


min[a,b]⊂[0,s]

a<b

{a : τ ∈ [a, b], such that d
dξ σ(ξ; s, ū) = 0 on [a, b]}, s > 0,

max[a,b]⊂[s,0]
a<b

{b : τ ∈ [a, b], such that d
dξ σ(ξ; s, ū) = 0 on [a, b]}, s < 0.

When there is no ambiguity, we may write [τ ]± to omit the dependency of [τ ]±

on s, ū, i. If [τ ]− 6= [τ ]+, then
(
T i

s [ū]([τ ]−), T i
s [ū]([τ ]+)

)
is a shock; while if

[τ ]− = [τ ]+,
(
T i

s [ū]([τ ]−), T i
s [ū]([τ ]+)

)
is just the state T i

s [ū]([τ ]−).

Then we can define the quantity t.v.(α, β)i for general i-waves instead of

only shocks under the same setting of Definition 2.2.

t.v.(T i
α[uα](τ1), T i

β [uβ ](τ2))i ≡ |[τ1]+ − [τ1]−|+
∣∣∣∑γ

∣∣∣+ |[τ2]+ − [τ2]−|, (2.21)

where the sum of the signed strength of γ is over all the i-waves between(
T i

α[uα]([τ1]−), T i
α[uα]([τ1]+)

)
and

(
T i

β [uβ ]([τ2]−), T i
β [uβ ]([τ2]+)

)
excluding the

waves
(
T i

α[uα]([τ1]−), T i
α[uα]([τ1]+)

)
and

(
T i

β [uβ ]([τ2]−), T i
β [uβ ]([τ2]+)

)
.

With the above notations, we define Qs =
∑

i Qi
s as follows:

Qi
s =

∑
{
∫

[0,α]
or [α,0]

∫
[0,β]

or [β,0]

|σα(τ)− σβ(τ ′)|dτdτ ′

t.v.(T i
α[uα](τ), T i

β [uβ ](τ ′))i
: α and β

are i-waves crossing J with left states uα and uβ}.

(2.22)

Qd, L(J) and M are defined as before.

Remark 2.3. From the Lipschitz continuity of the function σα(τ), it is easy to

see that

Qi
s(α, β) ≤ O(1)|αβ|. (2.23)
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Figure 4: Case I

Now we are ready to prove Theorem 1.1. Theorem 1.1 is proved by consider-

ing some typical cases. In the first two cases, we assume that there is no shock

splitting while the case with shock splitting will be discussed in the third case.

Proof of Theorem 1.1. Case (I)(cf. Fig.4): Suppose that α, β, εl(l = 1, 2, 3, · · · )
are i-waves. γ can be any other family wave. Note that there can be count-

ably many waves in other families. Here we choose one γ to represent them

for simplicity. The following argument will be the same if there are more than

one wave in other families. The total strength of all waves is bounded by

Tot.Var. u = O(1)L(t−). Assume α interacts with β at time t:

α + β → δi +
∑
k 6=i

δk.

Again, denote the left states of these i-waves α, β, δi, εl by uα, uβ , uδi
, uεl

re-

spectively. And for simplicity, we assume α ≥ 0, εl ≥ 0.

Consider two subcases as follows.

Case (I.1) β ≥ 0. Notice that in this case, there is no cancellation. Without

loss of generality, we can assume that the i-wave δi is a single shock. Then

Qi
s(δi, δi) = 0,

∂

∂τ

(
t.v.(T i

εl
[uεl

](τ ′), T i
δi

[uδi ](τ))i

)
= 0, for τ ∈ [0, δi], τ ′ ∈ [0, εl].

(2.24)

From the standard wave interaction estimate, we know that the change in the
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functionals L and Qd at time t are

∆L ≡ L(t+)− L(t−) = O(1)Ji(α, β), (2.25)

∆Qd ≡ Qd(t+)−Qd(t−) = O(1)(L(t−))Ji(α, β). (2.26)

And due to (2.23), we have∑
k 6=i

∆Qk
s ≡

∑
k 6=i

(Qk
s(t+)−Qk

s(t−)) = O(1)(L(t−))Ji(α, β). (2.27)

Before the wave interaction at time t, the wave interaction potential Qs is

Qi
s(t−) = 2

∫
[0,α]

∫
[0,β]

|σα(τ)− σβ(τ ′)|dτdτ ′

t.v.(T i
α[uα](τ), T i

β [uβ ](τ ′))i

+ 2
∑

l

{∫
[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i
+
∫

[0,εl]

∫
[0,β]

|σεl
(τ ′)− σβ(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](τ))i

}
+ Qi

s(α, α) + Qi
s(β, β) +

∑
l

Qi
s(εl, εl).

(2.28)

After the wave interaction, it becomes

Qi
s(t+) =

∑
l

2
∫

[0,εl]

∫
[0,δi]

|σεl
(τ ′)− σδi

(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi

](τ))i
+
∑

l

Qi
s(εl, εl).

(2.29)

Then

∆Qi
s ≡ Qi

s(t+)−Qi
s(t−)

=− 2
∫

[0,α]

∫
[0,β]

|σα(τ)− σβ(τ ′)|dτdτ ′

t.v.(T i
α[uα](τ), T i

β [uβ ](τ ′))i

+
∑

l

2
{∫

[0,εl]

∫
[0,δi]

|σεl
(τ ′)− σδi

(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi

](τ))i

−
∫

[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i
−
∫

[0,εl]

∫
[0,β]

|σεl
(τ ′)− σβ(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](τ))i

}
−
{
Qi

s(α, α) + Qi
s(β, β)

}
≡− 2Qi

s(α, β) + I + II.

By the definition of t.v.(· , ·)i, (2.14) and (2.24), we know that for any l ∈
{1, 2, 3, · · · } and τ ′ ∈ [0, εl],

t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi

](τ))i = t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi

](δi))i

=t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i + O(1)Ji(α, β),
(2.30)
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t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i ≥ t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](τ))i, for τ ∈ [0, β],

(2.31)

t.v.(T i
α[uα](0), T i

β [uβ ](β))i ≥ t.v.(T i
β [uβ ](τ ′′), T i

β [uβ ](τ))i, for τ, τ ′′ ∈ [0, β],

(2.32)

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i ≥ t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i, for τ ∈ [0, α],

(2.33)

t.v.(T i
α[uα](0), T i

β [uβ ](β))i ≥ t.v.(T i
α[uα](τ ′′), T i

α[uα](τ))i, for τ, τ ′′ ∈ [0, α],

(2.34)

t.v.(T i
α[uα](0), T i

β [uβ ](β))i ≥ t.v.(T i
α[uα](τ), T i

β [uβ ](τ ′))i, for τ ∈ [0, α], τ ′ ∈ [0, β],

(2.35)

and

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i ≥ t.v.(T i
α[uα](0), T i

β [uβ ](β))i. (2.36)

Notice that (2.30) is true when there is no shock splitting.

Then by applying (2.30) and (2.31), I can be estimated as follows:

I ≤
∑

l

2
∫

[0,εl]

dτ ′
{∫

[0,δi]

|σεl
(τ ′)− σδi

(τ)|dτ

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i + O(1)Ji(α, β)

−
∫

[0,β]

|σεl
(τ ′)− σβ(τ)|dτ

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i
−
∫

[0,α]

|σεl
(τ ′)− σα(τ)|dτ

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i

}

+
∑

l

2

{∫
[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i
−
∫

[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i

}

=
∑

l

2
∫ εl

0

dτ ′
∫ δi

0
|σεl

(τ ′)− σδi
(τ)|dτ −

∫ β

0
|σεl

(τ ′)− σβ(τ)|dτ −
∫ α

0
|σεl

(τ ′)− σα(τ)|dτ

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i

+
∑

l

2

{∫
[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](β))i
−
∫

[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i

}
+ O(1)(L(t−))Ji(α, β)

≡I1 + I2 + O(1)(L(t−))Ji(α, β). (2.37)

The estimate of I2 is simple because it is always negative due to (2.33). And
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from Corollary 2.1,

I1 ≤ O(1)
∑

l

|εl|Ji(α, β)
t.v.(T i

α[uα](0), T i
β [uβ ](β))i

≤ O(1) (L(t−))Qi
s(α, β).

Here we have used (2.36) and (2.12).

On the other hand, II ≤ 0.

Therefore,

∆Qi
s =− 2Qi

s(α, β) + I + II

≤− 2Qi
s(α, β) + O(1)(L(t−))Qi

s(α, β).
(2.38)

By combining the estimates (2.25), (2.26), (2.27) and (2.38), we can get (1.7) for

some suitably chosen constant M when the total variation of waves is sufficiently

small.

Case (I.2) β < 0. In addition, we assume that δi > 0 and |α| > |β|. The

case when δi ≤ 0 can be treated similarly.

Then in this case, the amount of cancellation is C(α, β) = |β|. By the

Lipschitz continuity of the wave curve, it is straightforward to get

∆L ≡ L(t+)− L(t−) = −C(α, β), (2.39)

∆Qd ≡ Qd(t+)−Qd(t−) = O(1)(L(t−))C(α, β), (2.40)∑
k 6=i

∆Qk
s ≡

∑
k 6=i

(Qk
s(t+)−Qk

s(t−)) = O(1)(L(t−))C(α, β). (2.41)

Similar to the previous case, we have

∆Qi
s ≡ Qi

s(t+)−Qi
s(t−)

=− 2
∫

[0,α]

∫
[β,0]

|σα(τ)− σβ(τ ′)|dτdτ ′

t.v.(T i
α[uα](τ), T i

β [uβ ](τ ′))i

+
∑

l

2
{∫

[0,εl]

∫
[0,δi]

|σεl
(τ ′)− σδi(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi ](τ))i

−
∫

[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i
−
∫

[0,εl]

∫
[β,0]

|σεl
(τ ′)− σβ(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](τ))i

}
+
{
Qi

s(δi, δi)−Qi
s(α, α)−Qi

s(β, β)
}

≡− 2Qi
s(α, β) + I + II.

By the Lipschitz continuity of σ(τ ; s, u) on s, we have

|σδi(τ)− σα(τ)| ≤ O(1)C(α, β). (2.42)
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Figure 5: Case II

Since there is no shock splitting, then for τ ∈ [0, δi],∣∣t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi ](τ))i − t.v.(T i

εl
[uεl

](τ ′), T i
α[uα](τ))i

∣∣ ≤ O(1)C(α, β).

(2.43)

Thus

I =
∑

l

2
{∫

[0,εl]

∫
[0,δi]

[
|σεl

(τ ′)− σδi
(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

δi
[uδi

](τ))i
− |σεl

(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i

]
−
∫

[0,εl]

[ ∫
[δi,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i
+
∫

[β,0]

|σεl
(τ ′)− σβ(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

β [uβ ](τ))i

]}
≤O(1)(L(t−))C(α, β),

where we have used (2.23) and (2.42). Similar argument can be applied to II.

Thus,

∆Qi
s ≤ O(1)(L(t−))C(α, β). (2.44)

(1.7) holds by choosing a suitably large constant M when the total variation of

the solution is small.

Case (II)(cf. Fig.5): Assume that εl(l = 1, 2, 3, · · · ), α are i-waves and β is

a j-wave (i > j). γ can be any other k-family wave (k 6= i). The interaction is

at time t

α + β −→ α + β +
∑

k 6=i,j

δk.

For simplicity, we may also assume α, εl ≥ 0.
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From the standard wave interaction estimate (2.14) and (2.23), we know the

changes in the functionals L and Qd at time t are

∆L ≡ L(t+)− L(t−) = O(1) |αβ| , (2.45)

∆Qd ≡ Qd(t+)−Qd(t−) = − |αβ|+ O(1)(L(t−)) |αβ| , (2.46)∑
k 6=i

∆Qk
s ≡

∑
k 6=i

(Qk
s(t+)−Qk

s(t−)) = O(1)(L(t−)) |αβ| . (2.47)

And

∆Qi
s ≡ Qi

s(t+)−Qi
s(t−)

=
∑

l

2
{
Qi

s(εl, ᾱ)−Qi
s(εl, α)

}
+ Qi

s(ᾱ, ᾱ)−Qi
s(α, α)

=
∑

l

2
{∫

[0,εl]

∫
[0,ᾱ]

|σεl
(τ ′)− σᾱ(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

ᾱ[uᾱ](τ))i
−
∫

[0,εl]

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτdτ ′

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i

}
+
{
Qi

s(ᾱ, ᾱ)−Qi
s(α, α)

}
.

It is easy to verify the following inequality for any constant σ̄:∣∣∣∣∣
∫

[0,ᾱ]

|σ̄ − σᾱ(τ)|dτ −
∫

[0,α]

|σ̄ − σα(τ)|dτ

∣∣∣∣∣
≤
∫ min{ᾱ,α}

0

|σα(τ)− σᾱ(τ)|dτ + O(1)|ᾱ− α|.

(2.48)

In addition, by applying Lemma 2.3 and the similar argument in proving

(2.15), we have∫ min{ᾱ,α}

0

|σα(τ)− σᾱ(τ)|dτ

≤
wwwdf̃i(τ ; γᾱ)− df̃i(τ ; γα)

www
L1

min{ᾱ,α}

≤ O(1)D(γᾱ, γα).
(2.49)

Here γα, γᾱ are the solutions to (2.6) corresponding to α, ᾱ. Then by (2.14), we

can conclude that for any l ∈ 1, 2, 3, · · ·,∣∣∣∣∣
∫

[0,ᾱ]

|σεl
(τ ′)− σᾱ(τ)|dτ −

∫
[0,α]

|σεl
(τ ′)− σα(τ)|dτ

∣∣∣∣∣ ≤ O(1) |αβ| . (2.50)

On the other hand, when there is no shock splitting, we have∣∣t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i − t.v.(T i
εl

[uεl
](τ ′), T i

ᾱ[uᾱ](τ))i

∣∣ = O(1) |αβ| .
(2.51)
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Figure 6: A shock splits into several shocks

Thus,

∆Qi
s ≤ O(1)(L(t−)) |αβ| (2.52)

By combining (2.45), (2.46), (2.47) and (2.52), we can get (1.7).

Case (III) In this case, we consider the case when shock splitting hap-

pens. In fact, when the characteristic field is not genuinely linear, a shock may

split into several small shocks, cf. Figure 6, through the wave interaction, in

particular, through wave cancellation.

Since conv[0,α1+···+αm] f̃i(τ) = conv[0,α1+···+αm−1] f̃i(τ ′) = conv[0,αm] f̃i(τ ′′),

the large shock with strength α1 + · · · + αm may split into two shocks with

strength α1 + · · ·+ αm−1 and αm:

bα1 + · · ·+ αmc → bα1 + · · ·+ αm−1c+ αm,

where bα1 + · · ·+αmc is a shock consisting of m parts from left to right denoted

by αi, i = 1, · · · ,m as shown in Figure 6. This could happen for example when

there is an i-wave β on the right of bα1 + · · · + αmc with −αm ≤ β ≤ 0 that

cancels part of αm. Then the interaction:

bα1 + · · ·+ αmc+ β → bα1 + · · ·+ αm−1c+ bαm + βc

is equivalent to a shock splitting and an interaction

bα1 + · · ·+ αmc → bα1 + · · ·+ αm−1c+ αm,

αm + β → bαm + βc.

The splitting of a shock is the consequence of cancellation, however, the amount

of cancellation can be arbitrarily small.
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Observe that the change of the speed of the shock through the splitting is

zero: σbα1+···+αmc = σbα1+···+αm−1c = · · · = σα1 = · · · = σαm
= σ̄. Then the

splitting of the i-th shock bα1 + · · ·+αmc into bα1 + · · ·+αm−1c and αm makes

the functional Qi
s increase by amount

Qi
s(bα1 + · · ·+ αm−1c, γ) + Qi

s(α1, γ)−Qi
s(bα1 + · · ·+ αmc, γ)

=
∫

[0,γ]
or [γ,0]

(
1

t.v.(αm, T i
γ [uγ ](s))i

− 1
t.v.

(
bα1 + · · ·+ αmc, T i

γ [uγ ](s)
)
i

)
|αm| |σ̄ − σγ(s)|ds,

(2.53)

when there is an i-th shock γ on the right of bα1 + · · ·+ αmc.
To understand the effect of the shock splitting on the functional Qs, we

consider the following typical subcases.

Subcase (III.1): We first consider a series of splittings in the time interval

[0, T ]:

bα1 + · · ·+ αmc → bα1 + · · ·+ αm−2c+ bαm−1 + αmc

→ bα1 + · · ·+ αm−3c+ αm−2 + αm−1 + αm

· · · · · · ,

→ α1 + α2 + · · ·+ αm.

And assume for the moment that there are no other wave interactions in the

meanwhile. In this case, the change of the functional Qi
s is

1
2
∆Qi

s =
m∑

k=1

∑
γ

Qi
s(αk, γ)−

∑
γ

Qi
s(bα1 + α2 + · · ·+ αmc, γ)

=
m∑

k=1

∑
γ


∫

[0,γ]
or [γ,0]

ds

(
|αk| |σ̄ − σγ(s)|

t.v.(αk, T i
γ [uγ ](s))i

− |αk| |σ̄ − σγ(s)|
t.v.

(
b
∑m

l=1 αlc, T i
γ [uγ ](s)

)
i

)
=

m∑
k=1

∑
γ


∫

[0,γ]
or [γ,0]

 (
∑m

l=1 αl − αk)|αk| |σ̄ − σγ(s)|[
t.v.(αk, T i

γ [uγ ](s))i

] [
t.v.

(
b
∑m

l=1 αlc, T i
γ [uγ ](s)

)
i

]
ds


≤

m∑
k=1

∑
γ

|αk||γ|.
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Here, we have used

|σ̄ − σγ(s)| ≤ t.v.(αk, T i
γ [uγ ](s))i, (2.54)

0 ≤ (
m∑

l=1

αl − αk) ≤ t.v.

(⌊
m∑

l=1

αl

⌋
, T i

γ [uγ ](s)

)
i

. (2.55)

Thus, the total effect of all these shock splittings on the functional Q is bounded

by ∑
|∆Qi

s| ≤ O(1)(L(0))2 ≤ O(1)(Tot.Var. u0)2. (2.56)

Note that the above estimate is independent of how bα1 + · · ·+ αmc splits and

how large m is.

As for the case when there are other wave interactions of i-waves, from

(2.14), the difference of the total strength of γ is bounded by the decrease of

Fo. Therefore, the bound (2.56) also holds.

Subcase (III.2) Now we consider the case when a shock splits into several

parts but then they merge into one shock wave after some wave interactions.

This procedure introduces some oscillation terms in the interaction potential.

A typical case is the following series of interactions or shock splittings between

i-waves (see Fig 7):

bα + β + s + γc → bα + β + sc+ γ, (2.57)

(−α) + bα + β + sc → β + s, (2.58)

γ + ε → bγ + εc, (2.59)

s + bγ + εc → bs + γ + εc, (2.60)

β + bs + γ + εc → bβ + s + γ + εc. (2.61)

Here S1, S2 are the points where conv f̃i and f̃i have contact.

And similar to the above cases, suppose first that there are no other wave

interactions in the meanwhile and δ is an i-wave on the right. To illustrate the

idea, in the following, we assume that δ is a shock (δ ≥ 0).

By definition, the difference of Qi
s through this sequence of interactions is

1
2
∆Qi

s = Qi
s(γ, δ) + Qi

s(bα + β + sc, δ)−Qi
s(bα + β + s + γc, δ)

+ Qi
s(s, δ) + Qi

s(β, δ)−Qi
s(bα + β + sc, δ)−Qi

s((−α), δ)

+ Qi
s(bs + γ + εc, δ)−Qi

s(ε, δ)−Qi
s(γ, δ)−Qi

s(s, δ)−Qi
s(γ, ε)−Qi

s(s, bγ + εc)
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Figure 7: Wave interaction and shock splitting

+ Qi
s(bβ + s + γ + εc, δ)−Qi

s(bs + γ + εc, δ)−Qi
s(β, δ)

=Qi
s(bβ + s + γ + εc, δ)−Qi

s(bα + β + s + γc, δ)−Qi
s(ε, δ)

−Qi
s(γ, ε)−Qi

s(s, bγ + εc)

=
{

Qi
s(bβ + s + γ + εc, δ)− Qi

os(β, δ) + Qi
os(s, δ) + Qi

os(γ, δ)
t.v.(β, δ)i

−Qi
s(ε, δ)

}
+
{

Qi
os(β, δ) + Qi

os(s, δ) + Qi
os(γ, δ)

t.v.(β, δ)i
−Qi

s(bα + β + s + γc, δ)
}

=I + II. (2.62)

Since t.v.(ε, δ)i ≤ t.v.(β, δ)i, we have

I ≤ 0. (2.63)

While II ≤ O(1)|δ||α|, where α is the cancellation.

Thus, modulo the cancellation, ∆Qi
s ≤ 0. In fact, this reflects the fact that

the interaction of same family waves in same direction always simplify the wave

pattern. So it is not a coincidence.

The above computation can also be viewed from another aspect which gives

a better understanding of the oscillation terms involved. That is, if we consider

the interaction (2.57), (2.58), (2.59), (2.60) and (2.61) one by one and take

the terms I2 in subcase (I.1) (2.37) into account. Indeed, from the analysis in
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subcase (I), the difference of Qi
s after the interactions (2.59) and (2.60) is

1
2
∆Qi

s ≤Qi
os(ε, δ)

[
1

t.v.(bγ + εc, δ)i
− 1

t.v.(ε, δ)i

]
+ Qi

os(bγ + εc, δ)
[

1
t.v.(bs + γ + εc, δ)i

− 1
t.v.(bγ + εc, δ)i

]
−Qi

s(γ, ε)−Qi
s(s, bγ + εc),

(2.64)

where the first and second terms come from the term I2 in subcase (I.1). They

can be written in the following forms respectively:

Qi
os(ε, δ)

[
1

t.v.(bγ + εc, δ)i
− 1

t.v.(ε, δ)i

]
=Qi

s(bγ + εc, δ)−Qi
s(ε, δ)−

Qi
os(bγ + εc, δ)−Qi

os(ε, δ)
t.v.(bγ + εc, δ)i

=Qi
s(bγ + εc, δ)−Qi

s(ε, δ)−Qi
s(γ, δ) + O(1)δQi

s(γ, ε),

(2.65)

Qi
os(bγ + εc, δ)

[
1

t.v.(bs + γ + εc, δ)i
− 1

t.v.(bγ + εc, δ)i

]
=Qi

s(bs + γ + εc, δ)−Qi
s(bγ + εc, δ)− Qi

os(bs + γ + εc, δ)−Qi
os(bγ + εc, δ)

t.v.(bs + γ + εc, δ)i

=Qi
s(bs + γ + εc, δ)−Qi

s(bγ + εc, δ)−Qi
s(s, δ) + O(1)δQi

s(s, bγ + εc),
(2.66)

where we have used Corollary 2.1 as in subcase (I.1). This is essentially the

same as our previous computation.

Combine subcase (III.1) and (III.2), we can see that the total contribution

of shock splittings can be bounded by (2.56) in any time interval [0, T ].

The proof of the interaction estimate in general case is the combination of

the above typical cases.

From the proof of Theorem 1.1, we can divide the functional Qs into two

functionals which are useful in the wave tracing argument.

Corollary 2.2. In any time interval [0, T ], denote the time when the interaction

of i-th family waves or the splitting of i-th family shocks happens by tik, k ∈ N, i =

1, · · · , n. Define a functional S(t) with S(0) = 0. S is unchanged except at tik.

At tik, we define the quantity S(tik+) = S(tik−) + ∆S(tik) by distinguishing two

cases:
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(i) In the case of wave interaction of i-family waves as in Figure 4, we define

∆S(tik)

=
∑

l

2
∫

[0,εl]
or [εl,0]

∫
[0,α]

or [α,0]

{
|σεl

(τ ′)− σα(τ)|
t.v.(T i

εl
[uεl

](τ ′), T i
β [uβ ](β))i

− |σεl
(τ ′)− σα(τ)|

t.v.(T i
εl

[uεl
](τ ′), T i

α[uα](τ))i

}
dτdτ ′.

(2.67)

Similarly, if there are i-family waves εk on the right of α and β, we define

∆S(tik)

=
∑

k

2
∫

[0,εk]
or [εk,0]

∫
[0,β]

or [β,0]

{
|σβ(τ)− σεk

(τ ′)|
t.v.(T i

β [uα](α), T i
εk

[uεk
](τ ′))i

− |σβ(τ)− σεk
(τ ′)|

t.v.(T i
β [uβ ](τ), T i

εk
[uεk

](τ ′))i

}
dτdτ ′.

(2.68)

And in general, when there are ith-family waves on both left and right of α and

β, the ∆S(tik) is the summation of the above two terms.

(ii) In the case of shock splitting of i-family as in Figure 1: α → α1 + α2,

we define

∆S(tik)

=2
∑

γ

∫
[0,γ]

or [γ,0]

(
1

t.v.(α2, T i
γ [uγ ](s))i

− 1
t.v.

(
bα1 + α2c, T i

γ [uγ ](s)
)
i

)
|α2| |σα − σγ(s)|ds.

(2.69)

Then we can define a functional S(t) for all time t. With S, we can define

another non-decreasing functional G.

In any time interval [0, T ], denote by t̃k, k ∈ N the time when the interaction

of different family waves happens. G is unchanged except at tk ∈ {tik; k ∈ N, i =

1, · · · , n} ∪ {t̃k; k ∈ N} and

G(0) = F (0), G(tk+) = G(tk−) + ∆G(tk), (2.70)

∆G(tk) ≡ ∆S(tk)−∆F (tk), (2.71)

where ∆F (tk) = F (tk+)−F (tk−) as usual. At any tk when the waves α and β

interact, we have

∆G(tk) ≥ c (Q(α, β) + C(α, β)) ≥ 0, (2.72)
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where c > 0 is a constant depending only on the system. And for any T > 0,

S(T ) ≤ O(1)(Tot.Var. u0)2, (2.73)

0 ≤ G(T ) ≤ O(1)(Tot.Var. u0)2, (2.74)

where u0 is the initial data and the 0(1) constant is independent of T .

Furthermore, in the case I.1 as in Figure 4, we have∫ α+β

0

|σδi(s)− (σα ∪ σβ)(s)|ds ≤ O(1)∆G(tik). (2.75)

Proof. In the proof, without loss of generality, we assume that there is only

one wave interaction at a given interaction time. On the other hand, if there

are more than one wave interactions happen at one time, the change of the

functional is just the sum over all the changes through all the interactions at

that time.

By the estimate of I (2.37) in Theorem 1.1 case (I), we see that in case (I)

∆F (tik) ≤
{
−c(Qi

s(α, β) + C(α, β))
}

+ ∆S(tik),

when Tot.Var.(u) is sufficiently small. Here ∆S(tik) comes from the estimate of

I2 in the proof of Theorem 1.1 case (I.1). As for Theorem 1.1 case (III), it is

easy to see that

∆F (tik) = ∆S(tik). (2.76)

In both cases, we have

∆G(tik) = ∆S(tik)−∆F (tik) ≥ c
(
Qi

s(α, β) + C(α, β)
)
≥ 0. (2.77)

On the other hand, at the time t̃k when different family waves interacts as in

Figure 5, we have

∆G(tk) = −∆F (tk) ≥ cQd(α, β) ≥ 0. (2.78)

Therefore, we define a non-decreasing functional G at any time when the waves

interact or shocks split and (2.72) holds. And (2.73) can be justified by applying

the argument used in (2.64). Then (2.73) and (2.74) are the direct consequences

of the definition and the estimates (1.8) and (2.56).

The proof of (2.75) is similar to the proof of Theorem 3.3 in [14]. By defi-

nition, in case (I.1), it suffices to consider the case that δi is a single shock. In

this case, by (2.15),
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σδi
=

η(α) + η(β)
α + β

+ O(1)
Qi

os(α, β)
α + β

.

And as discussed in Corollary 2.1, the monotonicity property of σα and σβ

implies that ∫ α+β

0

|σδi
(s)− (σα ∪ σβ)(s)|ds

=
∫ α

0

(σα(s)− σδi(s))ds +
∫ β

0

(σδi(α + s)− σβ(s))ds

=2
βη(α)− αη(β)

α + β
+ O(1)

Qi
os(α, β)
α + β

≤O(1)Qi
s(α, β) ≤ O(1)∆G(tik).

(2.79)

And this completes the proof of the corollary.

3 Application

As an application of the Glimm functional (2.22), in this section, we study the

convergence rate of Glimm scheme.

To state the theorem, the following equi-distributed random sequence is

used, cf. [8].

Lemma 3.1. Let

Dm,n = sup
λ∈[0,1]

∣∣∣∣∣∣λ− 1
n−m

∑
m≤l<n

χ[0,λ](θl)

∣∣∣∣∣∣ , (3.1)

then there exists a sequence {θl}l≥0 ⊂ [0, 1] such that

Dm,n ≤ O(1)
1 + ln(n−m)

n−m
∀ n > m ≥ 1. (3.2)

Similar to [22], all the waves in the solution are partitioned into small sub-

waves as follows.

Definition 3.1. Let ur = T i
s [ul](s). (ul, ur) is an i-wave. A set of vectors

{v0, v1, · · · , vp} is a partition of (ul, ur) if

(i) v0 = ul, vp = ur,
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(ii) there exists a set of scalars {τ0, τ1, τ2, · · · , τp} such that

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τp = s, for s > 0;

0 = τ0 ≥ τ1 ≥ τ2 ≥ · · · ≥ τp = s, for s < 0;

vh = T i
s [ul](τh), for h = 1, · · · , p.

Then set

(1) yh = vh − vh−1, sh = τh − τh−1, for h = 1, · · · , p,

(2) λi,h ≡ 1
sh

∫ τh

τh−1 σi(ξ; s, ul)dξ,

where sh, λi,h are the strength and speed of the subwave yh.

Then as a consequence of Theorem 1.1, we have the following theorem.

Theorem 3.1. The waves in an approximate solution in a given a time zone

Λ = {(x, t) : −∞ < x < ∞,Ms ≤ t < (M +N)s}, for any given integers M and

N , can be partitioned into subwaves of categories I, II or III with the following

properties:

(i). The subwaves in I are surviving. Given a subwave α(t), Ms ≤ t <

(M + N)s, in I, write α ≡ α(Ms) and denote by |α(t)| its strength at time t,

by [σ(α)] the variation of its speed and by [α] the variation of the jump of the

states across it over the time interval Ms ≤ t < (M + N)s. Then∑
α∈I

([α] + |α(Ms)|[σ(α)]) = O(1)(D(Λ) + s),

where D(Λ) = G((M + N)s−)−G(Ms+).

(ii). A subwave α(t) in II has non-zero initial strength |α(Ms)| > 0, but is

cancelled in the zone Λ, |α((M + N)s)| = 0. Moreover, the total strength and

variation of the wave speed satisfy∑
α∈II

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms ≤ t < (M + N)s,

∑
α∈II

([α] + |α(Ms)|[σ(α)]) ≤ O(1)(D(Λ) + s).

(iii). A subwave in III has zero initial strength |α(Ms)| = 0, and is created

in the zone Λ, |α((M + N)s)| 6= 0. Moreover, the total strength and variation

of the wave speed satisfy∑
α∈III

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms ≤ t < (M + N)s,
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∑
α∈III

([α] + |α((M + N)s)|[σ(α)]) ≤ O(1)(D(Λ) + s).

By using Corollary 2.2, the proof of this theorem is similar to the one in [14].

So we omit the proof for brevity. By the argument used in [8], we can get the

convergence rate of the deterministic version of Glimm scheme as stated in the

following theorem. The only difference is that now we use D(Λ) = ∆G instead

of |∆F |. We omit its proof for brevity.

Theorem 3.2. Let {θm}∞m=1 be a sequence of numbers in [0, 1] satisfying (3.2).

Given any initial condition ū with small total variation, let u(·, t) = Stū be the

unique solution of (1.1), and let us be the corresponding Glimm approximate

solution with grid size s in the time direction, generated by the sampling sequence

{θm}∞m=1. Then for every T ≥ 0,

lim
s→0

‖us(·, T )− u(·, T )‖L1

s
1
2 |ln s|

= 0. (3.3)

The limit is uniform with respect to ū, as long as T.V.ū remains uniformly small.
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