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Abstract. We prove that a family of solutions to a Cauchy problem for a
two dimensional scalar conservation law with a discontinuous smoothed flux
and the vanishing viscosity is strongly L1

loc– precompact under a new genuine
nonlinearity condition, weaker than in previous works on the subject.

1. Introduction

We consider the following Cauchy problem for two dimensional scalar conserva-
tion law

ut + div f(x, y, u) = 0, (1)

u(0, x, y) = u0(x, y),

where u = u(t, x, y), x, y ∈ R, t ∈ R+ and f = (f1, f2) : R3 → R2 (divergence is
taken with respect to x and y). For the initial data u0 we assume that

u0 ∈ (BV ∩ L∞)(R2), a ≤ u0(x, y) ≤ b, x, y ∈ R, (2)

where a, b ∈ R are constants. The flux function f = (f1, f2) has the following
properties:

fi(·, ·, λ) ∈ (BV ∩ L∞)(R2) for every λ ∈ R, (3)

fi(x, y, ·) ∈ Lip(R) for every (x, y) ∈ R2, (4)

max
a≤u≤b

|fi(·, ·, u)|BV (R2) < ∞, max
a≤u≤b

|fi(·, ·, u)| ∈ Lq
loc(R

2) for some q > 2, (5)

0 = fi(x, y, b) = fi(x, y, a), i = 1, 2, for every(x, y) ∈ R2, (6)

where Lip(R) denotes a space of Lipschitz continuous functions.
In recent years, problems of this kind received lots of attention since they model

many physical phenomena. As examples of special importance we emphasize appli-
cations in flow in porous media, sedimentation processes, traffic flow, radar shape-
from-shading problems, blood flow, and gas flow in a variable duct.

If f1 and f2 are smooth functions, then the existence and uniqueness of an
entropy solution is provided by the well known method of doubling of variables due
to Kružkov [16], or by using the measure valued concept by DiPerna [8]. It is well
known, cf. [6, 16], that for the Lipschitz continuous flux, the family of solutions
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to the vanishing viscosity regularization of (1) (see (8)-(9) below) converges to a
weak solution of (1) in the strong L1

loc(R
+ ×R2) topology. However, if the flux is

discontinuous with respect to (x, y) ∈ R2, we can not apply a classical approach.
The existence of a weak solution for the problem of type (1) was settled in [12] for

a flux in a slightly less general form satisfying the following genuine nonlinearity
condition: Let S2 ⊂ R3 denotes the unit sphere. We say that the flux (f1, f2)
satisfy a genuine nonlinearity condition if

for almost every (x, y) ∈ R2 and every ξ ∈ S2 the mapping

λ 7→ ξ0λ + f1(x, y, λ)ξ1 + f2(x, y, λ)ξ2 (7)
is not constant in λ on any nontrivial interval.

The existence was obtained as a consequence of the strong L1
loc(R

+×R2)-precompactness
of a family of solutions to (8). The proof is based on a two dimensional variant [19]
of the method of compensated compactness [20].

More precisely, the following regularization of problem (1) was considered (here
and in the sequel ∆ stands for the Laplacian ∆u = uxx + uyy):

∂tu
ε,δ + div fδ(x, y, uε,δ) = ε∆uε,δ (8)

uε,δ|t=0 = uδ
0, (9)

where the approximations fδ
i and uδ

0 are constructed in the following manner. Let
ω : R → R be arbitrary smooth function such that ω(ξ) = 0 for |ξ| ≥ 1, and∫
R

ω(ξ) dξ = 1. We define (we consider λ as a parameter below)

fδ
i (x, y, λ) =

1
δ2

(ω(x/δ)ω(y/δ)) ? fi(x, y, λ)

and

uδ
0(x, y) =

1
δ2

(ω(x/δ)ω(y/δ)) ? (u0χδ)(x, y),

where χδ(x, y) = 1 for (x, y) ∈ B(0, 1/δ) ⊂ R2 and zero otherwise. Here, ? stands
for the convolution operator.

The case of an arbitrary dimension space was completed by Panov [18], using
another method of Tartar – H-measures [21] (introduced independently by Gerard
[10] who named them microlocal defect measures). Similarly as in [12], in [18], it
was proved that a family of solutions to equation (1) with the regularized flux is
strongly L1

loc-precompact under a multidimensional variant of genuine nonlinearity
condition (7).

We stress that in the one dimensional case, one does not need any nonlinearity
condition in order to prove the existence of a weak solution to a scalar conservation
law with a flux discontinuous in the space variable. More precisely, using the
compensated compactness argument [14], it is not difficult to prove that a family of
entropy admissible solutions [12, 18] of the one dimensional variant of (8) converges
weakly along a subsequence to a solution of the one dimensional variant of (1).

However, we can not state anything about strong L1
loc-precompactness of the

family (uε,δ)ε,δ (see [13, Remark 2.3]) which is of essential importance since a strong
L1

loc-limit along a subsequence of (uε,δ)ε,δ satisfy admissibility conditions (see [14,
Definition 1.2]). On the other hand, such conditions provide a stability of solutions
for problems of type (1) (see e.g. [5, 14]).
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In this paper, we shall prove that under a relaxed genuine nonlinearity condition
(see (10) below), a family of solution to (8) is strongly precompact in L1

loc(R
+×R2).

This will provide the existence of a weak solution to (1) when the flux f is not
necessarily genuinely nonlinear which is actually the main contribution of the paper.
As a consequence, in two physically relevant one dimensional situations of the
problem, we are able to prove strong L1

loc-precompactness of the family (uε,δ)ε,δ

merely assuming that the initial data belong to the BV-class (which actually proves
the existence of an entropy admissible weak solution to the one-dimensional variant
of (1) without any additional assumptions on the flux). For the latter, see Section
3.

In order to get the result, we shall use estimates derived in [12] and the following
theorem.

Theorem 1 ([18], Corollary 2). Let Ω ⊂ Rn be an open set. Assume that the vector
φ(x, u) ∈ (C(Ru; BV (Ω)))n is genuinely nonlinear, i.e. for a.e. x ∈ Ω and for all
ξ ∈ Rn, ξ 6= 0, the map (a, b) 3 u 7→ (ξ, φ(x, u)) 6= constant on any nontrivial
interval.

Then, each bounded sequence (uk(x))k ∈ L∞(Ω), a ≤ uk(x) ≤ b, satisfying for
the Heaviside function H,

divx

[
H(uk(x)− p)(φ(x, uk(x))− φ(x, p))

]
is precompact in W−1,2

loc (Ω),

contains a subsequence that is convergent in L1
loc(Ω).

The key point of our procedure is the fact that for the family of solutions (uε,δ)ε,δ

of (8), (9), we have ‖uε,δ
t (t, ·, ·)‖L1(R2) bound for every t > 0. Therefore, we can

replace uε,δ
t by a function (h(x, y, uε,δ))t (actually, uε,δ

t will end up on the right
hand side) without affecting the precompactness framework. This means that we
can replace ξ0λ from (7) by ξ0h(x, y, λ) where h is chosen so that conditions of
Theorem 1 are satisfied (more precisely, in (7) the summand ξ0λ is replaced by
ξ0h(x, y, λ)).

2. New genuine nonlinearity condition and the main result

At the beginning of the section, we introduce a generalization of nonlinearity
condition (7) which we will use in the proof of Theorem 7.

Definition 2. We say that the vector (f1, f2) ∈
(
C1(Rλ; L∞(Rx ×Ry))

)2 satisfies
generalized genuine nonlinearity conditions if there exists a function h(x, y, λ) ∈
C1(Rλ; L∞(Rx ×Ry)) such that for all ξ ∈ S2 (sphere in R3),

ξ0 · h(x, y, λ) + ξ1 · f1(x, y, λ) + ξ2 · f2(x, y, λ) 6= constant function in λ

on any nontrivial interval.
(10)

In the sequel, we denote Π = (0,∞)×R2 = R+×R2. Furthermore, we denote by
W−1,2

c,loc (Π) families of functions that are precompact in W−1,2
loc (Π), and byMb,loc(Π)

families of functions that are locally bounded in the space of Radon measuresM(Π).
We recall Murat’s lemma.

Lemma 3 ([9]). Assume that the family (Qε) is bounded in Lp(Ω), p > 2, Ω ⊂ Rd

is an open set. Then,

(div Qε)ε ∈ W−1,2
c,loc (Ω) if div Qε = pε + qε,
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with (qε)ε ∈ W−1,2
c,loc (Ω) and (pε)ε ∈Mb,loc(Ω).

We will also need the following a priory estimates (Lemmas 4–6), essentially
proved in [12].

Lemma 4. [12, Lemma 4.1] (L∞-bound) There exists constant c1 > 0 such that
for all t > 0,

‖uε,δ(t, ·, ·)‖L∞(R2) ≤ c1.

Lemma 5. [12, Lemma 4.2] (Lipschitz regularity in time) If δ = cε, for a constant
c > 0, then there exists constant c2, independent of ε and δ, such that for all t > 0,∫∫

R2
|∂tu

ε,δ(·, ·, t)| dxdy ≤ c2.

Lemma 6. [12, Lemma 4.3] (Entropy dissipation bound) There exists a constant
c3, independent from ε and δ, such that for all t > 0

ε

∫∫

R2

(
uε,δ

x (t, ·, ·))2
+

(
uε,δ

y (t, ·, ·))2
dxdy ≤ c3.

Now, we can formulate the main theorem of the paper:

Theorem 7. Assume that the flux function (f1, f2) from (1) satisfy the generalized
genuine nonlinearity conditions from Definition 2, and conditions (3)-(6). If ε =
cδ, then the family of solutions (uε)ε ≡ (uε,δ)ε,δ to (8) is strongly precompact in
L1

loc(Π).

Proof: In order to use (10), we rewrite (8) as

h(x, y, uε,δ)t + fδ
1 (x, y, uε,δ)x + fδ

2 (x, y, uε,δ)y

= h(x, y, uε,δ)t − uε,δ
t + ε(uε,δ

xx + uε,δ
yy ).

(11)

Denote η′(λ) = H(λ − k), for some constant k (here H stands for the Heaviside
step function) and define the corresponding entropy fluxes:

q0(x, y, λ) = H(λ− k)(h(x, y, λ)− h(x, y, k)),

qi(x, u, λ) = H(λ− k)(fi(x, y, λ)− fi(x, y, k)), i = 1, 2,

qδ
i (x, y, λ) = H(λ− k)(fδ

i (x, y, λ)− fδ
i (x, y, k)), i = 1, 2.

We multiply (11) by η′(uε,δ) and add ∂xq1(x, y, uε,δ) and ∂yq2(x, y, uε,δ) on both
side of equality (11) to obtain

∂tq0(x, y, uε,δ) + ∂xq1(x, y, uε,δ) + ∂yq2(x, y, uε,δ) (12)

= H(uε,δ − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε,δ

t

)

+ ε(∂x(uε,δ
x η′(uε,δ))− (uε,δ

x )2η′′(uε,δ) + ∂y(uε,δ
y η′(uε,δ))− (uε,δ

y )2η′′(uε,δ))

+ ∂x(q1 − qδ
1)(x, y, uε,δ) + ∂y(q2 − qδ

2)(x, y, uε,δ)

≤ H(uε,δ − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε,δ

t

)

+ ε(∂x(uε,δ
x η′(uε,δ)) + ∂y(uε,δ

y η′(uε,δ)))

+ ∂x(q1 − qδ
1)(x, y, uε,δ) + ∂y(q2 − qδ

2)(x, y, uε,δ) in D′(Π).

In order to use Theorem 1 we have to show that

div(t,x,y)

[(
q0, q1, q2

)
(x, y, uε)

] ∈ W−1,2
c,loc (Π). (13)
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From (12) and the Schwartz lemma on nonnegative distributions, it follows that
there exists Radon measure µε,δ

k ∈M(Π) such that

∂tq0(x, y, uε) + ∂xq1(x, y, uε) + ∂yq2(x, y, uε)

= H(uε − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε

t

)

+ ∂x(q1 − qδ
1)(x, y, uε) + ∂y(q2 − qδ

2)(x, y, uε)

+ ε(∂x(uε
xη′(uε)) + ∂y(uε

yη′(uε))) + µε,δ
k (t, x, y).

(14)

Now, we use Lemma 3 to see that (13) holds. Indeed, from Lemma 5 we obtain
that

H(uε − k) (∂λh(x, y, uε)∂tu
ε − ∂tu

ε) ∈Mb,loc(Π). (15)

Lemma 6 implies

∂x(ε∂xuεH(uε − k)) + ∂y(ε∂yuεH(uε − k)) ∈ W−1,2
c,loc (Π), (16)

provided that

ε∂xuεH(uε − k) → 0, in L2
loc(Π),

and
∫

Π

|ε∂xuεH(uε − k)|2 dxdydt ≤ ε2

∫

Π

|∂xuε|2dxdydt ≤ Tcε → 0, ε → 0.

Furthermore,
(
Dxfδ

1 (x, y, k) + Dyfδ
2 (x, y, k)

)
H(uε − k)) ∈Mb,loc(Π), (17)

since fδ
i ∈ BV (Π). Finally,

∂x(q1 − qδ
1), ∂y(q2 − qδ

2) ∈ W−1
c,loc(Π), (18)

since, according to (5),

|qi − qδ
i | ≤ |fδ

i (x, y, uε)− fi(x, y, uε)|+ |fδ
i (x, y, k)− fi(x, y, k)|

≤ 2 max
a≤p≤b

|fδ
i (x, y, p)− fi(x, y, p)| → 0, in L2

loc(R
2).

To prove that µε,δ
k belongs to Mb,loc(Π), it is enough to prove that for any

compact K ⊂ Π, it holds µε,δ
k (K) < c4, for a constant c4 independent on ε and δ.

To prove the latter, fix a function ϕK ∈ C1
0 (Π) such that ϕK ≥ 0, |∇ϕK | ≤ c5 for

a constant c5 > 0 independent on ε, δ, and ϕK(t, x, y) = 1 for (t, x, y) ∈ K. Then,
since µε,δ

k are positive Radon measures for every δ, ε > 0, it follows from (14) that

µε,δ
k (K) ≤

∫

Π

ϕK(t, x, y)dµε,δ
k ≤ c4|∇ϕK | ≤ c6, (19)

where c6 depends on the set K, the constants c4, c5, and the constants ci, i = 1, 2, 3,
from Lemmas 4-6, but not on ε, δ > 0.

Collecting (14-19), from Murat’s lemma we obtain (13). Applying Theorem 1
we conclude the proof. 2
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3. Examples

In this section we give three examples which can not be dealt by using the known
results.

a) First, we shall apply Theorem 7 on the following problem

ut + (f(x, u))x =0,

u|t=0 = u0(x) ∈BV (R), a ≤ u0(x) ≤ b,

where one-dimensional variant of (3)-(6) are satisfied. We assume that for almost
every x ∈ R the mapping

[a, b] 3 λ 7→ f(x, λ), (20)

is different from a constant on any nontrivial interval.

Corollary 8. A family of solutions (uε)ε of the problem

uε
t + (fε(x, uε))x =εuε

xx,

uε|t=0 =uε
0(x),

where the notation is taken from (8)-(9), is strongly precompact in L1
loc(R

+ ×R).

Proof: According to the previous theorem, it is enough to find a function h(x, λ)
such that the mapping

λ 7→ h(x, λ)ξ0 + f(x, λ)ξ1 (21)

is different from a constant on any nontrivial interval. Taking

h(x, λ) = f2(x, λ)

we conclude that (21) will not be satisfied only if there exists a nonzero set Ω ⊂ R
such that for x ∈ Ω there exists (ξ0, ξ1) ∈ R2\{0} satisfying

f(x, λ) =
−ξ1 ±

√
ξ2
1 + 4ξ0c

2ξ0
,

for a constant c, contradicting (20). 2

b) Now, we consider the following example of a one dimensional conservation
law with discontinuous flux,

{
∂tu + (H(x)f(u) + (1−H(x))g(u))x = 0, (t, x) ∈ R+ ×R,

u|t=0 = u0(x) ∈ BV (R), a ≤ u0(x) ≤ b, x ∈ R,
(22)

where f, g ∈ C1(R), f(a) = f(b) = g(a) = g(b) = 0. The problem has been
thoroughly investigated in recent past (the following list is very incomplete [1, 2,
3, 4, 5, 7, 11, 13, 14, 15]). In the following Corollary 9, we shall prove that (uε)ε is
strongly precompact in L1

loc(R
+ ×R) without any structural assumptions on the

flux (such as genuine nonlinearity, crossing condition, convexity, a single crossing
point of f and g, etc.). This is very important fact since appropriate limit function
along a subsequence is not only a weak solution to problem (22), but at the same
time satisfies entropy admissibility conditions (see e.g. [14, Definition 1.2]). Remark
that the existence of an entropy admissible weak solution to (22) is established in
[5] also with no structural conditions on the flux.
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Corollary 9. Let ω ∈ C1
0 (R) be a positive, compactly supported function with total

mass one. Let Hε(z) =
∫ z/ε

−∞ ω(z′)dz′ represents a regularization of the Heaviside
function. A family of solutions (uε)ε of the problem

uε
t + ∂x (Hε(x)f(u) + (1−Hε(x))g(u))x =εuε

xx,

uε|t=0 =uε
0(x),

is strongly precompact in L1
loc(R

+ ×R).

Proof: If
λ 7→ f(λ), λ 7→ g(λ), (23)

are non-constant on any interval (α, β) ⊂ (a, b) then we can apply Corollary 8.
Otherwise, we take disjoint intervals (αf

i , βf
i ) ⊂ (a, b), i = 1, . . . , d1, d1 ∈ N ∪

{∞}, where the function f is constant, and the disjoint intervals (αg
i , β

g
i ) ⊂ (a, b),

i = 1, . . . , d2, d2 ∈ N ∪ {∞}, where the function g is constant. Then, we take the
functions f̂ , ĝ ∈ Lip(R):

f̂(λ) =

{
0, λ /∈ (αf

i , βf
i ),

(λ− αf
i )(λ− βf

i ), λ ∈ (αf
i , βf

i ),
i = 1, . . . , d1,

ĝ(λ) =

{
0, λ /∈ (αg

i , β
g
i ),

(λ− αg
i )(λ− βg

i ), λ ∈ (αg
i , β

g
i ),

i = 1, . . . , d2.

Now, the vector (H(x)(f2+f̂)(u)+(1−H(x))(g2+ĝ)(u),H(x)f(u)+(1−H(x))g(u))
is genuinely nonlinear implying that (u,H(x)f(u) + (1 − H(x))g(u)) satisfies the
generalized genuine nonlinearity condition. Thus, we can apply Theorem 7 to
complete the proof of the corollary. 2

Remark 10. Procedure similar to the one from the proof of Corollary 9 is an
important part of recent preprint [17]. In [17], one can find an attempt 1 to settle the
existence and uniqueness of an admissible weak solution to (22) with no structural
assumptions on the flux.

c) Consider the following Cauchy problem

ut + (k(x)g(u))x + (l(y)f(u))y = 0

u|t=0 = u0(x, y) ∈ BV (R2)
(24)

with −1 ≤ u0(x, y) ≤ 1, and

g(u) =





0, for |u| ≥ 1
u + 1, for − 1 < u ≤ 0
1− u2, for 0 < u < 1

, k(x) =

{
3, for x ≥ 0
1, for x < 0,

and

f(u) =





0, for |u| ≥ 1
1− u2, for − 1 < u ≤ 0
1− u, for 0 < u < 1

, l(y) =

{
4, for y ≥ 0
2, for y < 0,

The flux vector (k(x)g(u), l(x)f(u)) does not satisfy classical genuine nonlinear-
ity condition and we can not apply results from [12]. Indeed, for any x ∈ (−1, 0),

1The preprint is not published yet; therefore, we leave a possibility that it contains a mistake.
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y ∈ R (and the set (0, 1) × R has infinite measure), choose (ξ0,−ξ0, 0) ∈ S2.
Mapping (7) becomes:

λ 7→ ξ0λ− ξ0(λ + 1) = −ξ0,

and this is constant in λ.
Therefore, to state that a weak solution to (24) exists, we have to use generalized

genuine nonlinearity condition (10). According to Theorem 7, the family (uε)ε of
solutions to the equation

uε
t + (kε(x)g(uε))x + (lε(y)f(uε))y = ε(uε

xx + uε
yy)

where

kε(x) =





3, for x ≥ ε
x
ε + 2, for − ε < x < ε

1, for x ≤ −ε,

and

lε(y) =





4, for x ≥ ε
x
ε + 3, for − ε < x < ε

2, for x ≤ −ε,

is strongly precompact in L1
loc(R

+×R2). Indeed, take h from (10) to be h(x, u) =
u3. In that case, the vector field (h(x, u), k(x)g(u), l(y)f(u)) satisfies conditions
from Theorem 7, since k, l ∈ BV. Therefore, Theorem 7 provides strong L1

loc-
precompactness of the family (uε)ε. Clearly, a strong L1

loc-limit along a subsequence
of (uε)ε will represent a weak solution to (24).
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