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Convergence of the Space-Time Expansion
Discontinuous Galerkin Method
for Scalar Conservation Laws

P. Engel∗ & C. Rohde

Institut für Angewandte Analysis und Numerische Simulation, Universtität Stuttgart

Pfa�enwaldring 57, 70569 Stuttgart, Germany

September 15, 2009

ABSTRACT

In this paper we analyse a class of fully discrete Space-Time Expansion Discontinuous-Galerkin methods for
scalar conservation laws. This method has been introduced in [11, 17, 18] for a speci�c expansion relying on
the Cauchy-Kovaleskaya technique. We introduce a general concept of admissible expansions which in particular
allows us to prove an error estimate for smooth solutions. The result applies for ansatz functions of arbitrary
polynomial order k ∈ N provided the time step is su�ciently small. It gives a convergence rate of order k + 1

2
in space and time. Finally we show that the Cauchy-Kovaleskaya technique leads to an admissible exansion.
Furthermore we introduce two new expansions and prove that one of them, the characteristic expansion, is also
admissible.

Keywords: Space-Time Expansion; Discontinuous-Galerkin method; conservation laws; error estimate

1. INTRODUCTION

The class of Discontinuous Galerkin (DG) schemes has become one of the most important discretization tech-
niques for evolution equations, in particular in the �eld of nonlinear hyperbolic conservation laws. Although it
has been suggested as early as 1974 [16] the breakthrough came with a series of papers by Cockburn&Shu and
co-workers in the nineties [6�8]. The major advantage of the DG method is the cellwise use of polynomial ansatz
functions of order k ∈ N0 without introducing a wider and wider stencil for increasing k as it is the case for
e.g. Finite-Di�erence schemes. The tool of numerical �ux functions, widely developped since the eighties, can
then be applied. By now the literature on DG schemes is too voluminous to be cited completely. Let us refer to
textbooks/reviews like [4, 12] and cites therein.
We consider in this paper a scalar conservation law in one space dimension. Precisely with Ω = (0, 1) (for
simplicity) and T > 0 we search for a function u : Ω× (0, T )→ R such that

ut + F (u)x = 0 in Ω× (0, T ), (1a)

u(·, 0) = u0 in Ω, (1b)

u(0, t) = u(1, t) (t ∈ [0, T )) (1c)

holds. Here F : R→ R is the, in general nonlinear, �ux and u0 : Ω→ R the initial datum.
The DG method for (1a) combines features of the Finite-Volume as well as the Finite-Element schemes. Therefore
techniques from both worlds can be used. In [9] it has been shown that the DG-method as a method of lines
together with the TVB-Runge-Kutta time discretization from [19] is total-variation bounded. This implies �
roughly speaking� the convergence of the approximate solutions in L1. Also convergence rates have been veri�ed
[5]. Most notably the analysis covers the case of (discontinuous) entropy solutions for (1a). However, increasing
the formal order of the scheme is not re�ected by this analysis in the spirit of techniques for Finite-Volume
methods. We also outline the work [13] which ensures that a cell entropy inequality holds for semi-discrete
DG-methods independent of the polynomial order.
Results which re�ect the polynomial order in a L2-error estimate have been obtained by Finite-Element-like
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techniques [22] provided the solution u of (1a)+(1b)+(1c) is assumed to be smooth enough. This assumption
is also the basis of the analysis here (see the precise assumptions in Theorem 4.1 below) but let us note that
classical solutions of (1a)+(1b)+(1c) can only be expected to exist for small times (except in trivial cases). In
this situation L2-error estimates for semi-discrete DG-methods of the type

‖u(·, t)− uh(·, t)‖2 ≤ O(hk+ 1
2 ) (t ∈ (0, T )) (2)

have been obtained in [10]. Here h is the mesh parameter, uh the DG approximation using ansatz functions of
order k ∈ N0, and ‖ · ‖2 the L2-norm on Ω.
Turning to fully discrete schemes less is known than in the semi-discrete case. Moreover the DG concept allows
for various di�erent methods to discretize in time which complicates the situation. If the �ux F in (1a) is linear
a fully discrete ansatz with space-time ansatz functions was proven to be convergent in [23] with orders as in (2).
Zhang&Shu analyzed the DG-method together with the second order TVB-Runge-Kutta time discretization.
They have been successfull to prove for monotone numerical �uxes the estimate

‖u(·, nτ)− uh(·, nτ)‖2 = O(hk+1/2) +O(τ2) (k ∈ N, n = 0, . . . , N), (3)

where τ > 0 is the time step and N ∈ N such that Nτ = T . As stability bound for the time step they assumed
for some constant γ > 0 (and k ≥ 2)

τ ≤ γh4/3.

A completely di�erent fully-discrete approach has been developped by Lörcher et al. in [11, 17, 18]: the so-called
Space-Time Expansion Discontinuous-Galerkin method (STE-DG). A nice feature of this approach is its high
e�ciency, which can be achieved through local time stepping (The time step of one cell is only restricted by the
values of nearest neighbours). If one uses hp-adaptation techniques together with the STE-DG approach, one
pro�ts even more by local time stepping. The basic idea of the STE-DG aproach is to expand in each spatial
cell Ij the approximate solution uh(·, nτ) to the complete space-time cell Ij × [nτ, (n + 1)τ). The expansion is
then used to evaluate the �ux integrals in time. There is no unique way to de�ne the expansions but in order
to maintain the given polynomial order of the ansatz functions in time the expansion has to be constructed
carefully. We introduce here the class of admissible expansions of order k. The original Cauchy-Kovaleskaya
expansion from [11, 17, 18] belongs to this class (Section 5.1). Moreover we suggest a new characteristic-based
expansion that is also admissible (Section 5.2). In the main part of the paper we exploit then the concept of
admissible expansions to show in Theorem 4.1 the estimate

‖u(·, nτ)− uh(·, nτ)‖2 = O(hk+1/2) (k ∈ N, n = 0, . . . , N). (4)

Let us note that this result is not restricted to a certain order in time like (3) but covers all temporal orders. To
obtain this generality we have to sharpen the time step restriction in the sense that

τ ≤ γh2

has to hold. The technique of proofs relies on the approach as in [23], a careful treatment of the �ux integrals
evaluated for the expansions, and of course the admissibility concept. Up to our knowledge the estimate (4) is
the �rst convergence result that has been established for the STE-DG method. It is important to note that the
estimates in (4) (as well as in (3)) can be improved to the optimal order O(hk+1) if instead of a monotone �ux
an upwind formulation is chosen (see also Remark 4.2 below).
To conclude we give an outline of the rest of the paper. In Section 2 we recall basic notations. Section 3 is devoted
to the numerical method. The notion of admissible expansions is introduced. Three examples of expansions, the
Cauchy-Kovaleskaya expansion, the new characteristic expansion and a new Riemann-solver-like expansion are
discussed. In Section 4 the main theorem 4.1 is given and proven. Finally in Section 5 the admissibilty of the
Cauchy-Kovaleskaya expansion and of the new characteristic expansion are veri�ed.

2. NOTATIONS AND FUNCTION SPACES

In the following section we will introduce basic notations we need to describe the method in Section 3. Let

Γh =
{

0 = x 1
2
< x 3

2
< · · · < xJ+ 1

2
= 1
}

(5)
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be a (not necessarily equidistant) grid and J ∈ N the number of mesh cells. De�ne for each j ∈ {1, . . . , J} the
mesh cell

Ij := (xj− 1
2
, xj+ 1

2
),

with centre

xj :=
1
2

(xj− 1
2

+ xj+ 1
2
)

and the local mesh parameter
∆xj := xj+ 1

2
− xj− 1

2
.

Next de�ne the grid parameter h as
h := max

1≤j≤J
∆xj .

In the same way we introduce a time grid and for simplicity we choose a constant time-step τ > 0 and de�ne for
n ∈ {0, . . . , N} the time levels tn by tn = nτ . Choose N ∈ N and τ such that tN = Nτ = T .
De�ne for all functions v : Ω× [0, T ]→ R

vn(x) := v(x, tn).

In the following we will need a number of function spaces:

Definition 2.1 (Function Spaces).
Let k ∈ N0 and Γh be a grid as in (5).

1. De�ne the space Ck
Γ of piecewise k-times di�erentiable functions on Γ by

CkΓ :=
{
f : [0, 1]→ R

∣∣∣ f |Ij
∈ Ck(Ij), j ∈ {1, . . . , J}

}
.

2. Let V kΓ ⊂ CkΓ be the space of piecewise polynomial functions of order k on Γ, de�ned by

V kΓ :=
{
vh : [0, 1]→ R

∣∣∣ vh|Ij
∈ Pk(Ij), j ∈ {1, . . . , J}

}
,

where Pk(Ij) is the space of polynomials up to degree k on Ij.

3. A norm on CkΓ is given by

‖v‖h,k :=
∑

0≤l≤k−1

∥∥∥∂xlv∥∥∥
∞

+ h
1
2

∥∥∥∂xkv∥∥∥
∞
, (v ∈ CkΓ).

For M > 0, de�ne the set of bounded piecewise polynomial functions on Γ by

V kΓ,M :=
{
v ∈ V kΓ

∣∣∣ ‖v‖h,k ≤M} .
By ‖·‖∞ we denote the maximum norm on Ω.

All elements of these function spaces allow discontinuities at cell boundaries. So there is a need for the following
notation: De�ne for all v ∈ CkΓ and x ∈ [0, 1]

v+(x) := lim
y↓x

v(y) and v−(x) := lim
y↑x

v(y), (6)

v(x) :=
1
2
(
v+(x) + v−(x)

)
and [v] (x) := v+(x)− v−(x).

Furthermore we de�ne for any j ∈ {1, . . . , J} with obvious notation

(v)j+ 1
2

:= v(xj+ 1
2
) and [v]j+ 1

2
:= [v] (xj+ 1

2
).
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We also need di�erent norms and semi-norms on these function spaces. We use ‖·‖2 to name the L2-norm.
Moreover we de�ne for v ∈ CkΓ the semi-norm

|v|Γh
:=

 ∑
1≤j≤J

(
v+(xj+ 1

2
)
)2

+
(
v−(xj+ 1

2
)
)2

 1
2

. (7)

By C > 0 we denote a generic constant, that may change from line to line, but does not depend on the mesh
parameter h.

3. THE NUMERICAL METHOD

We introduce the STE-DG method in this section. Our presentation covers the original STE-DG method as it
has been suggested in [11, 17, 18], but is more general: We present a number of new expansions to which our
analysis applies. But �rst we recall the de�nition of a numerical �ux function.

3.1 Numerical Flux Functions

The use of numerical �uxes is standard for the d.... of hyperbolic conservation laws. Following e.g. the notion
in [15] we de�ne:

Definition 3.1 (Numerical Flux Function).
A function H : R2 → R is called numerical �ux function (for F ), if the following properties hold:

� H is consistent to F , i.e. H(w,w) = F (w) for all w ∈ R.
� H is locally Lipschitz continuous, i.e.

∀M > 0 ∃CM > 0 ∀v0, v1, w0, w1 ∈ BM (0) : |H(v0, w0)−H(v1, w1)| ≤ CM (|v0 − v1|+ |w0 − w1|) .

We call H a monotone numerical �ux function (for F ), if further H is non-decreasing in the �rst argument
and non-increasing in the second argument.

As we will see in the proof of convergence, we have to deal with a term depending on the numerical �ux we have
chosen. To capture this term we introduce for a given numerical �ux H and p = (p−, p+) ∈ R2 the quantities

α(H; p) :=

{
[p]−1 (F (p)−H(p−, p+)) falls [p] 6= 0,

|F ′(p)| falls [p] = 0.
(8)

We de�ne - using the same notation - for p = (p−, p+) : [0, T ]→ R2

αn(H; p) :=
1

tn+1 − tn
∫ tn+1

tn
α
(
H;
(
p−(t), p+(t)

))
dt, (0 ≤ n ≤ N) .

To simplify the notation we also introduce

ᾱn(H; p)[q]2 :=
∑

1≤j≤J

(
αn(H; p)j+ 1

2

)
[q]2j+ 1

2
, (0 ≤ n ≤ N). (9)

8



3.2 Expansions: De�nition and Examples

The key element in the STE-DG method is the expansion. One can see it as a local approximation to the solution
of (1a) on [tn, tn+1)× Ij only using the information uh(·, tn)|Ij

, where uh ∈ V kh is the approximate solution (see

De�nition 3.7 below). In particular this implies that the exact solution generally does not provide a suitable
example, as the exact weak solution depends on the values of uh(·, tn) in at least one of the neighbouring cells
Ij±1 (, if the �ux is non trivial). We use the following general framework.

Definition 3.2 (Expansion).
We de�ne the space of time-dependend piecewise polynomial functions by

VkΓ :=
{
vh ∈ L∞([0, 1]× [0, τ ],R)

∣∣ vh(·, t) ∈ V kh , 0 ≤ t ≤ τ
}
.

A function E : V kΓ → VkΓ is called expansion, if the equation

E[vh](·, 0) = vh

holds for all vh ∈ V kΓ .
For any s ∈ [0, T ] de�ne further Es as

Es[vh](x, t) := E[vh](x, t− s)

for any x ∈ Ω and t ∈ [s, s+ τ ].

Remark 3.3. Note that we do not require the expansion to be a linear operator. In general the expansion is
nonlinear. For a speci�c example we refer to Section 3.2.1.

Before we introduce the method, let us present some relevant choices for expansions. We present three di�erent
expansions. The �rst one was introduced by Lörcher et al. in [17]; the second one is new. These two expansions
have clear algorithmical importance. The last expansion - an extension of the Godunov ideas - seems to be more
theoretical, but illustrates nicely the fundamentals of the STE-DG approach.

3.2.1 Example 1: Cauchy-Kovalevskaya Expansion

Lörcher et al. introduced the STE-DG method in [17] together with the so-called Cauchy-Kovalevskaya (CK)
expansion. To get this expansion one has to perform a Taylor expansion of the exact solution in space and time
for each grid cell Ij . Then the time derivatives are replaced by space derivatives using the di�erential equation
(1a). We need the following auxiliary notation.

Definition 3.4 (Derivational Operators).
Let F ∈ Ck(R) in (1a).
For any function v ∈ CkΓ de�ne the derivational operators in Ij, 1 ≤ j ≤ J , associated with (1a) by

∂̃xv := vx,

∂̃tv := −F (v)x = −F ′(v)vx,

∂̃xtv := −(∂̃xF (v))x = −(F ′(v)vx)x = −F ′′(v)v2
x − F ′(v)vxx,

∂̃ttv := −(∂̃tF (v))x = −(F ′(v)∂̃tv)x = 2F ′(v)F ′′(v)v2
x + (F ′(v))2vxx,

. . .

Note that the derivatives vx, vxx, . . . are well de�ned (only) for inner points of each cell. In the following we will
not use this notation at cell boundaries of Γh.

9



Definition 3.5 (Cauchy-Kovalevskaya Expansion).
The Cauchy-Kovalevskaya expansion ECK : V kΓ → VkΓ on Ij, 1 ≤ j ≤ J , is de�ned by

ECK [vh](y, s) :=
k∑
l=0

1
l!

(
(y − xj)∂̃x + s∂̃t

)l
vh(x)

∣∣∣∣
x=xj

for y ∈ Ij and s ∈ [0, τ ].

Let us discuss the cases k = 0 and k = 1 for the sake of illustration.
In the case k = 0 we obtain

ECK [vh](y, s) = vh(y).

As we will see below the STE-DG method together with the CK-expansion reduces then to the standard �nite
volume scheme.
Take k = 1 for instance, then the CK-expansion on Ij will simplify to

ECK [v](y, s) =
(
v(x) + (y − xj)∂̃xv(x) + s∂̃tv(x)

)∣∣∣
x=xj

= (v(x) + (y − xj)vx(x)− sF ′(v(x))vx(x))|x=xj

= v(xj) + (y − xj)vx(xj)− sF ′(v(xj))vx(xj)
= v(y)− sF ′(v(xj))vx(xj).

(10)

For the last equation we used v ∈ P1. As mentioned in Remark 3.3 this expansion is nonlinear in v, if F is
nonlinear.

3.2.2 Example 2: Characteristic Expansion

Another way to get an expansion is to use characteristics. Up to our knowledge this choice has not been discussed
in the literature before.
To illustrate this concept we de�ne k + 1 points in each cell Ij , 1 ≤ j ≤ J , by

yj,l := xj− 1
2

+ ∆xj
l

k
, (l = 0, . . . , k).

For some given v ∈ V kΓ and all t ∈ [0, τ ] we de�ne ptj ∈ Pk(Ij) as the polynomial that satis�es

ptj (yj,l + tF ′ (v(yj,l))) = v(yj,l), (l = 0, . . . , k).

Note that ptj is well de�ned, if the set
{yj,l + tF ′ (v(yj,l))}l=0,...,k

contains exactly k + 1 elements. This is guaranteed, if

t ≤ τ ≤ h

(2k + 1) ‖F ′(v)‖∞
, (11)

holds. Thus we need here already a CFL-like condition to ensure, that the expansion is well-de�ned. With this
notation we de�ne:

Definition 3.6 (Characteristic Expansion).
The characteristic expansion ECh : V kΓ → VkΓ is de�ned by

ECh[v](x, t) := ptj(x) for x ∈ Ij and t ∈ [0, τ ].

10



yj,1

0
x

τ

t

yj,0 yj,2

Ij

Figure 1. Region of good approximation (white) and bad approximation (shadowed).

For arbitrary k ∈ N we get on Ij , 1 ≤ j ≤ J , the formulation

ECh[vh](x, t) =
∑

0≤l≤k

vl
∏

0≤m≤k
m 6=l

x− yj,m − tF ′(vm)
yj,l − yj,m + t(F ′(vl)− F ′(vm))

, (x ∈ Ij , 0 ≤ t ≤ τ). (12)

Here vl = vh(yj,l). For k = 0 we obtain again the standard �nite volume scheme.
We already got the CFL condition (11) by just examining when the characteristic expansion is well-de�ned. We
observe, that the characteristic expansion only uses information inside the cell, such that we get a good approx-
imation for the solution in the mid of the cell. This is visualised in Figure 1. Depending on the characteristic
velocity the approximation gets worse closer to the cell boundary. A similar behaviour can be observed for the
CK-expansion.

3.2.3 Example 3: Expansion with Exact Solution

It is also possible to use not only the information of one cell, but also the neighboring cells. In a Godunov-
like ansatz we may solve generalised Riemann problems for discontinuous initial data to get the unique entropy
solution, which we can use as an expansion. So suppose that we have a function vh ∈ V kh . Let v ∈ L∞ (Ω× (0, τ))
be the unique entropy solution of

vt + F (v)x = 0 in Ω× (0, τ),
v(·, 0) = vh in Ω,

assuming periodic boundary conditions. Then we are able to de�ne the exact expansion by

EEx[vh] := v.

Formally this is no expansion is the sense of De�nition 3.2, because EEx[vh] /∈ VkΓ. But one may weaken this
assumption or just project v to VkΓ. For more information on the use of generalised Riemann problems for
numerical purposes see for example [1, 2, 20].

3.3 De�nition of the STE-DG Method

With the de�nition of an expansion we are able to de�ne the Space-Time Expansion DG method (STE-DG).

Definition 3.7 (Space-Time Expansion DG Method).
Let E : V kΓ → VkΓ be an expansion, H : R2 → R a numerical �ux function for F and Γh a given grid.
A function uh : Ω× [0, T ] 7→ R is called solution of the STE-DG method of order k ∈ N0, if the following
properties hold:

11



1. For each n ∈ {0, . . . , N} it holds, that
unh := uh(·, tn) ∈ V kΓ

and
uh = Etn [unh] on Ω× (tn, tn+1).

2. For each vh ∈ V kΓ it holds, that ∫
Ω

u0
h vh dx =

∫
Ω

u0 vh dx. (13)

3. For each j ∈ {1, . . . , J}, n ∈ {0, . . . , N} and vh ∈ V kΓ it holds, that∫
Ij

(un+1
h − unh)vh dx = Hnj [uh, vh]. (14)

Here Hnj (p, vh) is de�ned for p ∈ C0([tn, tn+1], V kΓ ) and vh ∈ V kΓ through

Hnj [p, vh] =
∫ tn+1

tn

(∫
Ij

F (p)∂xvh dx−
(
H(p)v−h

)
j+ 1

2
+
(
H(p)v+

h

)
j− 1

2

)
dt.

Remark 3.8. If the integral can not be calculated exactly, one has to use quadrature rules. For more details
- for example, which order one should use - see [17]. We assume throughout the paper that the integral can be
computed exactly.

3.4 Admissible Expansions

For the convergence analysis we need more requirements on the expansion.
In the �rst step we will de�ne some error functions. In the proof of convergence we have to analyse the di�erence
between E[unh] and E[un]. But E[un] is only well de�ned if un ∈ V kΓ . So let Q be a projection from CkΓ to V kΓ
and look at

P[u] := Etn [Q[un]] on Ω× [tn, tn+1),

instead of E[un]. With the projection Q we can de�ne the error functions we need:

Definition 3.9 (Error Functions).
Let u be the exact solution of (1a)+(1b)+(1c) and uh the solution of the STE-DG method of order k ∈ N from
De�nition 3.7.

(i) The function

e :
{

Ω× [0, T ] → R

(x, t) 7→ e(x, t) := uh(x, t)− u(x, t).

is called error function of the discrete solution uh to u.

(ii) The function

η :
{

Ω× [0, T ] → R

(x, t) 7→ η(x, t) := P[u](x, t)− u(x, t).

is called projection error.

12



(iii) The function

ε :
{

Ω× [0, T ] → R

(x, t) 7→ ε(x, t) := P[u](x, t)− uh(x, t).

is called approximation error.

With these notations we can de�ne the properties, which an expansion has to satisfy, in order to guarantee
convergence:

Definition 3.10 (Admissible Expansion).
An expansion E : V kΓ → VkΓ is called an admissible expansion of order k, if the following properties hold:

(i) For all M > 0 there is a constant C > 0 independent of h, such that

‖(E[vh](·, t)− vh)− (E[wh](·, t)− wh)‖2 ≤ Ch ‖vh − wh‖2 (15)

hold for t ∈ [0, τ) and all vh, wh ∈ V kΓ,M .

(ii) There is a projection Q : CkΓ → V kΓ and a constant C > 0 independent of h, which satisfy for all t ∈ [0, T ],
0 ≤ n < N and vh ∈ V kΓ the inequalities

‖η(·, t)‖2 + h
1
2 |η(·, t)|Γh

+ h ‖η(·, t)‖∞ ≤ Chk+1, (16a)∥∥η(·, tn+1)− η(·, tn)
∥∥

2
≤ Cτhk+1 (16b)

and

∑
1≤j≤J

∣∣∣∣∣
∫
Ij

η(x, t) ∂xvh dx

∣∣∣∣∣ ≤ Chk+1 ‖vh‖2 . (16c)

Remark 3.11. There is always a natural choice of Q if an expansion is given. Usually an interpolation is used,
which keeps the values of the function or its derivatives at selected points. It is also possible, that global properties
like integral means are preserved. For example the CK-expansion uses the space derivatives up to order k in the
centre of the cell. So a suitable projection Q on a cell Ij is just the Taylor expansion of order k in the centre xj.

Remark 3.12. Condition (i) can be seen as a stability restriction and (ii) as a consistency restriction, which
corresponds to the order of the method.

Remark 3.13. The two expansions introduced in Section 3.2.1 and 3.2.2 are admissible expansions. In Section
5 we give the proof, that both expansions are admissible.

3.5 Consequences for Admissible Expansions

With help of the inverse properties (see Lemma A.1), we get the same inequality as in (15), but with a di�erent
norm:

|(E[vh](·, t)− vh)− (E[wh](·, t)− wh)|Γh
≤ Ch 1

2 ‖vh − wh‖2 . (17)

Furthermore we present some consequences formulated in the following lemma:
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Lemma 3.14 (Consequences for Admissible Expansions).
Let E be an admissible expansion of order k de�ned in De�nition 3.10. De�ne

Υ :
{

Ω× [0, T ] → R,
(x, t) 7→ Υ(x, t) := ε(x, t)− εn(x),

where n =
⌊
t
τ

⌋
. Let M > 0. Then there is a constant C > 0 independent of h satisfying the following.

If uh ∈ V kh,M , then for all t ∈ [tn, tn+1) the inequalities

|Υ(·, t)|Γh
≤ Ch 1

2 ‖εn‖2 , ‖Υ(·, t)‖2 ≤ Ch ‖εn‖2 (18a)

and

‖ε(·, t)‖2 ≤ C ‖εn‖2 . (18b)

hold.

Proof: The proof is an elementary consequence of (15) and (17). �

To get more compact formulas we de�ne also

ω(x, t) := e(x, t) + εn(x) (x ∈ Ω), (19)

where n =
⌊
t
τ

⌋
and 0 ≤ t ≤ T .

4. THEOREM OF CONVERGENCE

With the notations and de�nitions developed in the previous sections, we are able to formulate the main theorem:

Theorem 4.1 (Convergence).
Let k ≥ 1. Let u ∈ Ck+2(Ω× [0, T ]) be a classical solution of (1a)+(1b)+(1c) with F ∈ Ck+2(R).
Let E : V kΓ → VkΓ be an admissible expansion of order k, H : R2 → R a monotone numerical �ux function for F
and Γh a given grid.
For any γ > 0, there is a constant C > 0, such that the inequality

max
0≤n≤N

‖en‖22 +
τ

2

∑
0≤n<N

ᾱn(H;uh)[unh]2 ≤ Ch2k+1 (20)

holds, provided we have h small enough and

τ ≤ γh2. (21)

Remark 4.2. The convergence rate in (20) can be improved if we restrict ourselves to upwind numerical �ux
functions for F . Precisely we get as in [23] the rate

max
0≤n≤N

‖en‖2 ≤ Chk+1.

By upwind numerical �ux we mean, as in [23], a monotone numerical �ux function satisfying

H(p−, p+) =
{
F (p−) if F ′(q) ≥ 0 ∀q ∈ [min(p−, p+),max(p−, p+)],
F (p+) if F ′(q) < 0 ∀q ∈ [min(p−, p+),max(p−, p+)].

Remark 4.3. The STE-DG scheme is for the case k = 0 of piecewise constant ansatz functions nothing but
a standard �nite-volume scheme evolving cell averages. If the �ux functions are e.g. monotone in the sense of
De�nition 3.1 extensive convergence results �including the case of discontinuous entropy solutions� are available.
It is worth mentioning that estimate (20) gives the same L2-rate that is already known for �nite-volume methods
provided the solution is smooth [14, 21]. Moreover the result of Shu&?? applies here.
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Remark 4.4. The time step restriction (21) is not the one expected for �rst-order equations but rather for
(explicit) schemes for parabolic evolution. The numerical experiments in [18] clearly show that convergence of
the STE-DG scheme can be expected provided just a classical CFL-conditon of the form τ ≤ γh for some γ > 0
depending on F ′ controls the time step. Thus our proof appears not to be optimal. This seems to be an unsolved
problem, in fact it is exactly the same reason why Zhang&Shu introduce in [23] for a second-order RK-DG method
a restriction of type τ ≤ γh4/3.

4.1 Proof of Theorem 4.1

In the following we will �rst assume, that

F and its derivatives up to order k + 2 are bounded. (22)

Later on we will see, that this assumption can be skipped.
The classical solution u of (1a)+(1b)+(1c) satis�es the following equation∫

Ij

(un+1 − un)vh dx = Hnj [u, vh] (23)

for all vh ∈ V kΓ . By subtracting (23) from (14) and summing over all 1 ≤ j ≤ J , we get∑
1≤j≤J

∫
Ij

(
εn+1 − εn) vh dx = Kn[uh, vh]. (24)

Here Kn is de�ned by

Kn[uh, vh] :=
∑

1≤j≤J

(∫
Ij

(
ηn+1 − ηn) vh dx+Hnj [u, vh]−Hnj [uh, vh]

)
. (25)

The terms εn and ηn have been de�ned in De�nition 3.9 and Hnj was de�ned in De�nition 3.7.

By choosing vh = εn ∈ V kΓ in (24) we get the error equation∥∥εn+1
∥∥2

2
− ‖εn‖22 =

∥∥εn+1 − εn∥∥2

2
+ 2Kn[uh, εn]. (26)

In the following lemmata the terms on the right hand side of (26) are estimated:

Lemma 4.5 (Estimate for Kn [uh, εn]).
Let the assumptions of Theorem 4.1 and (22) be true.
For each M > 0 there is a constant C > 0 independent of h, such that the following holds:
If unh ∈ V kh,M and ‖en‖2 ≤ hk for some n ∈ {1, . . . , N}, then

Kn[uh, εn] ≤ Cτ(‖εn‖22 + h2k+1)− τ

4
ᾱn(H;uh)[εn]2.

Lemma 4.6 (Estimate for
∥∥εn+1 − εn∥∥2

2
).

Let the assumptions of Theorem 4.1 and (22) be true.
For each M > 0 there is a constant C > 0 independent of h, such that the following holds:
If unh ∈ V kh,M and ‖en‖2 ≤ hk for some n ∈ {1, . . . , N}, then∥∥εn+1 − εn∥∥2

2
≤ Cτ(‖εn‖22 + h2k+2).
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The proofs of the Lemmata 4.5 and 4.6 are postponed to Section 4.2 and 4.3, respectively.
In the following we will use induction with respect to n = 0, . . . , N to prove

‖en‖22 +
τ

2

∑
0≤m<n

ᾱm(H;uh)[umh ]2 ≤ Ch2k+1 (27)

with a constant C > 0 independent of h (and n).
First check (27) for n = 0. Since u0

h is the L2-projection of u0 (27) is clearly satis�ed.
Next we make the induction step n 7→ n+ 1. Since ᾱn(H;uh)[umh ]2 is nonnegative (see Lemma A.2), (27) implies
that

‖en‖2 ≤ hk (28)

for h small enough. To verify that the constant C in (27) does not grow from one induction step to the next, we
will only use (28) instead of (27) to prove the induction step.
Since u is ‖·‖∞-bounded and (28) holds, we get, that uh is also ‖·‖∞-bounded, uniformly in h. So we can change
the function F in such a way, that F itself and its derivatives are bounded and F (uh) is unchanged. So we see,
that the assumption (22), we made at the beginning of the proof, was not necessary.
By using (16a) and (28) and inverse properties, from Lemma A.1, we get a constant M > 0 independent of h,
such that

unh ∈ V kh,M . (29)

The error equation (24) together with estimates from Lemmata 4.5 and 4.6 yield∥∥εn+1
∥∥2

2
− ‖εn‖22 +

τ

2
ᾱn(H;uh)[εn]2 ≤ Cτ(‖εn‖22 + h2k+1). (30)

By the Gronwall inequality we �nally get∥∥εn+1
∥∥2

2
+
τ

2

∑
0≤m≤n

ᾱm(H;uh) [εm]2 ≤ Ch2k+1. (31)

In the last step we substitute ε to e by using (16a). This �nishes the mathematical induction and the proof of
Theorem 4.1. �

4.2 Proof of Lemma 4.5

To prove this lemma we �rst use the periodicity of the solution and rewrite Kn from (25) as

Kn[uh, εn] =
∑

1≤j≤J

∫
Ij

(
ηn+1 − ηn) εn dx

+
∑

1≤j≤J

∫
Ij

(∫ tn+1

tn
(F (u)− F (uh)) dt

)
∂xε

n dx

+
∑

1≤j≤J

∫ tn+1

tn
(F (u)− F (uh))j+ 1

2
dt [εn]j+ 1

2

+
∑

1≤j≤J

∫ tn+1

tn
(F (uh)−H(uh))j+ 1

2
dt [εn]j+ 1

2

=: W1 +W2 +W3 +W4.

(32)

In the following we will estimate all Wi's separately. To estimate W1 we use Young's inequality and (16b) to get

W1 ≤ 1
4
τ−1

∥∥ηn+1 − ηn∥∥2

2
+ τ ‖εn‖22 ≤ Cτh2k+2 + τ ‖εn‖22 .
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Next we estimate the term W4. First we note that, because u is continuous,

[uh] = [u+ e] = [e] = [ω − εn]. (33)

Now we use the de�nition of α from (8) at each cell boundary xj+ 1
2
to get with (33) the estimate

(F (uh)−H(uh)) [εn] ≤ α(H;uh)[uh] [εn]

= α(H;uh)
(

[ω] [εn]− [εn]2
)

≤ α(H;uh)
(

[ω]2 − 3
4

[εn]2
)
.

(34)

For the last line we used Young's inequality. Next, we use the fact, that the expansion is admissible, and the
de�nition of ᾱn from (9) to get

W4 ≤ −3
4
τᾱn(H;uh)[εn]2 + Cτh |η|2Γh

+ Cτh−1 |Υ|2Γh

≤ −3
4
τᾱn(H;uh)[εn]2 + Cτh2k+2 + Cτ ‖εn‖22 .

For a closer look at W2 and W3, we use Taylor expansions of F at u and get

F (u)− F (uh) = F ′(u)εn − 1
2
F ′′(u)(εn)2 − F ′(u)ω + F ′′(u)ωεn

− 1
2
F ′′(u)ω2 − 1

6
F̄ ′′′(ω − εn)3

=: φ1 + φ2 + φ3 + φ4 + φ5 + φ6

and

F (u)− F (uh) = F ′(u)εn − 1
2
F ′′(u)(εn)2 − F ′(u)ω + F ′′(u)ωεn

− 1
2
F ′′(u)ω2 − 1

6
F̃ ′′′(ω − εn)3

=: ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6.

(35)

Here F̄ ′′′ and F̃ ′′′ denote remainder terms in Taylor expansions of the bounded function F ′′′. De�ne for 1 ≤ i ≤ 6

Xi :=
∑

1≤j≤J

∫
Ij

(∫ tn+1

tn
φi(x, t) dt

)
∂xε

n(x) dx

and

Yi :=
∑

1≤j≤J

∫ tn+1

tn
ψi(xj+ 1

2
, t) dt [εn]j+ 1

2
.

Formula (32) implies
W2 = X1 + · · ·+X6 und W3 = Y1 + · · ·+ Y6.

In the remaining part of the proof we will estimate Xi + Yi for each i separately. From integration by parts we
get

X1 + Y1 = −1
2

∑
1≤j≤J

∫ tn+1

tn

(∫
Ij

F ′(u)∂x (εn)2
dx+

(
F ′(u)

[
(εn)2

])
j+ 1

2

)
dt

= −1
2

∑
1≤j≤J

∫ tn+1

tn

∫
Ij

∂xF
′(u) (εn)2

dx dt.

(36)
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Here we used εn∂xε
n = 1

2∂x (εn)2
and εn[εn] = 1

2 [(εn)2]. So we get as a result

X1 + Y1 ≤ Cτ ‖εn‖22 .
To estimate X2 + Y2 we use also integration by parts and

∑
1≤j≤J

−1
6

(εn)3

∣∣∣∣x=x−
j+ 1

2

x=x+
j− 1

2

− 1
2

(εn
j+ 1

2
)2[εn]j+ 1

2

 =
∑

1≤j≤J

1
24

[εn]3j+ 1
2

to get

X2 + Y2 =
∑

1≤j≤J

∫ tn+1

tn

((
1
24
F ′′(u)[εn]3

)
j+ 1

2

+
1
6

∫
Ij

∂xF
′′(u) (εn)3

dx

)
dt. (37)

By using the Taylor expansion

F ′′(u)[εn] = (F ′′(uh) + F̃ ′′′e)[εn] = −F ′′(uh)[uh] + F ′′(uh)[ω] + F̃ ′′′[εn]e (38)

and (16a), as well as the Lemmata 3.14 and A.2 we get

1
24
F ′′(u)[εn] ≤1

3
α(H;uh) + C(‖η(·, t)‖∞ + |Υ(·, t)|Γh

+ ‖e(·, t)‖2∞)

≤1
3
α(H;uh) + C(h+ h

1
2 ‖εn‖2 + ‖e(·, t)‖2∞).

Finally (28) leads to

X2 + Y2 ≤ τ

3
ᾱn(H;uh)[εn]2 + Cτ(1 + h−

1
2 ‖εn‖2 + h−1 ‖en‖2∞ + ‖εn‖∞) ‖εn‖22

≤ τ

3
ᾱn(H;uh)[εn]2 + Cτ ‖εn‖22 .

Rewriting X3 we get

X3 = −
∑

1≤j≤J

F ′(ũj)
∫
Ij

∫ tn+1

tn
(η −Υ) ∂xεn dt dx.

Here ũ1, . . . , ũJ are the values we get by using the mean value theorem for integration. With (16c), Lemma 3.14
and the inverse properties from Lemma A.1 we get the estimate

X3 ≤ Cτhk+1 ‖εn‖2 + Cτ ‖Υ‖2 ‖∂xεn‖2 ≤ Cτ
(
‖εn‖22 + h2k+2

)
.

To handle Y3 we use
|F ′(u(xj+ 1

2
, ·))| ≤ 2α(H;uh)j+ 1

2
+ C ‖en‖∞ ,

which follows immediately from (51a) in Lemma A.2 in the appendix. By using Young's inequality, (16a) and
Lemma 3.14 we get

Y3 =
∑

1≤j≤J

(∫ tn+1

tn
F ′(u)Υ dt [εn]−

∫ tn+1

tn
F ′(u)η dt [εn]

)
j+ 1

2

≤ Cτ
(
h−1 |Υ|2Γh

+ h |εn|2Γh
+ ‖en‖∞ ‖εn‖∞ |η|Γh

)
+
∑

1≤j≤J

∫ tn+1

tn
(2α(H;uh) [εn] η)j+ 1

2
dt

≤ Cτ
(
‖εn‖22 + |η|2Γh

+ h−1 ‖en‖2∞ ‖εn‖22 + |η|2Γh

)
+
τ

6
ᾱn(H;uh)[εn]2

≤ Cτ
(
‖εn‖22 + h2k+1

)
+
τ

6
ᾱn(H;uh)[εn]2.

(39)
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In a similar way we get the remaining inequalities

X4 + Y4 ≤ C τ
h
‖ηn‖∞ ‖εn‖22 ≤ Cτ ‖εn‖22 ,

X5 + Y5 ≤ Cτ
(
‖εn‖22 + h2k+2

)
,

X6 + Y6 ≤ Ch−1 ‖en‖2∞
(
τ ‖εn‖22 + Cτh2k+2

)
≤ Cτ

(
‖εn‖22 + h2k+2

)
.

By summing up over all terms we get the result of the lemma. �

Remark 4.7. The estimation of Y3 has to be improved to get a convergence rate of k + 1 instead of k + 1
2 . The

term h2k+1

4.3 Proof of Lemma 4.6

First we rewrite
∥∥εn+1 − εn∥∥2

2
by using (24) and vh = εn+1 − εn and get∥∥εn+1 − εn∥∥2

2
= Kn[uh, εn+1 − εn]. (40)

In the remaining proof we deduce an estimate for Kn[uh, vh] and each vh ∈ V kΓ . Kn[uh, vh] we can rewrite it as

Kn[uh, vh] =
∑

1≤j≤J

∫
Ij

(ηn+1 − ηn)vh dx

+
∑

1≤j≤J

∫ tn+1

tn

∫
Ij

Π(u, uh) ∂xvh dx dt

+
∑

1≤j≤J

∫ tn+1

tn
Π̂j+ 1

2
(u, uh)[vh]j+ 1

2
dt

=: θ1(vh) + θ2(vh) + θ3(vh).

Here Π and Π̂j+ 1
2
are de�ned by

Π(u, uh) = F (u)− F (uh) and Π̂j+ 1
2
(u, uh) = (F (u)−H(uh))j+ 1

2
.

Let δ be a �xed but arbitrary positive number. The �rst term θ1(vh) can easily be estimated by using Young's
inequality and (16b) by

|θ1(vh)| ≤ Cτ2h2k+2 + δ ‖vh‖22 . (41)

To estimate θ2(vh) we make a Taylor expansion of Π and get

Π(u, uh) = F (u)− F (uh) = F̄ ′e = F̄ ′ε− F̄ ′η.
Here F̄ ′ ∈ R is the number arising when using the mean value theorem. Altogether we get by Young's inequality,
(16b) and (18b)

|θ2(vh)| ≤ δ ‖vh‖22 + Ch−2

∥∥∥∥∥
∫ tn+1

tn
ε(·, t)− η(·, t) dt

∥∥∥∥∥
2

2

≤ δ ‖vh‖22 + C
τ2

h2

(∥∥ε(·, ξ1
t )
∥∥2

2
+
∥∥η(·, ξ2

t )
∥∥2

2

)
≤ δ ‖vh‖22 + C

τ2

h2

(
‖εn‖22 + h2k+2

)
.

(42)
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Here ξ1
t , ξ

2
t ∈ (tn, tn+1) are values, which arise from applying the mean value theorem in time. To handle θ3(vh)

we split it and make a Taylor expansion to get

Π̂(u, uh) = F (u)− F (uh) + F (uh)−H(uh)

=
(
F̃ ′η − F̃ ′ε

)
+
(
F (uh)−H(uh)

)
=: Q1 +Q2.

Here F̃ ′ ∈ R is again a number arising from a Taylor expansion. De�ne

Ti :=
∑

1≤j≤J

∫ tn+1

tn
(Qi)j+ 1

2
dt[vh]j+ 1

2
(i = 1, 2).

The term T1 is estimated by the same type of arguments as θ2:

|T1| ≤ δ ‖vh‖22 + Ch−1
∑

1≤j≤J

∣∣∣∣∣
∫ tn+1

tn
ε(xj+ 1

2
, t)− η(xj+ 1

2
, t) dt

∣∣∣∣∣
2

≤ δ ‖vh‖22 + C
τ2

h

(∣∣ε(·, ξ1
t )
∣∣2
Γh

+
∣∣η(·, ξ2

t )
∣∣2
Γh

)
≤ δ ‖vh‖22 + C

τ2

h2

(
‖εn‖22 + h2k+2

)
.

(43)

Here ξ1
t , ξ

2
t ∈ (tn, tn+1) are values, which arise from applying mean value theorem. With the de�nition of α from

(8) we get
|Q2| ≤ α(H;uh)|[uh]| ≤ α(H;uh) (|[ε]|+ |[η]|) .

Together with Lemma A.1 this gives

|T2| ≤ δ ‖vh‖22 + C
τ2

h
ᾱ2
n(H;uh)[εn]2 + Cτ2h2k

≤ δ ‖vh‖22 + C
τ2

h2
‖εn‖22 + Cτ2h2k.

(44)

By adding (41), (42), (43) and (44) we get

Kn[uh, vh] ≤ 4δ ‖vh‖22 + C
τ2

h2
‖εn‖22 + Cτ2h2k.

Now choose δ = 1
8 and use (40) and (21) to get the �nal result∥∥εn+1 − εn∥∥2

2
≤ Cτ

(
‖εn‖22 + h2k+2

)
.

This completes the proof of this lemma. �

5. ADMISSIBLE EXPANSIONS

Theorem 4.1 applies to the STE-DG method if the expansion is what we called admissible (cf. De�nition 3.10).
We introduced this notion to abstain from the special choice for expansions, and to work out the essential
conditions for obtaining convergence. Whether an expansion is admissible has to be checked by a case-by-case
study. In this section we verify the admissibility for the Cauchy-Kovaleskaya expansion and the characteistic
expansion.
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5.1 Cauchy-Kovalevskaya Expansion

In this section we will outline the proof of the fact, that the CK-expansion from De�nition 3.5 is an admissible
expansion of order k in the sense of De�nition 3.10. To do this we �rst de�ne the projection QCK by

QCK :
{
CkΓ → V kΓ
v 7→ QCK [v] := Tk[v;xj ] on Ij , ∀1 ≤ j ≤ J. (45)

Here Tk[v;xj ] denotes the Taylor expansion of order k of the function v in xj .
In the �rst step we prove two auxiliary lemmata. The �rst describes derivational operators; the second relates
time derivatives of the expansion and Taylor expansions of derivational operators.

Lemma 5.1 (Form of Derivational Operators).
Let the assumptions in Theorem 4.1 hold. Let Tl, l ∈ N, denote the set of multi-indices given by

Tl :=
{
j = (j1, . . . , jl) : j1 + 2 j2 + · · ·+ l jl = l

}
.

Let the assumptions of Theorem 4.1 hold. Then there are functions Ki, i ∈ Tl+p, such that for all l, p ∈ N0 the
derivational operator from De�nition 3.4 applied to a function v ∈ CkΓ has the form

∂̃x
p
∂̃t
l
v(x) =

∑
i∈Tl+p

Ki(v(x))
l+p∏
m=1

(∂xmv(x))im . (46)

For all i ∈ Tl+p we have Ki ∈ Ck−l−p+1(R) and Ki is bounded and has bounded derivatives.

Proof: This is a straightforward consequence of the de�nition of derivational operators and the regularity as-
sumptions on F made in Theorem 4.1. �

Lemma 5.2 (Derivational Operators and Taylor Expansions).
For v ∈ V kΓ and 0 ≤ l ≤ k the following representation formula holds:

∂t
l ECK [v]

∣∣
t=0

= Tk−l
[
∂̃t
l
v;xj

]
= ∂̃t

l
v −Rk−l

[
∂̃t
l
v;xj

]
on Ij. (47)

Proof: This is a straightforward consequence of the de�nitions of the CK-expansion (see De�nition 3.5) and of
derivational operators. �

De�ne W := (ECK [w]−w)−(ECK [v]−v). By using the Lemmata 5.1 and 5.2 we get the following representation

W =
∑

0≤m≤k

(
tmin(m,1)∂x

m(w − v)Bm(x, t, w, v) + t(x− xj)k(∂xm(w − v))(ξx)Dm(x, t, w, v)
)
.

Here Bm, Dm : [0, 1]× [0, τ ]× V kh,M × V kh,M → R are uniformly bounded with respect to h.
Finally we get (i) in De�nition 3.10 by using inverse properties (see A.1)

‖W(·, t)‖22 ≤ C
∑

0≤m≤k

(
τ2 min(m,1)

h2m
+
τ2h2k−1

h2m+1

)
‖w − v‖22 ≤ Ch2 ‖w − v‖22 .

Note that we used the time step restriction τ ≤ γh2 from (21) here.
To prove (ii) we note, that

ECKtn
[
QCK [un]

]
= T̃k [u; (xj , tn)] on Ij × [tn, tn+1], ∀1 ≤ j ≤ J , 0 ≤ n ≤ N , (48)

and use approximation arguments of the Taylor expansion. Here u denotes the exact solution and T̃k is the
Taylor expansion in space and time.
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5.2 Characteristic Expansion

In this section we want to prove, that the characteristic expansion from Section 3.2.2 is an admissible expansion
of order k. We use here the time-step restriction

τ ≤ γh 5
2 . (49)

By using the basic formulation (12), we derive the following lemma:

Lemma 5.3 (Error Representation).
Let v, w ∈ V kΓ . For each 1 ≤ j ≤ J and 0 ≤ l ≤ k, there is a term Tj,l = Tj,l(x, t, v, w) with support in
Ij × [0, τ ]× V kh × V kh , such that for 0 ≤ t ≤ τ

W := (ECh[w]− w)− (ECh[v]− v) =
∑

1≤j≤J

∑
0≤l≤k

Tj,l (w − v)(yj,l)

and

|Tj,l| ≤ C τ
h

(50)

holds.

Proof: To prove this result we �rst rewrite (12) and get for x ∈ Ij , j ∈ {1, . . . , J},

ECh[v](x, t) =
∑

0≤l≤k

vl
∏

0≤m≤k
m6=l

gl,m(x, t, vl, vm),

where

gl,m(x, t, a, b) =
x− yj,m − tF ′(b)

yj,l − yj,m + t(F ′(a)− F ′(b))
and

vl = v(yj,l).

In the next step we rewrite W(x, t) = s
(
∂tE

Ch[w]− ∂tECh[v]
)

(x, s)
∣∣
s=ξt

with 0 ≤ ξt ≤ t, in such a way, that

it is factorised with one factor (w − v)(yj,l). By using the estimates∣∣gl,m∣∣ ≤ C, ∣∣∂tgl,m∣∣ ≤ C 1
h
,

∣∣∂agl,m∣∣ , ∣∣∂bgl,m∣∣ ≤ C τ
h
,

∣∣∂tagl,m∣∣ , ∣∣∂tbgl,m∣∣ ≤ C 1
h

we get the �nal result (50). These estimates hold for x ∈ Ij , t ∈ [0, τ ] and a, b ∈ R. �

With Lemma 5.3 and (49), we can easily prove, that (i) in De�nition 3.10 holds.
To prove (ii) of De�nition 3.10 we de�ne QCh in such a way, that the properties QCh[v] ∈ V kΓ and QCh[v](yj,l) =
v(yj,l, 0) hold for each 1 ≤ j ≤ J , 0 ≤ l ≤ k and v ∈ CkΓ. Having the projection QCh we only need standard
interpolation properties to prove (ii).

6. CONCLUSION

Last we want to summarise the results of this paper:
We introduces the Space-Time Expansion DG method in a abstract setting and proof a convergence result only
using the few properties of an admissible expansion. We also introduced two di�erent admissible expansions
namely the Cauchy-Kovalevskaya and the characteristic expansion. We achieved a convergence rate of k + 1

2 in
theorem 4.1, which in not optimal, but can be improved to k+1 by assuming that the numerical �ux is a upwind
�ux as in [23]. Looking at experiments done by Munz et al. (see [11, 17]) the order k + 1 seems to be optimal.
But the same experiments suggest that the time step restriction τ ≤ γh2 is not optimal. A time step restriction
of the form τ ≤ γh, with γ > 0 small enough, should be possible.

22



Furthermore we did not mention, that the STE-DG method can be extended to use local time stepping (see
[11, 17]). Local time stepping saves a lot of computation time. To get a convergence result for the local time
stepping variant of the STE-DG method there is still some work to do.

Acknowledgment: The authors thank the German Research Foundation (DFG) for �nancial support of the
project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

APPENDIX A.

We collect well-known results from the literature, which are used in the main part of the paper.

Lemma A.1 (Inverse Properties).
There is a constant C > 0 independent of h, such that the following inequalities hold for all vh ∈ V kΓ :

‖∂xvh‖2 ≤ Ch−1 ‖vh‖2 , |vh|Γh
≤ Ch− 1

2 ‖vh‖2 , ‖vh‖∞ ≤ Ch−
1
2 ‖vh‖2 .

The seminorm was de�ned in (7).

Proof: See [3]. �

We also need some information about α and α̂ de�ned in (8) and (9):

Lemma A.2 (Properties of the Numerical Flux).
Let H : R2 → R be a monotone, numerical �ux for F .
Then the quantities α(H; p) and α̂n(H; p) are nonnegative and bounded for all p ∈ R2. Moreover there is a
constant C > 0, such that

1
2
|F ′ (p)| ≤ α(H; p) + C| [p] |, (51a)

−1
8
F ′′ (p) [p] ≤ α(H; p) + C| [p] |2. (51b)

Proof: See [23]. �
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