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Abstract. Under a non-degeneracy condition on the nonlinearities we show

that sequences of approximate entropy solutions of mixed elliptic-hyperbolic
equations are strongly precompact in the general case of a Caratheodory flux

vector. The proofs are based on deriving localization principles for H-measures

associated to sequences of measure-valued functions. This main result implies
existence of solutions to degenerate parabolic convection-diffusion equations

with discontinuous flux. Moreover, it provides a framework in which one can

prove convergence of various types of approximate solutions, such as those
generated by the vanishing viscosity method and numerical schemes.

1. Introduction

Let Ω be an open subset of Rn. In the domain Ω we consider the quasilinear
elliptic equation

divxϕ(x, u)−D2 ·B(u) + ψ(x, u) = 0, (1)
where D2 · B(u) = ∂2

xixj
bij(u) (we use the conventional rule of summation over

repeated indexes), B(u) = {bij(u)}ni,j=1 is a symmetric matrix. We shall assume
that this matrix is only continuous: bij(u) ∈ C(R), i, j = 1, . . . , n. In this case the
ellipticity of (1) is understood in the following sense

B(u1)−B(u2) ≥ 0, u1, u2 ∈ R, u1 > u2, (2)

that is, for all ξ ∈ Rn we have (B(u1) − B(u2))ξ · ξ ≥ 0 (here u · v denotes the
scalar product of vectors u, v ∈ Rn).

We suppose that ϕ(x, u) = (ϕ1(x, u), . . . , ϕn(x, u)) is a Caratheodory vector (i.e.,
it is continuous with respect to u and measurable with respect to x) such that the
functions

αM (x) = max
|u|≤M

|ϕ(x, u)| ∈ L2
loc(Ω) (3)

for all M > 0 (here and below | · | stands for the Euclidean norm of a finite-
dimensional vector). We also assume that for all p ∈ P, where P ⊂ R is a set of
full measure, the distribution

divxϕ(x, p) = γp ∈ Mloc(Ω), (4)
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where Mloc(Ω) denotes the space of locally finite Borel measures on Ω equipped with
the standard locally convex topology generated by semi-norms pΦ(µ) = Var (Φµ),
with Φ = Φ(x) ∈ C0(Ω).

The function ψ(x, u) is assumed to be a Caratheodory function on Ω×R, and

βM (x) = max
|u|≤M

|ψ(x, u)| ∈ L1
loc(Ω) for all M > 0. (5)

Let γp = γrp + γsp be the decomposition of the γp into the sum of regular and
singular measures, so that γrp = ωp(x)dx, ωp ∈ L1

loc(Ω), and γsp is a singular measure
(supported on a set of zero Lebesgue measure). We denote by |γsp| the variation of
the measure γsp, which is a non-negative locally finite Borel measure on Ω.

As usual we denote

sign(u) =


1, u > 0,
−1, u < 0,
0, u = 0.

Now, we introduce a notion of entropy solution of (1).

Definition 1. A measurable function u(x) on Ω is called an entropy solution of
equation (1) if ϕi(x, u(x)), bij(u(x)), ψ(x, u(x)) ∈ L1

loc(Ω), i, j = 1, . . . , n, and for
almost all p ∈ P the Kružkov-type entropy inequality (see [10])

divx (sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))) (6)

−D2 · (sign(u(x)− p)(B(u(x))−B(p)))

+ sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γsp| ≤ 0

holds in the sense of distributions on Ω (in the space D′(Ω)); that is, for all non-
negative functions f(x) ∈ C∞0 (Ω)∫

Ω

sign(u(x)− p)
[
(ϕ(x, u(x))− ϕ(x, p)) · ∇f(x) + (B(u(x))−B(p)) ·D2f

−(ωp(x) + ψ(x, u(x)))f(x)
]
dx+

∫
Ω

f(x)d|γsp|(x) ≥ 0.

We use the notation D2f for the matrix {∂2
xixj

f}ni,j=1 and

P ·Q = TrPQ =
n∑

i,j=1

pijqij

denotes scalar product of symmetric matrices P = {pij}ni,j=1, Q = {qij}ni,j=1. In
particular,

(B(u(x))−B(p)) ·D2f = (bij(u)− bij(p))∂2
xixj

f.

In the case when the second-order term is absent (B(u) ≡ 0) our definition extends
the notion of the entropy solution for first-order balance laws introduced for the
case of one space variable in [6, 8], see also [7] for one-dimensional degenerate
convection-diffusion equations.

We also notice that we do not require u(x) to be a weak solution of (1). If
u(x) ∈ L∞(Ω) and γsp = 0 for p ∈ P, then any entropy solution u(x) satisfies
(1) in D′(Ω), i.e., u(x) is a weak solution of (1). Indeed, this follows from (6)
with p > ‖u‖∞ and p < −‖u‖∞. But in general, entropy solutions are not weak
solutions, even in the case when the singular measures γsp are absent. For instance,
as is easily verified, u(x) = signx |x|−1/2 is an entropy solution of the first-order
equation (xu2)x = 0 on the line Ω = R, but it does not satisfy this equation in
D′(R).

We assume that equation (1) is non-degenerate in the following sense:
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Definition 2. Equation (1) is said to be non-degenerate if for almost all x ∈ Ω
for all ξ ∈ Rn, ξ 6= 0 the functions λ 7→ ξ · ϕ(x, λ), λ 7→ B(λ)ξ · ξ are not constant
simultaneously on non-degenerate intervals.

In this paper, we establish the strong precompactness property for sequences of
entropy solutions. This result generalizes previous results of [12, 13, 14, 15, 17] to
the case of quasi-linear elliptic equations.

Theorem 3. Suppose that uk, k ∈ N, is a sequence of entropy solutions of the
non-degenerate equation (1) such that

|ϕ(x, uk(x))|+ |ψ(x, uk(x))|+ |B(uk(x))|+m(uk(x))

is bounded in L1
loc(Ω), where m(u) is a nonnegative super-linear function1. Then

there exists a subsequence of uk, which converges in L1
loc(Ω) to an entropy solution

u(x) of (1).

We use here and everywhere below the notation |B| for the Euclidean norm of a
symmetric matrix B, that is |B|2 = B ·B.

More generally, we establish the strong precompactness of approximate sequences
uk(x) for non-degenerate equation (1). The only assumption we need is that the
sequence of distributions

divxϕ(x, sa,b(uk(x)))−D2 ·B(sa,b(uk(x)))

is precompact in the Sobolev space W−1
d,loc(Ω) for some d > 1, for each a, b ∈ R,

a < b (see relation (78) below). Throughout this paper we use sa,b(u) to denote
the cut-off function

sa,b(u) = max(a,min(u, b)) =


a, u < a,

u, a ≤ u ≤ b,
b, u > b.

Observe that the non-degeneracy condition is essential for the statement of
Theorem 3. In the case of the equation divϕ(u) − D2 · B(u) = 0 this condi-
tion is necessary for strong precompactness property. For instance, if ξ · ϕ(u) and
B(u)ξ · ξ are constant on the segment [a, b] with ξ ∈ Rn, ξ 6= 0 then the sequence
uk(x) = [a+ b+ (b− a) sin(kξ · x)]/2 of entropy solutions does not contain strongly
convergent subsequences.

We also stress that for sequences of weak solutions (without additional entropy
constraints) the statement of Theorem 3 does not hold. For example, the sequence
uk = sign sin kx consists of weak solutions for the Burgers equation ut + (u2)x = 0
(as well as for the corresponding stationary equation (u2)x = 0) and converges only
weakly, while the non-degeneracy condition is evidently satisfied.

Theorem 3 will be proved in the last section. The proof is based on general
localization properties for ultra-parabolic H-measures corresponding to bounded
sequences of measure-valued functions. It also follows from these properties the
strong convergence of various approximate solutions for equation (1).

We describe below one useful approximation procedure. We assume for simplicity
that ψ(x, u) ≡ 0, bij(u) ∈ C1(R), i, j = 1, . . . , n. As shown in [17], there exists a se-
quence ϕm(x, u) ∈ C∞(Ω×R) such that ϕm(x, u) →

m→∞
ϕ(x, u) in L2

loc(Ω, C(R,Rn))

while for each p ∈ P, divxϕm(x, p) = γmpr(x) + γmps(x), where γmpr(x) →
m→∞

ωp(x) in

L1
loc(Ω), |γmps(x)| →

m→∞
|γsp| weakly in Mloc(Ω).

1A nonnegative super-linear function m satisfies m(u)/u→∞ as u→∞.



4 H. HOLDEN, K. H. KARLSEN, D. MITROVIC, AND E. YU. PANOV

By the ellipticity assumption A(u) = B′(u) ≥ 0, we can choose a sequence of
smooth symmetric matrices Am(u) = {amij (u)}ni,j=1 such that Am ≥ εmI, εm > 0
(here I is the identity matrix), and for each M > 0

ε−1/2
m max

|u|≤M
|Am(u)−A(u)| →

m→∞
0.

Then we have the limit relation

|(Am(u)−A(u))(Am(u))−1/2| → 0 in C(Ω).

Moreover, passing to a subsequence of Am if necessary, we may achieve that for
each M > 0 and every compact K ⊂ Ω

max
|u|≤M

|(Am(u)−A(u))(Am(u))−1/2| =
m→∞

o
(
Im(K,M + 1)−1/2

)
, (7)

where

Im(K,M) = 1 +
∫
K

∫ M

−M
|divxϕm(x, p)|dpdx.

In general, the sequence Im(K,M) may tend to infinity as m → ∞. We consider
the approximate equation

divx[ϕm(x, u)−Am(u)∇u] = 0 (8)

and suppose that u = um(x) is a bounded weak solution of (8) (for instance, we
can take u = um(x) being a weak solution to the Dirichlet problem with a bounded
data at ∂Ω). This means (see [11, Chapter 4]) that u ∈ L∞(Ω) ∩W 1

2,loc(Ω), where
W 1

2,loc(Ω) is the Sobolev space consisting of functions whose generalized derivatives
are in L2

loc(Ω), and the following standard integral identity is satisfied: For all
f = f(x) ∈ C1

0 (Ω) we have∫
Ω

[ϕm(x, u(x))−Am(u)∇u(x)] · ∇f(x)dx = 0. (9)

We also assume that the sequence um is bounded in L∞(Ω). Under the above
assumptions we establish the strong convergence of the approximations.

Theorem 4. Suppose that equation (1) is non-degenerate. Then the sequence
um(x) →

m→∞
u(x) in L1

loc(Ω), where u = u(x) is an entropy and a distributional

solution of (1).

We remark that Theorem 4 allows to establish the existence of entropy solutions
of boundary value problems for equation (1) (as well as initial or initial boundary
value problems for evolutionary equations of the kind (1)).

For example, in [17] we use approximations and the strong precompactness prop-
erty in order to prove the existence of entropy solutions to the Cauchy problem for
an evolutionary hyperbolic equation with discontinuous multidimensional flux. This
extends results of [9], where the two-dimensional case is treated by the compensated
compactness method.

We also remark that another approach to prove the strong precompactness prop-
erty for equation (1) based on the kinetic formulation and averaging lemmas was
developed in [21]. But this approach can be applied only when the flux ϕ = ϕ(u)
does not depend on x ∈ Rn, and when the flux vector as well as the diffusion matrix
are sufficiently regular.

In Sections 2, 3 we describe the main concepts, in particular the concept of
measure-valued functions, and introduce a notion of the H-measure. Most of the
statements in the sections are taken from [16]. For completeness we also reproduce
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the proofs of these statements. In [16] we considered the strong pre-compactness
property for the general ultra-parabolic equation

divϕ(x, u)−D2 ·B(x, u) + ψ(x, u) = 0, (10)

where it is assumed that B(x, u) is a Caratheodory matrix-valued function, which
satisfies the ellipticity condition sign(u1−u2)(B(x, u1)−B(x, u2)) ≥ 0, and degen-
erates on a fixed subspace X (that is, X ⊂ ker(B(x, u)−B(x, u0))).

We have more complicated situation in (1) since the diffusion matrix B = B(u),
u ∈ R, degenerates on a subspace X = X(u) depending on u ∈ R. Still, since the
matrix B = B(p), p ∈ R, is continuous, we will be able to reduce our investigation
on the behavior of the corresponding H-measure in a neighborhood of a fixed point
p0 ∈ R (see the statement of Theorem 25). Therefore, we will be able to use
techniques from [16] (of course, in a rather nontrivial manner).

Observe that results analogous to Theorems 3 and 4 were proved in [16] for
equation (10) under the stronger non-degeneracy assumption:

For almost all x ∈ Ω and for all ξ̃ ∈ X, ξ̄ ∈ X⊥ such that ξ̃ 6= 0, ξ̄ 6= 0, the
functions λ 7→ ξ̃ · ϕ(x, λ), λ 7→ B(x, λ)ξ̄ · ξ̄ are not constant on non-degenerate
intervals.

Here X⊥ denotes the orthogonal complement to the subspace X.

In Section 4 we prove the localization property for the above defined H-measures
corresponding to sequences of measure-valued functions. Finally, in the last Sec-
tion 5, these results are applied to prove our main theorems.

2. Main concepts

Recall (see [2, 3, 22]) that a measure-valued function on Ω is a weakly measurable
map x 7→ νx of the set Ω into the space of probability Borel measures with compact
support in R. The weak measurability of νx means that for each continuous function
f(λ) the function x 7→

∫
f(λ)dνx(λ) is Lebesgue measurable on Ω.

Remark 5. If νx is a measure-valued function, then, as was shown in [13], the
functions

∫
g(λ)dνx(λ) are measurable in Ω for all bounded Borel functions g(λ).

More generally, if f(x, λ) is a Caratheodory function and g(λ) is a bounded Borel
function then the function

∫
f(x, λ)g(λ)dνx(λ) is measurable. This follows from the

fact that any Caratheodory function is strongly measurable as a map x 7→ f(x, · ) ∈
C(R) (see [5, Ch. 2]) and, therefore, is a pointwise limit of step functions fm(x, λ) =∑
i gmi(x)hmi(λ) with measurable functions gmi(x) and continuous hmi(λ) so that

for x ∈ Ω fm(x, · ) →
m→∞

f(x, · ) in C(R).

A measure-valued function νx is said to be bounded if there exists M > 0 such
that supp νx ⊂ [−M,M ] for almost all x ∈ Ω. We denote by ‖νx‖∞ the smallest
value of M with this property.

Finally, measure-valued functions of the form νx(λ) = δ(λ−u(x)), where δ(λ−u)
is the Dirac measure concentrated at u are said to be regular; we identify them with
the corresponding functions u(x). Thus, the set MV (Ω) of bounded measure-valued
functions on Ω contains the space L∞(Ω). Note that for a regular measure-valued
function νx(λ) = δ(λ − u(x)) the value ‖νx‖∞ = ‖u‖∞. Extending the concept of
boundedness in L∞(Ω) to measure-valued functions, we shall say that a subset A
of MV (Ω) is bounded if supνx∈A ‖νx‖∞ <∞.

Below we define the weak and the strong convergence of sequences of measure-
valued functions.

Definition 6. Let νkx ∈MV (Ω), k ∈ N, and let νx ∈MV (Ω). Then
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(1) the sequence νkx converges weakly to νx if for each f(λ) ∈ C(R),∫
f(λ)dνkx(λ) →

k→∞

∫
f(λ)dνx(λ) weak star in L∞(Ω);

(2) the sequence νkx converges to νx strongly if for each f(λ) ∈ C(R),∫
f(λ)dνkx(λ) →

k→∞

∫
f(λ)dνx(λ) in L1

loc(Ω).

The next result was proved in [22] for regular functions νkx . The proof can be
easily extended to the general case, as was done in [13].

Theorem T. Let νkx , k ∈ N, be a bounded sequence of measure-valued functions.
Then there exist a subsequence νrx = νkx , k = kr, and a measure-valued function
νx ∈MV (Ω) such that νrx → νx weakly as r →∞.

Theorem T shows that bounded sets of measure-valued functions are weakly
precompact. If uk(x) ∈ L∞(Ω) is a bounded sequence, treated as a sequence of
regular measure-valued functions, and uk(x) converges weakly to a measure-valued
function νx then νx is regular, νx(λ) = δ(λ − u(x)), if and only if uk(x) → u(x)
in L1

loc(Ω) (see [22]). Obviously, if uk(x) converges to νx strongly then uk(x) →
u(x) =

∫
λdνx(λ) in L1

loc(Ω) and then νx(λ) = δ(λ− u(x)).
We shall study the strong precompactness property using Tartar’s technique of

H-measures.
Let

F (u)(ξ) =
∫
e−2πiξ·xu(x)dx, ξ ∈ Rn,

be the Fourier transform extended as unitary operator on the space u(x) ∈ L2(Rn),
and let S = Sn−1 = {ξ ∈ Rn : |ξ| = 1} be the unit sphere in Rn. Denote complex
conjugation of u ∈ C by u.

The concept of H-measure associated to a sequence of vector-valued functions
bounded in L2(Ω) was introduced by Tartar [23] and Gerárd [4] on the basis of the
following result. For a fixed l ∈ N, let Uk(x) =

(
U1
k (x), . . . , U lk(x)

)
∈ L2(Ω,Rl) be

a sequence weakly convergent to the zero vector as k →∞.

Proposition 7 ([23, Thm. 1.1]). There is a family of complex Borel measures
µ =

{
µij
}l
i,j=1

on Ω× S and a subsequence Ur(x) = Uk(x), k = kr, such that

〈µij ,Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫
Rn

F (U irΦ1)(ξ)F (U jrΦ2)(ξ)ψ
(
ξ

|ξ|

)
dξ, (11)

for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ =
{
µij
}l
i,j=1

is called the H-measure associated to Ur(x).
Here, we shall need more general variant of the H measures developed in [16]

and based on the concept of the parabolic H-measures recently introduced in [1].
Suppose that X ⊂ Rn is a linear subspace, X⊥ is its orthogonal complement,

P1, P2 are orthogonal projections on X, X⊥, respectively. For ξ ∈ Rn, we write

ξ̃ = P1ξ, ξ̄ = P2ξ,

so that ξ̃ ∈ X, ξ̄ ∈ X⊥, ξ = ξ̃ + ξ̄. Let

SX =
{
ξ ∈ Rn : |ξ̃|2 + |ξ̄|4 = 1

}
.

Then SX is a compact smooth manifold of codimension 1. In the case when X = {0}
or X = Rn it coincides with the unit sphere S = {ξ ∈ Rn : |ξ| = 1}. Let us define
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the projection πX : Rn \ {0} → SX by

πX(ξ) =
ξ̃

(|ξ̃|2 + |ξ̄|4)1/2
+

ξ̄

(|ξ̃|2 + |ξ̄|4)1/4
.

Observe that in the case when X = {0} or X = Rn,

πX(ξ) = ξ/|ξ|.
We denote

p(ξ) =
(
|ξ̃|2 + |ξ̄|4

)1/4

.

The following useful property of the projection holds:

Lemma 8 ([16, Lemma 1]). Let ξ, η ∈ Rn, max(p(ξ), p(η)) ≥ 1. Then

|πX(ξ)− πX(η)| ≤ 6|ξ − η|
max(p(ξ), p(η))

.

Proof. We define for ξ ∈ Rn, α > 0 ξα = α2ξ̃ + αξ̄. Observe that for all α > 0
πX(ξα) = πX(ξ). Without lose of generality we may suppose that p(ξ) ≥ p(η), and,
in particular, p(ξ) ≥ 1. Remark that πX(ξ) = ξα, πX(η) = ηβ , where α = 1/p(ξ),
β = 1/p(η). Therefore,

|πX(ξ)− πX(η)| = |ξα − ηβ | (12)

≤ |ξα − ηα|+ |ηα − ηβ |

=
(
α4|ξ̃ − η̃|2 + α2|ξ̄ − η̄|2

)1/2 +
(
(β2 − α2)2|η̃|2 + (β − α)2|η̄|2

)1/2
≤ α|ξ − η|+ (β − α)

(
(β + α)2|η̃|2 + |η̄|2

)1/2
.

Here we take into account that α ≤ 1 and therefore α4 ≤ α2. Since

(β + α)2 ≤ 4β2 = 4(|η̃|2 + |η̄|4)−1/2 ≤ 4/|η̃|,
we have the estimate

(β + α)2|η̃|2 + |η̄|2 ≤ 4(|η̃|+ |η̄|2) ≤ 4
(
2(|η̃|2 + |η̄|4)

)1/2 ≤ 6(p(η))2. (13)

Concerning the term β − α, we estimate it as follows

β − α =
p(ξ)− p(η)
p(ξ)p(η)

=
|ξ̃|2 − |η̃|2 + |ξ̄|4 − |η̄|4

p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤ (|ξ̃|+ |η̃|)|ξ̃ − η̃|+ (|ξ̄|+ |η̄|)(|ξ̄|2 + |η̄|2)|ξ̄ − η̄|
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

≤ |ξ̃|+ |η̃|+ (|ξ̄|+ |η̄|)(|ξ̄|2 + |η̄|2)
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

|ξ − η|

≤ (p(ξ))2 + (p(η))2 + (p(ξ) + p(η))((p(ξ))2 + (p(η))2)
p(ξ)p(η)(p(ξ) + p(η))((p(ξ))2 + (p(η))2)

|ξ − η|

≤ 1 + p(ξ) + p(η)
p(ξ) + p(η)

|ξ − η|
p(ξ)p(η)

≤ 2|ξ − η|
p(ξ)p(η)

. (14)

Here we use that ξ̃ ≤ (p(ξ))2, ξ̄ ≤ p(ξ), η̃ ≤ (p(η))2, η̄ ≤ p(η), and that p(ξ)+p(η) ≥
1. Now it follows from (12), (13), (14) that

|πX(ξ)− πX(η)| ≤ |ξ − η|
p(ξ)

+
2
√

6|ξ − η|
p(ξ)

≤ 6|ξ − η|
p(ξ)

=
6|ξ − η|

max(p(ξ), p(η))
,
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as was to be proved. �

Let b(x) ∈ C0(Rn), a(z) ∈ C(SX). Then we can define pseudo-differential
operators B, A with symbols b(x), a(πX(ξ)), respectively. These operators are
multiplication operators

Bu(x) = b(x)u(x), F (Au)(ξ) = a(πX(ξ))F (u)(ξ).

Obviously, the operators B,A are welldefined and bounded in L2. As was proved
in [23], in the case when SX = S, πX(ξ) = ξ/|ξ| the commutator [A,B] = AB−BA
is a compact operator. Using the assertion of Lemma 8 one can easily extend this
result to the general case (when dimX = 1 this was done in [1]). For completeness
we give below the details for the general setting.

Lemma 9 ([16, Lemma 2]). The operator [A,B] is compact in L2.

Proof. We can find sequences ak(z) ∈ C∞(SX), bk(x) ∈ C∞(Rn), k ∈ N, of
symbols with the following properties: F (bk)(ξ) ∈ C∞0 (Rn) and, as k → ∞,
ak(z)→ a(z), bk(x)→ b(x) uniformly on SX , Rn, respectively. Then the sequences
of the operators Ak, Bk with symbols ak(πX(ξ)), bk(x) converge as k → ∞ to the
operators A, B, respectively (in the operator norm). Therefore, [Ak,Bk] → [A,B]
and it is sufficient to prove that the operators [Ak,Bk] are compact for all k ∈ N
(then [A,B] is also compact operator as a limit of compact operators).

Let u = u(x) ∈ L2(Rn). Then by the well-known property

F (bu)(ξ) = F (b) ∗ F (u)(ξ) =
∫
F (b)(ξ − η)F (u)(η)dη,

we obtain

F ([Ak,Bk]u)(ξ) = F (AkBku)(ξ)− F (BkAku)(ξ)

= ak(πX(ξ))F (bku)(ξ)− F (bkAku)(ξ)

=
∫
Rn

(ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η)F (u)(η)dη.

We have to prove that the integral operator Kv(ξ) =
∫
Rn k(ξ, η)v(η)dη with the

kernel k(ξ, η) = (ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η) is compact on L2(Rn).
Since ak ∈ C∞(SX), Lemma 8 implies

|ak(πX(ξ))− ak(πX(η))| ≤ C |ξ − η|
max(p(ξ), p(η))

,

for max(p(ξ), p(η)) ≥ 1. Thus for all ξ, η ∈ Rn such that max(p(ξ), p(η)) > m > 1
and ξ − η ∈ suppF (bk)

|ak(πX(ξ))− ak(πX(η))| ≤ C

m
|ξ − η|. (15)

Let χm(ξ, η) be the indicator function of
{

(ξ, η) ∈ R2n : max(p(ξ), p(η)) ≤ m
}

, and

km(ξ, η) = χ(ξ, η) (ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η),
rm(ξ, η) = (1− χ(ξ, η)) (ak(πX(ξ))− ak(πX(η)))F (bk)(ξ − η).

Then k(ξ, η) = km(ξ, η) + rm(ξ, η) and K = Km + Rm, where Km, Rm are in-
tegral operators with the kernels km(ξ, η), rm(ξ, η), respectively. Since the func-
tion km(ξ, η) is bounded and compactly supported, the operator Km is a Hilbert–
Schmidt operator, which is compact. On the other hand, in view of (15),

|Rmv(ξ)| ≤ C

m

∫
Rn

|(ξ − η)F (bk)(ξ − η)||v(η)|dη =
C

m
[|ξF (bk)| ∗ |v|](ξ)
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and, by Young’s inequality,

‖Rmv‖2 ≤
C

m
‖ξF (bk)‖1‖v‖2, v ∈ L2(Rn).

Therefore, ‖Rm‖ ≤ const/m and Rm → 0 as m→∞. We conclude that Km → K
and therefore K is a compact operator, as a limit of compact operators. This
completes the proof. �

Now we fix a space X ⊂ Rn. An ultra-parabolic H-measure µij , i, j = 1, . . . , l,
corresponding to a sequence Ur(x) ∈ L2(Ω,Rl) is defined on Ω×SX by the relation
similar to (11), namely, for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX),〈

µij ,Φ1(x)Φ2(x)ψ(ξ)
〉

= lim
r→∞

∫
Rn

F (Φ1U
i
r)(ξ)F (Φ2U

j
r )(ξ)ψ(πX(ξ))dξ. (16)

The existence of an H-measure µij is proved exactly in the same way as in [23], using
Lemma 2. This H-measure satisfies the same properties as the “usual” H-measure
µpq (corresponding to the case X = {0} or X = Rn).

The concept of an H-measure was extended in [13] (see also [14, 15]) to sequences
of measure-valued functions. A similar extension can be provided for ultra-parabolic
H-measures. We study the properties of such H-measures in the next section.

3. Ultra-parabolic H-measures corresponding to bounded sequences
of measure-valued functions

Let νkx ∈ MV (Ω) be a bounded sequence of measure-valued functions weakly
convergent to a measure-valued function ν0

x ∈ MV (Ω). For x ∈ Ω and p ∈ R we
introduce the distribution functions

uk(x, p) = νkx((p,+∞)), u0(x, p) = ν0
x((p,+∞)).

Then, as mentioned in Remark 5, for k ∈ N∪{0} and p ∈ R, the functions uk(x, p)
are measurable in x ∈ Ω; thus, uk(x, p) ∈ L∞(Ω) and 0 ≤ uk(x, p) ≤ 1.

Let

E = E(ν0
x) =

{
p0 ∈ R : u0(x, p) →

p→p0
u0(x, p0) in L1

loc(Ω)
}
.

We have the following result, whose proof can be found in [13].

Lemma 10. The complement Ē = R \ E is at most countable and if p ∈ E then
uk(x, p) →

k→∞
u0(x, p) weak star in L∞(Ω).

By Lemma 10, as k →∞,

Upk (x) := uk(x, p)− u0(x, p)→ 0 weak star in L∞(Ω), for p ∈ E.

Let X be a linear subspace of Rn. The next result, similar to Proposition 7, was
also established in [13] in the case X = Rn. The general case of arbitrary X was
proved exactly in the same way.

Proposition 11. (1) There exists a family of locally finite complex Borel measures
{µpq}p,q∈E in Ω × SX and a subsequence Ur(x) = {Upr (x)}p∈E, Upr (x) = Upk (x),
k = kr, such that for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX),〈

µpq,Φ1(x)Φ2(x)ψ(ξ)
〉

= lim
r→∞

∫
Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ. (17)

(2) The correspondence (p, q) 7→ µpq is a continuous map from E×E into the space
Mloc(Ω× S).

We call the family of measures {µpq}p,q∈E the ultra-parabolic H-measure corre-
sponding to the subsequence νrx = νkx , k = kr.
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Remark 12. We can replace the function ψ(πX(ξ)) in relation (17) (and in (16)) by a
function ψ̃(ξ) ∈ C(Rn), which equals ψ(πX(ξ)) for large |ξ|. Indeed, since Uqr →

r→∞
0

weak star in L∞(Ω), we have F (Φ2U
q
r )(ξ) →

r→∞
0 pointwise and in L2

loc(Rn) (in

view of the bound |F (Φ2U
q
r )(ξ)| ≤ ‖Φ2U

q
r ‖1 ≤ const). Taking into account that

χ(ξ) = ψ̃(ξ)− ψ(πX(ξ)) is bounded and has a compact support, we conclude

F (Φ2U
q
r )(ξ)χ(ξ) →

r→∞
0 in L2(Rn).

This implies that

lim
r→∞

∫
Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)χ(ξ)dξ = 0.

Therefore

lim
r→∞

∫
Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ̃(ξ)dξ

= lim
r→∞

∫
Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ =

〈
µpq,Φ1(x)Φ2(x)ψ(ξ)

〉
,

as required.

We point out the following important properties of an H-measure.

Lemma 13 ([16, Lemma 4]). (i) µpp ≥ 0 for each p ∈ E;
(ii) µpq = µqp for all p, q ∈ E;
(iii) for p1, . . . , pl ∈ E, g1, . . . , gl ∈ C0(Ω× SX), the matrix A with components

aij = 〈µpipj , gigj〉, i, j = 1, . . . , l, is Hermitian and positive-definite.

Proof. We begin by proving (iii). First, let the functions gi = gi(x, ξ) be finite sums
of functions of the form Φ(x)ψ(ξ), where Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(SX). Then
it follows from (17) that

aij = lim
r→∞

∫
Rn

Hi
r(ξ)H

j
r (ξ)dξ, (18)

where Hi
r(ξ) = F (gi( · , πX(ξ))Upi

r )(ξ). Hence, setting

gi(x, ξ) = g(x, ξ) =
m∑
k=1

Φk(x)ψk(ξ),

we obtain

Hi
r(ξ) =

m∑
k=1

F (ΦkUpi
r )(ξ)ψk(πX(ξ)).

It immediately follows from (18) that aji = aij , i, j = 1, . . . , l, which shows that A
is a Hermitian matrix. Furthermore, for α1, . . . , αl ∈ C, we have

l∑
i,j=1

aijαiαj = lim
r→∞

∫
Rn

|Hr(ξ)|2dξ ≥ 0, Hr(ξ) =
l∑
i=1

Hi
r(ξ)αi,

which means that A is positive-definite.
In the general case when gi ∈ C0(Ω × SX), one carries out the proof of (iii) by

approximating the functions gi, i = 1, . . . , l, in the uniform norm by finite sums of
functions of the form Φ(x)ψ(ξ).

Assertions (i) and (ii) are easy consequences of (iii). Indeed, setting l = 1,
p1 = p and g1 = g, we obtain the relation 〈µpp, |g|2〉 ≥ 0, which holds for all
g ∈ C0(Ω × SX), thus showing that µpp is real and non-negative. To prove (ii)
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we represent an arbitrary function g = g(x, ξ) with compact support in the form
g = g1g2. Let l = 2, p1 = p and p2 = q. In view of (iii),

〈µpq, g〉 = 〈µpq, g1g2〉 = 〈µqp, g2g1〉 = 〈µqp, g〉 = 〈µqp, g〉

and µpq = µqp. The proof is complete. �

We consider now a countable dense index subset D ⊂ E.

Proposition 14 ([16, Proposition 3]). There exists a family of complex finite Borel
measures µpqx on SX with p, q ∈ D, x ∈ Ω′, where Ω′ is a subset of Ω of full measure,
such that µpq = µpqx dx, that is, for all Φ(x, ξ) ∈ C0(Ω× SX) the function

x 7→ 〈µpqx (ξ),Φ(x, ξ)〉 =
∫
SX

Φ(x, ξ)dµpqx (ξ)

is Lebesgue measurable on Ω, bounded, and

〈µpq,Φ(x, ξ)〉 =
∫

Ω

〈µpqx (ξ),Φ(x, ξ)〉dx.

Moreover, Varµpqx ≤ 1 for all p, q ∈ D.

Proof. We claim that prΩVarµpq ≤ meas for p, q ∈ E, where meas is the Lebesgue
measure on Ω. Assume first that p = q. By Lemma 13, the measure µpp is non-
negative. Next, in view of (17) with Φ1(x) = Φ2(x) = Φ(x) ∈ C0(Ω) and ψ(ξ) ≡ 1,〈

µpp, |Φ(x)|2
〉

= lim
r→∞

∫
Rn

F (ΦUpr )(ξ)F (ΦUpr )(ξ)dξ

= lim
r→∞

∫
Ω

|Upr (x)|2|Φ(x)|2dx ≤
∫

Ω

|Φ(x)|2dx

(we use here Plancherel’s equality and the estimate |Upr (x)| ≤ 1). Thus, we see that
that prΩµ

pp ≤ meas.
Let p, q ∈ E, A be a bounded open subset of Ω, and g = g(x, ξ) ∈ C0(A× SX),

|g| ≤ 1. Let also g1 = g/
√
|g| (we set g1 = 0 for g = 0) and g2 =

√
|g|. Then

g1, g2 ∈ C0(A× SX), g = g1g2, |g1|2 = |g2|2 = |g|, and the matrix(
〈µpp, |g|〉 〈µpq, g〉
〈µpq, g〉 〈µqq, |g|〉

)
is positive-definite by Lemma 13; in particular,

| 〈µpq, g〉 | ≤ (〈µpp, |g|〉 〈µqq, |g|〉)1/2 ≤ (µpp(A× SX)µqq(A× SX))1/2 ≤ meas(A).

We take into account the inequalities prΩµ
pp ≤ meas and prΩµ

qq ≤ meas to obtain
the last estimate. Since g can be an arbitrary function in C0(A × SX), |g| ≤ 1,
we obtain the inequality Varµpq(A× SX) ≤ meas(A). The measure µpq is regular,
therefore this estimate holds for all Borel subsets A of Ω and

prΩVarµpq ≤ meas . (19)

It follows from (19) that for all ψ(ξ) ∈ C(SX) we have

Var prΩ (ψ(ξ)µpq(x, ξ)) ≤ ‖ψ‖∞prΩVarµpq ≤ ‖ψ‖∞meas . (20)

In view of (20) the measures prΩ(ψ(ξ)µpq(x, ξ)) are absolutely continuous with
respect to the Lebesgue measure, and the Radon–Nikodym theorem shows that

prΩ (ψ(ξ)µpq(x, ξ)) = hpqψ (x) meas,

where the densities hpqψ (x) are measurable on Ω and, as seen from (20),

‖hpqψ (x)‖∞ ≤ ‖ψ‖∞. (21)
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We now choose a non-negative function K(x) ∈ C∞0 (Rn) with support in the unit
ball such that

∫
K(x)dx = 1 and set Km(x) = mnK(mx) for m ∈ N. Clearly, the

sequence of Km converges in D′(Rn) to the Dirac δ-function.
Let B lim

m→∞
cm be a generalized Banach limit on the space l∞ of bounded sequences

c = {cm}m∈N, i.e., L(c) = B lim
m→∞

cm is a linear functional on l∞ with the property:

lim
m→∞

cm ≤ L(c) ≤ lim
m→∞

cm

(for convergent sequences c = {cm}, L(c) = lim
m→∞

cm). For any complex sequence
cm = am + ibm, the Banach limits are defined by complexification:

B lim
m→∞

cm = L(a) + iL(b),

where a = {am}, b = {bm} are real and imaginary parts, respectively, of the
sequence c = {cm}. Modifying the densities hpqψ (x) on subsets of measure zero, for
instance, replacing them by the functions

B lim
m→∞

∫
Ω

hpqψ (y)Km(x− y)dy

(obviously, the value hpqψ (x) does not change for any Lebesgue point x of the function
hpqψ ), we shall assume that for all x ∈ Ω

hpqψ (x) = B lim
m→∞

∫
Ω

hpqψ (y)Km(x− y)dy. (22)

Let Ω′ be the set of common Lebesgue points of the functions

hpqψ (x), u0(x, p) = ν0
x((p,+∞)), u−0 (x, p) = ν0

x([p,+∞)) = lim
q→p−

u0(x, q),

where p, q ∈ D and ψ belongs to some countable dense subset F of C(SX). The
family of (p, q, ψ) is countable, therefore Ω′ is of full measure.

The dependence of hpqψ on ψ, regarded as a map from C(SX) into L∞(Ω), is
clearly linear and continuous (in view of (21)), therefore it follows from the density
of F in C(SX) that x ∈ Ω′ is a Lebesgue point of the functions hpqψ (x) for all
ψ(ξ) ∈ C(SX) and p, q ∈ D (here we also take (22) into account).

For p, q ∈ D and x ∈ Ω′ the equality l(ψ) = hpqψ (x) defines a continuous linear
functional in C(SX); moreover, ‖l‖ ≤ 1 in view of (21). By the Riesz–Markov
theorem this functional can be defined by integration with respect to some complex
Borel measure µpqx (ξ) in SX and Varµpqx = ‖l‖ ≤ 1. Hence

hpqψ (x) = 〈µpqx (ξ), ψ〉 =
∫
SX

ψ(ξ)dµpqx (ξ), ψ(ξ) ∈ C(SX). (23)

Equality (23) shows that the functions x 7→
∫
S
ψ(ξ)dµpqx (ξ) are bounded and mea-

surable for all ψ(ξ) ∈ C(SX). Next, for Φ(x) ∈ C0(Ω) and ψ(ξ) ∈ C(SX) we
have∫

Ω

(∫
SX

Φ(x)ψ(ξ)dµpqx (ξ)
)
dx =

∫
Ω

Φ(x)hpqψ (x)dx =
∫

Ω

Φ(x)dprΩ (ψ(ξ)µpq)

=
∫

Ω×SX

Φ(x)ψ(ξ)dµpq(x, ξ).
(24)

Approximating an arbitrary function Φ(x, ξ) ∈ C0(Ω×SX) in the uniform norm by
linear combinations of functions of the form Φ(x)ψ(ξ) we derive from (24) that the
integral

∫
SX

Φ(x, ξ)dµpqx (ξ) is Lebesgue-measurable with respect to x ∈ Ω, bounded,
and ∫

Ω

(∫
SX

Φ(x, ξ)dµpqx (ξ)
)
dx =

∫
Ω×SX

Φ(x, ξ)dµpq(x, ξ),
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that is, µpq = µpqx dx. Recall that Varµpqx ≤ 1. The proof is complete. �

The assumption that x ∈ Ω′ are Lebesgue points of the functions u0(x, p),
u−0 (x, p) for all p ∈ D, will be used later. Observe that since p ∈ D ⊂ E is
a continuity point of the map p 7→ u0(x, p) in L1

loc(Ω), then u−0 (x, p) = u0(x, p)
a.e. in Ω. By construction x ∈ Ω′ is a common Lebesgue point of the functions
u0(x, p), u−0 (x, p), therefore

ν0
x({p}) = u−0 (x, p)− u0(x, p) = 0, p ∈ D. (25)

Remark 15. (a) Since the H-measure is absolutely continuous with respect to x-
variables (17) is satisfied for Φ1(x),Φ2(x) ∈ L2(Ω). Indeed, by Proposition 14
we can rewrite this identity in the following form: For all Φ1(x),Φ2(x) ∈ C0(Ω),
ψ(ξ) ∈ C(SX)∫

Ω

Φ1(x)Φ2(x)〈ψ(ξ), µpqx (ξ)〉dx = lim
r→∞

∫
Rn

F (Φ1U
p
r )(ξ)F (Φ2U

q
r )(ξ)ψ(πX(ξ))dξ. (26)

Both sides of this identity are continuous with respect to (Φ1(x),Φ2(x)) in L2(Ω)×
L2(Ω) and since C0(Ω) is dense in L2(Ω) we conclude that (26) is satisfied for each
Φ1(x),Φ2(x) ∈ L2(Ω);

(b) if x ∈ Ω′ is a Lebesgue point of a function Φ(x) ∈ L2(Ω), then

Φ(x)〈µpqx , ψ(ξ)〉 = lim
m→∞

lim
r→∞

∫
Rn

F (ΦΦmUpr )(ξ)F (ΦmU
q
r )(ξ)ψ(πX(ξ))dξ (27)

for all ψ(ξ) ∈ C(SX), where

(ΦΦmUpr )(y) = Φ(y)Φm(x− y)Upr (y), (ΦmUqr )(y) = Φm(x− y)Uqr (y),

and Φm(x− y) =
√
Km(x− y), the sequence Km is defined in the proof of Propo-

sition 14.
Indeed, it follows from (26) that

lim
r→∞

∫
Rn

F (ΦΦmUpr )(ξ)F (ΦmU
q
r )(ξ)ψ(πX(ξ))dξ =

∫
Ω

hpqψ (y)Φ(y)Km(x− y)dy. (28)

Now, since x ∈ Ω′ is a Lebesgue point of the functions hpqψ (y) and Φ(y), and the
function hpqψ (y) is bounded, x is also a Lebesgue point for the product of these
functions. Therefore,

lim
m→∞

∫
Ω

hpqψ (y)Φ(y)Km(x− y)dy = Φ(x)hpqψ (x) = Φ(x)〈µpqx , ψ(ξ)〉,

and (27) follows from (28) in the limit as m→∞;
(c) for x ∈ Ω′ and each family pi ∈ D, ψi(ξ) ∈ C(SX), i = 1, . . . , l, the

matrix
〈
µ
pipj
x , ψiψj

〉
, i, j = 1, . . . , l, is positive definite. Indeed, as follows from

Lemma 13(iii), for α1, . . . , αl ∈ C
l∑

i,j=1

〈
µpipj
x , ψiψj

〉
αiαj

= lim
m→∞

l∑
i,j=1

〈
µpipj (y, ξ),Φm(x− y)ψi(ξ)Φm(x− y)ψj(ξ)

〉
αiαj ≥ 0.

Taking in the above property l = 2, p1 = p, p2 = q, ψ1(ξ) = ψ(ξ)/
√
|ψ(ξ)| (ψ1 = 0

for ψ = 0) and ψ2(ξ) =
√
|ψ(ξ)|, ψ(ξ) ∈ C(SX), we obtain, as in the proof of

Proposition 14, that the matrix
(
〈µppx , |ψ|〉 〈µpqx , ψ〉
〈µpqx , ψ〉 〈µqqx , |ψ|〉

)
is positive definite. In

particular,
| 〈µpqx , ψ〉 | ≤ (〈µppx , |ψ|〉 · 〈µqqx , |ψ|〉)

1/2
,
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and this easily implies that for any Borel set A ⊂ SX
Varµpqx (A) ≤ (µppx (A)µqqx (A))1/2

. (29)

Denote by θ(λ) the Heaviside function:

θ(λ) =
{

1, λ > 0,
0, λ ≤ 0.

Below we shall frequently use the following simple estimate.

Lemma 16 ([16, Lemma 5]). Let p0, p ∈ D, χ(λ) = θ(λ− p0)− θ(λ− p),

Vr(y) =
∫
|χ(λ)|d(νry(λ) + ν0

y(λ)),

Φ(y) ∈ L2(Ω), x ∈ Ω′ is a Lebesgue point of (Φ(y))2. Then

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ 2|Φ(x)||u0(x, p0)− u0(x, p)|1/2 →
p→p0

0.

Proof. It is clear that

Vr(y) = |ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)|
= sign(p− p0)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)) ≤ 2

and, in particular, (Vr(y))2 ≤ 2Vr(y). Therefore,

‖Φm(x− y)Φ(y)Vr(y)‖22

≤ 2 sign(p− p0)
∫

(Φ(y))2Km(x− y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p))dy.

Since p0, p ∈ D ⊂ E, ur(y, p0)−ur(y, p)→ u0(y, p0)−u0(y, p) as r →∞ weak star
in L∞(Ω) and we derive from the above inequality that

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖22

≤ 4 sign(p− p0)
∫

(Φ(y))2Km(x− y)(u0(y, p0)− u0(y, p))dy.

Now, passing to the limit as m → ∞ and taking into account that x ∈ Ω′ is a
Lebesgue point of the bounded function u0(y, p0)− u0(y, p) as well as the function
(Φ(y))2 (therefore, x is a Lebesgue point of the product of these functions), we find

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖22 ≤ 4(Φ(x))2|u0(x, p0)− u0(x, p)|.

This implies the required relation

lim
m→∞

lim
r→∞

‖Φm(x− y)Φ(y)Vr(y)‖2 ≤ 2|Φ(x)||u0(x, p0)− u0(x, p)|1/2.

To complete the proof it only remains to observe that, in view of (25), ν0
x({p0}) = 0

and therefore u0(x, p)→ u0(x, p0) as p→ p0. �

The following statement is rather well-known.

Lemma 17. Let Ur(x) be a sequence bounded in L2(Rn) ∩ L1(Rn) and weakly
convergent to zero, a(ξ) be a bounded function on Rn such that a(ξ)→ 0 as |ξ| →
∞. Then a(ξ)F (Ur)(ξ) →

r→∞
0 in L2(Rn).

Proof. First, observe that by the assumption a(ξ)→ 0 at infinity for any ε > 0 we
can choose R > 0 such that |a(ξ)| < ε for |ξ| > R. Then∫

|ξ|>R
|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ ε2‖F (Ur)‖2 = ε2‖Ur‖2 ≤ Cε2, (30)

where C = supr∈N ‖Ur‖2 is a constant independent of r.
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Furthermore, by our assumption Ur → 0 as r → ∞ weakly in L1. This implies
that F (Ur)(ξ) → 0 pointwise as r → ∞. Moreover, |F (Ur)(ξ)| ≤ ‖Ur‖1 ≤ const.
Hence, using the Lebesgue dominated convergence theorem, we find that∫

|ξ|≤R
|a(ξ)|2|F (Ur)(ξ)|2dξ → 0 (31)

as r →∞. It follows from (30), (31) that

lim
r→∞

∫
Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ ≤ Cε2.

Since ε > 0 is arbitrary, we conclude that

lim
r→∞

∫
Rn

|a(ξ)|2|F (Ur)(ξ)|2dξ = 0,

that is, a(ξ)F (Ur)(ξ) →
r→∞

0 in L2(Rn). The proof is complete. �

We now fix x ∈ Ω′, p0, p ∈ D. Let L(p) ⊂ Rn be the smallest linear subspace
containing suppµpp0x , and L = L(p0). As follows from (29), suppµpp0x ⊂ suppµp0p0x

and therefore L(p) ⊂ L.
Suppose that f(y, λ) is a Caratheodory vector-function on Ω×R such that

‖f(x, · )‖M,∞ = max
|λ|≤M

|f(x, λ)| ≤ αM (x) ∈ L2
loc(Ω), (32)

for all M > 0. Since the space C(R,Rn) is separable with respect to the stan-
dard locally convex topology generated by seminorms ‖ · ‖M,∞, then, by the Pettis
theorem (see [5, Ch. 3]), the map x 7→ F (x) = f(x, ·) ∈ C(R,Rn) is strongly
measurable and in view of estimate (32) we see that F (x) ∈ L2

loc(Ω, C(R,Rn)),
|F (x)|2 ∈ L1

loc(Ω, C(R)). In particular (see [5, Ch. 3]), the set Ωf of common
Lebesgue points of the maps F (x), |F (x)|2 has full measure. For x ∈ Ωf we have

lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖M,∞dy = 0,

lim
m→∞

∫
Km(x− y)‖|F (x)|2 − |F (y)|2‖M,∞dy = 0

for all M > 0. Since, evidently,

‖F (x)− F (y)‖2M,∞ ≤ 2‖F (x)− F (y)‖M,∞‖F (x)‖M,∞ + ‖|F (x)|2 − |F (y)|2‖M,∞,

it follows from the above limit relations that for x ∈ Ωf

lim
m→∞

∫
Km(x− y)‖F (x)− F (y)‖2M,∞dy = 0, (33)

for all M > 0. Clearly, each x ∈ Ωf is a Lebesgue point of all functions x→ f(x, λ),
λ ∈ R. Let Ω′′ = Ω′ ∩ Ωf , γrx = νrx − ν0

x. Suppose that x ∈ Ω′′, p0 ∈ D,
χ(λ) = θ(λ− p1)− θ(λ− p2), where p1, p2 ∈ D.

For a vector-function h(y, λ) on Ω×R, which is Borel and locally bounded with
respect to the second variable, we denote Ir(h)(y) =

∫
h(y, λ)dγry(λ). In view of the

strong measurability of F (x) and (32) we see that the sequence Ir = Ir(f · χ)(y) is
bounded in L2

loc(Ω) (also see Remark 5). Moreover, this sequence weakly converges
to zero as r →∞. The latter easily follows from the fact that fχ(y) can be pointwise
approximated by finite sums of functions of the kind h(y, λ) = g(y)θ(λ− p), where
g(y) ∈ L2

loc(Ω) and p ∈ D. Since Ir(h)(y) = g(y)Upr (y) we see that Ir(y) is
approximated in L2

loc(Ω) by finite sums of the indicated functions g(y)Upr (y). By
Lemma 10 the functions g(y)Upr (y) → 0 as r → ∞ weakly in L2

loc(Ω) and we
conclude, by the approximation arguments, that the same remains true for the
original sequence Ir(y).
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Let X be the subspace from the definition of ultra-parabolic H-measure, X⊥

be the orthogonal complement to X. We denote by L̃, L̄ the spaces obtained by
orthogonal projections of L on the subspaces X, X⊥, respectively: L̃ = P1(L),
L̄ = P2(L).

Proposition 18 ([16, Prop. 4]). Assume that f(x, λ) ∈ L̃⊥, and ρ(ξ) ∈ C∞(Rn)
is a function such that 0 ≤ ρ(ξ) ≤ 1 and ρ(ξ) = 0 for |ξ̃|2 + |ξ̄|4 ≤ 1, ρ(ξ) = 1 for
|ξ̃|2 + |ξ̄|4 ≥ 2. Then for all ψ(ξ) ∈ C(SX)

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ρ(ξ)ξ · F (ΦmIr(f · χ))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣ = 0.

Here Φm = Φm(x − y) =
√
Km(x− y) and Ir(f · χ) are supposed to be functions

of the variable y ∈ Ω.

Proof. Note that

|Ir(y)| ≤
∫
|f(y, λ)||χ(λ)|dVar γry(λ) ≤ 2αM (y), (34)

where M = sup ‖νrx‖∞. Let us first show that for each m ∈ N

lim
r→∞

∫
Rn

ρ(ξ)ξ̄ · F (ΦmIr)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ = 0. (35)

For that, it is sufficient to demonstrate that

ρ(ξ)|ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

|F (ΦmUp0r )(ξ)| →
r→∞

0 in L2(Rn). (36)

Remark that the sequence ΦmUp0r , r ∈ N is bounded in L2(Rn) and in L1(Rn)
(since supp Φm is compact) and weakly converges to zero. Hence, (36) follows from
Lemma 17. We only need to demonstrate that the function

a(ξ) =
ρ(ξ)|ξ̄|

(|ξ̃|2 + |ξ̄|4)1/2

satisfies the assumptions of this lemma. First, we show that a(ξ) ≤ 1. Indeed,
for |ξ̃|2 + |ξ̄|4 ≤ 1 the value ρ(ξ) = 0 while in the case |ξ̃|2 + |ξ̄|4 > 1 we have

ρ(ξ)|ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

≤ min(|ξ̄|, 1/|ξ̄|) ≤ 1.

Then, observe that for |ξ̃|2 + |ξ̄|4 ≥ R4 > 0

a(ξ) ≤ |ξ̄|
(|ξ̃|2 + |ξ̄|4)1/2

≤ (|ξ̃|2 + |ξ̄|4)−1/4 ≤ R−1.

Therefore, a(ξ)→ 0 as |ξ| → ∞. Thus, assumptions of Lemma 17 are satisfied and
by Lemma 17 we conclude that (36), (35) hold.

In view of (35),

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ρ(ξ)ξ · F (ΦmIr)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣
= lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (ΦmIr)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ .
(37)

Let g(λ) = f(x, λ), I ′r = Ir(gχ)(y) =
∫
g(λ)χ(λ)dγry(λ), M = sup ‖νry‖∞. Then

|Ir − I ′r| ≤
∫
|f(y, λ)− f(x, λ)|dVar γry(λ) ≤ 2‖F (y)− F (x)‖M,∞.
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This and the Plancherel identity imply that∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (Φm(Ir − I ′r))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣
≤ ‖ψ‖∞‖F (Φm(Ir − I ′r))‖2‖F (ΦmUp0r )‖2 ≤ ‖ψ‖∞‖Φm(Ir − I ′r)‖2

≤ 2‖ψ‖∞
(∫

Rn

Km(x− y)‖F (y)− F (x)‖2M,∞dy

)1/2

.

It follows from the above estimate and (33) that

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (ΦmIr)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

−
∫
Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣
≤ lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (Φm(Ir − I ′r))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0

and, in view of this relation and (37), it is sufficient to prove that

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0. (38)

The vector-function g(λ) is continuous and does not depend on y. Therefore for any
ε > 0 there exists a vector-valued function h(λ) of the form h(λ) =

∑k
i=1 viθ(λ−pi),

where vi ∈ L̃⊥ and pi ∈ D such that ‖g · χ− h‖∞ ≤ ε on R.
Using again Plancherel’s identity and the fact that

|I ′r − Ir(h)| =
∣∣∣∣∫ (g · χ− h)(λ)dγry(λ)

∣∣∣∣ ≤ ∫ |(g · χ− h)(λ)|dVar (γry)(λ) ≤ 2ε,

we obtain∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

−
∫
Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣
≤ ‖ψ‖∞‖ΦmIr(g · χ− h)‖2 ≤ 2ε‖ψ‖∞‖Φm‖2 = 2ε‖ψ‖∞.

(39)

Since

Ir(h)(y) =
∫ ( k∑

i=1

viθ(λ− pi)

)
dγry(λ) =

k∑
i=1

viU
pi
r (y),

it follows from (27) the limit relation

lim
m→∞

lim
r→∞

∫
Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

=
k∑
i=1

〈
µpip0
x , (vi · ξ̃)ψ(ξ)

〉
.

(40)

Here we also take into account Remark 12. Since ρ(ξ)ψ(πX(ξ)) = ψ(πX(ξ)) for
large |ξ| then, by this remark, for i = 1, . . . , k,

lim
r→∞

∫
Rn

ρ(ξ)ξ̃ · viF (ΦmUpi
r )(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmU

p0
r )(ξ)ψ(πX(ξ))dξ
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= lim
r→∞

∫
Rn

ξ̃ · viF (ΦmUpi
r )(ξ)

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmU

p0
r )(ξ)ψ(πX(ξ))dξ

=
〈
µpip0(y, ξ),Km(x− y)(vi · ξ̃)ψ(ξ)

〉
.

Now observe that suppµpip0
x ⊂ L(p0) = L, and for each ξ ∈ L vi · ξ̃ = 0 because

ξ̃ ∈ L̃ while vi⊥L̃. Hence
k∑
i=1

〈µpip0
x , (vi · ξ̃)ψ(ξ)〉 = 0, and it follows from (40) that

lim
m→∞

lim
r→∞

∫
Rn

ρ(ξ)ξ̃ · F (ΦmIr(h))(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ = 0.

This relation together with (39) yields

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)ξ̃ · F (ΦmI ′r)(ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ ≤ 2ε‖ψ‖∞,

and since ε > 0 is arbitrary we claim that (38) holds. This completes the proof. �

Let Q(λ) be a continuous matrix-valued function, which ranges in the space
Symn of symmetric matrices of order n, and Q(λ)ξ · ξ = 0 for all ξ ∈ L̄ = P2(L)
(recall that P2 is the orthogonal projection onto X⊥). Let p1, p2 ∈ D, χ(λ) =
θ(λ − p1) − θ(λ − p2), Jr(y) = Jr(Q)(y) =

∫
χ(λ)Q(λ)dγry(λ), and let ρ(ξ) be a

function as in Proposition 18.

Proposition 19 ([16, Prop. 5]). Under the above notation for each ψ(ξ) ∈ C(SX)

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ρ(ξ)F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣ = 0. (41)

Proof. Since the space Y of symmetric matrices A, satisfying the property Aξ ·ξ = 0
for ξ ∈ L̄, is linear, for every ε > 0 one can find a step function H(λ) =

∑k
i=1 θ(λ−

pi)Qi, where pi ∈ D, Qi ∈ Y for each i = 1, . . . , k such that |χ(λ)Q(λ)−H(λ)| < ε
for all λ ∈ R. We denote J ′r(y) =

∫
H(λ)dγry(λ) and observe that

J ′r(y) =
k∑
i=1

Upi
r (y)Qi, (42)

|Jr(y)− J ′r(y)| ≤
∫
|Q(λ)−H(λ)||χ(λ)|dVar γry(λ) ≤ 2ε. (43)

We also remark that

∣∣∣∣F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

∣∣∣∣ ≤ |F (ΦmJr)(ξ)||ξ̄|2

(|ξ̃|2 + |ξ̄|4)1/2
≤ |F (ΦmJr)(ξ)|.
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The latter estimate and (43) imply that∣∣∣∣∣
∫
Rn

ρ(ξ)F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

−
∫
Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣
=
∣∣∣∣∫

Rn

ρ(ξ)F (Φm(Jr − J ′r))(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣
≤ ‖ψ‖∞‖F (Φm(Jr − J ′r))‖2‖F (ΦmUp0r )‖2
= ‖ψ‖∞‖Φm(Jr − J ′r)‖2‖ΦmUp0r ‖2
≤ ‖ψ‖∞‖Φm(Jr − J ′r)‖2

= ‖ψ‖∞
(∫

Rn

Km(x− y)|Jr(y)− J ′r(y)|2dy
)1/2

≤ 2ε‖ψ‖∞.

(44)

We also use that |Up0r | ≤ 1 and therefore ‖ΦmUp0r ‖2 ≤ 1. In view of (42)∫
Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

=
k∑
i=1

∫
Rn

ρ(ξ)F (ΦmUpi
r )(ξ)Qiξ̄ · ξ̄

(|ξ̃|2 + |ξ̄|4)1/2
F (ΦmU

p0
r )(ξ)ψ(πX(ξ))dξ,

and by relation (27) and Remark 12 we find

lim
m→∞

lim
r→∞

∫
Rn

ρ(ξ)F (ΦmJ ′r)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

=
k∑
i=1

〈
µpip0
x ψ(ξ)Qiξ̄ · ξ̄

〉
= 0,

(45)

because suppµpip0
x ⊂ L and therefore Qiξ̄·ξ̄ = 0 on suppµpip0

x (recall that Qiξ̄·ξ̄ = 0
for any ξ̄ ∈ L̄).

By (44) and (45) we obtain the relation

lim
m→∞

lim
r→∞

∣∣∣∣∫
Rn

ρ(ξ)F (ΦmJr)(ξ)ξ̄ · ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣ ≤ 2ε‖ψ‖∞

and since ε > 0 is arbitrary, we conclude that (41) holds. The proof is complete. �

In the sequel we will need the following simple result.

Lemma 20. Let { ξk : k = 1, . . . , l } ⊂ L be a basis in L. Then there exists a
positive constant C such that for every v ∈ Rn, Q ∈ Symn

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv · ξ̃k +Qξ̄k · ξ̄k|,

where v1 = P̃ v, Q1 = P̄QP̄ , P̃ , and P̄ are orthogonal projections on the spaces L̃,
L̄, respectively, and i =

√
−1.

Proof. We introduce the linear spaces S̄ = { Q ∈ Symn : Q = P̄QP̄ }, H = L̃⊕ S̄
and remark that p(v,Q) = max

k=1,...,l
|iv · ξ̃k + Qξ̄k · ξ̄k| is a norm in H. Indeed, it is

clear that p is a seminorm. To prove that p is a norm, suppose that p(v,Q) = 0.
Then v · ξ̃k = Qξ̄k · ξ̄k = 0 and since vectors ξ̃k, ξ̄k generate spaces L̃, L̄, respectively,
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we claim that vξ̃ = 0 for all ξ ∈ L̃ and Qξ · ξ = 0 for all ξ ∈ L̄. Since v ∈ L̃ we see
that v = 0. Furthermore, since Q ∈ S̄ we find that for every ξ ∈ Rn

Qξ · ξ = P̄QP̄ ξ · ξ = QP̄ξ · P̄ ξ = 0,

and we conclude that Q = 0. It is well-known that any two norms in a finite-
dimensional space are equivalent. Applying this property to the norms p(v,Q) and
p1(v,Q) = |v|+ |Q| and using the relations

v · ξ̃k = v1 · ξ̃k, Qξ̄k · ξ̄k = QP̄ ξ̄k · P̄ ξ̄k = Q1ξ̄k · ξ̄k, k = 1, . . . l,

we find that for some constant C > 0

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv1 · ξ̃k +Q1ξ̄k · ξ̄k| = C max
k=1,...,l

|iv · ξ̃k +Qξ̄k · ξ̄k|,

as was to be proved. �

Corollary 21. There exist functions ψk(ξ) ∈ C(SX), k = 1, . . . , l = dimL and a
constant C > 0 such that, in the notation of Lemma 20, for all v ∈ Rn, Q ∈ Symn

such that Q ≥ 0

|v1|+ |Q1| ≤ C max
k=1,...,l

|〈µp0p0x , (iv · ξ̃ +Qξ̄ · ξ̄)ψk(ξ)〉|. (46)

Proof. We remark that the measure µp0p0x ≥ 0. If µp0p0x = 0, then both sides
of the inequality (46) equal zero, and this inequality is evidently satisfied. Thus,
suppose that µp0p0x (SX) > 0. Since L is a linear span of suppµp0p0x , we can choose
functions ψk(ξ) ∈ C(SX), k = 1, . . . , l such that ψk(ξ) ≥ 0,

∫
ψk(ξ)dµp0p0x = 1 for

all k = 1, . . . , l, and the family ξk =
∫
ξψk(ξ)dµp0p0x , k = 1, . . . , l, is a basis in L.

By Lemma 20 there exists a constant C > 0 such that for all v ∈ Rn, Q ∈ Symn

|v1|+ |Q1| ≤ C max
k=1,...,l

|iv · ξ̃k +Qξ̄k · ξ̄k|, (47)

where v1 = P̃ v, Q1 = P̄QP̄ . Now, we observe that

ξ̃k =
∫
ξ̃ψk(ξ)dµp0p0x (ξ), ξ̄k =

∫
ξ̄ψk(ξ)dµp0p0x (ξ).

Therefore,

v · ξ̃k =
∫
v · ξ̃ψk(ξ)dµp0p0x (ξ),

and if Q ≥ 0 then

Qξ̄k · ξ̄k = Q

∫
ξ̄ψk(ξ)dµp0p0x (ξ) ·

∫
ξ̄ψk(ξ)dµp0p0x (ξ) ≤

∫
Qξ̄ · ξ̄ψk(ξ)dµp0p0x (ξ)

by Jensen’s inequality applied to the convex function ξ → Qξ̄ · ξ̄. In view of the
above relation, (46) readily follows from (47) (we also take into account that for
real a the function f(x) = |ia+x| increases on [0,+∞)). The proof is complete. �

4. Localization principle and strong precompactness of bounded
sequences of measure-valued functions

In this section we need some results about Fourier multipliers in spaces Ld, d > 1.
Recall that a function a(ξ) ∈ L∞(Rn) is a Fourier multiplier in Ld if the pseudo-
differential operator A with the symbol a(ξ), defined as F (Au)(ξ) = a(ξ)F (u)(ξ),
u = u(x) ∈ L2(Rn) ∩ Ld(Rn), can be extended as a bounded operator on Ld(Rn),
that is,

‖Au‖d ≤ C‖u‖d, u ∈ L2(Rn) ∩ Ld(Rn),
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for a constant C. We denote by Md the space of Fourier multipliers in Ld. We also
denote

Ṙn = (R \ {0})n = { ξ = (ξ1, . . . , ξn) :
n∏
k=1

ξk 6= 0 }.

The following statement readily follows from the known Marcinkiewicz multiplier
theorem (see [20, Ch. 4]).

Theorem 22. Suppose that a(ξ) ∈ Cn(Ṙn) is a function such that for some con-
stant C

|ξαDαa(ξ)| ≤ C, ξ ∈ Ṙn, (48)

for every multi-index α = (α1, . . . , αn) such that |α| = α1 + · · · + αn ≤ n. Then
a(ξ) ∈Md for all d > 1.

Here we use the notation ξα =
∏n
i=1(ξi)αi , Dα =

∏n
i=1

(
∂
∂ξi

)αi

. Actually, it is
sufficient to require that (48) is satisfied for multi-indices α such that αi ∈ {0, 1},
i = 1, . . . , n.

We will use the statement of Theorem 22 for symbols of special type. Namely,
assume that X is a linear subspace of Rn, and πX : Rn → SX be the projection
defined in Section 2.

Corollary 23. If ψ ∈ Cn(SX), then ψ(πX(ξ)) ∈Md for every d > 1.

Proof. Using an orthogonal transform, we can assume that X = Rk = {ξ ∈ Rn :
ξ = (y1, . . . , yk, 0, . . . , 0) } while X⊥ = {ξ ∈ Rn : ξ = (0, . . . , 0, z1, . . . , zn−k) }.
By the definition of πX we have πX(t2y, tz) = πX(y, z) for each t > 0 and ξ =
(y, z) ∈ Rn, ξ 6= 0. The function a(y, z) = ψ(πX(y, z)) satisfies the same property
a(t2y, tz) = a(y, z). As is easy to see a(y, z) ∈ Cn(Rn \ {0}) and it follows from
the above homogeneity relation that

Dα
yD

β
z a(y, z) = Dα

yD
β
z a(t2y, tz) = t2|α|+|β|(Dα

yD
β
z a)(t2y, tz). (49)

Here α = (α1, . . . , αk), β = (β1, . . . , βn−k) are multi-indices corresponding to vari-
ables y ∈ X, z ∈ X⊥, respectively, and |α|+ |β| ≤ n.

Putting t = (|y|2 + |z|4)−1/4 in (49), we obtain that

Dα
yD

β
z a(y, z) = Dα

yD
β
z a(t2y, tz) = (|y|2 + |z|4)−|α|/2−|β|/4(Dα

yD
β
z a)(y′, z′), (50)

where (y′, z′) = πX(y, z). Since the derivatives |Dα
yD

β
z a| are bounded on SX it

follows from (50) that for some constant C > 0

|yαzβDα
yD

β
z a(y, z)|

≤ C |y||α||z||β|

(|y|2 + |z|4)|α|/2+|β|/4 ≤ C
|y||α|

(|y|2 + |z|4)|α|/2
|z||β|

(|y|2 + |z|4)|β|/4
≤ C,

for all multi-indices (α, β) such that |α| + |β| ≤ n. By Theorem 22 we conclude
that a(ξ) ∈Md for every d > 1. The proof is complete. �

Now we consider the symbol a(ξ) =
ρ(ξ)

√
(1 + |ξ|2)

(|ξ̃|2 + |ξ̄|4)1/2
, where ρ(ξ) ∈ C∞(Rn) is

a function with the properties indicated in Proposition 14, namely: 0 ≤ ρ(ξ) ≤ 1,
ρ(ξ) = 0 for |ξ̃|2 + |ξ̄|4 ≤ 1, ρ(ξ) = 1 for |ξ̃|2 + |ξ̄|4 ≥ 2. Another consequence of
Theorem 22 is the following result.

Corollary 24. a(ξ) ∈Md for every d > 1.
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Proof. Obviously, a(ξ) ∈ C∞(Rn \ {0}). As in the proof of Corollary 23, we
can suppose that X = Rk = {ξ ∈ Rn | ξ = (y1, . . . , yk, 0, . . . , 0) }. Then for
ξ = (y, z) ∈ X ×X⊥, ξ 6= 0

a(y, z) =
ρ(y, z)(1 + |y|2 + |z|2)1/2

(|y|2 + |z|4)1/2
= ρ(y, z)a1(y, z)a2(y, z),

where we denote

a1(y, z) = (1 + |y|2 + |z|2)1/2, a2(y, z) = (|y|2 + |z|4)−1/2.

In correspondence with (48) we have to show that for all α, β, |α|+ |β| ≤ n
|yαzβDα

yD
β
z (a1(y, z)a2(y, z))| ≤ C (51)

in the domain |y|2 + |z|4 ≥ 1 (here we take into account the properties of ρ(ξ)) for
some constant C. In order to prove (51), we estimate derivatives of functions a1,
a2. Evidently,

|Dα
yD

β
z a1(y, z)| ≤ Am(1 + |y|2 + |z|2)(1−|α|−|β|)/2

≤ Am(1 + |y|2 + |z|2)1/2|y|−|α||z|−|β|,
(52)

where Am is a constant depending only on m = |α| + |β|. Furthermore, we ob-
serve that the function a2(y, z) satisfies the homogeneity relation a2(t2y, tz) =
t−2a2(y, z). It follows from this relation that

Dα
yD

β
z a2(y, z) = t2Dα

yD
β
z a2(t2y, tz) = t2|α|+|β|+2(Dα

yD
β
z a2)(t2y, tz).

Taking in this equality t = (|y|2 + |z|4)−1/4, we arrive at

Dα
yD

β
z a2(y, z) = (|y|2+|z|4)−(2|α|+|β|+2)/4(Dα

yD
β
z a2)(y′, z′), (y′, z′) = πX(y, z) ∈ SX .

Since the derivatives Dα
yD

β
z a2 are bounded on SX the latter equality yields the

estimates
|Dα

yD
β
z a2(y, z)| ≤ Bm(|y|2 + |z|4)−(2|α|+|β|+2)/4

≤ Bm(|y|2 + |z|4)−1/2|y|−|α||z|−|β|,
(53)

where the constants Bm depend on m = |α|+ |β|. By the Leibniz formula we derive
from (52) and (53) the estimates

|Dα
yD

β
z a1(y, z)a2(y, z)| ≤ Cm(1 + |y|2 + |z|2)1/2(|y|2 + |z|4)−1/2|y|−|α||z|−|β|, (54)

where Cm is a constant. As is easily verified, in the domain |y|2 + |z|4 ≥ 1

1 + |y|2 + |z|2

|y|2 + |z|4
≤ 1 +

|y|2

|y|2 + |z|4
+

|z|2

|y|2 + |z|4
≤ 2 + min(|z|2, |z|−2) ≤ 3

and by (54) we conclude that in this domain for each α, β, |α|+ |β| ≤ n

|Dα
yD

β
z a1(y, z)a2(y, z)| ≤ C|y|−|α||z|−|β|,

C being a constant. It is clear that this implies (51). Hence, the requirements
of Theorem 22 are satisfied. Therefore, a(ξ) ∈ Md for all d > 1. The proof is
complete. �

Now we consider the bounded sequence of measure-valued functions νkx ∈ MV(Ω)
and suppose that for some d > 1 and each a, b ∈ R, a < b the sequence of distribu-
tions

divx
∫
ϕ(x, sa,b(λ))dνkx(λ)−D2 ·

∫
B(sa,b(λ))dνkx(λ) is precompact in W−1

d,loc(Ω).

(55)
Here sa,b(u) = max(a,min(u, b)) is the cut-off function and W−1

d,loc(Ω) denotes the
locally convex space of distributions u(x) such that uf(x) belongs to the Sobolev
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space W−1
d (Rn) for all f(x) ∈ C∞0 (Ω). The topology in W−1

d,loc(Ω) is generated by
the family of semi-norms u 7→ ‖uf‖W−1

d
, f(x) ∈ C∞0 (Ω).

We choose the subsequence νrx = νkx , k = kr weakly convergent to a bounded
measure-valued function ν0

x such that the H-measure µpq, p, q ∈ E is welldefined.
Fix p0 ∈ E and choose a countable dense subset D ⊂ E such that p0 ∈ D. Now

define a linear subspace X being the maximal among linear subspaces of Y ⊂ Rn

such that for some positive δ for every p ∈ [p0, p0 + δ]

(B(p)−B(p0))ξ · ξ = 0

for all ξ ∈ Y . Since for p ≥ p0 the matrices (B(p) − B(p0)) ≥ 0, the space X can
be expressed as follows

X =
⋃
δ>0

⋂
0≤p−p0≤δ

ker(B(p)−B(p0)). (56)

It is possible that the space X = {0}. Passing to a subsequence of νrx if neces-
sary we can suppose that the ultra-parabolic H-measure µpq = µpqX is welldefined.
By Proposition 14 this H-measure can be represented in the form µpq = µpqx dx,
p, q ∈ D, x ∈ Ω′, where Ω′ ⊂ Ω is a set of full measure indicated in the proof of
Proposition 14. Define the set of full measure Ωϕ consisting of common Lebesgue
points of the maps F (x) = ϕ(x, ·) ∈ C(R,Rn), |F (x)|2 = |ϕ(x, · )| ∈ C(R) and fix
x ∈ Ω′′ = Ω′ ∩ Ωϕ.

Under the above assumptions we have the following localization principle.

Theorem 25. Let L be a linear span of suppµp0p0x . Then L ⊂ X and there exists
δ1 > 0 such that (ϕ(x, λ)− ϕ(x, p0)) · ξ = 0 for all ξ ∈ L, λ ∈ [p0, p0 + δ1].

Proof. By the definition of the space X for some δ > 0 and each p ∈ [p0, p0 + δ],
(B(p)−B(p0))ξ · ξ = 0 for all ξ ∈ X. Let V = Vδ = [p0, p0 + δ]∩D and p ∈ V . As
follows from (55) and the weak convergence νry → ν0

y ,

Lrp(y) = divy
∫
ϕ(y, sp0,p(λ))dγry(λ)

−D2 ·
∫
B(sp0,p(λ))dγry(λ) →

r→∞
0 in W−1

d,loc(Ω),
(57)

where γry = νry − ν0
y . As is easy to compute,

ϕ(y, sp0,p(λ)) = ϕ(y, p0) + (ϕ(y, p)− ϕ(y, p0))θ(λ− p0)− (ϕ(y, p)− ϕ(y, λ))χ(λ),
B(sp0,p(λ)) = B(p0) + (B(p)−B(p0))θ(λ− p0)− (B(p)−B(λ))χ(λ),

where χ(λ) = θ(λ − p0) − θ(λ − p) is the indicator function of the interval (p0, p].
Therefore, Lrp = divy(Pr(y)) − D2 · Qr(y) where the vector Pr(y) and the matrix
Qr(y) = {(Qr)kl(y)}nkl=1 are as follows (notice that

∫
dγry(λ) = 0):

Pr(y) =
∫

(ϕ(y, p)− ϕ(y, p0))θ(λ− p0)dγry(λ)

−
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγry(λ)

= (ϕ(y, p)− ϕ(y, p0))Up0r (y)−
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγry(λ); (58)

Qr(y) = Up0r (y)(B(p)−B(p0))−
∫

(B(p)−B(λ))χ(λ)dγry(λ). (59)

In particular, it follows from (59) and the choice of the space X that X ⊂ kerQr.
For Φ(y) ∈ C∞0 (Ω) we consider the sequence

Lr = divy(Φ(y)Pr(y)) + 2div(Qr(y)∇Φ(y))−D2 · (Φ(y)Qr(y))



24 H. HOLDEN, K. H. KARLSEN, D. MITROVIC, AND E. YU. PANOV

= divy(Φ(y)Pr(y)) + 2(Φyl
(Qr)kl(y))yk

− ∂2
ykyl

(Φ(y)(Qr)kl(y))

= Φ(y)Lrp(y) + Pr(y) · ∇Φ(y) +D2Φ(y) ·Qr(y).

Since the sequence Pr(y) · ∇Φ(y) + D2Φ(y) · Qr(y) is bounded in L2 and weakly
converges to zero as r → ∞, this sequence converges to zero in W−1

d (we can
suppose that d ≤ 2). Besides, in view of (57), Φ(y)Lrp(y) →

r→∞
0 in W−1

d as well,

and we claim that Lr →
r→∞

0 in W−1
d . Introduce the vector Gr(y, λ) = 2Qr(y)∇Φ(y)

with components (Gr)k(y) = 2Φyl
(Qr)kl(y), k = 1, . . . , n. Then the distributions

Lr can be represented in the form Lr = divy(ΦPr +Gr)−D2 · (ΦQr). Hence,

divy(ΦPr +Gr)−D2 · (ΦQr) →
r→∞

0 in W−1
d .

Applying the Fourier transform to this relation and then multiplying the result by
ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/2, we arrive at

ρ(ξ)(2πiξ · F (ΦPr +Gr)(ξ) + 4π2F (ΦQr)(ξ)ξ · ξ)
(|ξ̃|2 + |ξ̄|4)1/2

= F (lr)(ξ), where lr →
r→∞

0 in Ld(Rn)
(60)

(the function ρ(ξ) is indicated in Proposition 18). Indeed, (60) follows from the
representation

ρ(ξ)(|ξ̃|2 + |ξ̄|4)−1/2 =
ρ(ξ)(1 + |ξ|2)1/2

(|ξ̃|2 + |ξ̄|4)1/2
(1 + |ξ|2)−1/2,

the statement of Corollary 24 and the definition of W−1
d . Let ψ(ξ) ∈ Cn(SX). Then

by Corollary 23 we see that the sequence F (ΦUp0r )(ξ)ψ(πX(ξ)) = F (hr), where hr
is bounded in Ld

′
(Rn), d′ = d/(d− 1). This and (60) imply the relation∫

Rn

ρ(ξ)(2πiξ · F (ΦPr +Gr)(ξ) + 4π2F (ΦQr)(ξ)ξ · ξ)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0r )(ξ)ψ(πX(ξ))dξ

=
∫
Rn

lr(x)hr(x)dx →
r→∞

0.

(61)

Now, we remark that the sequences Φ(y)Up0r (y) is bounded in L2 ∩ L1 and weakly
converges to zero. By Lemma 17 we have

F (ΦUp0r )(ξ)ρ(ξ)ξ̄
(|ξ̃|2 + |ξ̄|4)1/2

→
r→∞

0 in L2(Rn,Rn) (62)

because

a(ξ) =
ρ(ξ)|ξ̄|

(|ξ̃|2 + |ξ̄|4)1/2
≤ |ξ̄|

(|ξ̃|2 + |ξ̄|4)1/4
≤ 1

and evidently a(ξ)→ 0 as |ξ| → ∞. Besides,

ξ̃ · F (Gr)(ξ) = 2
∫
Rn

e−2πiξ·y(Qr)kl(y)Φyl
(y)ξ̃kdy

=
∫
Rn

e−2πiξ·yQr(y)ξ̃ · ∇Φ(y)dy = 0, (63)

F (ΦQr)(ξ)ξ̃ =
∫
Rn

e−2πiξ·yΦ(y)Qr(y)ξ̃dy = 0, (64)
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since ξ̃ ∈ X ⊂ kerQr. Taking into account relations (62), (63), (64), and the
boundedness of the sequence F (ΦUp0r )(ξ) in L2(Rn), we derive from (61) that∫

Rn

ρ(ξ)(2πiξ̃ · F (ΦPr)(ξ) + 4π2F (ΦQr)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0r )(ξ)ψ(πX(ξ))dξ →
r→∞

0.

(65)
Taking into account representations (58) and (59) we can rewrite the last relation
as follows

lim
r→∞

{∫
Rn

ρ(ξ)(2πiξ̃ · F (ΦfUp0r )(ξ) + 4π2F (ΦUp0r )(ξ)(B(p)−B(p0))ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

× F (ΦUp0r )(ξ)ψ(πX(ξ))dξ

−
∫
Rn

ρ(ξ)(iξ̃ · F (ΦV pr )(ξ) + F (ΦGpr)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

F (ΦUp0r )(ξ)ψ(πX(ξ))dξ

}
= 0,

(66)

where

f(y) = ϕ(y, p)− ϕ(y, p0), V pr (y) = 2π
∫

(ϕ(y, p)− ϕ(y, λ))χ(λ)dγry(λ) ∈ Rn,

Gpr(y) = 4π2

∫
(B(p)−B(λ))χ(λ)dγry(λ) ∈ Symn .

In (66) we set Φ(y) = Φm(x − y) =
√
Km(x− y), where the functions Km were

defined in section 3 in the proof of Proposition 14, and pass to the limit as m→∞.
By Remark 15 (see (27)) we obtain

lim
m→∞

lim
r→∞

∫
Rn

ρ(ξ)(2πiξ̃ · F (fΦmUp0r )(ξ) + 4π2F (ΦmUp0r )(ξ)(B(p)−B(p0))ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

× F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

=
〈
µp0p0x , (2πiξ̃ · f(x) + 4π2(B(p)−B(p0))ξ̄ · ξ̄)ψ(ξ)

〉
,

and therefore〈
µp0p0x , (2πiξ̃ · f(x) + 4π2(B(p)−B(p0))ξ̄ · ξ̄)ψ(ξ)

〉
= lim
m→∞

lim
r→∞

∫
Rn

ρ(ξ)(iξ̃ · F (ΦmV pr )(ξ) + F (ΦmGpr)(ξ)ξ̄ · ξ̄)
(|ξ̃|2 + |ξ̄|4)1/2

× F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ.

(67)

Since the space Cn(SX) is dense in C(SX), it is clear that (67) holds for each
ψ(ξ) ∈ C(SX). Let g(y, λ) = P̃ϕ(y, λ), B1(λ) = P̄B(λ)P̄ , where P̃ and P̄ are
orthogonal projections on the spaces L̃ = P1(L) and L̄ = P2(L), respectively, L
being the linear span of suppµp0p0x (see the notation of Section 3). Obviously,〈

µp0p0x , (2πiξ̃ · f(x) + 4π2(B(p)−B(p0))ξ̄ · ξ̄)ψ(ξ)
〉

=
〈
µp0p0x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(p)−B1(p0))ξ̄ · ξ̄)ψ(ξ)

〉
.

(68)

We denote h(y, λ) = ϕ(y, λ)− g(y, λ), B2(λ) = B(λ)−B1(λ),

V pr1(y) = 2π
∫

(g(y, p)− g(y, λ))χ(λ)dγry(λ),

V pr2(y) = 2π
∫

(h(y, p)− h(y, λ))χ(λ)dγry(λ),

Gpr1(y) = 4π2

∫
(B1(p)−B1(λ))χ(λ)dγry(λ),
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Gpr2(y) = 4π2

∫
(B2(p)−B2(λ))χ(λ)dγry(λ).

Since ξ · h(y, λ) = 0 for all ξ ∈ L̃, B2(λ)ξ · ξ = 0 for all ξ ∈ L̄, and in the notation
of Propositions 18 and 19, V pr2(y) = Ir(fχ)(y) with f(y, λ) = 2π(h(y, p)− h(y, λ)),
Gpr2(y) = Jr(Q)(y) with Q(λ) = 4π2(B2(p) − B2(λ)), it follows from Propositions
18 and 19 that

lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)(iξ̃ · F (ΦmV
p
r2)(ξ) + F (ΦmG

p
r2)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

× F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣ = 0,

and in view of (67) we find that∣∣∣〈µp0p0x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(p)−B1(p0))ξ̄ · ξ̄)ψ(ξ)
〉∣∣∣

≤ lim
m→∞

lim
r→∞

∣∣∣∣∣
∫
Rn

ρ(ξ)(iξ̃ · F (ΦmV
p
r1)(ξ) + F (ΦmG

p
r1)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

× F (ΦmU
p0
r )(ξ)ψ(πX(ξ))dξ

∣∣∣∣∣.
(69)

Here we also use relation (68). Now we observe that∣∣∣∣∣ρ(ξ)(iξ̃ · F (ΦmV
p
r1)(ξ) + F (ΦmG

p
r1)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

∣∣∣∣∣
≤ |F (ΦmV

p
r1)(ξ)|+ |F (ΦmG

p
r1)(ξ)|,

and therefore∥∥∥∥∥ρ(ξ)(iξ̃ · F (ΦmV
p
r1)(ξ) + F (ΦmG

p
r1)(ξ)ξ̄ · ξ̄)

(|ξ̃|2 + |ξ̄|4)1/2

∥∥∥∥∥
2

≤ ‖F (ΦmV
p
r1)‖2 + ‖F (ΦmG

p
r1)‖2 = ‖ΦmV pr1‖2 + ‖ΦmGpr1‖2,

(70)

by Plancherel’s equality. Since |Up0r | ≤ 1,

‖F (ΦmUp0r )‖2 = ‖ΦmUp0r ‖2 ≤ 1,

and we derive from (69) with the help of Cauchy–Bunyakovsky–Schwarz inequality
and (70) that∣∣∣〈µp0p0x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(p)−B1(p0))ξ̄ · ξ̄)ψ(ξ)

〉∣∣∣
≤ ‖ψ‖∞ lim

m→∞
lim
r→∞

(‖ΦmV pr1‖2 + ‖ΦmGpr1‖2) .
(71)

Next, for Mp(y) = max
λ∈[p0,p]

|g(y, p)− g(y, λ)|

|V pr1(y)| ≤ 2πMp(y)
∫
χ(λ)d

(
νry(λ) + ν0

y(λ)
)

= 2πMp(y)(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)),

and by Lemma 16

lim
m→∞

lim
r→∞

‖Ṽ pr1Φm‖2 ≤ 4πMp(x)(u0(x, p0)− u0(x, p))1/2. (72)

Here we bear in mind that x is a Lebesgue point of the function (Mp(y))2 (which
easily follows from the fact that x ∈ Ωϕ is a Lebesgue point of the maps y 7→ ϕ(y, ·),
y 7→ |ϕ(y, ·)|2 into the spaces C(R,Rn), C(R), respectively). Furthermore, the
matrix 0 ≤ B1(p) − B1(λ) ≤ B1(p) − B1(p0) for each λ ∈ [p0, p] (since the matrix
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B1(λ) − B1(p0) is positive definite). This implies the corresponding inequality for
the Euclidean norms |B1(p)−B1(λ)| ≤ |B1(p)−B1(p0)|. Therefore

|Gpr1(y)| ≤ 4π2

∫
|B1(p)−B1(λ)|χ(λ)d

(
νry(λ) + ν0

y(λ)
)

≤ 4π2|B1(p)−B1(p0)|(ur(y, p0)− ur(y, p) + u0(y, p0)− u0(y, p)).

By Lemma ?? again we claim that

lim
m→∞

lim
r→∞

‖Gpr1Φm‖2 ≤ 8π2|B1(p)−B1(p0)|(u0(x, p0)− u0(x, p))1/2. (73)

In view of (72) and (73) we derive from (71) that∣∣∣〈µp0p0x , (2πiξ̃ · (g(x, p)− g(x, p0)) + 4π2(B1(p)−B1(p0))ξ̄ · ξ̄)ψ(ξ)
〉∣∣∣

≤ c‖ψ‖∞(Mp(x) + |B1(p)−B1(p0)|)ω(p),
(74)

where c is a constant, and ω(p) = (u0(x, p0)−u0(x, p))1/2 →
p→p0

0 (recall that p0 ∈ D
is a continuity point of p → u0(x, p) for x ∈ Ω′). Next, by Corollary 21, we can
choose functions ψk(ξ) ∈ C(SX), k = 1, . . . , l, such that

|g(x, p)− g(x, p0)|+ |B1(p)−B1(p0)|

≤ C max
k=1,...,l

∣∣∣〈µp0p0x , (iξ̃ · (g(x, p)− g(x, p0)) + (B1(p)−B1(p0))ξ̄ · ξ̄)ψk(ξ)
〉∣∣∣

≤ c(Mp(x) + |B1(p)−B1(p0)|)ω(p),

(75)

where C, c are positive constants.
We choose δ1 ∈ (0, δ) such that 2cω(p) ≤ ε < 1 for all p ∈ [p0, p0 +δ1]∩D. Then,

in view of (75),

|g(x, p)− g(x, p0)|+ |B1(p)−B1(p0)|

≤ ε

2

(
max
λ∈[p0,p]

|g(x, p)− g(x, λ)|+ |B1(p)−B1(p0)|
)
,

(76)

and since g(x, p), B1(p) are continuous with respect to p and the set D is dense,
estimate (76) holds for all p ∈ [p0, p0 + δ1].

Now we claim that g(x, p) = g(x, p0), B1(p) = B1(p0) for p ∈ [p0, p0 + δ1].
Indeed, assume that for p′ ∈ [p0, p0 + δ1]

|g(x, p′)− g(x, p0)| = max
λ∈[p0,p0+δ1]

|g(x, λ)− g(x, p0)|.

Then for λ ∈ [p0, p
′] we have

|g(x, p′)− g(x, λ)| ≤ |g(x, λ)− g(x, p0)|+ |g(x, p′)− g(x, p0)|
≤ 2|g(x, p′)− g(x, p0)|

and
max

λ∈[p0,p′]
|g(x, p′)− g(x, λ)| ≤ 2|g(x, p′)− g(x, p0)|.

We derive from (76) with p = p′ that

|g(x, p′)− g(x, p0)|+ |B1(p′)−B1(p0)| ≤ ε(|g(x, p′)− g(x, p0)|+ |B1(p′)−B1(p0)|),

and since ε < 1, this implies that

|g(x, p′)− g(x, p0)| = max
λ∈[p0,p0+δ1]

|g(x, λ)− g(x, p0)| = 0.

This means that g(x, λ) = g(x, p0) for λ ∈ [p0, p0 + δ1]. Then, (76) takes the form

|B1(p)−B1(p0)| ≤ ε

2
|B1(p)−B1(p0)|, ε < 1.
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Hence B1(p) = B1(p0) for every p ∈ [p0, p0 + δ1]. By the definition of B1(p) we see
that (B(p) − B(p0))P̄ = 0, that is L̄ ⊂ ker(B(p) − B(p0)) for all p ∈ [p0, p0 + δ1].
Taking into account that also X ⊂ ker(B(p) − B(p0)) for such p we claim that
X ⊕ L̄ ⊂ ker(B(p) − B(p0)) for all p ∈ [p0, p0 + δ1]. By the maximality of the
space X we conclude that L̄ = {0}, that is, L ⊂ X. Then L̃ = L and the relation
P̃ (ϕ(x, λ) − ϕ(x, p0)) = g(x, λ) − g(x, p0) = 0 on [p0, p0 + δ1] implies that for all
ξ ∈ L ξ · (ϕ(x, λ) − ϕ(x, p0)) = 0 on the segment λ ∈ [p0, p0 + δ1]. The proof is
complete. �

Under the non-degeneracy condition, indicated in Definition 2, Theorem 25 yields
the following result.

Theorem 26. Suppose the non-degeneracy condition is satisfied. Then any se-
quence νkx weakly converging as k →∞ to ν0

x and satisfying (55) strongly converges
to ν0

x.

Proof. Let νrx = νkx , k = kr, be a subsequence such that the H-measure {µ̃pq}p,q∈E ,
corresponding to the trivial subspace X = {0}, is welldefined. We fix p0 ∈ E and
define the subspace X as in (56). Selecting a subsequence, if necessary, we can
assume that the ultra-parabolic H-measure µpq corresponding to X is also wellde-
fined. This H-measure admits the representation µpq = µpqx dx and, as directly
follows from the assertion of Theorem 25 and non-degeneracy condition in Defini-
tion 2, µp0p0x = 0 for a.e. x ∈ Ω. Therefore, µp0p0 = µp0p0x dx ≡ 0. By relation (17)
with ψ ≡ 1 we see that prΩµ̃

p0p0 = prΩµ
p0p0 = 0. Hence, µ̃p0p0 = 0. Since p0 ∈ E

is arbitrary we conclude that µ̃pp = 0 for all p ∈ E. This implies that

ur(x, p)→ u0(x, p) in L2
loc(Ω),

as r →∞. Indeed, it follows from the definition of an H-measure and Plancherel’s
equality that

lim
r→∞

‖UprΦ‖22 =
〈
µ̃pp, |Φ(x)|2

〉
= 0

for all Φ(x) ∈ C0(Ω) and p ∈ E. Thus, for p ∈ E we have∫
θ(λ− p)dνrx(λ) →

r→∞

∫
θ(λ− p)dν0

x(λ) in L2
loc(Ω). (77)

Any continuous function can be uniformly approximated on any compact subset by
finite linear combinations of functions λ 7→ θ(λ− p), p ∈ E. Hence, it follows from
(77) that for all f(λ) ∈ C(R) we have∫

f(λ)dνrx(λ) →
r→∞

∫
f(λ)dν0

x(λ) in L2
loc(Ω),

and therefore also in L1
loc(Ω), that is, the subsequence νrx strongly converges to ν0

x.
Finally, for each admissible choice of the subsequence νrx the limit measure-valued
function is uniquely defined, therefore the original sequence νkx is also strongly
convergent to ν0

x. The proof is complete. �

Taking into account Theorem T, one can give another formulation of Theorem 26:
each bounded sequence of measure-valued functions satisfying (55) is precompact
in the sense of strong convergence. Observe that in the regular case νkx(λ) =
δ(λ− uk(x)) condition (55) has the form: for some d > 1 and each a, b ∈ R, a < b

divxϕ(x, sa,b(uk(x)))−D2 ·B(sa,b(uk(x))) is precompact in W−1
d,loc(Ω). (78)

In this case Theorem 26 yields the following result.

Corollary 27. Under the non-degeneracy condition, each bounded sequence uk(x) ∈
L∞(Ω) satisfying (78) contains a subsequence convergent in L1

loc(Ω).
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Proof. We only need to note that if the sequence uk(x) converges to a measure-
valued function ν0

x strongly in MV (Ω), then by the definition of strong convergence

uk(x) →
k→∞

u0(x) =
∫
λdν0

x(λ) in L1
loc(Ω)

(which also shows that ν0
x(λ) = δ(λ− u0(x)) is regular in Ω). �

The statements of Theorems 25 and 26 remain true for sequences of unbounded
measure-valued (or usual) functions. For the proof we should apply the cut-off
functions sa,b(u) = max(a,min(u, b)), a, b ∈ R and derive that bounded sequences
of measure-valued functions s∗a,bν

k
x (s∗a,bν

k
x is the image of νkx under the map sa,b)

satisfy (55). Then, under the non-degeneracy condition, we obtain the strong pre-
compactness property for these sequences.

For instance, consider the sequence uk(x), k ∈ N of measurable functions on Ω.
Suppose that condition (78) and the non-degeneracy condition hold. Let α, β ∈ R,
α < β, vk = sα,β(uk) = max(α,min(uk, β)). Then vk = vk(x) is a bounded
sequence in L∞(Ω) and for each a, b ∈ R, a < b

divxϕ(x, sa,b(vk(x)))−D2 ·B(sa,b(vk(x)))

= divxϕ(x, sa′,b′(uk(x)))−D2 ·B(sa′,b′(uk(x)))

where a′ = sa,b(α), b′ = sa,b(β). It follows from this identity and (78) that the
sequence divxϕ(x, sa,b(vk(x)))−D2 ·B(sa,b(vk(x))) is precompact in H−1

d,loc(Ω). By
Corollary 27 the sequences vk(x) = sα,β(uk) are precompact in L1

loc(Ω) for every
α, β ∈ R, α < β. Using a standard diagonal argument, we can choose a subsequence
ur(x) = ukr (x) such that for each m ∈ N the sequence s−m,m(ur) converges as
r →∞ to some function wm(x) in L1

loc(Ω). Obviously, a.e. in Ω

|wm(x)| ≤ m, wm(x) = s−m,m(wl(x))

for all l > m. This allows to define a unique (up to equality a.e.) measurable
function u(x) ∈ R ∪ {±∞} such that wm(x) = s−m,m(u(x)) a.e. on Ω. If a, b ∈ R,
a < b, then for m > max(|a|, |b|)

sa,b(ur) = sa,b(s−m,m(ur)) →
r→∞

sa,b(wm)

= sa,b(s−m,m(u)) = sa,b(u) in L1
loc(Ω).

In fact, we proved the following general statement:

Theorem 28. Suppose that the sequence of measurable functions uk(x) satisfies
(78) and the nondegeneracy condition holds. Then

(a) there exists a measurable function u(x) ∈ R∪ {±∞} such that, after extrac-
tion of a subsequence ur, r ∈ N, sa,b(ur) → sa,b(u) as r → ∞ in L1

loc(Ω) for all
a, b ∈ R, a < b.

(b) If, in addition, the following estimates are satisfied∫
K

m(uk(x))dx ≤ CK , (79)

for each compact set K ⊂ Ω, where m(u) is a positive Borel function, such that
m(u)/u →

u→∞
∞, then u(x) ∈ L1

loc(Ω) and ur → u in L1
loc(Ω) as r →∞.

Proof. We only need to prove (b). Observe that, extracting a subsequence, if nec-
essary, we can assume that s−m,m(ur) → s−m,m(u) as m → ∞ a.e. in Ω for every
m ∈ N. This implies that ur → u a.e. in Ω and by the Fatou lemma it follows from
(79) that ∫

K

m(u(x))dx ≤ CK .
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In particular, u(x) ∈ L1
loc(Ω). Now, fix a compact K ⊂ Ω and ε > 0. By the

assumption m(u)/u →
u→∞

∞ we can choose l ∈ N such that |u|/m(u) ≤ ε/(2CK) for

|u| > l. Then∫
K

|ur(x)− u(x)|dx ≤
∫
K

|s−l,l(ur(x))− s−l,l(u(x))|dx

+
∫
K

|ur(x)|θ(|ur(x)| − l)dx+
∫
K

|u(x)|θ(|u(x)| − l)dx

≤
∫
K

|s−l,l(ur(x))− s−l,l(u(x))|dx

+
ε

2CK

(∫
K

m(ur(x))dx+
∫
K

m(u(x))dx
)

≤
∫
K

|s−l,l(ur(x))− s−l,l(u(x))|dx+ ε.

This implies lim
r→∞

∫
K
|ur(x)− u(x)|dx ≤ ε and since ε > 0 is arbitrary we conclude

lim
r→∞

∫
K
|ur(x)− u(x)|dx = 0 for any compact K ⊂ Ω, i.e., ur → u in L1

loc(Ω). �

Remark 29. As is easy to see from the proof of Theorems 25 and 26, the statement
of Theorem 28 remains valid under the requirement that condition (78) is satisfied
for almost all a, b ∈ R. Indeed, by Theorems 25 and 26 we can claim that the
H-measure µ̃pp indicated in the proof of Theorem 26 vanishes for almost all p ∈ E.
By the continuity of µ̃pp with respect to p ∈ E, we conclude that µ̃pp ≡ 0 and
this yields the strong precompactness property and all its consequences, including
Theorem 28.

5. Proofs of Theorems 3 and 4

We need the following simple result.

Lemma 30. Suppose u = u(x) is an entropy solution of (1). Then for almost all
a, b ∈ R, a < b,

divxϕ(x, sa,b(u))−D2 ·B(sa,b(u)) = ζa,b in D′(Ω), (80)

where ζa,b ∈ Mloc(Ω). Moreover, for each compact set K ⊂ Ω we have Var ζa,b(K) ≤
C(K, a, b, I), where I = I(x) = |ϕ(x, u(x))|+ |ψ(x, u(x))|+ |B(u(x))| ∈ L1

loc(Ω) and
the map I 7→ C(K, a, b, I) is bounded on bounded sets in L1

loc(Ω).

Proof. By the known representation property for non-negative distributions we de-
rive from (6) that for p ∈ P , P ⊂ P being a set of full measure,

divx[sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))]−D2 · [sign(u(x)− p)(B(u(x))−B(p))]

+ sign(u(x)− p)[ωp(x) + ψ(x, u(x))]− |γsp| = −κp in D′(Ω),

where κp ∈ Mloc(Ω), κp ≥ 0. Furthermore, for a compact set K ⊂ Ω we choose a
non-negative function fK(x) ∈ C∞0 (Ω), which equals 1 on K. Then we have the
estimate

κp(K) ≤
∫
fK(x)dκp(x)

=
∫

Ω

[
sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p)) · ∇fK(x)

+ sign(u(x)− p)(B(u(x))−B(p)) ·D2fK(x)

− sign(u(x)− p)(ωp(x) + ψ(x, u(x)))fK(x)
]
dx+

∫
Ω

fK(x)d|γsp|(x)
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≤ A(K, p, I) :=
∫

Ω

[
I(x) max(|fK(x)|, |∇fK(x)|, |D2fK(x)|)

+ |ϕ(x, p)| · |∇fK(x)|+ |B(p)| · |D2fK(x)|

+ |ωp(x)|fK(x)
]
dx+

∫
Ω

fK(x)d|γsp|(x).

Hence,

divx[sign(u(x)− p)(ϕ(x, u(x))− ϕ(x, p))]

−D2 · [sign(u(x)− p)(B(u(x))−B(p))] = ζp,
(81)

where

ζp = |γsp| − κp − sign(u(x)− p)[ωp(x) + ψ(x, u(x))] ∈ Mloc(Π).

In particular, taking into account the equality |γsp| + |ωp(x)|dx = |γp|, we obtain
the following estimates for the measure ζp: |ζp| ≤ κp + |γp|+ |ψ(x, u(x))|dx.

Furthermore, notice that for a, b ∈ P ,

ϕ(x, sa,b(u)) = (ϕ(x, a) + ϕ(x, b))/2

+
(
sign(u− a)(ϕ(x, u)− ϕ(x, a))− sign(u− b)(ϕ(x, u)− ϕ(x, b))

)
/2;

B(sa,b(u)) = (B(a) +B(b))/2 +
(
sign(u− a)(B(u)−B(a))

− sign(u− b)(B(u)−B(b))
)
/2,

and it follows from (81) that relation (80) holds with ζa,b = (ζa − ζb + γa + γb)/2.
Moreover, we have

Var ζa,b(K) ≤ C(K, a, b, I) = (A(K, a, I) +A(K, b, I))/2

+ |γa|(K) + |γb|(K) +
∫
K

|ψ(x, u(x))|dx.

To complete the proof, it remains to note that for fixedK, a, b the constant C(K, a, b, I)
is bounded on bounded sets of I(x) ∈ L1

loc(Ω). �

5.1. Proof of Theorem 3. Taking into account that the sequence

Ik(x) = |ϕ(x, uk(x))|+ |ψ(x, uk(x))|+ |B(uk(x))|

is bounded in L1
loc(Ω), we derive from Lemma 30 that for almost all a, b ∈ P

divϕ(x, sa,b(uk))−D2 ·B(sa,b(uk)) = ζka,b in D′(Ω),

where ζka,b is a bounded sequence in Mloc(Ω). Since Mloc(Ω) is compactly embedded
in W−1

d,loc(Ω) for each d ∈ [1, n/(n − 1)) we see that condition (78) is satisfied for
almost all a, b. By our assumption condition (79) is also satisfied. By Theorem 28
and Remark 29 we conclude that some subsequence ur converges as r → ∞ to a
limit function u in L1

loc(Ω). Extracting a subsequence if necessary, we can assume
that ur →

r→∞
u a.e. in Ω. Passing to the limit as r →∞ in relation (6) with u = ur,

we claim that the limit function u = u(x) satisfies this relation for all p ∈ P such
that the level set u−1(p) has zero measure (then sign(ur − p) → sign(u − p) as
r →∞ a.e. in Ω). Since the set of such p has full measure, we conclude that u(x)
is an entropy solution of (1). �
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5.2. Proof of Theorem 4. To simplify the notation, we temporarily drop the
index m in equation (8), and stress that the flux ϕ(x, u) in this equation is smooth.

First we show that a weak solution u = u(x) of equation (8) is an entropy
solution in the sense of Definition 1. For this observe that in relation (9) we can
choose test functions f(x) ∈W 1

2 (Ω), with compact support in Ω. In particular, for
η(u) ∈ C2(R), f = f(x) ∈ C∞0 (Ω) the function η′(u)f , u = u(x), is an admissible
test function, and we derive from (9) that

0 = −
∫

Ω

[ϕ(x, u) · ∇η′(u)f −A(u)∇(u) · ∇η′(u)f ] dx

=
∫

Ω

[(divϕ(x, u))η′(u)f + η′′(u)fA(u)∇u · ∇u+A(u)η′(u)∇u · ∇f ]dx.
(82)

Introduce the vector q(x, u) such that q′u(x, u) = η′(u)ϕ′u(x, u). This vector is
determined by the above equality up to an additive constant c = c(x). We also
introduce the symmetric matrix Q(u) defined, up to an additive matrix constant,
by the equality Q′(u) = A(u)η′(u) = η′(u)B′(u). Now we can transform the terms
divϕ(x, u)η′(u)f , A(u)η′(u)∇u · ∇f as follows:

divϕ(x, u)η′(u)f = (divxϕ(x, u) + ϕ′u(x, u) · ∇u)η′(u)f

= (η′(u)divxϕ(x, u))f + (q′u(x, u) · ∇u)f

= fdivq(x, u) + (η′(u)divxϕ(x, u)− divxq(x, u))f ;

A(u)η′(u)∇u · ∇f = Q′(u)∇u · ∇f = Q′ij(u)uxjfxi = (Qij(u))xjfxi

(here Qij , i, j = 1, . . . , n, denote the components of the matrix Q). Putting these
equalities into (82) and integrating by parts, we obtain that∫

Ω

[
q(x, u) · ∇f + (divxq(x, u)− η′(u)divxϕ(x, u))f

+Q(u) ·D2f − η′′(u)fA(u)∇u · ∇u
]
dx = 0.

(83)

We shall assume that η′′(u) has a compact support in R. Let R > 0 be such that
supp η′′(u) ⊂ (−R,R) and L = (η′(−R) + η′(R))/2 (evidently, L does not depend
on R). Then we can choose q(x, u) in the following way

q(x, u) =
1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u). (84)

Indeed, taking R > |u| and integrating by parts, we obtain the equality∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p)

=
∫ R

−R
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p)

=
∫ u

−R
(ϕ(x, u)− ϕ(x, p))dη′(p)−

∫ R

u

(ϕ(x, u)− ϕ(x, p))dη′(p)

=
∫ u

−R
ϕ′u(x, p)η′(p)dp−

∫ R

u

ϕ′u(x, p)η′(p)dp

− 2Lϕ(x, u) + ϕ(x,−R)η′(−R) + ϕ(x,R)η′(R).

We see that, up to a function which does not depend on u,

1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u)
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=
1
2

(∫ u

−R
ϕ′u(x, p)η′(p)dp−

∫ R

u

ϕ′u(x, p)η′(p)dp

)
and therefore

∂

∂u

(
1
2

∫
sign(u− p)(ϕ(x, u)− ϕ(x, p))dη′(p) + Lϕ(x, u)

)
= η′(u)ϕ′u(x, u),

as required. In the similar way we find that, up to an additive matrix constant,

Q(u) =
1
2

∫
sign(u− p)(B(u)−B(p))dη′(p) + LB(u). (85)

Furthermore, the function η′(u)divxϕ(x, u)−divxq(x, u) admits the representation

η′(u)divxϕ(x, u)− divxq(x, u) =
1
2

∫
sign(u− p)divxϕ(x, p)dη′(p). (86)

Indeed, in view of (84), we see that for sufficiently large R

2q(x, u) =
∫ u

−R
(ϕ(x, u)− ϕ(x, p))dη′(p)−

∫ R

u

(ϕ(x, u)− ϕ(x, p))dη′(p) + 2Lϕ(x, u)

= ϕ(x, u)(η′(u)− η′(−R))−
∫ u

−R
ϕ(x, p)dη′(p)− ϕ(x, u)(η′(R)− η′(u))

+
∫ R

u

ϕ(x, p)dη′(p) + 2Lϕ(x, u)

= 2η′(u)ϕ(x, u)−
∫

sign(u− p)ϕ(x, p)dη′(p),

where we use the equality 2L = η′(R) + η′(−R). Applying the operator divx to the
above equality, we arrive at (86).

Now, we suppose that η′′(u) ≥ 0. We transform (83), using equalities (84), (85),
(86) and the identity ∫

Ω

{ϕ(x, u) · ∇f + (B(u) ·D2f)}dx = 0, (87)

following from (83) with η(u) ≡ u. We find that for each f = f(x) ∈ C∞0 (Ω), f ≥ 0∫ ∫
Ω

sign(u− p)[(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ(x, p)

+ (B(u)−B(p)) ·D2f ]η′′(p)dxdp

= 2
∫

Ω

η′′(u)fA(u)∇u · ∇u ≥ 0,

and since η′′(p) is an arbitrary finite continuous non-negative function on R we
arrive at

I(p) :=
∫

Ω

sign(u− p)
[
(ϕ(x, u)− ϕ(x, p)) · ∇f − fdivxϕ(x, p)

+ (B(u)−B(p)) ·D2f)
]
dx ≥ 0

(88)

for all p ∈ P , where the set P consists of points p such that the level set u−1(p)
has null Lebesgue measure. We use the fact that the function I(p) is continuous at
any point of P . In view of (88) for all p ∈ P

div[sign(u− p)(ϕ(x, u)− ϕ(x, p))]

+ sign(u− p)divxϕ(x, p)−D2 · [sign(u− p)(B(u)−B(p))] ≤ 0
(89)

in D′(Ω). Since the set P has full measure and therefore is dense, for an arbitrary
p ∈ R we can choose sequences p−r < p < p+

r , p±r ∈ P , r ∈ N convergent to p.
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Taking a sum of relations (89) with p = p−r and p = p+
r and passing to the limit as

r →∞, in view of the pointwise relation sign(u−p−r )+sign(u−p+
r ) →

r→∞
2 sign(u−p)

and continuity of divxϕ(x, p), we obtain that (89) holds for all p ∈ R, i.e., u(x) is
an entropy solution of (8), moreover condition (6) is satisfied for all p ∈ R.

We also need an a priori estimate of ∇u. Choose M ≥ ‖u‖∞ and a function
η(u) ∈ C2

0 (R) such that η(u) = u2/2 on the segment [−M,M ] and supp η(u) ∈
[−M − 1,M + 1]. Then for u = u(x), η′′(u) = 1 a.e. in Ω and we derive from (83)
that for each f = f(x) ∈ C∞0 (Ω), f ≥ 0∫

Ω

fA(u)∇u · ∇udx

≤
∣∣∣∣∫

Ω

[
q(x, u) · ∇f + (divxq(x, u)− η′(u)divxϕ(x, u))f +Q(u) ·D2f

]
dx

∣∣∣∣ . (90)

It follows from (84), (85), and (86) that

|q(x, u)| ≤ C max
|u|≤M+1

|ϕ(x, u)|, |Q(u)| ≤ C max
|u|≤M+1

|B(u)|,

|divxq(x, u)− η′(u)divxϕ(x, u)| ≤ C
∫ M+1

−M−1

|divxϕ(x, p)|dp,

where C is the constant depending only on the fixed function η. Putting these
estimates into (90), we get∫

Ω

fA(u)∇u · ∇udx ≤ C
∫

Ω

[
max
|u|≤M+1

|ϕ(x, u)||∇f |+ max
|u|≤M+1

|B(u)||D2f |
]
dx

+ C

∫
Ω

∫ M+1

−M−1

|divxϕ(x, p)|f(x)dpdx.

(91)

By our assumptions, ϕm(x, u), Bm(u) converge as m → ∞ in L2
loc(Ω, C(R,Rn))

and in C1(R,Symn), respectively. Therefore, the sequence∫
Ω

[
max
|u|≤M+1

|ϕm(x, u)||∇f |+ max
|u|≤M+1

|Bm(u)||D2f |
]
dx

is bounded by a constant depending only on f . Here we take M ≥ supm ‖um‖∞.
It follows from estimate (91) that∫

Ω

fAm(um)∇um · ∇umdx ≤ CfIm(K,M + 1), (92)

with K = supp f , where the sequence

Im(K,M) = 1 +
∫
K

∫ M

−M
|divxϕm(x, p)|dpdx

was mentioned in introduction. Now we take a, b ∈ R, a < b. Let us demonstrate
that the sequence

Lm = divϕ(x, sa,b(um))−D2 ·B(sa,b(um))

is precompact in W−1
d,loc with some d > 1. For that, recall that um(x) is an entropy

solution of (8) and by Lemma 30 (also see the proof of this lemma)

divϕm(x, sa,b(um))−D2 ·Bm(sa,b(um)) = ξm

where ξm is a bounded sequence in the space Mloc(Ω), which is compactly embedded
inW−1

d,loc(Ω) for each d ∈ [1, n/(n−1)). Furthermore, we have Lm = L1m+L2m+ξm,
where

L1m = div(ϕ(x, sa,b(um))− ϕm(x, sa,b(um))),
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L2m = D2 · (Bm(sa,b(um))−B(sa,b(um))) .

In view of the estimate

|ϕ(x, sa,b(um))− ϕm(x, sa,b(um))| ≤ max
|u|≤M

|ϕm(x, u)− ϕ(x, u)|

and the condition ϕm(x, u) →
m→∞

ϕ(x, u) in L2
loc(Ω, C(R,Rn)) we have

ϕ(x, sa,b(um))− ϕm(x, sa,b(um)) →
m→∞

0 in L2
loc(Ω,Rn).

Hence L1m → 0 in W−1
2,loc(Ω). Concerning the sequence L2m, we first remark that

by the chain rule a.e. in Ω

D2 ·Bm(sa,b(um)) = div[χ(um)Am(um)∇um],

D2 ·B(sa,b(um)) = div[χ(um)A(um)∇um],

where χ(u) is the indicator function of the segment [a, b]. Therefore,

L2m = div[χ(um)(Am(um)−A(um))∇um]. (93)

Since

|(Am(um)−A(um))∇um|2

≤ |(Am(um)−A(um))(Am(um))−1/2|2|(Am(um))1/2∇um|2

= |(Am(um)−A(um))(Am(um))−1/2|2(Am(um)∇um · ∇um)

≤ max
|u|≤M

|(Am(u)−A(u))(Am(u))−1/2|2(Am(um)∇um · ∇um)

(94)

then for every f = f(x) ∈ C∞0 (Ω), f ≥ 0∫
Ω

|χ(um)(Am(um)−A(um))∇um|2fdx

≤ max
|u|≤M

|(Am(u)−A(u))(Am(u))−1/2|2
∫

Ω

(Am(um)∇um · ∇um)f(x)dx.

Taking into account relation (7) and estimate (92) we derive that∫
Ω

|χ(um)(Am(um)−A(um))∇um|2fdx →
m→∞

0,

i.e. χ(um)(Am(um)−A(um))∇um → 0 in L2
loc(Ω; Rn). In view of (93) this implies

that L2m → 0 in W−1
2,loc(Ω). We conclude that Lm = L1m+L2m+ξm is precompact

in W−1
d,loc(Ω) with some d > 1. Hence, assumption (78) is satisfied. By Corollary 27

we see that the sequence um converges in L1
loc(Ω) to some function u = u(x) ∈

L∞(Ω). Obviously, ‖u‖∞ ≤ M . It only remains to demonstrate that u is an
entropy solution of (1). By relation (88) for each p ∈ R, f = f(x) ∈ C∞0 (Ω), f ≥ 0∫

Ω

(
sign(um − p)[(ϕm(x, um)− ϕm(x, p)) · ∇f − fdivxϕm(x, p)]

+ sign(um − p)(Bm(um)−Bm(p)) ·D2f
)
dx ≥ 0.

Since divxϕm(x, p) = γmpr(x) + γmps(x), p ∈ P, the above relation implies that for all
p ∈ P∫

Ω

(
sign(um − p)[(ϕm(x, um)− ϕm(x, p)) · ∇f − fγmpr(x)]

+ f |γmps(x)|+ sign(um − p)(Bm(um)−Bm(p)) ·D2f
)
dx ≥ 0.

(95)
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Passing to a subsequence, we may assume that um(x)→ u(x) as m→∞ a.e. in Ω.
Then

sign(um − p)(ϕm(x, um)− ϕm(x, p)) →
m→∞

sign(u− p)(ϕ(x, u)− ϕ(x, p)),

sign(um − p)(Bm(um)−Bm(p)) →
m→∞

sign(u− p)(B(u)−B(p)),

sign(um − p) →
m→∞

sign(u− p)

a.e. in Ω and, as a consequence, in L1
loc(Ω). The latter relation holds for p ∈ P such

that the level set u−1(p) has zero Lebesgue measure. Besides, by our assumptions
γmpr(x) →

m→∞
ωp(x) in L1

loc(Ω), |γmps(x)| →
m→∞

|γsp| weakly in Mloc(Ω). Taking into

account the above limit relations, we can pass to the limit in (95) and obtain that∫
Ω

(
sign(u− p)[(ϕ(x, um)− ϕ(x, p)) · ∇f − fωp(x)]

+ sign(u− p)(B(u)−B(p)) ·D2f
)
dx+

∫
Ω

f(x)d|γsp|(x) ≥ 0,
(96)

for almost all p ∈ P, i.e. u(x) is an entropy solution of (8). Finally, passing to the
limit as m→∞ in relation (87)∫

Ω

(
ϕm(x, um) · ∇f + (Bm(um) ·D2f)

)
dx = 0,

we obtain that for all f = f(x) ∈ C∞0 (Ω)∫
Ω

(
ϕ(x, u) · ∇f + (B(u) ·D2f)

)
dx = 0.

Hence, u = u(x) is a distributional solution of (1). This completes the proof of
Theorem 4. �

Remark 31. We bring this paper to an end by mentioning that the strong precom-
pactness property for Graetz–Nusselt type equations

divx (ϕ(x, u)−A(x)∇g(u)) + ψ(x, u) = 0

was studied in [19, 18]. In particular, Theorems 3 and 4 were proved in [18] for
such equations.
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