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Abstract. We prove the existence of a global semigroup for conservative solutions of
the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0. We allow for initial
data u|t=0 and ut|t=0 that contain measures. We assume that 0 < κ−1 ≤ c(u) ≤
κ. Solutions of this equation may experience concentration of the energy density
(u2
t + c(u)2u2

x)dx into sets of measure zero. The solution is constructed by introducing
new variables related to the characteristics, whereby singularities in the energy density
become manageable. Furthermore, we prove that the energy may only focus on a set
of times of zero measure or at points where c′(u) vanishes. A new numerical method
to construct conservative solutions is provided and illustrated on examples.
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1. Introduction

The nonlinear variational wave equation (NVW), which was �rst introduced by Saxton
in [11], is given by the following nonlinear partial di�erential equation on the line

(1.1) utt − c(u)(c(u)ux)x = 0

with initial data

(1.2) u|t=0 = u0, ut|t=0 = u1.

The equation can be derived from the variational principle applied to the functional∫∫ (
u2
t − c2(u)u2

x

)
dxdt.

We are interested in the analysis of conservative solutions of this initial value problem for
u0, u1 ∈ L2(R). It is well known that solutions of this equation develop singularities in
�nite time, even for smooth initial data, see, e.g., [8]. The continuation past singularities
is highly nontrivial, and allows for several distinct solutions. Thus additional information
or requirements are needed to select a unique solution, and stability of solutions becomes
a particularly delicate issue. We here study the conservative case where one in addition
to the solution u itself, requires that the energy is conserved. For smooth solutions the
energy is given by E(t) =

∫
R(u2

t +c2u2
x)(t, x) dx. However, as energy may focus in isolated

points, one has to look at energy density in the sense of measures such that the absolutely
continuous part of the measure corresponds to the usual energy density. The analysis
resembles to a large extent recent work done on the Camassa�Holm equation and the
Hunter�Saxton equation (see, e.g., [9, 3, 13, 10] and references therein). Our main result
is the proof of the existence of a global semigroup for conservative solutions of the NVW
equation, allowing for concentration of the energy density on sets of zero measure.

The NVW equation has been extensively studied by Zhang and Zheng [12, 13, 14,
15, 16, 17, 18]. However, our approach is closely related to the approach by Bressan
and Zheng [5], in that we introduce new variables based on the characteristics, thereby,
loosely speaking, separating waves going in positive and negative direction.

It is di�cult to illustrate the ideas in this paper as there are no elementary and
explicit solutions available, except for the trivial case where c is constant, which yields
the classical linear wave equation. Thus one is forced to illustrate ideas numerically.
Traditional �nite di�erence schemes will not yield conservative solutions, but rather
dissipative solutions due to the intrinsic numerical di�usion in these methods. Hence it
is a challenge of separate interest to compute numerically conservative solutions of this
equation to display some of the intricacies. This question is addressed and analyzed in
Section 9.

Let us now turn to a more precise description of the content of this paper. We consider
the variables R and S de�ned as

(1.3)

{
R = ut + c(u)ux,

S = ut − c(u)ux.



THE NONLINEAR VARIATIONAL WAVE EQUATION 3

By (1.1), we have

(1.4)


Rt − cRx =

c′

4c
(R2 − S2),

St + cSx =
c′

4c
(S2 −R2),

or, on conservative form,

(1.5)

 (R2 + S2)t − (c(R2 − S2))x = 0,

(
1
c

(R2 − S2))t − (R2 + S2)x = 0.

Let E(t) denote the total energy of the system at time t, i.e.,

(1.6) E(t) =
∫

R
(u2
t + c2u2

x)(t, x) dx =
∫

R
(R2 + S2) dx.

We assume that the initial total energy that we denote E0 is �nite and that u is bounded
in L∞. For smooth solutions of (1.1) we have dE

dt = 0. We also assume that c ∈ C1(R)
and c : R→ [κ−1, κ] for some constant κ > 0.

From (1.6) we see that we need that the functions R and S belong to L2(R). It turns
out that, as time evolves, the functions R2 and S2 can concentrate on sets of measure
zero. The example presented in Figure 1, see Section 8.2, illustrates this phenomenon.
In this case, we have a nontrivial solution u for t nonzero, which is however is identically
equal to one at t = 0 and ut(0, x) = 0. However, when we analyze this example closer,
we see that the energy concentrates at the origin, indeed

lim
t→0

R2(t, x) dx = δ and lim
t→0

S2(t, x) dx = 2δ

where δ is Dirac's delta function. Clearly this complicates the existence and uniqueness

Figure 1. Plot of u(t, x) for t = −3 (left), t = 0 (center), t = 3 (right).

question for this equation. As we want to construct a semigroup of solutions for this type
of solutions, we have to know the location and amount of backward (R2) and forward (S2)
energy that has concentrated on sets of zero measure, an information which is not given
by the function u itself. (In our example, since, at t = 0, the function u is identically
one and its time derivative ut identically zero, we cannot infer where the energy has
concentrated.) Thus we introduce the set D whose elements, in addition to u, R, S,
contain two measures, µ and ν, corresponding to forward and backward energy density.
More precisely, the measures are nonnegative Radon measures that satisfy

µac =
1
4
R2 dx, νac =

1
4
S2 dx.
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Our main contribution in this article is to present a rigorous construction of the semi-
group of conservative solutions in D. Note that the set D is the natural set of solutions
for conservative solutions, and the semigroup property can only be established in D,
as illustrated by the example of Figure 1. Furthermore, by incorporating the energy
measures as independent variables the formation of singularities is natural, and it allows
for more general initial data. The present approach also provides a natural numerical
method for conservative solutions.

As in [5], the construction of the solutions is achieved via a change of variables into
a new coordinate system (X,Y ) that straightens the characteristics. Even if we use
di�erent variables, the solutions we obtain are the same, but by extending the solutions
to the set D, we are able to establish that the solutions we construct satisfy the semigroup
property. We have to study in details the change of variables mapping � from the original
variables to the new variables and vice versa � because, in order to prove the semigroup
property, we have to establish that the two sets of variables match in an appropriate
way. Compared to the variables used in [5], we prefer variables with a more direct
physical interpretation. Namely, the variables we are considering are time, t(X,Y ), space,
x(X,Y ), the solution function U(X,Y ), which formally satis�es u(t(X,Y ), x(X,Y )) =
U(X,Y ) and the energy potentials J and K. The de�nition of the energy potentials J
and K follows from (1.5), which says that the forms 1

4(R2 + S2) dx+ 1
4c(u)(R2 − S2) dt

and 1
4c(u)(R2 − S2) dx + 1

4(R2 + S2)dt are closed, so that, by Poincaré's lemma, there

exist functions, here denoted the energy potentials J and K, whose di�erentials are
equal to the given forms. Thus the new set of variables we will be considering equals
Z = (t, x, U, J,K) and, after rewriting the governing equations (1.3) and (1.4) in the new
coordinate system (X,Y ), we get a system of equations of the form

(1.7) ZXY = F (Z)(ZX , ZY )

where F (Z) : R5 × R5 → R5 is a bi-linear and symmetric operator, which depends only
on U , cf. (2.13).

In the new coordinates, the initial data corresponds to the set Γ0 = {(X,Y ) ∈ R2 |
t(X,Y ) = 0}. In the smooth case, Γ0 will be a strictly monotone curve. However, in our
setting, Γ0 may not even be a curve, and even if it is a curve, it may not be continuous
nor strictly monotone. Indeed, it may contain horizontal and vertical segments, and
furthermore, rectangular boxes corresponding to the situation where both µ and ν are
singular at the same point. If Γ0 is a curve with no vertical or horizontal parts and the
initial data is bounded in L∞ (by initial data, we mean the values of Z, ZX and ZY on
Γ0), then the existence and uniqueness of solutions to (1.7) is a classical result, see, for
example, [7, Ch. 4]. In the present paper we have to deal with unbounded data in D (ux
and ut are unbounded in L∞). The new coordinates (X,Y ) are given by

dx− c(u)dt = 0 if and only if dY = 0

and

dx+ c(u)dt = 0 if and only if dX = 0,

that is, the characteristics are mapped to horizontal and vertical lines. We denote by
L the mapping from the possible initial data in D to the set F de�ned by Γ0 and the
value of the initial data on Γ0, thus L : D → F , see De�nition 3.8. From Γ0 we have to
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select one curve that can be used as initial data for the equation (1.7). There is a certain
nonuniqueness due to fact that Γ0 may not be curve. Let G0 denote the set of all curves,
including the information about the initial data. We let C denote the mapping that from
a set Γ0 selects one possible curve, that is, C : F → G0, see De�nition 3.5. The inverse
map that from curve determines the corresponding set in F is denoted D, see De�nition
3.7. Once we have a curve with the initial data, we can in principle compute the solution
by solving (1.7). To show the existence of a global solution we use the the bi-linearity
of (1.7) and an a priori bound on the energy potentials J and K, see Section 4. We let
the set of all possible solutions be denoted by H, and let S : G → H denote the map that
computes the solution that passes through the curve in G, see Theorem 4.15. Here G is
de�ned as G0 without the constraint that t = 0, see De�nition 3.2. Recall that as t now
is a dependent variable, it does not make sense to compute the solution up to a speci�c
time, but rather we determine the global solution for all times. Thus we need a mapping
that extracts the solution Z for a given time T , that is, the intersection of the solution in
H with the set where t(X,Y ) = T . Let E : H → G0 denote the map that from any given
solution in H extracts the solution at t = 0, that is, in G0, see De�nition 5.1. Next we
de�ne the operator tT : H → H that shifts time in a solution in H by a given time T , see
De�nition 5.2. Now we can de�ne the map ST : F → F by ST = D ◦E ◦ tT ◦ S ◦C, see
De�nition 5.4. A key result is that ST is a semigroup on F , see Theorem 5.5. Next we
need to return to the original variables. Let M : F → D denote that map, see De�nition
6.1. Thus the solution operator S̄T : D → D is de�ned by (De�nition 6.4)

(1.8) S̄T = M ◦ ST ◦ L.

It remains to show that S̄T is a semigroup. However, since M is not inverse of L, as
L ◦M 6= IdF , the semigroup property of S̄T still does not follow from (1.8). This fact is
explained as follows. When changing variables, we have introduced a degree of freedom
that we now want to eliminate. This degree of freedom can be identi�ed precisely with
the action of the group G2, where G denotes the group of di�eomorphisms of the real line.
Indeed, by simply using the bi-linearity of (1.7), one can check that if Z is a solution to
(1.7), then Z̄(X,Y ) = Z(f(X), g(Y )), where (f, g) ∈ G2, is also a solution to the same
equation. The transformation (X,Y ) 7→ (f(X), g(Y )) corresponds to a stretching of the
plane R2 in the X and Y directions. Note that this transformation maps horizontal (resp.
vertical) lines to horizontal (resp. vertical) lines and therefore preserves the directions
of the characteristics. Moreover, this transformation does not a�ect the solution in the
original coordinates. To illustrate this we ignore for the moment for the sake of simplicity,
the energies µ and ν in the de�nition of D. The solution u(t, x) can be seen as the surface
in R3 given by (t, x, u(t, x)) where (t, x) ∈ R2 are parameters. Through our change of
variables, we obtain another parametrization of the same surface, namely,

(1.9) (t(X,Y ), x(X,Y ), U(X,Y ))

where (X,Y ) ∈ R2 are the new parameters. Additional properties of the solution Z =
(t, x, U, J,K) which are contained in the de�nition ofH guarantee that the surface de�ned
by (1.9) does not fold over itself so that it is in fact a graph. It is then clear from (1.9)
that the transformation (X,Y ) 7→ (f(X), g(Y )) is simply a re-parametrization of the
same surface, which de�nes u(t, x) uniquely. At the level of the set F , which corresponds
to a parametrization of the initial data in the new coordinates, we can also de�ne the
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action of the group G2 that denote ψ× (f, g) 7→ ψ · (f, g) for any ψ ∈ F and (f, g) ∈ G2.
We prove that two elements which are equivalent correspond to the same element in D,
that is,

(1.10) M(ψ̄) = M(ψ)

where ψ̄ = ψ · (f, g) for some (f, g) ∈ G2. From (1.10), it is now clear why L ◦M 6= IdF
as, in general, ψ̄ and ψ are distinct. We introduce a subset F0 of F which corresponds
to a section of F with respect to the action of the group G2, which means that the set
F0 contains only one representative of each equivalence class so that F/G2 and F0 are in
bijection. The system (1.7) preserves the strict positivity of the quantities xX + JX and
xY + JY and the set F somehow inherits this property which makes it possible to de�ne
the projection Π: F → F0. The projection Π associates to any element in F its unique
representative in F0 which belongs to the same equivalence class. As expected, since
we have now eliminated the degree of freedom we introduced by changing variables, we
obtain that F0 and D are in bijection. We are then able to prove that S̄t is a semigroup.

Our main result, Theorem 7.9, reads as follows:
Theorem. Given (u0, R0, S0, µ0, ν0) ∈ D, let us denote (u,R, S, µ, ν)(t) = S̄t(u0, R0, S0, µ0, ν0).
Then u is a weak solution of the nonlinear variational wave equation (1.1), that is,

(1.11)

∫
R2

(φt − (c(u)φ)x)Rdxdt+
∫

R2

(φt + (c(u)φ)x)S dxdt = 0

for all smooth functions φ with compact support and where

(1.12) R = ut + c(u)ux, S = ut − c(u)ux.

Moreover, the measures µ(t) and ν(t) satisfy the following equations in the sense of
distribution

(1.13a) (µ+ ν)t − (c(µ− ν))x = 0

and

(1.13b) (
1
c

(µ− ν))t − (µ+ ν)x = 0.

The mapping S̄T : D → D is a semigroup, that is,

S̄t+t′ = S̄t ◦ S̄t′

for all positive t and t′.
Furthermore, we note the following important result (Theorem 7.10):

Theorem. The solution satis�es the following properties:

(i) For all t ∈ R
(1.14) µ(t)(R) + ν(t)(R) = µ0(R) + ν0(R).

(ii) For almost every t ∈ R, the singular part of µ(t) and ν(t) are concentrated on
the set where c′(u) = 0.

In this article, we do not study the stability of the solutions. However, since the
solutions we obtain coincide with the ones obtained in [5] for initial data which do not
contain any singular measure, the solutions in that case also satisfy the stability result
stated in [5, Theorem 2]. To obtain a continuous semigroup of solution in D, we would like
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to follow the approach developed in [9], [4] for the Camassa�Holm equation and Hunter�
Saxton equations. In these two papers, the conservative solutions are also obtained via
a change of variables which is invariant with respect to relabeling (i.e., with respect to
the action of the group of di�eomorphisms G). We de�ne a distance between equivalence
classes in the new coordinates. This distance is then mapped back to the original set of
coordinates so that we obtain a continuous semigroup for this metric. In the case of the
nonlinear wave equation, in particular, because of the truly two dimensional nature of
the problem, it is not so easy to formulate a stability result in the new coordinates which
holds when mapping back to the original set of variables. In Lemma 4.12 we present a
result in that direction.

There is a lack of explicit solutions to NVW. In this paper we consider two explicit
examples. The �rst example, see Section 8.1, is the simplest possible, namely the linear
wave equation (with c constant), but with general initial data. We recover as expected
the familiar d'Alembert solution. The energy measures are transported with velocity
±c. The second example, see Section 8.2, is a truly nonlinear case with velocity given
by (1.19). However, here we choose the simplest nontrivial initial data with energy
concentration initially for both measures. The corresponding equation (1.7) is solved
numerically, and the result is illustrated on Figs. 1, 9�12.

The numerical method that yields conservative solutions is described in Section 9.

1.1. Physical motivation for the nonlinear variational wave equation. The NVW
equation was �rst derived in the context of nematic liquid crystals, see [11, 10]. More
precisely, a nematic crystal can be described, when we ignore the motion of the �uid, by
the dynamics of the so-called director �eld n = n(x, y, z, t) ∈ R3 describing the orienta-
tion of rod-like molecules. Thus |n| = 1. The Oseen�Franck strain-energy potential is
given by

(1.15) W (n,∇n) = α |n× (∇× n)|2 + β(∇ · n)2 + γ(n · ∇ × n)2,

where α, β, γ are constitutive constants. Consider next the highly simpli�ed case of
director �elds of the type

(1.16) n = n(x, t) = cos(u(t, x))ex + sin(u(t, x))ey

where ex and ey are unit vectors in the x and y direction, respectively. In this case the
functional W (n,∇n) vastly simpli�es to

(1.17) W (n,∇n) = (β cos2 u+ α sin2 u)u2
x,

and |nt|2 = u2
t . The dynamics is described by the variational principle

(1.18)
δ

δu

∫∫ (
u2
t − c2(u)u2

x

)
dxdt = 0,

where

(1.19) c2(u) = β cos2 u+ α sin2 u,

which results in the nonlinear variational wave equation

(1.20) utt − c(u)(c(u)ux)x = 0.
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2. Equivalent system for the NVW equation

In this section, we assume the existence of a smooth solution u = u(t, x) to (1.1). We
introduce the change of variables (t, x) 7→ (X,Y ) which straightens out the characteris-
tics: The forward characteristics, which are given by the solutions of dxdt = c(u(t, x(t))),
are mapped to the horizontal lines while the backward characteristics, which are given
by the solutions of dx

dt = −c(u(t, x(t))), are mapped to the vertical lines. Formally, we
can rewrite these conditions as

(2.1) dx− c(u)dt = 0 if and only if dY = 0

and

(2.2) dx+ c(u)dt = 0 if and only if dX = 0.

Our goal now is to rewrite the governing equation (1.1) in terms of the new variables
(X,Y ). The variables (t, x) become functions of (X,Y ) that we denote t(X,Y ) and
x(X,Y ). We set

(2.3) U(X,Y ) = u(t, x).

Since

dx = xXdX + xY dY and dt = tXdX + tY dY,

we obtain from (2.1) and (2.2) that

(2.4) xX = c(U)tX and xY = −c(U)tY .

From (1.5), we infer that the forms 1
4(R2 + S2)dx+ c

4(R2 − S2)dt and 1
4c(R

2 − S2)dx+
1
4(R2 + S2)dt are closed. Therefore, by Poincaré's lemma, we infer the existence of two
functions J and K for which these forms are the di�erentials, that is,

(2.5) dJ =
1
4

(R2 + S2)dx+
c

4
(R2 − S2)dt

and

(2.6) dK =
1
4c

(R2 − S2)dx+
1
4

(R2 + S2)dt.

We have, after using (2.4),

dJ =
1
4

(R2 + S2)dx+
c

4
(R2 − S2)dt

=
1
4

(R2 + S2)(xXdX + xY dY ) +
c

4
(R2 − S2)(tXdX + tY dY )

=
1
2
R2xXdX +

1
2
S2xY dY,

and, similarly, we get

dK =
R2

2c
xXdX −

S2

2c
xY dY

so that

(2.7) JX = c(U)KX and JY = −c(U)KY



THE NONLINEAR VARIATIONAL WAVE EQUATION 9

hold. Note the similarity between the relations (2.7) for the pair (J,K) and the relations
(2.4) for the pair (t, x). We want to compute the mixed second derivatives of our new
variables, namely, t, x, U , J and K. By (2.4), we obtain

dt = tXdX + tY dY =
1
c
xXdX −

1
c
xY dY.

By expressing the fact that the form dt is closed (since it is exact), we get

∂

∂Y

(
1
c
xX

)
= − ∂

∂X

(
1
c
xY

)
which implies

xXY =
c′

2c
(uY xX + uXxY ) .

Similarly, since the form

dx = xXdX + xY dY = ctXdX − ctY dY
is closed, we obtain

∂

∂Y
(ctX) = − ∂

∂X
(ctY )

which implies

tXY = − c
′

2c
(uXtY + uY tX) .

By using the relations (2.7), the form dK can be rewritten as

dK =
1
c
JXdX −

1
c
JY dY

and, expressing the fact that dK is a closed, we obtain

∂

∂Y

(
1
c
JX

)
=

∂

∂X

(
−1
c
JY

)
which yields

JXY =
c′

2c
(JXUY + JY UX) .

Similarly, we can rewrite the form dJ as

dK = cKXdX − cKY dY

and, expressing the fact dK is closed, we get

KXY = − c
′

2c
(KXUY +KY UX) .

Let us consider the forms

(2.8) ω1 =
R

2c
dx+

1
2
Rdt

and

(2.9) ω2 =
S

2c
dx− 1

2
Sdt.

In the new variables, these forms rewrite

ω1 =
ut + cux

2c
(xXdX + xY dY ) +

1
2

(ut + cux)(tXdX + tY dY )
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= (uttX + uxxX)dX (after using (2.4))

= UXdX,(2.10)

and, similarly, we �nd

(2.11) ω2 = −UY dY.
From (2.8), by using (1.4), we obtain

dω1 = (
Rt
2c
− c′R

2c2
ut)dt ∧ dx+

1
2
Rxdx ∧ dt

=
Rt − cRx

2c
dt ∧ dx− c′R

2c2

1
2

(R+ S)dt ∧ dx

=
(c′(R2 − S2)

8c2
− c′R

2c2

1
2

(R+ S)
)
dt ∧ dx

=
c′

2c2

(
1
2

(R+ S)
)2

dx ∧ dt =
c′

2c2
u2
tdx ∧ dt,

and, furthermore, we obtain

dω1 =
c′

2c2

(1
4

(R2 + S2)dx ∧ dt+
1
2
RSdx ∧ dt

)
=

c′

2c2
dJ ∧ dt− c′

2c
ω1 ∧ ω2(2.12)

because

ω1 ∧ ω2 = −RS
2c
dx ∧ dt.

We rewrite (2.12) in the new set of variables

dω1 =
c′

2c2
(JXdX + JY dY ) ∧ (tXdX + tY dY )− c′

2c
ω1 ∧ ω2

= − c′

2c3
(JXxY + JY xX)dX ∧ dY +

c′

2c
UXUY dX ∧ dY.

At the same time, by (2.10), we have dω1 = −UXY dX ∧dY , and therefore it follows that

UXY =
c′

2c3
(JXxX + JY xX)− c′

2c
UXUY .

Finally, we obtain following system of equations

tXY = − c
′

2c
(UXtY + UY tX) ,(2.13a)

xXY =
c′

2c
(UY xX + UXxY ) ,(2.13b)

UXY =
c′

2c3
(xY JX + JY xX)− c′

2c
UY UX ,(2.13c)

JXY =
c′

2c
(JXUY + JY UX) ,(2.13d)

KXY = − c
′

2c
(KXUY +KY UX) .(2.13e)
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Let Z denote the vector (t, x, U, J,K). The system (2.13) then rewrites as

(2.14) ZXY = F (Z)(ZX , ZY )

where F (Z) is a bi-linear and symmetric tensor from R5×R5 to R5. Due to the relations
(2.4), either one of the equations (2.13a) and (2.13b) is redundant: one could remove
one of them, and the system would remain well-posed, and one retrieves t or x by using
(2.4). Similarly, either one of the equations (2.13d) and (2.13e) becomes redundant by
(2.7). However, we �nd it convenient to work with the complete set of variables, that
is, Z = (t, x, U, J,K). We will see later that the solutions of the system (2.13) preserve
these conditions.

To prove the existence of solutions to (2.13), we use a �xed point argument. The
argument is similar to the one that can be found for example in [7] and in [5]. However,
in order to take into account the non-regularity of the data (u0x and u0t are in L

2 and the
energy can concentrate on sets of zero measure), we have to consider, in the new set of
coordinates, data given on curves which have parts which are parallel to the characteristic
directions. In particular, the curves are not given as graphs of a function. We are looking
for a solution that satis�es a given initial condition at time t = 0. In the (X,Y ) plane,
the set of points which correspond to initial time, that is, t(X,Y ) = 0, may be a curve,
(X (s),Y(s)) ∈ R2, parametrized by s ∈ R, but it may also be a more complicated set,
see Figure 3 that we will comment on later. We consider curves of the following type.

De�nition 2.1. We denote by C the set of curves in the plane R2 parametrized by
(X (s),Y(s)) with s ∈ R, such that

X − Id, Y − Id ∈W 1,∞(R),(2.15a)

Ẋ ≥ 0, Ẏ ≥ 0(2.15b)

and the normalization

(2.15c)
1
2

(X (s) + Y(s)) = s, for all s ∈ R.

We set

(2.16) ‖(X ,Y)‖C = ‖X − Id‖L∞ + ‖X − Id‖L∞ .

From the initial data (u0, R0, S0), we want to de�ne the curve Γ0 = (X (s),Y(s)) in
C which corresponds to the initial time and the value of Z on this curve. To solve the
governing equations (2.13), we need to know the values of Z, ZX and ZY on the curve Γ0.
In total, we have to determine 17 unknown functions. Given the initial data (u0, R0, S0),
there is no unique way to de�ne the curve (X (s),Y(s)) and the values of Z on this curve
in order to obtain to the desired solution. This fact is due to the relabeling symmetry,
a degree of freedom which is embedded in the set of equations (2.13) that we precisely
identify in Section 7. For now, the goal is to use this degree of freedom to construct
an initial data which is bounded in L∞(R) on the curve. Let us now explain how we
proceed for an initial data (u0, R0, S0) ∈ [L2(R)]3 for which energy has not concentrated
and we will see later how to extend this construction to initial data containing singular
measures. In this case, the function X and Y are invertible and, slightly abusing notation,
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we denote by Z(s), ZX(X) and ZY (Y ) the values of Z(X (s),Y(s)), ZX(X,Y(X−1(X)))
and ZY (X (Y−1(Y )), Y ), respectively. By de�nition, we have

(2.17) t(s) = 0,

and, naturally, we set

(2.18) U(s) = u0(x(s)).

From the formal derivation of the previous section, we have the following relations

JX(X ) = c(u)KX(X ) =
1
2
R2

0(x)xX(X ), JY (Y) = −c(u)KY (Y) =
1
2
S2

0(x)xY (Y),

(2.19)

UX(X ) =
R0(x)
c(u(x))

xX(X ), UY (Y) = − S0(x)
c(u(x))

xY (Y).

(2.20)

We have the compatibility condition

(2.21) Ż(s) = ZX(X (s))Ẋ (s) + ZY (Y(s))Ẏ(s).

We have 17 unknowns (X ,Y,Z,ZX ,ZY ) and 15 equations, namely (2.17)�(2.21), (2.15c)
and (2.4). We use the two degrees of freedom that remain in order to obtain ZX and ZY
bounded. We set

(2.22) 2xX(X) + JX(X) = 1 and 2xY (Y ) + JY (Y ) = 1.

Since xX and JX are positive, it follows from (2.22) that these two quantities are bounded.
From the fact that 2xXJX = (c(U)UX)2, it also follows that UX is bounded so that ZX
is bounded. The same conclusion holds for ZY . The normalisation (2.22) is convenient
but arbitrary, see Section 7. In particular, the coe�cient 2 in front of xX and xY in
(2.22) does not have any importance; it is used here to make the de�nition compatible
with the normalization we will introduce in Section 3 for the general case. From (2.21),
(2.20) and (2.19), we get

(2.23) xX(X ) =
2

4 +R2
0

(x) and xY (Y) =
2

4 + S2
0

(x),

JX(X ) =
1
c
KX(X ) =

R2
0

4 +R2
0

(x), JY (Y) = −1
c
KY (Y) =

S2
0

4 + S2
0

(x),(2.24)

UX(X ) =
2R0

c(4 +R2
0)

(x), UY (Y) = − 2S0

c(4 + S2
0)

(x).(2.25)

Equation (2.17) implies

0 = tX(X )Ẋ + tY (Y)Ẏ = xX(X )Ẋ − xY (Y)Ẏ
and, at the same time, we have by the chain rule

ẋ(s) = xX(X )Ẋ + xY (Y)Ẏ
and therefore

(2.26) xX(X )Ẋ = xY (Y)Ẏ =
ẋ

2
.
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Hence, by (2.15c), (2.23) and (2.26), we get

2 = Ẋ + Ẏ =
(

2 +
1
4

(R2
0 + S2

0)(x)
)
ẋ

and we de�ne x(s) implicitly as

(2.27) 2x(s) +
∫ x(s)

−∞
1
4

(R2
0 + S2

0) dx = 2s.

We have
2ẋ+ J̇ = 2xX(X )Ẋ + JX(X )Ẋ + 2xY (Y)Ẏ + JY (Y)Ẏ = 2

because of (2.21) and (2.15c) so that 2x+ J = 2s. Hence,

(2.28) J(s) =
1
8

∫ x(s)

−∞
(R2

0 + S2
0) dx

and

(2.29) K(s) =
∫ x(s)

−∞
R2

0 − S2
0

8c
dx,

which are also de�ned as the integrals of the forms dJ and dK given by (2.5) and (2.6)
on the line (t, x) = {0} × (−∞, x(s)). From (2.26) and (2.23), it follows that

(2.30) Ẋ (s) = ẋ(s)(1 +
1
4
R2

0)(x(s)) and Ẏ(s) = ẋ(s)(1 +
1
4
S2

0)(x(s)),

and we set

(2.31) X (s) = x(s) +
1
4

∫ x(s)

−∞
R2

0 dx and Y(s) = x(s) +
1
4

∫ x(s)

−∞
S2

0 dx.

3. The initial data

In order to construct a semigroup of conservative solutions, we have to take into
account the part of the energy which has concentrated in sets of measure zero and we
need to consider initial data in the set D that we now de�ne.

De�nition 3.1. The set D consists of the elements (u,R, S, µ, ν) such that

(u,R, S) ∈ [L2(R)]3,

ux = 1
2c(R− S) and µ and ν are �nite positive Radon measures with

(3.1) µac =
1
4
R2 dx, νac =

1
4
S2 dx.

The measures µ and ν correspond to the left and right traveling energy densities,
respectively. Given the initial data (u0, R0, S0, µ0, ν0), we have de�ned an element in G0

where the set G0 is de�ned below and which correspond to a parametrization of the initial
data in the new system of coordinates. Elements of G consists of a curve (X (s),Y(s)) (for
G0, this curve corresponds to time equal to zero) and three variables, Z, V and W, that
we now introduce. These functions correspond to the data that matches the solution Z
to (2.13) on the curve (X ,Y) in the sense that

(3.2a) Z(s) = Z(X (s),Y(s))
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and

(3.2b) V(X (s)) = ZX(X (s),Y(s)) and W(X (s)) = ZY (X (s),Y(s))

It is then convenient to introduce the following notation: To any triplet (Z,V,W) of �ve
dimensional vector functions (we write Z = (Z1,Z2,Z3,Z4,Z5), etc), we associate the
triplet (Za,Va,Wa) given by

(3.3a) Za2 = Z2 − Id, Va2 = V2 −
1
2
, Wa

2 =W2 −
1
2

and

(3.3b) Zai = Zi, Vai = Vi, Wa
i =Wi

for i ∈ {1, 3, 4, 5}.

De�nition 3.2. The set G is the set of all elements which consist of a curve (X (s),Y(s))
and three vector valued functions from R to R5 denoted Z(s),V(X),W(Y ). We denote
Θ = (X ,Y,Z,V,W) and set

(3.4) ‖Θ‖G = ‖U‖L2(R) + ‖Va‖L2 + ‖Wa‖L2

where we denote U = Z3 and

(3.5) |||Θ|||G = ‖(X ,Y)‖C + ‖ 1
V2 + V4

‖L∞(R) + ‖ 1
W2 +W4

‖L∞(R)

+ ‖Za‖L∞ + ‖Va‖L∞ + ‖Wa‖L∞ .

The element Θ ∈ G if

(i)

‖Θ‖G <∞ and |||Θ|||G <∞;

(ii)

(3.6) V2,W2,V4,W4 ≥ 0;

(iii) for almost every s, we have

(3.7) Ż(s) = V(X (s))Ẋ (s) +W(Y(s))Ẏ(s);

(iv) for almost every X and Y , we have

2V4(X )V2(X ) = (c(U)V3(X ))2, 2W4(Y)W2(Y) = (c(U)W3(Y))2,(3.8a)

V2(X ) = c(U)V1(X ), W2(Y) = −c(U)W1(Y),(3.8b)

V4(X ) = c(U)V5(X ), W4(Y) = −c(U)W5(Y).(3.8c)

(v) We require

(3.9) lim
s→−∞ J(s) = 0

where we denote J(s) = Z4(s).
We denote by G0 the subset of G which parametrizes data at time t = 0, that is,

G0 = {Θ ∈ G | Z1 = 0}.
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Y

X

(X0, Y0)

(X̄2, Ȳ2)

(X̄0, Y0)

(X1, Y1)

Γ0 = {(X, Y ) | t(X, Y ) = 0}

(X2, Y2)

(X1, Ȳ1)

Figure 2. The domain t(X,Y ) = 0 in the X,Y plane consists of the
union of a graph of a strictly increasing function, vertical and horizontal
segments and rectangular boxes.

The requirement (3.9) corresponds to a normalization of the energy potential (or cu-
mulative energy) to zero at minus in�nity. The variables Z, V andW are not independent
of one another as it can be seen from (3.7), (3.8b), (3.8c) but selecting a set of indepen-
dent variables will require an arbitrary choice that we prefer to avoid and that is why
we consider all the variables at the same level. For Θ ∈ G0, we get by using (3.7) and
(3.8b), that

(3.10) V2(X (s))Ẋ (s) =W2(Y(s))Ẏ(s).

By using the normalization (2.15c), we obtain that

Ẋ =
2W2(Y)

V2(X ) +W2(Y)
, Ẏ =

2V2(X )
V2(X ) +W2(Y)

(3.11)

and, in principle, by integrating (3.11), we recover X and Y. However, there are two
obstacles to that: The function V2 andW2 are in general not Lipschitz so that we cannot
use the standard existence theorems for the solutions to (3.11) and, in addition, both V2

and W2 may vanish (it is what happens in the case of a box) and (3.11) does not make
sense any more. Given (u0, R0, S0, µ0, ν0), in the case where µ0 = (µ0)ac and ν0 = (ν0)ac,
we have de�ned Θ = (X ,Y,Z,V,W) ∈ G0 by (2.17), (2.18), (2.27), (2.28), (2.29), (2.23),
(2.31) and

V4(X (s)) = c(U)V5(X (s)) =
R2

0

4 +R2
0

(x(s)),

W4(X (s)) = −c(U)W5(X (s)) =
S2

0

4 + S2
0

(x(s)),

V3(X (s)) =
2R0

c(4 +R2
0)

(x(s)), W3(Y(s)) = − 2S0

c(4 + S2
0)

(x(s)).

We do not prove here that, for this de�nition, we indeed have (X ,Y,Z,V,W) ∈ G0

because it will be done later in more generality, see De�nitions 3.8 and 3.5. In the next
section we consider (X ,Y,Z,V,W) ∈ G0 and construct solutions of (2.13) which satisfy
(3.2). However, the set G0 is not adequate when it comes to parametrize initial data.
In the case where there is no concentration of the measures, that is, µ0 = (µ0)ac and

ν0 = (ν0)ac, we can see from (2.31) and (2.27) that Ẋ > 0 and Ẏ > 0 almost everywhere
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so that the curve does not contain strictly vertical or horizontal regions. This property
is not preserved by the equation. In particular it means that at a later time, say T > 0,
we can �nd a curve (X̄ , Ȳ) ∈ C such that t(X̄ (s), Ȳ(s)) = T and Ẋ (s) = 0 or Ẏ(s) = 0
on an interval [sl, sr], with sl < sr. In general, the set of points

ΓT = {(X,Y ) ∈ R2 | t(X,Y ) = T}
is not a curve but a domain which consists of the union of a graph of a strictly increasing
function, vertical and horizontal segments and rectangular boxes, see Figure 3. If ΓT
contains regions with boxes or vertical or horizontal lines, it means that part of the
energy of the solution is concentrated at time T in sets of zero measure, see Section
6. We want to parametrize domains Γ0 (or ΓT ) depicted in Figure 3, which give the
solution at time zero (or a given time T ) and which may contain boxes. The set G0

de�ned above is inappropriate. When considering an element in G0, we choose a curve
and in the case of a box, the choice of the curve which joins the two diagonal corners
of the box while remaining inside the box is arbitrary. Thus we introduce an unwanted
degree of freedom in the parametrization of the initial data. The domain Γ0 depicted
in Figure 3 can be parametrized by using two nondecreasing functions x1(X) and x1(Y )
and by considering the set {(X,Y ) ∈ R | x1(X) = x2(Y )}. Such sets consist exactly
of the union of the graph of a strictly increasing function (when x′1 > 0 and x′2 > 0),
a horizontal segment (when x′1(X) = 0 for X ∈ [X0, X̄0] and x′2(Y0) > 0), a vertical
segment (when x′1(X1) > 0 and x′2(Y ) = 0 for Y ∈ [Y1, Ȳ1]) and a rectangular box (when
x′1(X) = x′2(Y ) = 0 for X ∈ [X2, X̄2] and Y ∈ [Y2, Ȳ2]), see Figure 3. This observation
(partially) justi�es the de�nition of the set F which is introduced below. The set F can
be considered as a consistent way to parametrize initial data. However, to construct the
solutions, we need to choose a curve and we use the description of the initial data given
by G0 so that, �nally, both sets are needed. To de�ne F , we have to introduce the group
G of di�eomorphisms with some regularity conditions.

De�nition 3.3. The group G is given by all invertible functions f such that

(3.12) f − Id and f−1 − Id both belong to W 1,∞(R),

and
(f − Id)′ ∈ L2(R).

We can now de�ne the set F .

De�nition 3.4. We de�ne the set F consisting of all function ψ = (ψ1, ψ2) such that

ψ1(X) = (x1(X), U1(X), V1(X), J1(X),K1(X))

and ψ2(Y ) = (x2(Y ), U2(Y ), V2(Y ), J2(Y ),K2(Y ))

satisfy the following regularity and decay conditions

(3.13a) x1 − Id, x2 − Id, J1, J2, K1, K2 ∈W 1,∞(R),

(3.13b) x′1 − 1, x′2 − 1, J ′1, J
′
2, K

′
1, K

′
2 ∈ L2(R) ∩ L∞(R),

(3.13c) U1, U2 ∈ H1(R),

(3.13d) V1, V2 ∈ L2(R) ∩ L∞(R),
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and which satisfy the additional conditions that

(3.14) x′1, x
′
2, J
′
1, J
′
2 ≥ 0,

(3.15) J ′1 = c(U1)K ′1, J ′2 = −c(U2)K ′2,

(3.16) x′1J
′
1 = (c(U1)V1)2, x′2J

′
2 = (c(U2)V2)2,

(3.17) x1 + J1, x2 + J2 ∈ G,

(3.18) lim
X→−∞

J1(X) = lim
Y→−∞

J2(Y ) = 0

and, for any curve (X ,Y) ∈ C such that

x1(X (s)) = x2(Y(s)) for all s ∈ R,

we have

(3.19a) U1(X (s)) = U2(Y(s))

for all s ∈ R and

(3.19b) U ′1(X (s))Ẋ (s) = U ′2(Y(s))Ẏ(s) = V1(X (s))Ẋ (s) + V2(Y (s))Ẏ(s)

for almost all s ∈ R.

We show in Section 5 that, given a solution Z of (2.13), there exists a unique element
ψ ∈ F which describes in a unique way the set Γ0 = {(X,Y ) ∈ R2 | t(X,Y ) = 0} and
the values of Z, ZX and ZY on this set. The functions x1 and x2 de�ne the set Γ0

by Γ0 = {(X,Y ) ∈ R2 | x1(X) = x2(Y )}. It means in particular that, for any curve
(X ,Y) ∈ C such that x1(X (s)) = x2(Y(s)), we have t(X (s),Y(s)) = 0. The functions
U1 and U2 give the value of U(X,Y ) on the set Γ0, as a function of X and Y . To be
more concrete, let us consider the example where x1 and x2 are smooth, invertible and
the inverses are also smooth. In that case, which in fact corresponds to the case where
u0, R0 and S0 are smooth and there is no concentration of energy, i.e., µ0 = (µ0)ac
and ν0 = (ν0)ac, the set Γ0 is the graph of a strictly increasing function (there is no
rectangular box and no vertical or horizontal segments). The curve Γ0 is given by either
Y = x−1

1 ◦ x2(X) or X = x−1
2 ◦ x1(Y ) and, just for this paragraph, for the sake of

simplicity, we denote Y (X) = x−1
1 ◦ x2(X) and X(Y ) = x−1

2 ◦ x1(Y ). Then, we have

(3.20) U1(X) = U(X,Y (X)) and U2(Y ) = U(X(Y ), Y ).

The functions of V1 and V2 give the partial derivative of U . We have

(3.21) V1(X) = UX(X,Y (X)) and V2(Y ) = UY (X(Y ), Y ).

As we can see in this example, the functions U1, U2, V1 and V2 are not independent from
one another, and the way they depend one another is given by (3.19a) and (3.19b). The
function J1(X) gives the amount of forward energy contained on the curve Y = Y (X)
between −∞ and X, that is,

J1(X) =
∫ X

−∞
JX(X,Y (X)) dX.
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In the original set of coordinates, it gives J1(X) = 1
4

∫ x1(X)
−∞ R2

0 dx. Similarly, the function

J2(Y ) gives the amount of backward energy which is contained on the same curve between
−∞ and Y , that is,

J2(Y ) =
∫ Y

−∞
JY (X(Y ), Y ) dY.

In the original set of coordinates, it gives J2(Y ) = 1
4

∫ x2(Y )
−∞ S2

0 dx. We recall that these
expressions hold only for smooth initial data with no concentration of energy. Still in
this case, the functions x1 and x2 are strictly increasing so that x′1 > 0 and x′2 > 0 and
the conditions (3.16) entirely determine the energy densities, which are given J ′1 and J ′2
in the new sets of coordinates. We have

µ0 = (µ0)ac =
1
4
R2

0(x) dx =
J ′1
x′1
◦ x−1

1 (x) dx

and the corresponding expression for ν0. In the case where there is concentration of
energy, the functions x′1 or x′2 vanish. The set where x1 (respectively x2) vanishes corre-
sponds to the region where the energy density µ0 (respectively ν0) has a singular part.
On those sets, the energy densities J ′1 and J ′2 cannot be retrieved from (3.16). It is con-
sistent with the fact that the singular parts of the energy µ and ν cannot be recovered
by the knowledge of the function u, R and S, as illustrated in the example presented
in the introduction. As we will see in Section 6, the relations (3.16) correspond to a
reformulation in the new coordinate system of (3.1).

We de�ne a mapping C which to any given initial data ψ ∈ F associate the corre-
sponding data Θ = (X ,Y,Z,V,W) ∈ G0.

De�nition 3.5. For any ψ = (ψ1, ψ2) ∈ F , we de�ne

(3.22) X (s) = sup{X ∈ R | x1(X ′) < x2(2s−X ′) for all X ′ < X}

and set Y(s) = 2s−X (s). We have

(3.23) x1(X (s)) = x2(Y(s)).

We de�ne

t(s) = 0,(3.24a)

x(s) = x1(X (s)) = x2(Y(s)),(3.24b)

U(s) = U1(X (s)) = U2(Y(s)),(3.24c)

J(s) = J1(X (s)) + J2(Y(s)),(3.24d)

K(s) = K1(X (s)) +K2(Y(s))(3.24e)

and

V1(X) =
1

2c(U1(X))
x′1(X), W1(Y ) = − 1

2c(U2(Y ))
x′2(Y ),

V2(X) =
1
2
x′1(X), W2(Y ) =

1
2
x′2(Y ),

V3(X) = V1(X), W3(Y ) = V2(Y ),

V4(X) = J ′1(X), W4(Y ) = J ′2(Y ),
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V5(X) = K ′1(X), W5(Y ) = K ′2(Y ).

Let C be the mapping from F to G0 which to any ψ ∈ F associates the element (X ,Y,Z,V,W)
de�ned above.

Proof of the well-posedness of De�nition 3.5. Let us prove that X is increasing. Given
s̄ > s, we consider a sequence Xi which converges to X (s) with Xi < X (s). We have
x1(Xi) < x2(2s−Xi) which implies x1(Xi) < x2(2s̄−Xi) because x2 is increasing. Hence
Xi < X (s̄). By letting i tend to in�nity, we get that X (s) ≤ X (s̄). By continuity of
x1 and x2, we have x1(X (s)) = x2(Y(s)). We claim that X is Lipschitz with a Lipshitz
constant no bigger than 2, i.e.,

(3.25) |X (s̄)−X (s̄)| ≤ 2 |s̄− s| .
Let us assume without loss of generality that s̄ > s. If (3.25) does not hold, we have

(3.26) X (s̄)−X (s) > 2(s̄− s)
for some s and s̄ in R. It implies Y(s̄) < Y(s). Then, by monotonicity of x2,

x1(X (s)) = x2(Y(s)) ≥ x2(Y(s̄)) = x1(X (s̄)),

and therefore x1(X (s)) = x1(X (s̄)) because x1 is an increasing function and X (s) < X (s̄).
It follows that x1 is constant on [X (s),X (s̄)]. Similarly, one proves that x2 is constant
on [Y(s̄),Y(s)]. Let us consider the point (X,Y ) given by Y = Y(s) and X = 2s̄−Y(s).
We have

X (s) = 2s− Y(s) < X < 2s̄− Y(s̄) = X (s̄)
so that x1(X) = x1(X (s)) = x2(Y(s)) = x2(2s̄ − Y ) and X < X (s̄), which contradicts
the de�nition of X (s̄). Hence, (3.26) cannot hold and we have proved (3.25). Let us
prove that X − Id ∈ L∞. We have

X (s)− s =
1
2

(X (s)− Y(s)) =
1
2

(X (s)− x1(X (s)) + x2(Y(s))− Y(s))

which is bounded as x1 − Id and x2 − Id belong to L∞. Let

B = {s ∈ R | Ẋ (s) ≥ 1}.
Since Ẋ + Ẏ = 2, we have Ẏ ≥ 1 on Bc. Hence,∫

R
U2(s) ds =

∫
B
U2(s) ds+

∫
Bc
U2(s) ds

≤
∫
B
U2

1 (X (s))Ẋ (s) ds+
∫
Bc
U2

2 (Y(s))Ẏ(s) ds

≤ ‖U1‖2L2 + ‖U2‖2L2 .

It is then straightforward to check that the remaining properties that enter in the def-
inition of G0 are ful�lled by (Z,V,W). To check that (3.17) is ful�lled, we use Lemma
3.6 which is stated below. �

Lemma 3.6. Let α ≥ 0. If f satis�es (3.12), then 1/(1 + α) ≤ fξ ≤ 1 + α almost
everywhere. Conversely, if f is absolutely continuous, f − Id ∈ L∞(R) and there exists
c ≥ 1 such that 1/c ≤ fξ ≤ c almost everywhere, then f satis�es (3.12) and

‖f − Id‖W 1,∞(R) +
∥∥f−1 − Id

∥∥
W 1,∞(R)

≤ α
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for some α depending only on c and ‖f − Id‖L∞(R).

The proof of this short lemma is given in [9]. In the opposite direction, to any element
(X ,Y,Z,V,W) ∈ G0, there corresponds an element (ψ1, ψ2) ∈ F given by the mapping
D that we de�ne next.

De�nition 3.7. Given (X ,Y, Z,V,W) ∈ G0, let ψ1 = (x1, U1, J1,K1, V1) and ψ2 =
(x2, U2, J2,K2, V2) be de�ned as

(3.27) x1(X (s)) = x2(Y(s)) = x(s)

where we denote x(s) = Z2(s) and

(3.28) U1(X (s)) = U2(Y(s)) = U(s)

where we denote U(s) = Z3(s) and

J1(X (s)) =
∫ s

−∞
V4(X (s))Ẋ (s) ds, J2(Y(s)) =

∫ s

−∞
W4(Y(s))Ẏ(s) ds,(3.29)

K1(X (s)) =
∫ s

−∞
V5(X (s))Ẋ (s) ds, K2(Y(s)) =

∫ s

−∞
W5(Y(s))Ẏ(s) ds,(3.30)

and

(3.31) V1 = V3, V2 =W3.

We denote by D the mapping from G0 to F which to any (X ,Y,Z,V,W) ∈ G0 associates
the element ψ as de�ned above.

Well-posedness of De�nition 3.7. Since t(s) = 0 we have

0 = ṫ(s) = V1(X (s))Ẋ (s) +W1(Y(s))Ẏ(s)

which implies that

(3.32) V2(X (s))Ẋ (s) =W2(Y(s))Ẏ(s)

by (3.8b). We check the well-posedness of (3.27) and (3.28). Let us consider s and s̄

such that X (s) = X (s̄). Since X is increasing, it implies Ẋ (s̃) = 0 and Ẏ(s̃) = 2 for all
s̃ ∈ [s, s̄]. From (3.32), it follows that W2(Y(s̃)) = 0 for all s̃ ∈ [s, s̄]. Hence,

ẋ(s̃) = V2(X (s̃))Ẋ (s̃) +W2(Y(s̃))Ẏ(s̃) = 0

and x(s) = x(s̄) so that the de�nition (3.27) is well-posed. For s̃ ∈ [s, s̄], we have
W3(Y(s̃)) = 0, by (3.8a) and the fact that W2(Y(s̃)) = 0. Hence,

U̇(s̃) = V3(X (s̃))Ẋ (s̃) +W3(Y(s̃))Ẏ(s̃) = 0

and U(s) = U(s̄) so that the de�nition (3.28) is well-posed. Let us prove that x1 is
Lipschitz. We have

x1(X (s))− x1(X (s̄)) = x(s)− x(s̄)

=
∫ s

s̄
ẋ(s) ds

=
∫ s

s̄
V2(X (s))Ẋ (s) +W2(Y(s))Ẏ(s) ds
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= 2
∫ s

s̄
V2(X (s))Ẋ (s) ds (by (3.32))

≤ ‖V2‖L∞ |X (s)−X (s̄)| .

Hence, x1 is Lipschitz. One proves in the same way that x2 is Lipschitz. Since

0 ≤ V4(X (s))Ẋ (s) ≤ V4(X (s))Ẋ (s) +W4(Y(s))Ẏ(s) = J̇(s)

the function V4(X (s))Ẋ (s) belongs to L1(R). Assume that there exists an s < s̄ such

that X (s) = X (s̄). Since X is increasing, it implies that Ẋ (s) = for all s ∈ [s, s̄] and
therefore

∫ s
−∞ V4(X (s))Ẋ (s) ds =

∫ s̄
−∞ V4(X (s))Ẋ (s) ds and the de�nition (3.29) of J1 is

well-posed. The same results hold for J2. Let us prove that U1 is absolutely continuous
on any compact set. We consider X1 < · · · < XN and si such X (si) = Xi. We have

N∑
i=1

|U1(Xi+1)− U1(Xi)| =
N∑
i=1

|U1(si+1)− U1(si)|

≤
∫
∪i(si,si+1)

∣∣∣U̇1(s)
∣∣∣ ds

≤
∫
∪i(si,si+1)

(V3(X )Ẋ +W3(Y)Ẏ) ds

≤ ‖V3‖L∞
∫
∪i(si,si+1)

Ẋ ds

+ meas(∪i(si, si+1))1/2
( ∫
∪i(si,si+1)

W3(Y)2Ẏ2 ds
)1/2

.

By (3.8a), we get W2
3 ≤ 2κ ‖W4‖L∞(R)W2, and therefore W2

3 (Y)Ẏ2 ≤ CW2(Y)Ẏ2 =
CV2(X )Ẋ Ẏ, by (3.32), for some constant C. Hence,∫

∪i(si,si+1)
W3(Y)2Ẏ2 ds ≤ C

∫
∪i(si,si+1)

V2(X )Ẋ ds

≤ C
∫
∪i(si,si+1)

Ẋ ds = C meas(∪i(Xi, Xi+1))

for some constant C. Finally,

N∑
i=1

|U1(Xi+1)− U1(Xi)| ≤ C(meas(∪i(Xi, Xi+1)) + meas(∪i(Xi, Xi+1))1/2)

and U1 is absolutely continuous. After di�erentiating (3.28), we get

U ′1(X )Ẋ = V3(X )Ẋ +W3(Y)Ẏ

and, after taking the square of this expression, we obtain

(3.33) U ′1(X )2Ẋ 2 ≤ 2(V3(X )2Ẋ 2 +W3(Y)2Ẏ2).

Since

W3(Y)2Ẏ2 = cW2W4Ẏ2 = cV2ẊW4Ẏ (by (3.32)),
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we have that (3.33) implies

U ′1(X )2Ẋ ≤ C(V3(X )2Ẋ +W4(Y)Ẏ)

≤ C(V3(X )2Ẋ + J̇)

and, after a change of variables, we obtain∥∥U ′1∥∥2

L2 ≤ C(‖V3‖2L2 + ‖J‖L∞) <∞.

Hence, U ′1 belongs to L2. Similarly one proves that U2 is absolutely continuous on any
compact set and U ′2 ∈ L2(R). To prove that the property (3.17) is ful�lled, we use Lemma
3.6 and the fact that 1/(V2 + V4), 1/(W2 +W4) ∈ L∞(R). The other properties of F
that ψ has to ful�ll can be checked more or less directly from the de�nition of G0. �

The sets F and G0 are not in bijection; otherwise we would not have introduced F ,
and indeed one can show that C ◦D 6= IdG0 . However, we have D ◦C = IdF , as we will
see in Lemma 5.3.

Now we de�ne how, from any initial data in D, that is, in the set of original coordinates,
we de�ne the corresponding element in F .

De�nition 3.8. We de�ne the mapping L : D → F where, for any (u,R, S, µ, ν) ∈ D,
ψ = (ψ1, ψ2) = L(u,R, S, µ, ν) is de�ned as follows. We set

x1(X) = sup{x ∈ R | x′ + µ(−∞, x′) < X for all x′ < x},(3.34a)

x2(Y ) = sup{x ∈ R | x′ + ν(−∞, x′) < Y for all x′ < x}(3.34b)

and

(3.34c) J1(X) = X − x1(X), J2(Y ) = Y − x2(Y )

and

(3.34d) U1(X) = u(x1(X)), U2(Y ) = u(x2(Y ))

and

(3.34e) V1(X) =
[

R

2c(U1)

]
(x1(X))x′1(X), V2(Y ) = −

[
S

2c(U2)

]
(x2(Y ))x′2(Y )

and

(3.34f) K1(X) =
∫ X

−∞
J ′1(X̄)

c(U1(X̄))
dX̄, K2(Y ) = −

∫ Y

−∞
J ′2(Ȳ )

c(U2(Ȳ ))
dȲ .

Before proving the well-posedness of this de�nition, we check that we end up with the
same initial data that was obtained at the end of Section 2, where µ and ν were assumed
to be absolutely continuous with respect to the Lebesgue measure. Then, the functions

µ(−∞, x′) =
∫ x′

−∞
1
4
R2 dx and ν(−∞, x′) =

∫ x′

−∞
1
4
S2 dx

are continuous, and furthermore, (3.34a) and (3.34b) rewrite as

x1(X) +
∫ x1(X)

−∞
1
4
R2 dx = X and x2(Y ) +

∫ x2(Y )

−∞
1
4
S2 dx = Y.
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We sum these two equalities, and, since x1(X (s)) = x2(Y(s)) = x(s) and X + Y = 2s,
we get

2x(s) +
∫ x(s)

−∞
1
4

(R2 + S2) dx = 2s

and recover (2.27). In the de�nitions (3.34), we use the degree of freedom we have in the
new set of coordinates to set the values of x1 and x2 in such a way that their derivatives,
x′1 and x′2, are bounded.

Proof of well-posedness of De�nition 3.8. Clearly, the de�nition of x1 yields an increas-
ing function and limX→±∞ x1(X) = ±∞. For any z > x1(X), we have X ≤ z +
µ((−∞, z)). Hence, X − z ≤ µ(R) and, since we can choose z arbitrarily close to x1(X),
we get X − x1(X) ≤ µ(R). It is not hard to check that x1(X) ≤ X. Hence,

(3.35) |x1(X)−X| ≤ µ(R)

and ‖x1 − Id‖L∞ ≤ µ(R). Let us prove that x1 is Lipschitz with Lipschitz constant at
most one. We consider X, X ′ in R such that X < X ′ and x1(X) < x1(X ′). It follows
from the de�nition that there exists an increasing sequence, z′i, and a decreasing one,
zi, such that limi→∞ zi = x1(X), limi→∞ z′i = x1(X ′) with µ((−∞, z′i)) + z′i < X ′ and
µ((−∞, zi)) + zi ≥ X. Combining the these two inequalities, we obtain

(3.36) µ((−∞, z′i))− µ((−∞, zi)) + z′i − zi < X ′ −X.
For j large enough, since by assumption x1(X) < x1(X ′), we have zi < z′i and therefore
µ((−∞, z′i)) − µ((−∞, zi)) = µ([zi, z′i)) ≥ 0. Hence, z′i − zi < X ′ − X. Letting i tend
to in�nity, we get x1(X ′) − x1(X) ≤ X ′ − X. Hence, x1 is Lipschitz with Lipschitz
constant bounded by one and, by Rademacher's theorem, di�erentiable almost every-
where. Following [6], we decompose µ into its absolute continuous, singular continuous
and singular part, denoted µac, µsc and µs, respectively. We have µac = 1

4R
2 dx. The

support of µs consists of a countable set of points. Let H(x) = µ((−∞, x)), then H is
lower semi-continuous and its points of discontinuity exactly coincide with the support
of µs (see [6]). Let A denote the complement of x−1

1 (supp(µs)). We claim that for any
X ∈ A, we have
(3.37) µ((−∞, x1(X))) + x1(X) = X.

From the de�nition of x1(X) follows the existence of an increasing sequence zi which
converges to x1(X) and such that H(zi) + zi < X. Since H is lower semi-continuous,
limi→∞H(zi) = H(x1(X)) and therefore

(3.38) H(x1(X)) + x1(X) ≤ X.
Let us assume that H(x1(X)) + x1(X) < X. Since x1(X) is a point of continuity of H,
we can then �nd an x such that x > x1(X) and H(x) + x < X. This contradicts the
de�nition of x1(X) and proves our claim (3.37). In order to check that (3.16) is satis�ed,
we have to compute the derivative of x1. We de�ne the set B1 as

B1 =
{
x ∈ R | lim

ρ↓0
1
2ρ
µ((x− ρ, x+ ρ)) =

1
4
R2(x)

}
.

Since 1
4R

2(x) dx is the absolutely continuous part of µ, we have, from Besicovitch's

derivation theorem (see [1]), that meas(Bc
1) = 0. Given X ∈ x−1

1 (B1), we denote x =
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x1(X). We claim that for all i ∈ N, there exists 0 < ρ < 1
i such that x − ρ and x + ρ

both belong to supp(µs)c. Assume namely the opposite. Then for any z ∈ (x − 1
i , x +

1
i ) \ supp(µs), we have that z′ = 2x − z belongs to supp(µs). Thus we can construct

an injection between the uncountable set (x − 1
i , x + 1

i ) \ supp(µs) and the countable
set supp(µs). This is impossible, and our claim is proved. Hence, since x1 is surjective,
we can �nd two sequences Xi and X

′
i in A such that 1

2(x1(Xi) + x1(X ′i)) = x1(X) and

x1(X ′i)− x1(Xi) < 1
i . We have, by (3.37), since x1(Xi) and x1(X ′i) belong to A,

(3.39) µ([x1(Xi), x1(X ′i))) + x1(X ′i)− x1(Xi) = X ′i −Xi.

Since x1(Xi) /∈ supp(µs), we infer that µ({x1(Xi)}) = 0 and µ([x1(Xi), x1(X ′i))) =
µ((x1(Xi), x1(X ′i))). Dividing (3.39) by X ′i −Xi and letting i tend to ∞, we obtain

(3.40) x′1(X)
1
4
R2(x1(X)) + x′1(X) = 1

where x1 is di�erentiable in x
−1
1 (B1), that is, almost everywhere in x−1

1 (B1). We will use
several times this short lemma whose proof can be found in [9].

Lemma 3.9. Given an increasing Lipschitz function f : R→ R, for any set B of measure
zero, we have f ′ = 0 almost everywhere in f−1(B).

We apply Lemma 3.9 to Bc
1 and get, since meas(Bc

1) = 0, that x′1 = 0 almost ev-
erywhere on x−1

1 (Bc
1). On x−1

1 (B1), we proved that x′1 satis�es (3.40). It follows that
0 ≤ x′1 ≤ 1 almost everywhere, which implies, since J ′1 = 1 − x′1, that J ′1 ≥ 0. From
(3.40), we get

x1(X)′J ′1(X) = x′1(X)2 1
4
R2(x1(X)) = (c(U1(X))V1(X))2.

Let us prove that U1 is absolutely continuous on any bounded interval. We consider a
partition X1 ≤ · · · ≤ XN . We have

N∑
i=1

|U1(Xi+1)− U1(Xi)| ≤
∫
∪Ni=1(x1(Xi),x1(Xi+1))

|ux| dx.

Given M > 0, for any ε > 0, there exists δ such that for any set A ⊂ [−M,M ], we have
that meas(A) < δ implies

∫
A |ux| dx < ε, because ux ∈ L1

loc. We have

meas(∪Ni=1(x1(Xi), x1(Xi+1))) ≤
∥∥x′1∥∥L∞ meas(∪Ni=1(Xi, Xi+1))

and since x′1 ∈ L∞, it follows that for any partition such that
∑N

i |Xi −Xi+1| < δ, we

have
∑N

i=1 |U1(Xi+1)− U1(Xi)| < ε and U1 is absolutely continuous in any compact. Let
us consider a curve (X ,Y) ∈ C such that x1(X (s)) = x2(Y(s)) (such curves exist, see
De�nition 3.5). We di�erentiate U1(X ) and obtain

U ′1(X )Ẋ = ux(x1(X ))x′1(X )Ẋ =
(R− S)(x1(X ))

2c(U1(X ))
x′1(X )Ẋ

=
R(x1(X ))
2c(U1(X ))

x′1(X )Ẋ − S(x2(Y))
2c(U2(Y))

x′2(Y)Ẏ

= V1(X )Ẋ + V2(Y)Ẏ.
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Here we have use the fact that

x′1(X )Ẋ = x′2(Y)Ẏ

which follows from x1(X ) = x2(Y). From (3.35), we obtain ‖J1‖L∞ ≤ µ(R). We have,
since J ′1 ≥ 0, ∥∥J ′1∥∥2

L2 ≤
∥∥J ′1∥∥L∞ ∥∥J ′1∥∥L1 ≤ ‖J1‖L∞ ≤ µ(R).

After a change of variables, we get∫
R
V1(X)2 dX ≤ κ2

4

∫
R
R2(x) dx <∞

and ∫
R
U ′21 (X) dX =

∫
R
u2
x(x1(X))x′21 (X) dX

≤
∫

R
u2
x(x1(X))x′1(X) dX =

∫
R
u2
x(x) dx <∞,

so that both V1 and U ′1 belong to L2. Similarly, one proves that V2 and U ′2 belong to
L2. Let B3 = {ξ ∈ R | x′1 < 1

2}. Since x′1 − 1 ≥ 0, B3 = {ξ ∈ R | |x′1 − 1| > 1
2}, and,

after using the Chebychev inequality, as x′1 − 1 = −J ′1 ∈ L2, we obtain meas(B3) < ∞.
Hence, ∫

R
U2

1 (X) dX =
∫
B3

U2
1 (X) dX +

∫
Bc3

U2
1 (X) dX

≤ meas(B3) ‖u‖2L∞ + 2
∫
Bc3

(u ◦ x1)2x′1 dX

≤ meas(B3) ‖u‖2L∞ + 2 ‖u‖2L2 ,

after a change of variables, and U1 ∈ L2. Similarly, one proves that U2 ∈ L2. �

In this section we have shown how to construct, from a given initial data in D, an
element in F (via the mapping L) and then, from an element in F , and element in G0

(via the mapping C). From an element in G0, we can �nally construct the corresponding
solution of (2.13).

Now, we turn to the existence of solution to (2.13) for given data in G.

4. Existence of solution for the equivalent system

4.1. Short-range existence. We �rst establish the short-range existence of solutions
to (2.13). The di�culty here consists of taking into account initial data de�ned on a
curve which may be parallel to the characteristic curves X = constant or Y = constant.
In the following, we will denote by Ω any rectangular domain of the type

Ω = [Xl, Xr]× [Yl, Yr],

and we denote sl = 1
2(Xl + Yl) and sr = 1

2(Xr + Yr). We de�ne curves in Ω as follows.
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De�nition 4.1. Given Ω = [Xl, Xr] × [Yl, Yr], we denote by C(Ω) the set of curves in
Ω given by (X (s),Y(s)) for s ∈ [sl, sr] which match the diagonal points of Ω, that is,
X (sl) = Xl, X (sr) = Xr, Y(sl) = Yl, Y(sr) = Yr, and such that

X − Id, Y − Id ∈W 1,∞([sl, sr]),(4.1a)

Ẋ ≥ 0, Ẏ ≥ 0,(4.1b)

1
2

(X (s) + Y(s)) = s, for all s ∈ R.(4.1c)

We set
‖(X ,Y)‖C(Ω) = ‖X − Id‖L∞([sl,sr])

+ ‖Y − Id‖L∞([sl,sr])
.

In this subsection we will construct solutions on small rectangular domains Ω. We
introduce the set G(Ω) which is the counterpart of G on bounded intervals. Elements of
G(Ω) correspond to a curve in C(Ω) and data on this curve.

De�nition 4.2. Given a rectangular domain Ω = [Xl, Xr]×[Yl, Yr], let Θ = (X ,Y,Z,V,W)
where (X ,Y) ∈ C(Ω) and Z(s),V(X),W(Y ) are three �ve-dimensional vector-valued
measurable functions. Using the same notation as in (3.3), we set

‖Θ‖G(Ω) = ‖U‖L2([sl,sr])
+ ‖Va‖L2([Xl,Xr])

+ ‖Wa‖L2([Yl,Yr])

where we denote U = Z3 and

|||Θ|||G(Ω) = ‖(X ,Y)‖C(Ω) + ‖ 1
V2 + V4

‖L∞([Xl,Xr]) + ‖ 1
W2 +W4

‖L∞([Yl,Yr])

+ ‖Za‖L∞([sl,sr])
+ ‖Va‖L∞([Xl,Xr])

+ ‖Wa‖L∞([Yl,Yr])
.

The element Θ belongs to G(Ω) if the following four conditions hold:

(i)
|||Θ|||G(Ω) <∞

and therefore ‖Θ‖G(Ω) <∞ because we here consider a bounded domain.

(ii)

(4.2) V2,W2,Z4,V4,W4 ≥ 0.

(iii) For almost every s, we have

(4.3) Ż(s) = V(X (s))Ẋ (s) +W(Y(s))Ẏ(s).

(iv) For almost every X and Y , we have

2V4(X )V2(X ) = (c(U)V3(X ))2, 2W4(Y)W2(Y) = (c(U)W3(Y))2,(4.4a)

V2(X ) = c(U)V1(X ), W2(Y) = −c(U)W1(Y),(4.4b)

V4(X ) = c(U)V5(X ), W4(Y) = −c(U)W5(Y).(4.4c)

We introduce the Banach spaces W 1,∞
X (Ω) and W 1,∞

Y (Ω) de�ned as
(4.5)

W 1,∞
X (Ω) = L∞([Yl, Yr],W 1,∞([Xl, Xr])), W 1,∞

Y (Ω) = L∞([Xl, Xr],W 1,∞([Yl, Yr])),

and the Banach spaces L∞X (Ω) and L∞Y (Ω) de�ned as

L∞X (Ω) = L∞([Yl, Yr], C([Xl, Xr])), L∞Y (Ω) = L∞([Xl, Xr], C([Yl, Yr])).
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Let us consider (X ,Y,Z,V,W) ∈ G(Ω). By de�nition, the functions X and Y are
increasing. To any increasing function, one can associate its generalized inverse, a concept
which is exposed for example in Brenier [2]. More generally, an increasing function (not
necessarily continuous) can be identi�ed as the subdi�erential of a convex function (which
is a multivalued function). The generalized inverse is then the subdi�erential of the
conjugate of this convex function. We do not use this framework here and prove directly
the results we need.

De�nition 4.3. Given Ω = [Xl, Xr]× [Yl, Yr] and a curve (X ,Y) ∈ C(Ω), we de�ne the
generalized inverse of X and Y, respectively, as

α(X) = sup{s ∈ [sl, sr] | X (s) < X} for X ∈ (Xl, Xr],(4.6)

β(Y ) = sup{s ∈ [sl, sr] | Y(s) < Y } for Y ∈ (Yl, Yr].(4.7)

We denote X−1 = α and Y−1 = β.

The generalized inverse functions X−1 and Y−1 enjoy the following properties.

Lemma 4.4. The functions X−1 and Y−1 are lower semicontinuous nondecreasing func-
tions. We have

(4.8) X ◦ X−1 = Id and Y ◦ Y−1 = Id,

and

X−1 ◦ X (s) = s for any s such that Ẋ (s) > 0,(4.9)

Y−1 ◦ Y(s) = s for any s such that Ẏ(s) > 0.(4.10)

De�nition 4.3 extends naturally to curves in C and Lemma 4.4 still holds.

Proof. We prove the lemma only for X−1, as the results for Y−1 can be proved in the
same way. Let us prove that α is nondecreasing. For any X < X̄, there exists a sequence
si such that limi→∞ si = α(X) and X (si) < X. Hence, X (si) < X̄ which implies
si ≤ α(X̄), which after letting i tend to in�nity, gives α(X) ≤ α(X̄). Let us prove that α
is lower semicontinuous. Given a sequence Xi such that limi→∞Xi = X, for any ε > 0,
there exists s ∈ [sl, sr] such that

(4.11) α(X) > s > α(X)− ε
because α(X) > sl for all X ∈ (Xl, Xr]. It implies X (s) < X as, otherwise, X ≤ X (s)
would yield α(X) ≤ s, which contradicts (4.11). Thus, for large enough i, we have
X (s) < Xi so that s < α(Xi). Combined with (4.11), it implies

α(X)− ε < s ≤ lim inf α(Xi)

and, as ε is arbitrary, we get that α is lower semicontinuous. Let us prove (4.8). Given
X ∈ (Xl, Xr], we consider an increasing sequence si such that limi→∞ si = α(X) and
X (si) < X. Letting i tend to in�nity, since X is continuous, we get X (α(X)) ≤ X. As-
sume that X (α(X)) < X, since X is continuous, there exists s such that X (α(X)) < X (s)
and X (s) < X. The latter inequality implies that s ≤ α(X) which, by the monotonicity
of X , yields X (s) ≤ X (α(X)) and we obtain a contradiction. Let us prove (4.9). We

denote N = {s ∈ [sl, sr] | Ẋ(s) > 0}. We consider a �xed element s0 ∈ N . We have

(4.12) α ◦ X (s0) ≤ s0.
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Indeed, by the monotonicity of X , for any s ∈ {s ∈ [sl, sr] | X (s) < X (s0)}, we have
s < s0 and therefore, after taking the supremum, we obtain (4.12). Let us assume that
α ◦ X (s0) < s0. We denote s1 = α ◦ X (s0). By (4.8), X (s1) = X (s0), and from the
monotonicity of X , it follows that X (s) = X (s0) = X (s1) for all s ∈ [s0, s1]. It implies

that Ẋ (s0) = 0, which contradicts the fact that s0 ∈ N . �

In the following and when there is no ambiguity, we will slightly abuse the notation
and denote Y ◦ X−1(X) and X ◦ Y−1(Y ) by Y(X) and X (Y ), respectively. The curve
(X (s),Y(s)) is almost a graph as it consists of the union of the graphs of the functions
X 7→ Y(X) and (after rotating the axes by π

2 ) Y 7→ X (Y ). We prove the existence of
solutions to (2.13) on rectangular boxes. First we give the de�nition of solutions.

De�nition 4.5. We say that Z is solution to (2.13) in Ω = [Xl, Xr]× [Yl, Yr] if
(i) we have

Z ∈W 1,∞(Ω), ZX ∈W 1,∞
Y (Ω), ZY ∈W 1,∞

X (Ω);

(ii) and for almost every X ∈ [Xl, Xr],

(4.13) (ZX(X,Y ))Y = F (Z)(ZX , ZY )(X,Y );

and, for almost every Y ∈ [Yl, Yr],

(4.14) (ZY (X,Y ))X = F (Z)(ZX , ZY )(X,Y ).

We say that Z is a global solution to (2.13) if Z is a solution to (2.13) as de�ned above,
for any rectangular domain Ω.

The regularity that we impose is also necessary to extract the relevant data on a curve
from a function de�ned in the plane, as it is explained in the following lemma.

Lemma 4.6 (Extraction of data from a curve). We consider a �ve-dimensional vector
function Z in R2 such that

Z ∈W 1,∞(Ω), ZX ∈W 1,∞
Y (Ω), ZY ∈W 1,∞

X (Ω)

for any rectangular domain Ω. Then, given a curve (X ,Y) ∈ C, let (Z,V,W) be de�ned
as

(4.15) Z(s) = Z(X (s),Y(s)) for all s ∈ R

and

V(X) = ZX(X,Y(X)) for a.e. X ∈ R,(4.16a)

W(Y ) = ZY (X (Y ), Y ) for a.e. Y ∈ R,(4.16b)

or, equivalently,

V(X (s)) = ZX(X (s),Y(s)) for a.e. s ∈ R such that Ẋ (s) > 0,

W(Y(s)) = ZY (X (s),Y(s)) for a.e. s ∈ R such that Ẏ(s) > 0.

We have (Z,V,W) ∈ L∞loc(R) and we denote Θ = (X ,Y,Z,V,W) by

Z • (X ,Y).
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Proof. We consider a domain Ω = [Xl, Xr]× [Yl, Yr]. We claim that for any f ∈W 1,∞
Y (Ω)

then f̃(X) = f(X,Y(X)) is measurable and f(X,Y(X)) ∈ L∞([Xl, Xr]). It su�ces to

show that the linear mapping f 7→ f̃ from W 1,∞
Y (Ω) to L∞([Xl, Xr]) is well-de�ned on

simple functions and continuous. We assume that f is a simple function, that is,

f(X,Y ) =
N∑
j=1

gj(Y )χAj (X)

where χA denotes the indicator function of the set A, Aj are disjoint measurable sets and

gj ∈W 1,∞([Yl, Yr]). Then, f̃(X) =
∑N

j=1 gj(Y(X))χAj (X) is measurable (as X 7→ Y(X)
is lower semicontinuous) and

esssup
X∈[Xl,Xr]

∣∣∣f̃(X)
∣∣∣ ≤ max

j∈{1,...,N}
esssup

X∈[Xl,Xr]
|gj(Y(X))|

≤ max
j∈{1,...,N}

‖gj‖W 1,∞([Yl,Yr])

≤ ‖f‖
W 1,∞
Y (Ω)

so that f̃ ∈ L∞([Xl, Xr]). Note that we need gj ∈W 1,∞([Yl, Yr]) as, if gj only belongs to
L∞([Yl, Yr]), we do not have in general esssupX∈[Xl,Xr]

|gj(Y(X))| ≤ ‖gj‖L∞([Yl,Yr])
as the

function X 7→ Y(X) may send sets of strictly positive measure to a set of measure zero
(for example if Y is constant on an interval). Therefore the continuity in the Y direction
which is necessary to make meaning of (4.16). Using the same type of estimate, one gets
that

‖f̃‖L∞([Xl,Xr]) ≤ ‖f‖W 1,∞
Y (Ω)

,

which concludes the proof of the claim. Similarly one proves that, for any f ∈W 1,∞
X (Ω),

the mapping Y 7→ f(X (Y ), Y ) is measurable and belongs to L∞([Xl, Xr]). Hence, we
get that (Z,V,W) ∈ L∞loc(R). �

The decay of Z at in�nity in the diagonal direction is more conveniently expressed in
term of the function Za which we now de�ne as

(4.17) Za2 = Z2 −
1
2

(X + Y ) and Zai = Zi for i ∈ {1, 3, 4, 5}.

Even if we are not concerned yet with the behavior at in�nity, it is convenient to introduce
Za already here to write the estimate in a convenient way. We now introduce the setH(Ω)
of all solutions to (2.13) on rectangular domains, which satisfy additional properties.

De�nition 4.7. Given a rectangular domain Ω = [Xl, Xr]× [Yl, Yr], let H(Ω) be the set
of all functions Z which are solutions to (2.13) in the sense of De�nition 4.5 and which
satisfy the following properties

xX = c(U)tX , xY = −c(U)tY ,(4.18a)

JX = c(U)KX , JY = −c(U)KY ,(4.18b)

2JXxX = (c(U)UX)2 , 2JY xY = (c(U)UY )2 ,(4.18c)

xX ≥ 0, JX ≥ 0,(4.18d)

xY ≥ 0, JY ≥ 0,(4.18e)
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xX + JX > 0, xY + JY > 0.(4.18f)

We have the following short-range existence theorem.

Theorem 4.8. There exists an increasing function C such that, for any Ω = [Xl, Xr]×
[Yl, Yr] and Θ = (X ,Y,Z,V,W) in G(Ω), if sr − sl ≤ 1/C(|||Θ|||G(Ω)), then there exists a
unique solution Z ∈ H(Ω) such that

(4.19) Θ = Z • (X ,Y).

Proof. We use a Picard �xed-point argument. De�ne B as the set of elements (Zh, Zv, V,W )
such that

Zh ∈ [L∞X ]5, Zv ∈ [L∞Y ]5, V ∈ [L∞Y ]5, W ∈ [L∞X ]5

and

(4.20)
5∑
i=1

(
∥∥Zah,i∥∥L∞X +

∥∥Zav,i∥∥L∞Y + ‖Vi‖L∞X + ‖Wi‖L∞X ) ≤ 2|||Θ|||G(Ω)

where we use for Zh and Zv the same notation given in (4.17) for Z. For the �xed point,
the functions Zh and Zv coincide and are equal to the solution Z, see below, but it is
convenient to de�ne both quantities in this proof and keep the symmetry of the problem
with respect to the X and Y variables. We introduce the mapping P given, for any
(Zh, Zv, V,W ) ∈ B, by P(Zh, Zv, V,W ) = (Z̄h, Z̄v, V̄ , W̄ ) where

Z̄h(X,Y ) = Z(Y−1(Y )) +
∫ X

X (Y )
V (X̃, Y ) dX̃(4.21a)

for a.e. Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr],

Z̄v(X,Y ) = Z(X−1(X)) +
∫ Y

Y(X)
W (X, Ỹ ) dỸ(4.21b)

for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr],

V̄ (X,Y ) = V(X) +
∫ Y

Y(X)
F (Zh)(V,W )(X, Ỹ ) dỸ(4.21c)

for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr],

W̄ (X,Y ) =W(Y ) +
∫ X

X (Y )
F (Zh)(V,W )(X̃, Y ) dX̃(4.21d)

for a.e. Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr]. Let us consider a solution Z to (2.13) which
satis�es (4.19). For any (X,Y ) ∈ Ω, we have

Z(X,Y(s)) = Z(s) +
∫ X

X (s)
ZX(X̃,Y(s)) dX̃

which, after taking s = Y−1(Y ), yields

Z(X,Y ) = Z(Y−1(Y )) +
∫ X

X (Y )
ZX(X̃, Y ) dX̃,
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by (4.8). Similarly, one proves that

Z(X,Y ) = Z(X−1(X)) +
∫ Y

Y(X)
ZY (X, Ỹ ) dỸ .

For every almost every X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr], we have

ZX(X,Y ) = ZX(X,Y(X)) +
∫ Y

Y(X)
F (Z)(ZX , ZY )(X, Ỹ ) dỸ ,

and therefore, by (4.19), we get

(4.22) ZX(X,Y ) = V(X) +
∫ Y

Y(X)
F (Z)(ZX , ZY )(X, Ỹ ) dỸ .

Similarly, we have

(4.23) ZY (X,Y ) =W(Y ) +
∫ X

X (Y )
F (Z)(ZX , ZY )(X̃, Y ) dX̃

for all X ∈ [Xl, Xr] and a.e. Y ∈ [Yl, Yr]. Thus, if Z is a solution to (2.13) (in the sense
of De�nition 4.5) which satis�es (4.19) then (Z,Z,ZX , ZY ) is a �xed point of P. Since
0 ≤ Ẋ ≤ 2 and 0 ≤ Ẏ ≤ 2, we have

(4.24) |X −X (Y )| = |X (α(X))−X (α(Y ))| ≤ X (sr)−X (sl) ≤ 2(sl − sr) ≤ 2δ

and, similarly,

(4.25) |Y − Y(X)| ≤ 2(sl − sr) ≤ 2δ.

We can choose δ small enough, depending only on |||Θ|||G(Ω), such that the mapping P
maps B into B. Let us check this in more details only for the second component of Zh.
We have

Z̄ah,2 = Z̄h,2 −
1
2

(X + Y ) = Z2(Y−1(Y ))− 1
2

(X + Y ) +
∫ X

X (Y )
V (X̃, Y ) dX̃

and, denoting s = Y−1(Y ),

Z2(s)− 1
2

(X + Y ) = Z2(s)− 1
2

(X + Y(s)) = Z2(s)− 1
2

(X (s) + Y(s)) +
1
2

(X −X (s))

= Za2 (s) +
1
2

(X −X (Y )).

Hence, ∥∥Z̄ah,2∥∥L∞(Ω)
≤ |||Za2 |||G(Ω) + δ(1 + 2|||Θ|||G(Ω))

by (4.24) and (4.20). After doing the same for the other components, we get

5∑
i=1

(
∥∥Z̄ah,i∥∥L∞X +

∥∥Z̄av,i∥∥L∞Y +
∥∥V̄i∥∥L∞X +

∥∥W̄i

∥∥
L∞X

) ≤ |||Θ|||G(Ω) + δC

for a constant C which depends only on |||Θ|||G(Ω). Hence, by taking δ small enough,
the mapping P maps B into B. Using the fact that F is locally Lipschitz (because it
is bi-linear with respect to the two last variables and depends smoothly on U = Z3),
we prove that P is contractive. Hence, P admits a unique �xed point that we denote
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(Zh, Zv, V,W ). Let us prove that Zh = Zv. It basically follows from the fact that
WX = VY . Let us now denote by NX the set of points X ∈ [Xl, Xr] for which (4.21b)
and (4.21c) hold (by de�nition, the set NX has full measure). Similarly we denote
by NY the set of points Y ∈ [Yl, Yr] for which (4.21a) and (4.21d) hold. We have
meas([Xl, Xr] \NX) = meas([Yl, Yr] \NY ) = 0 so that meas(Ω \NX ×NY ) = 0. For any
(X,Y ) ∈ NX ×NY , we have

Zh(X,Y )− Zv(X,Y ) = Z(Y−1(Y )) +
∫ X

X (Y )
V (X̃, Y ) dX̃

−Z(X−1(X))−
∫ Y

Y(X)
W (X, Ỹ ) dỸ .(4.26)

Since the terms involving F cancel, we obtain by (4.21c) and (4.21d) that∫ X

X (Y )
V (X̃, Y ) dX̃ −

∫ Y

Y(X)
W (X, Ỹ ) dỸ =

∫ X

X (Y )
V(X̃) dX̃ −

∫ Y

Y(X)
W(Ỹ ) dỸ .

Returning to the rigorous notation, we get
(4.27)∫ X

X (Y )
V (X̃, Y ) dX̃−

∫ Y

Y(X)
W (X, Ỹ ) dỸ =

∫ X (X−1(X))

X (Y−1(Y ))
V(X̃) dX̃−

∫ Y(Y−1(Y ))

Y(X−1(X))
W(Ỹ ) dỸ

where we have also used (4.8). We proceed with a change of variables in the two integrals
on the right-hand side of (4.27) and get∫ X (X−1(X))

X (Y−1(Y ))
V(X̃) dX̃ −

∫ Y(Y−1(Y ))

Y(X−1(X))
W(Ỹ ) dỸ

= −
∫ Y−1(Y )

X−1(X)

(
W(Y(s))Ẏ(s) + V(X (s))Ẋ (s)

)
ds

= −
∫ Y−1(Y )

X−1(X)
Ż(s) ds by (4.3)

= Z(X−1(X))−Z(Y−1(Y ))(4.28)

and combining (4.26), (4.27) and (4.28), we get that Zh(X,Y ) = Zv(X,Y ) for all
(X,Y ) ∈ NX × NY , that is, almost everywhere. We denote Z = Zh = Zv. For any
(X,Y ) and (X̄, Ȳ ) belonging to NX ×NY , we get, by using (4.21a) and (4.21b), that

Z(X,Y )− Z(X̄, Ȳ ) =
∫ X

X̄
V (X̃, Y ) dX̃ +

∫ Y

Ȳ
W (X̄, Ỹ ) dỸ .

Hence, by using the bound (4.20),∣∣Z(X,Y )− Z(X̄, Ȳ )
∣∣ ≤ 2|||Θ|||G(Ω)(

∣∣X − X̄∣∣+
∣∣Y − Ȳ ∣∣)

and Z is Lipschitz in NX ×NY . It implies that Z is uniformly continuous in NX ×NY
and there exists a unique continuous extension of Z to the closure of NX ×NY , that is,
Ω. From (4.21a) and (4.21b), we get that

(4.29) ZX(X,Y ) = V (X,Y )
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for all Y ∈ [Yl, Yr] and a.e. X ∈ [Xl, Xr] and

(4.30) ZY (X,Y ) = W (X,Y )

for all X ∈ [Xl, Xr] and a.e. Y ∈ [Yl, Yr]. By using the fact that (Z,Z,ZX , ZY ) is a �xed
point in B and (4.29) and (4.30), we can check that ZX ∈W 1,∞

Y (Ω) and ZY ∈W 1,∞
X (Ω).

By density, we can prove that

(4.31) Z(X,Y )− Z(X̄, Y ) =
∫ X

X̄
ZX(X̃, Y ) dX,

not only for almost every Y ∈ [Yl, Yr] as (4.21a) yields, but for all Y ∈ [Yl, Yr]. Indeed,
for any Y ∈ [Yl, Yr], there exists a sequence Yn ∈ NY such that limn→∞ Yn = Y as
meas([Yl, Yr] \ NY ) = 0 and we have

(4.32) Z(X,Yn)− Z(X̄, Yn) =
∫ X

X̄
ZX(X̃, Yn) dX.

Since ZX ∈W 1,∞
Y (Ω), we have that ‖ZX( · , Yn)‖L∞([Xl,Xr])

≤ ‖ZX‖W 1,∞
Y (Ω)

≤ 2|||Θ|||G(Ω)

and, for a.e. X̃ ∈ [Xl, Xr], limn→∞ ZX(X̃, Yn) = ZX(X̃, Y ) for almost every X̃. Hence,
by Lebesgue dominated convergence theorem and the continuity of Z, (4.32) implies
(4.31). It remains to check that Z satis�es (4.19). Since (Z,Z,ZX , ZY ) is a �xed point
of P, we have, by (4.21c) and (4.21d), that

ZX(X,Y(X)) = V(X) and ZY (X (Y ), Y ) =W(Y )

for a.e. X ∈ [Xl, Xr] and Y ∈ [Yl, Yr], respectively. It remains to check that Z satis�es
(4.15). On one hand, we have that

(4.33) Z(X (s),Y(s)) = Z(X−1(X (s)))

by (4.21b) and, by (4.9), it implies (4.15) for all s ∈ [sl, sr] such that Ẋ (s) > 0. On the
other hand we have

(4.34) Z(X (s),Y(s)) = Z(Y−1(Y(s)))

by (4.21b) and, by (4.10), it implies (4.15) for all s ∈ [sl, sr] such that Ẏ(s) > 0. Since
Ẋ + Ẏ = 2, the set of all s ∈ [sl, sr] such that Ẋ (s) > 0 or Ẏ(s) > 0 has full measure and
therefore, for almost every s ∈ [sl, sr], (4.15) holds. By continuity, we infer that (4.15)
holds for all s ∈ [sl, sr]. Hence, we have proved that Z is a solution to (2.13) which
satis�es (4.19) if and only if it is a �xed point of P. Since the �xed point exists and is
unique, we have proved the existence and uniqueness of the solution. Let us de�ne the
functions v ∈W 1,∞

Y (Ω) and w ∈ in W 1,∞
X (Ω) as

v = xX − c(U)tX and w = xY + c(U)tY .

We want to prove that v and w are both zero. After some computations using the
governing equations (2.13), we obtain

vY = xXY − c′(U)UY tX − c(U)tXY

=
c′(U)
2c(U)

(UY v + UXw)(4.35)
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and

wX = xXY + c′(U)UXtY − c(U)tXY

=
c′(U)
2c(U)

(UY v + UXw) .(4.36)

It follows that

v(X,Y ) =
∫ Y

Y(X)

c′(U)
2c(U)

(UY v + UXw) ,

w(X,Y ) =
∫ X

X (X)

c′(U)
2c(U)

(UY v + UXw) ,

which implies, after using (4.24), (4.25) and (4.20), that

‖v‖L∞Y ≤ δ2|||Θ|||G(Ω) max
c′(U)
2c(U)

(‖v‖L∞Y + ‖w‖L∞X ),

‖w‖L∞X ≤ δ2|||Θ|||G(Ω) max
c′(U)
2c(U)

(‖v‖L∞Y + ‖w‖L∞X ).

Hence, by taking δ smaller if necessary, we get ‖v‖L∞Y = ‖w‖L∞X = 0. Let us now

introduce z ∈W 1,∞
Y (Ω) as z = 2JXxX − (c(U)UX)2. We have

zY = 2JXY xX + 2JXxXY − 2c(U)2UXUXY − 2c(U)c′(U)UY (UX)2

=
c′(U)
c(U)

UY z(4.37)

and z(X,Y(X)) = 0 for X ∈ [Xl, Xr], the unique solution to (4.37) is z = 0. One

proves in the same way that JY xY = 2 (c(U)UY )2. Let us now prove (4.18f). Since the
initial data belongs to G(Ω), we have ‖1/(xX + JX)(X,Y(X))‖L∞([Xl,Xr]) ≤ |||Θ|||G(Ω) as
1/(xX + JX)(X,Y(X)) = 1/(V2 +W2)(X) for a.e. X ∈ [Xl, Xr]. For all �xed X such
that 1/(xX +JX)(X,Y(X)) ≤ |||Θ|||G(Ω), that is for almost every X ∈ [Xl, Xr], we de�ne

Y∗ = inf{Y ∈ [Yl, Yr] | Y ≤ Y(X) and (xX + JX)(X,Y ′) > 0 for all Y ′ > Y }
and similarly

Y ∗ = sup{Y ∈ [Yl, Yr] | Y ≥ Y(X) and (xX + JX)(X,Y ′) > 0 for all Y ′ < Y }.
On (Y∗, Y ∗), we have (xX + JX)(X,Y ) > 0 and we de�ne

q(Y ) =
1

(xX + JX)(X,Y )
.

Let us assume that Y∗ < Yr and therefore, by continuity,

(4.38) (xX + JX)(X,Y ∗) = 0.

On (Y∗, Y ∗), we have q(Y ) ≥ 0 and, since JXxX ≥ 0 by (4.18c), it implies that

(4.39) xX ≥ 0 and JX ≥ 0.

By using (2.13), we obtain

qY = −xXY + JXY
(xX + JX)2
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= − c
′(U)

2c(U)
UY (xX + JX) + (JY + xY )UX

(xX + JX)2
.(4.40)

From (4.18c), we infer that

|UX | =
1

c(U)
√

2

√
JXxX ≤

1
2c(U)

√
2

(JX + xX).

Hence, (4.40) yields

qY ≤
|c′(U)|
2c(U)

(|UY |+ |JY |+ |xY |)q ≤ Cq

for some constant C which depends only

(4.41) esssup
Y ∈[Yl,Yr]

(|U | (X,Y ) + |ZY | (X,Y )),

that is |||Θ|||G(Ω), by (4.20). By Gronwall's lemma, it follows that q cannot blow up in
Y ∗, contradicting (4.38) and

(4.42)
1

xX + JX
(X,Y ) ≤ 1

V3 + V4
(X)eC|Y−Y(X)|

for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr]. In the same way, one proves that Y∗ = Yl.
Hence, we have proved that, for almost every X ∈ [Xl, Xr],

xX(X,Y ) ≥ 0 and JX(X,Y ) ≥ 0 for all Y

and ‖1/(xX + JX)(X,Y )‖W∞(Yl,Yr)
is bounded, for almost every X ∈ [Xl, Xr], by a con-

stant which is independent of X and therefore 1/(xX + JX) ∈W 1,∞
Y (Ω). This concludes

the proof of (4.18d) and the �rst identity (4.18f) while (4.18e) and the second identity
in (4.18f) can be proven in the same way. �

4.2. A priori estimates. Given a positive constant L, we call domains of the type

D = {(X,Y ) ∈ R2 | |Y −X| < 2L}
for strip domain. Strip domains are correspond to domains where time is bounded. We
have the following a priori estimates for the solution of (2.13). The energy J(X,Y ) is
bounded in the whole plane while Za (that is, Z, up to a shift in the second component)
and its derivatives are bounded in every strip domain.

Lemma 4.9. Given Ω = [Xl, Xr] × [Yl, Yr] and Θ = (X ,Y,Z,V,W) ∈ G(Ω), let Z ∈
H(Ω) be a solution to (2.13) such that Θ = Z • (X ,Y). Let E0 = ‖Z4‖L∞([sl,sr])

+
‖Z5‖L∞([sl,sr])

. Then the following statements hold:

(i) Global boundedness of the energy, more precisely,

(4.43) 0 ≤ J(X,Y ) ≤ E0 for all (X,Y ) ∈ Ω and ‖K‖L∞(Ω) ≤ (1 + κ)E0

where J = Z4 and K = Z5.
(ii) The function Z and its derivatives remain uniformly bounded in strip domains.

More precisely there exists a nondecreasing function C1 = C1(L, |||Θ|||G(Ω)), such
that, for any L > 0 and any X and Y such that |X − Y | ≤ 2L, we have

(4.44) |Za(X,Y )| ≤ C1, |ZX(X,Y )| ≤ C1, |ZY (X,Y )| ≤ C1
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and

(4.45)
1

xX + JX
(X,Y ) ≤ C1,

1
xY + JY

(X,Y ) ≤ C1.

The condition (ii) above is equivalent to the following condition (iii):

(iii) For any curve (X̄ , Ȳ) ∈ C(Ω), we have

(4.46) |||Z • (X̄ , Ȳ)|||G(Ω) ≤ C1

where C1 = C1(‖(X̄ , Ȳ)‖C(Ω), |||Θ|||G(Ω)) is a given function which is increasing with re-
spect to both its arguments.

The inequalities in (4.44) hold in fact in L∞(Ω), W 1,∞
Y (Ω) and W 1,∞

X (Ω), respectively.
The inequalities in (4.45) hold in W 1,∞

Y (Ω) and W 1,∞
X (Ω), respectively.

Proof. Given P = (X,Y ) ∈ Ω, let s0 = Y−1(Y ) and s1 = X−1(X). We denote P0 =
(X(s0), Y (s0)) and P1 = (X(s1), Y (s1)). We assume that s0 ≤ s1 (the proof for the other

case is very similar). Since Ẋ and Ẏ are positive, it implies that X = X (s1) ≥ X (s0)
and Y = Y (s0) ≤ Y(s1). Then, because JX ≥ 0, JY ≥ 0 and Z4 ≥ 0, we have

(4.47) 0 ≤ Z4(s0) = J(P0) ≤ J(P ) ≤ J(P1) = Z4(s1) ≤ E0

which gives the �rst inequality in (4.43). By (4.18b), we get

|K(P )−K(P0)| ≤ κ(J(P )− J(P0))

which implies

(4.48) |K(P )| ≤ |K(P0)|+ κ(J(P )− J(P0))

and
|K(P )| ≤ (1 + κ)E0

by (4.43). Since xX ≥ 0, we have

(4.49) x(P ) ≥ x(P0) = Z2(s0) ≥ −|||Θ|||G(Ω) + s0.

Since 1
2(X + Y ) = Y + 1

2(X − Y ) ≤ Y (s0) + L, it follows that

x(P )− 1
2

(X + Y ) ≥ −|||Θ|||G(Ω) + s0 − Y(s0)− L ≥ −2|||Θ|||G(Ω) − L.

Similarly, using that xY ≥ 0, we get

(4.50) x(P ) ≤ x(P1) = Z2(s1) ≤ |||Θ|||G(Ω) + s1.

and

(4.51) x(P )− 1
2

(X + Y ) ≤ 2|||Θ|||G(Ω) + L.

Hence,
∣∣x(P )− 1

2(X + Y )
∣∣ ≤ 2|||Θ|||G(Ω) + L. We have

|t(P )| =

∣∣∣∣∣
∫ Y(s1)

Y
tY (X, Ỹ ) dỸ

∣∣∣∣∣ ≤
∫ Y(s1)

Y

xY
c(U)

dỸ ≤ κ(x(P1)− x(P )).(4.52)

Since

(4.53) x(P1)− x(P ) ≤ x(P1)− x(P0) = Z2(s1)−Z2(s0) ≤ 2|||Θ|||G(Ω) + s1 − s0
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and

(4.54) s1 − s0 = s1 − Y(s1)− (s0 −X (s0)) + Y −X ≤ 2|||Θ|||G(Ω) + 2L,

it follows from (4.52) that |t(P )| ≤ κ(4|||Θ|||G(Ω) + 2L). We have

|U(P )| ≤ |U(P1)|+
∫ Y(s1)

Y
UY dỸ .

By (4.18c), we have that

(4.55) |UY | ≤
κ

2
√

2
(JY + xY ).

Hence,

|U(P )| ≤ |U(P1)|+ κ

2
√

2
|J(P1) + x(P1)− J(P )− x(P )|

≤ |||Θ|||G(Ω) +
κ

2
√

2
(E0 + 4|||Θ|||G(Ω) + 2L) by (4.53) and (4.47).(4.56)

To prove that ZX and ZY remain bounded, we use the bi-linearity embedded in the
governing equation (2.14). We use �rst the linearity of F (Z) with respect to the �rst
variable and for almost every X ∈ [Xl, Xr], we get, after applying Gronwall's lemma,
that

|ZX(X,Y )| ≤ |ZX(X,Y(X))| exp(
∫ Y−1(X)

Y
|F (Z)( · , ZY )| dỸ )

= |V(X)| exp(
∫ Y−1(X)

Y
|F (Z)( · , ZY )| dỸ ).(4.57)

Here F (Z)(·,W ) denotes the matrix V 7→ F (Z)(V,W ) and we use any matrix norm as
they are all equivalent. We also assume (as earlier) that Y ≤ Y−1(X) (otherwise we have
to interchange the bounds in the integral) and we denote P1 = (X,Y−1(X)). We have
|V(X)| ≤ |||Θ|||G(Ω). After using (4.18a), (4.18b) and (4.55), we obtain that

|F (Z)(·, ZY )| ≤ C(|tY |+ |xY |+ |UY |+ |JY |+ |KY |)
and we have used here the linearity of F (Z) with respect to its second variable. Hence,

|F (Z)(·, ZY )| = C

(
1
c

(xY + JY ) + xY + JY + |UY |
)

≤ C(xY + JY )

for a constant C that depends only on c(U) and therefore only on |||Θ|||G(Ω) and L, by
(4.56). Hence,∫ Y−1(X)

Y
|F (Z)( · , ZY )| dỸ ≤ C

∫ Y−1(X)

Y
(xY + JY ) dỸ

= C(x(P1)− x(P ) + J(P1)− J(P ))

≤ C(E0 + 4|||Θ|||G(Ω) + 2L),

by (4.47), (4.53) and (4.54). Combined with (4.57), it yields

|ZX(X,Y )| ≤ C
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Ωn

Pn

Pr = (Xr, Yr)

Ωn,0

Ωn,n−1

Ωn,n−2

Ωn,n

Ωi,j

Yn

Yj

Xi Xn

Pi,j

P0 = Pl = (Xl, Yl)

Pi(= Pi,i)

Figure 3. Construction of the global solution.

for some constant C which depends only on L and |||Θ|||G(Ω). Similarly, one proves the
bound on ZY . The estimate (4.45) follows from the estimate (4.42) in the proof of
Theorem 4.8 as the constant C in (4.42) depends only on L and |||Θ|||G(Ω), by (4.44), and

|Y − Y(X)| =
∣∣Y −X + X (X−1(X))− Y(X−1(X))

∣∣ ≤ L+ |||Θ|||G(Ω).

�

4.3. Global existence. We obtain the following existence and uniqueness lemma.

Lemma 4.10 (Existence and uniqueness on arbitrarily large rectangles). Given a rect-
angular domain Ω = [Xl, Xr] × [Yl, Yr] and Θ = (X ,Y,Z,V,W) in G(Ω), there exists a
unique Z ∈ H(Ω) such that

Θ = Z • (X ,Y).

Proof. Let N denote an integer that we will set later and δ = sr−sl
N . For i = 0, . . . , N ,

let si = iδ + sl and we consider the sequence of points Pi = (Xi, Yi) = (X(si), Y (si)).
For i, j = 0, . . . , N , we construct a grid which consists of the points Pi,j = (Xi,j , Yi,j)
where Xi,j = Xi and Yi,j = Yj , see Figure 3. We denote by by Ωi,j the rectangle with
diagonal points Pi,j and Pi+1,j+1. Let Ωn denote the rectangle with diagonal points given
by (X0, Y0) and (Xn, Yn). We prove by induction that there exists a unique Z ∈ H(Ωn)
such Θ = Z • (X,Y ) (Here we use the same notation for Θ ∈ G(Ω) and (X ,Y) ∈ C(Ω)
and their restriction to Ωn which belong to G(Ωn) and C(Ωn), respectively). On Ω1, we
can choose N large enough and depending only on |||Θ|||G(Ω1) ≤ |||Θ|||G(Ω) such that

s1 − s0 ≤ δ ≤ C(|||Θ|||G(Ω))
−1 ≤ C(|||Θ|||G(Ω1))

−1,
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and, by Theorem 4.8, there exists a unique solution Z ∈ H(Ω1) such that Θ = Z •(X,Y ).
We assume that there exists a unique solution Z ∈ Ωn and prove that there exists a
solution on Ωn+1. On Ωn,n, we get the existence of a unique solution by Theorem 4.8 as

sn+1 − sn ≤ δ ≤ C(|||Θ|||G(Ω))
−1 ≤ C(|||Θ|||G(Ωn,n))

−1.

For j = n − 1, . . . , 0, we construct iteratively the unique solution in Ωn,j and Ωj,n as
follows. We treat only the case of Ωn,j . We assume the solution is known on Ωn,j+1, then

we de�ne Θ̃ = (X̃ , Ỹ, Z̃, Ṽ, W̃) ∈ G(Ωn,j) as follows: The curve X̃ (s), Ỹ(s) is given by

X̃ (s) = Xn, Ỹ(s) = 2s−Xn

for 1
2(Yj +Xn) ≤ s ≤ 1

2(Yj+1 +Xn),

X̃ (s) = 2s− Yj+1, Ỹ(s) = Yj+1

for 1
2(Yj+1 +Xn) ≤ s ≤ 1

2(Yj+1 +Xn+1) and set

Z̃(s) = Z(X̃ (s), Ỹ(s)) for s ∈ [
1
2

(Yj +Xn),
1
2

(Yj+1 +Xn+1)],

Ṽ(X) = ZX(X,Yj+1) for a.e. X ∈ [Xn, Xn+1],

W̃(Y ) = ZY (Xn, Y ) for a.e. X ∈ [Yj , Yj+1].

Using Lemma 4.9, we can check that |||Θ̃|||G(Ωn,j) is bounded by a constant C2 that

depends only on L and |||Θ|||G(Ω). We have

1
2

(Yj+1 +Xn+1 − Yj −Xn) =
1
2

(Y(sj+1) + X (sn+1)− Y(sj)−X (sn)) ≤ 2δ.

Here we have used that X and Y are Lipschitz with Lipschitz constant smaller than 2.
By taking N large enough so that 2δ is smaller that C(C2)−1, we can apply Theorem 4.8
to Ωn,j and obtain the existence of a unique solution in H(Ωn,j). Similarly we get the
existence of a unique solution in H(Ωj,n). Since

Ωn+1 = Ωn ∪ (∪nj=0Ωj,n) ∪ (∪nj=0Ωn,j),

we have proved the existence of a unique solution in Ωn+1. �

In Lemma 4.9, we establish L∞-bounds on the derivatives on a strip domain. It turns
out that we can also establish L2-bounds on the derivatives as stated in the next lemma.
In this context, by L2-bounds, we mean that we can bound the integrals of the di�erential
forms (ZaX)2 dX and (ZaY )2 dY along a curve in C. It is useful to have in mind that, for
any given time T , we can �nd a curve (X ,Y) ∈ C which corresponds to this given time
T , that is, t(X (s),Y(s)) = T for all s ∈ R. Thus the L2-bound we now establish is
fundamental to obtain L2-bounds in the initial set of coordinates.

Lemma 4.11 (A Gronwall lemma for curves). Given Ω = [Xl, Xr]× [Yl, Yr], Z ∈ H(Ω)
and (X ,Y) ∈ C(Ω). Then, for any (X̄ , Ȳ) ∈ C(Ω),

(4.58) ‖Z • (X̄ , Ȳ)‖G(Ω) ≤ C‖Z • (X ,Y)‖G(Ω)

where C = C(‖(X̄ , Ȳ)‖C(Ω), |||Z • (X ,Y)|||G(Ω)) is a given increasing function with respect
to both its arguments.
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Proof. Note that, for any function in f ∈W 1,∞
Y (Ω) (and respectively g ∈W 1,∞

X (Ω)), the
forms f(X,Y ) dX (respectively g(X,Y ) dY ) are well de�ned while the forms f(X,Y ) dY
(respectively g(X,Y ) dX) are not. Given Z ∈ H(Ω), we can consider the forms U2 dX,
U2 dY , (ZaX)2 dX and (ZaY )2 dY . For any curve Γ̄ = (X̄ , Ȳ) ∈ C(Ω), (X̄ , Ȳ, Z̄, V̄, W̄) =
Θ ∈ G(Ω), we have (by de�nition of the integral of a form along a curve and the de�nition
of Z • (X̄ , Ȳ)) ∫

Γ̄
(U2 dX + U2 dY ) = 2

∫ sr

sl

Z̄2
3 (s) ds (as X + Y = 2s),

and ∫
Γ̄
(ZaX)2 dX =

∫ Xr

Xl

V̄a(X)2dX,

∫
Γ̄
(ZaY )2 dY =

∫ Yr

Yl

W̄a(Y )2dY.

We can rewrite∥∥Z • (X̄, Ȳ )
∥∥2

G(Ω)
=
∫

Γ̄

(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY

)
.

Thus, we want to prove that

(4.59)

∫
Γ̄

(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY

)
≤ C

∫
Γ

(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY

)
.

We decompose the proof into three steps.

Step 1. We �rst prove that (4.59) holds for small domains. We claim that there exist
constants δ and C, which depend uniquely on

∥∥(X̄ , Ȳ)
∥∥
C(Ω)

and |||Z • (X ,Y)|||G(Ω) such

that, for any rectangular domain Ω = [Xl, Xr] × [Yl, Yr] with sr − sl ≤ δ, (4.59) holds.
We denote by C a generic increasing function of

∥∥(X̄ , Ȳ)
∥∥
C(Ω)

and |||Z • (X ,Y)|||G(Ω). By

Lemma 4.9, we have

‖U‖L∞(Ω) + ‖ZaX‖L∞(Ω) + ‖ZaY ‖L∞(Ω) ≤ C.

Let

A = sup
Γ̄

∫
Γ

(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY

)
where the supremum is taken over all Γ̄ = (X̄ , Ȳ) ∈ C(Ω). Since Z is a solution of (2.13),
we have for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr], that

(xX −
1
2

)2(X,Y ) = (xX −
1
2

)2(X,Y(X)) +
∫ Y

Y(X)
(xX −

1
2

)xXY dȲ

= (xX −
1
2

)2(X,Y(X))

+
∫ Y

Y(X)

c′(U)
c(U)

(
(xX −

1
2

)2(UX + UY ) + UX(xX −
1
2

) + UY (xX −
1
2

)
)
dȲ
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and

(4.60)

∫
Γ̄
(xX −

1
2

)2 dX ≤
∫

Γ
(xX −

1
2

)2 dX + C

∫ Xr

Xl

∫ Yr

Yl

((ZaX)2 + (ZaY )2)dXdY.

For any Y ∈ [Yl, Yr], the integral
∫ Xr
Xl

(ZaX)2(X,Y ) dX can be seen as the integral of the

form (ZaX)2 dX on the piecewise linear path Γ going through the points (Xl, Yl), (Xl, Y ),
(Xr, Y ), (Xr, Yr), so that

∫ Xr
Xl

(ZaX)2(X,Y ) dX ≤ A. Similarly,
∫ Yr
Yl

(ZaX)2(X,Y ) dY ≤ A,
for any X ∈ [Xl, Xr]. Hence, (4.60) yields∫

Γ̄
(xX −

1
2

)2 dX ≤
∫

Γ
(xX −

1
2

)2 dX + C(Yr − Yl +Xr −Xl)A

≤
∫

Γ
(xX −

1
2

)2 dX + CδA

as (Yr − Yl +Xr −Xl) = sr − sl. By treating similarly the other components of ZaX and
ZaY , we get
(4.61)∫

Γ̄
(ZaX)2 dX ≤

∫
Γ
(ZaX)2 dX + 6CδA and

∫
Γ̄
(ZaY )2 dY ≤

∫
Γ
(ZaY )2 dY + 6CδA.

For the component U , we have

U2(X,Y ) = U2(X,Y(X)) +
∫ Y

Y(X)
2UUY dȲ

≤ U2(X,Y(X)) +
∫ Y

Y(X)
U2 dȲ +

∫ Y

Y(X)
U2
Y dȲ

and it follows, as before, that

(4.62)

∫
Γ̄
U2 dX ≤

∫
Γ
U2 dX + CδA.

Similarly, we obtain

(4.63)

∫
Γ̄
U2 dY ≤

∫
Γ
U2 dY + CδA.

After adding (4.61), (4.62), (4.63) and recalling that ds = 1
2(dX + dY ), we obtain∫

Γ̄
(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

≤
∫

Γ
(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY ) + 13CδA

which yields, after taking the supremum over all curves Γ̄,

(1− 13Cδ)A ≤
∫

Γ
(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

and (4.59) follows.
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Step 2. For an arbitrarily large rectangular domain Ω = [Xl, Xr]× [Yl, Yr], let us prove
that (4.59) holds for the curves Γ̄ = (X̄ , Ȳ) ∈ C(Ω) such that

Ȳ(s)− X̄ (s) > Y(s)−X (s) for all s ∈ (sl, sr),

that is, the curve Γ̄ is above Γ and intersects Γ only at the end points. Similarly one proves
that (4.59) holds for curves Γ̄ = (X̄ , Ȳ) ∈ C(Ω) such that Ȳ(s) − X̄ (s) < Y(s) − X (s)
for all s ∈ [sl, sr]. For a constant K > 0 that we will determine later, we have for a.e.
X ∈ [Xl, Xr], that

e−K(Ȳ(X)−X)(xX −
1
2

)2(X, Ȳ(X))− e−K(Y(X)−X)(xX −
1
2

)2(X,Y(X))

=
∫ Ȳ(X)

Y(X)
−Ke−K(Y−X)(xX −

1
2

)2 dY +
∫ Ȳ(X)

Y(X)
e−K(X−Y )(xX −

1
2

)xXY dY

which implies, since Z is solution and by the estimates of Lemma 4.9, that

(4.64)

∫
Γ̄
e−K(Y−X)(xX −

1
2

)2 dX −
∫

Γ
e−K(Y−X)(xX −

1
2

)2 dX

≤
∫ Xr

Xl

∫ Ȳ(X)

Y(X)
−Ke−K(Y−X)(xX −

1
2

)2 dXdY

+ C

∫ Xr

Xl

∫ Ȳ(X)

Y(X)
e−K(Y−X)((ZaX)2 + (ZaY )2) dXdY.

Note that (4.64) corresponds to an application of Stokes's theorem to the domain bounded
by the curves Γ and Γ̄. We treat in the same way each component of ZaX and obtain that

(4.65)

∫
Γ̄
e−K(Y−X)(ZaX)2 dX −

∫
Γ
e−K(Y−X)(ZaX)2 dX

≤
∫ Xr

Xl

∫ Ȳ(X)

Y(X)
−Ke−K(Y−X)(ZaX)2 dXdY

+ C

∫ Xr

Xl

∫ Ȳ(X)

Y(X)
e−K(Y−X)((ZaX)2 + (ZaY )2) dXdY.

As far as ZaY is concerned, we get

(4.66)

∫
Γ̄
e−K(Y−X)(ZaY )2 dY −

∫
Γ
e−K(Y−X)(ZaY )2 dY

≤ −
∫ Yr

Yl

∫ X (Y )

X̄ (Y )
Ke−K(Y−X)(ZaX)2 dXdY

+ C

∫ Yr

Yl

∫ X (Y )

X̄ (Y )
e−K(Y−X)((ZaX)2 + (ZaY )2) dXdY.

Let us prove that the sets

N1 =

{
Xl < X < Xr

Y(X) < Y < Ȳ(X)
and N2 =

{
Yl < Y < Yr

X̄ (Y ) < X < X (Y )
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are equal up to a set of zero measure. Let us consider (X,Y ) ∈ N1. We set s1 = X−1(X),
s2 = Y−1(Y ), s3 = Ȳ−1(Y ) and s4 = X̄−1(X). Since Y(X) < Y < Ȳ(X), we get

Y(X) = Y(s1) < Y(s2) = Ȳ(s3) = Y < Ȳ(s4) = Ȳ(X).

Hence, s1 < s2 and s3 < s4, which implies

X = X (s1) ≤ X (s2) = X (Y ), X̄ (Y ) = X̄ (s3) ≤ X̄ (s4) = X

and therefore X̄ (Y ) ≤ X ≤ X (Y ). Thus we have prove that N1 ⊂ N2 up to a set of zero
measure. Similarly, one proves the reverse inclusion. Hence, by adding (4.65) and (4.66),
we get

(4.67)

∫
Γ̄
e−K(Y−X)((ZaX)2 dX + (ZaY )2 dY )−

∫
Γ
e−K(Y−X)((ZaX)2 dX + (ZaY )2 dY )

≤ −K
∫
N1

e−K(Y−X)((ZaX)2 +(ZaY )2) dXdY +C
∫
N1

e−K(Y−X)((ZaX)2 +(ZaY )2) dXdY.

As far as U is concerned, we proceed in the same way and get∫
Γ̄
e−K(Y−X)U2 dX −

∫
Γ
e−K(Y−X)U2 dX

=
∫ Xr

Xl

∫ Ȳ(X)

Y(X)
e−K(Y−X)(−KU2 + 2UUY ) dXdY

≤
∫
N1

e−K(Y−X)(−KU2 + U2 + U2
Y ) dXdY(4.68)

and ∫
Γ̄
e−K(Y−X)U2 dY −

∫
Γ
e−K(Y−X)U2 dY

≤
∫
N2

e−K(Y−X)(−KU2 + U2 + U2
X) dXdY.(4.69)

Combining (4.65), (4.66), (4.68), (4.68), we get

(4.70)

∫
Γ̄
e−K(Y−X)(

1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

−
∫

Γ
e−K(Y−X)(

1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

≤
∫
N1

(C −K)e−K(Y−X)(U2 + (ZaX)2 + (ZaY )2) dXdY.

We choose K su�ciently large so that the right-hand side in (4.70) is negative and we
obtain that

e−K‖X̄−Ȳ‖L∞
∫

Γ̄
(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

≤ eK‖X−Y‖L∞
∫

Γ
(
1
2
U2 (dX + dY ) + (ZaX)2 dX + (ZaY )2 dY )

and (4.59) follows.
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sl = s0

s1

s2

s3

sr = s4

Γ

Γ̄

s2 − s1 ≤ δ,
s3 − s2 ≤ δ.

Figure 4. The interval [sl, sr] is divided into large intervals (in this ex-
ample [s0, s1] and [s3, s4]) where one curve is over the other and small
intervals of length smaller than δ (in this example [s1, s2] and [s2, s3])
where the curves can cross an arbitrarily number of times.

Step 3. Given any rectangle Ω = [Xl, Xr]×[Yl, Yr], we consider a sequence of rectangular
domains Ωi = [Xi, Xi+1]× [Yi, Yi+1] for i = 0, . . . , N − 1 where Xi and Yi are increasing
and X0 = Xl, Y0 = Yl, XN = Xr, YN = Yr and such that (X ,Y), (X̄ , Ȳ) belong to G(Ωi)
for s ∈ [si, si+1]. We construct the sequence of rectangles such that either si+1 − si ≤ δ
(and Step 1 applies) or Ȳ(s) − X̄ (s) ≤ Y(s) − X (s) or Y(s) − X (s) ≤ Ȳ(s) − X̄ (s) for
s ∈ [si, si+1] (and Step 2 applies). Hence,

∥∥Z • (X̄ , Ȳ)
∥∥2

G(Ω)
=

N−1∑
i=0

∥∥Z • (X̄ , Ȳ)
∥∥2

G(Ωi)

≤
N−1∑
i=0

C ‖Z • (X ,Y)‖2G(Ωi)
(by steps 1 and 2)

≤ C ‖Z • (X ,Y)‖2G(Ω) .

We can construct the sequence of rectangles as follows. Let N̄ be an integer such that
sl−sr
N̄
≤ δ

2 and we set s̃j = sl + j δ2 for j = 0, . . . , N̄ . We take s0 = sl and de�ne

si iteratively: Given si and ji ∈ {0, . . . , N̄ − 1} such that ji ≥ i, X (si) = X̄ (si),
Y(si) = Ȳ(si) and si ∈ [s̃ji , s̃ji+1]. If ji + 1 = N̄ , we set N = i+ 1, si+1 = sr and we are
done. Otherwise, there exists an index k ≥ ji + 1 such that Ȳ(s)− X̄ (s) < Y(s)− X (s)
for all s ∈ [s̃j+1, s̃k) or Ȳ(s)− X̄ (s) > Y(s)− X (s) for all s ∈ [s̃j+1, s̃k) and there exists
s ∈ [s̃k, s̃k+1] such that Ȳ(s)−X̄ (s) = Y(s)−X (s) (which implies that X (s) = X̄ (s) and
Y(s) = Ȳ(s)). We then set ji+1 = k and choose si+1 ∈ [s̃k, s̃k+1] such that X (si+1) =
X̄ (si+1) and Y(si+1) = Ȳ(si+1). Since ji ≥ i, the iteration stops in a �nite number of
steps. �

Given two solutions Z and Z̄, we want to compare along curves in C the forms ZX dX
and ZXY dY with Z̄X dX and Z̄XY dY , respectively. By using the same argument as in
the proof above, we obtain the following stability result in L2. This is a stronger result
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than the one that could be established from the �xed point argument in Lemma 3.9 as
the latter would only hold in L∞.

Lemma 4.12 (Stability in L2). Given Ω = [Xl, Xr]× [Yl, Yr], Z, Z̄ ∈ H(Ω) and (X ,Y) ∈
C(Ω). Then, for any (X̄ , Ȳ) ∈ C(Ω),

(4.71) ‖(Z − Z̄) • (X̄ , Ȳ)‖G(Ω) ≤ C‖(Z − Z̄) • (X ,Y)‖G(Ω)

where C = C(‖(X̄ , Ȳ)‖C(Ω), |||Z • (X ,Y)|||G(Ω)), |||Z̄ • (X ,Y)|||G(Ω)) is a given increasing
function with respect to both its arguments.

In the de�nition below of global solutions we include a condition about the decay of
the solutions along the diagonal. This condition is necessary to guarantee that, given a
solution, the curves which correspond to a given time T belong to C.

De�nition 4.13 (Global solutions). Let H be the set of all functions Z ∈ W 1,∞
loc (R2)

such that

(i) Z ∈ H(Ω) for all rectangular domains Ω; and
(ii) there exists a curve (X ,Y) ∈ C such that Z • (X ,Y) ∈ G.

The condition (ii), which corresponds to a decay condition, does not depend on the
particular curve for which it holds, as the next lemma shows. In particular, we can
replace condition (iv) in De�nition 4.13 by the requirement that Z • (Xd,Yd) ∈ G for the
diagonal (Y = X), which is given by Xd(s) = Yd(s) = s. We then denote

‖Z‖H = ‖Z • (Xd,Yd)‖G and |||Z|||H = |||Z • (Xd,Yd)|||G .

Lemma 4.14. Given Z ∈ H, we have Z•(X ,Y) ∈ G for any curve (X ,Y) ∈ C. Moreover,
the limit lims→∞ J(X (s),Y(s)) is independent of the curve (X ,Y) ∈ C.

In this lemma we denote as before Z4 by J where Θ = (X ,Y,Z,V,W) = Z • (X ,Y).
Later, we will see that the limit of J at in�nity corresponds to the total energy and the
lemma would allow us to prove that the total energy is conserved.

Proof of Lemma 4.14. For any curve (X̄ , Ȳ) ∈ C, we have to prove that

(4.72) |||Z • (X̄ , Ȳ)|||G <∞ and
∥∥Z • (X̄ , Ȳ)

∥∥
G <∞

and

(4.73) lim
s→∞ J̄(s) = 0

where J̄ = Z̄4 with (X̄ , Ȳ, Z̄, V̄, W̄) = Z • (X̄ , Ȳ). For any real number s̄ ∈ R that will
eventually tend to in�nity and denote Ωs̄ = [X̄ (−s̄), X̄ (s̄)]× [Ȳ(−s̄), Ȳ(s̄)]. Let

(4.74) smax =

{
Y−1(Ȳ(s̄)) if Y(X̄ (s̄)) ≤ Ȳ(s̄),
X−1(X̄ (s̄)) otherwise,

and

(4.75) smin =

{
Y−1(Ȳ(−s̄)) if Y(X̄ (−s̄)) ≤ Ȳ(−s̄),
X−1(X̄ (−s̄)) otherwise,

see Figure 5 for an example. One can check that by construction smin ≤ −s̄ ≤ s̄ ≤
smax and we denote Ω̃s̄ = [X (smin),X (smax)] × [Y(smin),Y(smax)]. We have Ωs̄ ⊂ Ω̃s̄.
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We construct the curve which consists of a (vertical or horizontal) straight line joining
(X (smin),Y(smin)) and (X (s̄),Y(s̄)), the curve (X̄ (s), Ȳ(s)) for s ∈ [−s̄, s̄] and another
(vertical or horizontal) straight line joining (X̄ (s̄), Ȳ(s̄)) and (X (smax),Y(smax)), see
Figure 5. We denote by (X̃ , Ỹ) this curve and we have that (X̃ , Ỹ) and (X ,Y) belong to
G(Ω̃s̄). By Lemma 4.9, we get

|||Z • (X̄ , Ȳ)|||G(Ωs̄) ≤ |||Z • (X̄ , Ȳ)|||G(Ω̃s̄)

≤ C1(‖(X̄ , Ȳ)‖C(Ω̃s̄), |||Θ|||G(Ω̃s̄)
) ≤ C1(‖(X̄ , Ȳ)‖C , |||Θ|||G)

and by letting s̄ tend to in�nity, we get |||Z • (X̄ , Ȳ)|||G <∞. By Lemma 4.11, we get
(4.76)∥∥Z • (X̄ , Ȳ)

∥∥
G(Ωs̄)

≤
∥∥Z • (X̄ , Ȳ)

∥∥
G(Ω̃s̄)

≤ C ‖Z • (X ,Y)‖G(Ω̃s̄)
≤ C ‖Z • (X ,Y)‖G

where the constant C depends on
∥∥(X̄, Ȳ )

∥∥
G(Ω̃s̄)

and |||Z • (X ,Y)|||G(Ω̃s̄)
, that is, on∥∥(X̄, Ȳ )

∥∥
G and |||Z • (X ,Y)|||G , which are independent on s̄. By letting s̄ tend to in�nity

in (4.76), we get
∥∥Z • (X̄ , Ȳ)

∥∥
G < ∞. It remains to prove (4.73). We know that J̄ is

positive. We denote J(s) = Z4(s) with (X ,Y,Z,V,W) = Z•(X ,Y) and, slightly abusing
the notation, we denote also by J , J(X,Y ) = Z4(X,Y ). For any s ∈ R, let s1 = X−1X̄ (s)
and s2 = Y−1Ȳ(s). If s1 ≤ s2, then X̄ (s) = X (s1) ≤ X (s2) and Y(s1) ≤ Ȳ(s) = Ȳ(s2).
By the monotonicity of J(X,Y ), we get

J(X (s1),Y(s1)) ≤ J(X̄ (s), Ȳ(s)) ≤ J(X (s2),Y(s2)).

If s2 ≤ s1, we get a similar result so that, �nally,

(4.77a) min{J(X (s1),Y(s1)), J(X (s2),Y(s2))} ≤ J(X̄ (s), Ȳ(s))

and

(4.77b) J(X̄ (s), Ȳ(s)) ≤ max{J(X (s1),Y(s1)), J(X (s2),Y(s2))}.

Since

|s1 − s| ≤ |X (s1)− s1|+
∣∣X̄ (s)− s

∣∣ ≤ ‖(X ,Y)‖C +
∥∥(X̄ , Ȳ)

∥∥
C ,

we have that lims→±∞ s1 = ±∞ similarly we obtain that lims→±∞ s2 = ±∞. Hence,
(4.77) yields

lim
s→±∞ J(X̄ (s), Ȳ(s)) = lim

s→±∞ J(X (s),Y(s)).

Thus, these limits are independent of the curve Γ̄ which is chosen. The existence of
the limits is guaranteed by the monotonicity and boudedness of J . The identity (4.73)
follows from (3.9). �

From Lemma 4.10, we infer the following global existence theorem for the equivalent
system.

Theorem 4.15 (Existence and uniqueness of global solutions). For any initial data
(X ,Y,Z,V,W) in G, there exists a unique solution Z ∈ H such that Θ = Z • (X ,Y).
We denote this solution mapping by S : G → H.
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(X (s),Y(s))

s̄ smax

−s̄

smin

(X̄ (s), Ȳ(s))

Figure 5. Prolongation of the curve Γ̄.

5. Semigroup of solution ST in F

From a solution function Z ∈ H in the whole plane, we want to extract the data at
a given time. It is enough to do it at t = 0, and the de�nition below describes how we
proceed.

De�nition 5.1. Given Z ∈ H, we de�ne

(5.1) X (s) = sup{X ∈ R | t(X ′, 2s−X ′) < 0 for all X ′ < X}

and Y(s) = 2s−X (s). Then, we have (X (s),Y(s)) ∈ C and Z • (X ,Y) ∈ G0. We denote
by E the mapping from H to G0 that associates to any Z ∈ H the element Z •(X ,Y) ∈ G0

as de�ned here.

Proof of the well-posedness of De�nition 5.1. First we prove that X is increasing. Let
Xn be a sequence such that Xn < X (s) and Xn → X (s). We have t(Xn, 2s−Xn) < 0 for
any s̄ > s. Since t is decreasing with respect to the second variable (as tY ≤ 0), we have
that t(Xn, 2s̄ − Xn) < 0 and therefore Xn ≤ X (s̄). After letting n tend to in�nity, we
obtain X (s) ≤ X (s̄) so that X is an increasing function. Let us prove that X is Lipschitz
with Lipschitz coe�cient smaller than 2. Let us assume the opposite, i.e., there exists
s̄ > s such that

(5.2) X (s̄)−X (s) > 2(s̄− s).

It implies that Y(s) > Y(s̄). Since tX ≥ 0 and tY ≤ 0, we have, for any (X,Y ) ∈
[X (s),X (s̄)]× [Y(s̄),Y(s)]

0 = t(X (s),Y(s)) ≤ t(X,Y(s)) ≤ t(X,Y ) ≤ t(X,Y(s̄)) ≤ t(X (s̄),Y(s̄)) = 0

and, therefore t(X,Y ) = 0 on Ω = [X (s),X (s̄)]× [Y(s̄),Y(s)]. Let us consider the point
(X,Y ) ∈ Ω for Y = Y(s) and X = 2s̄ − Y(s). We have t(X,Y ) = 0, X + Y = 2s̄ and
X < X (s̄), which contradict the de�nition of X at s̄. Thus, we have proved that X is
Lipschitz. To show that (X ,Y) ∈ C, it remains to prove that ‖X − Y‖L∞(R) < ∞. We

claim that there there exists L̄ such that

(5.3) lim inf
X→∞

t(X + L,X) ≥ 1
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for any L ≥ L̄. Let us prove this claim. By using the fact that xX = c(U)tX and
c(U) ≥ 1

κ , we get

t(X + L,X) = t(X,X) +
∫ X+L

X
tX(X̃,X) dX̃

≥ −|||Z|||H +
L

2κ
+

1
κ

∫ X+L

X
(xX −

1
2

)(X̃,X) dX̃.(5.4)

We look at the domain ΩX,L = [X,X +L]× [X,X +L]. We consider the curve Xd(s) =
Yd(s) = s (the diagonal) and the curve (X̄ , Ȳ) which consists of a horizontal and a
vertical segment given by{

X̄ (s) = 2s−X, Ȳ(s) = X for s ∈ [0, X + L
2 ]

X̄ (s) = X + L, Ȳ(s) = 2s− (X + L) for s ∈ [X + L
2 , X + L].

By Lemma 4.11 we get

(5.5)

∫ X+L

X
(xX −

1
2

)2(X̃,X) dX̃ ≤
∥∥Z • (X̄, Ȳ)

∥∥2

G(ΩX,L)
≤ C ‖Z • (Xd,Yd)‖2G(ΩX,L)

where the constant C depends on L and |||Z • (Xd,Yd)|||G(ΩX,L) which is bounded by

|||Z|||H. We have

lim
X→∞

‖Z • (Xd,Yd)‖2G(ΩX,L) = lim
X→∞

∫ X+L

X
(U2(X̃, X̃)+(ZaX)2(X̃, X̃)+(ZaY )2(X̃, X̃)) dX̃ = 0,

and therefore (5.5) and (5.4) yield

lim inf
X→∞

t(X + L,X) ≥ −‖Z‖H +
L

2κ
which, for L large enough, implies (5.3). Using the same type of argument, we prove
that there exists L such that

lim inf
X→∞

t(X + L,X) ≥ 1, lim sup
X→∞

t(X − L,X) ≤ −1,(5.6)

lim inf
X→−∞

t(X + L,X) ≥ 1, lim inf
X→−∞

t(X − L,X) ≤ −1.(5.7)

Let us prove that lim sups→∞(X (s) − s) ≤ L
2 . We assume the opposite and then, there

exists s ∈ R such that t(s + L
2 , s −

L
2 ) ≥ 1, by (5.6), and X (s) > s + L

2 . It implies

that Y(s) = 2s − X (s) ≤ s − L
2 , and, using the monotonicity of t (that is tX ≥ 0 and

tY ≤ 0), we get 1 ≤ t(s + L
2 , s −

L
2 ) ≤ t(X (s),Y(s)) = 0, which is a contradiction.

Similarly one proves that lim infs→∞(X (s)− s) ≥ −L
2 , lim sups→−∞(X (s)− s) ≤ L

2 and

lim infs→−∞(X (s)− s) ≥ −L
2 and it follows that

lim sup
s→±∞

|X (s)− s| ≤ L

2
.

Hence, the condition (2.15a) is satis�ed and (X ,Y) ∈ C. By Lemma 4.14, we have
(X ,Y,Z,V,W) = Z • (X ,Y) ∈ G and by construction Z1(s) = t(X (s),Y(s)) = 0 so that
Z • (X ,Y) ∈ G0. �
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De�nition 5.2. Given any T , let us introduce the mapping tT : H → H de�ned as
follows. For any Z ∈ H, let tT (Z) = Z̄ ∈ H be given by

t̄(X,Y ) = t(X,Y )− T
and

x̄(X,Y ) = x(X,Y ), Ū(X,Y ) = U(X,Y ),

J̄(X,Y ) = J(X,Y ), K̄(X,Y ) = K(X,Y ).

We have

(5.8) tT+T ′ = tT ◦ tT ′ .

We have now de�ned the following mappings:

(5.9) F
C // G0
D

oo
S // H
E

oo tT
ww

The mapping tT is used to extract the solution at any given time T by only using the
operator E, which is designed for time zero. Indeed, by taking E ◦ tT , we recover an
element in G0 which corresponds to the solution at time T . In the following lemma, we
prove that F and H are in bijection, which also justify the introduction of F : It is a
consistent way to parametrize initial data: To any element in F , there corresponds a
unique solution in H, and vice versa. The G0 does not �t that role as G0 and H are not
in bijection.

Lemma 5.3. We have

(5.10) C ◦D ◦E = E, D ◦C = Id

and

(5.11) E ◦ S ◦C = C, S ◦E = Id .

It follows that S ◦C = (D ◦E)−1 and the sets F and H are in bijection.

Proof. Step 1. We prove (5.10). Given Z ∈ H, let (X ,Y,Z,V,W) = E(Z), (ψ1, ψ2) =
D(X ,Y,Z,V,W) and (X̄ , Ȳ, Z̄, V̄, W̄) = C(ψ1, ψ2). We want to prove that (X̄ , Ȳ, Z̄, V̄, W̄) =
(X ,Y,Z,V,W). We have to prove that X = X̄ , the rest will easily follow. For any s ∈ R,
we claim that for any couple (X,Y ) such that X < X (s) and X + Y = 2s then we have
either

(5.12) x1(X) < x1(X (s)) or x2(Y ) > x2(Y(s)).

Let us assume the opposite, that is, there exist s̄, X̄ and Ȳ such that X̄ < X (s̄),
X̄ + Ȳ = 2s̄ and

x1(X̄) = x1(X (s̄)) = x(s̄) = x2(Y(s̄)) = x2(Ȳ ).

Here, x(s) denotes Z2(s), see (3.27). Let s0 = X−1(X̄) and s1 = Y−1(Ȳ ). Since
X̄ < X (s̄) and Ȳ > Y(s̄), we have s0 < s̄ < s1. We have

x(s0) = x1(X (s0)) = x1(X̄) = x(s̄)

and, similarly, we obtain that x(s1) = x(s̄). We consider the rectangular domain Ω =
[X (s0),X (s1)] × [Y(s0),Y(s1)]. Since x(s) = x(s0) = x(s1) for all s ∈ [s0, s1], we have
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ẋ = 0 on [s0, s1] because x is nondecreasing. We have ẋ = 0 = V2(X )Ẋ +W2(Y)Ẏ on
[s0, s1], which implies that V2(X) = 0 for a.e. X ∈ [X (s0),X (s1)] andW2(Y ) = 0 for a.e.
Y ∈ [Y(s0),Y(s1)]. By (3.8b) and (3.8a) it implies V1 = V2 = V3 = 0 on [X (s0),X (s1)]
and W1 =W2 =W3 = 0 on [Y(s0),Y(s1)]. Then, we can check that Z̃ given by

t̃(X,Y ) = 0, x̃(X,Y ) = x(s̄), Ũ(X,Y ) = U(s̄)

and
J̃(X,Y ) = J1(X) + J2(Y ), K̃(X,Y ) = K1(X) +K2(Y )

is a solution to (2.13) in Ω (that is, Z̃ ∈ H(Ω)) and Z̃ • (X ,Y) = (X ,Y,Z,V,W). By

uniqueness of the solution, we get Z̃ = Z. In particular, we have t(X̄, Ȳ ) = 0 such that
X̄ + Ȳ = 2s and X̄ < X (s̄), which contradicts the de�nition of X (s) given by (5.1).
This concludes the proof of the claim (5.12). Since x1(X (s)) = x2(2s−X (s)) we get, by
(3.27), that

X̄ (s) ≤ X (s).
We have by the continuity of x1 and x2 that

(5.13) x1(X̄ (s)) = x2(Ȳ(s)).

Let us assume that X̄ (s) < X (s), then, by the claim (5.12) we have proved, we have
either x1(X̄ (s)) < x1(X (s)) or x2(Ȳ(s)) > x2(Y(s)). If x1(X̄ (s)) < x1(X (s)), then, as
Ȳ(s) > Y(s)

x1(X̄ (s)) < x1(X (s)) = x2(Y(s)) ≤ x2(Ȳ(s))
which contradicts (5.13). Similarly, we check that if x2(Ȳ(s)) > x2(Y(s)) then we obtain
a contradiction to (5.13). Hence, X̄ = X and therefore Ȳ = Y. Then, x̄(s) = x2(X̄ (s)) =
x2(X (s)) = x(s) and similarly, we treat the other components of Z̄. From the de�nitions
of C and D, we have that V̄ = V and W̄ =W. Hence, we have proved that C◦D◦E = E.
The fact that D ◦C = Id follows directly from the de�nitions of C and D.
Step 2. We prove (5.11). Given (ψ1, ψ2) ∈ F , let (X ,Y,Z,V,W) = C(ψ1, ψ2),

Z = S(X ,Y,Z,V,W) and (X̄ , Ȳ, Z̄, V̄, W̄) = E(Z). We have to prove that X̄ = X ,
the rest will easily follow. Since Z ∈ H is a solution with data (X ,Y,Z,V,W) ∈ G0,
we have t(X (s),Y(s)) = 0. Hence, from the de�nition of E, we get X̄ (s) ≤ X (s).
Assume that there exists s ∈ R such that X̄ (s) < X (s). By the de�nition of E, we have
t(X̄ (s), Ȳ(s)) = 0. Let

s0 = X−1(X̄ (s)) and s1 = Y−1(Ȳ(s)).

We have
X (s0) = X̄ (s) < X (s) and Y(s1) = Ȳ(s) > Y(s),

and therefore s0 < s < s1. Due to the monotonicity of t(X,Y ) (that is, tX ≥ 0 and tY ≤
0), since t(X (s0),Y(s0)) = t(X̄ (s), Ȳ(s)) = t(X (s1),Y(s1)) = 0, we get that t(X,Y ) = 0
on the rectangle Ω = [X (s0),X (s1)] × [Y(s0),Y(s1)]. It implies that xX = c(U)tX = 0
and xY = c(U)tY = 0 on Ω. Hence, the function x(X,Y ) is constant on Ω and we have

x1(X̄ (s)) = x1(X (s0)) = x(X (s0),Y(s0)) = x(X (s1),Y(s1)) = x2(Y(s1)) = x2(Ȳ(s)).

However, the fact that x1(X̄ (s)) = x2(Ȳ(s)) and X̄ (s) < X (s) contradicts the de�nition
of X in (3.22), and therefore we have proved that X̄ = X . Then, Ȳ = Y and

Z̄(s) = Z(X̄ (s), Ȳ(s)) = Z(X (s),Y(s)) = Z(s).
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Similarly, one proves that V̄ = V and W̄ =W. Thus we have proved that E ◦S ◦C = C.
The fact that S◦E = Id follows from the uniqueness of the solution for a given data. �

De�nition 5.4. For any T ≥ 0, we de�ne the mapping ST : F → F by

(5.14) ST = D ◦E ◦ tT ◦ S ◦C.

Theorem 5.5. The mapping ST is a semigroup.

Proof. We have

ST ◦ ST ′ = D ◦E ◦ tT ◦ S ◦C ◦D ◦E ◦ tT ′ ◦ S ◦C

= D ◦E ◦ tT ◦ tT ′ ◦ S ◦C (by Lemma 5.3)

= D ◦E ◦ tT+T ′ ◦ S ◦C (by (5.8))

= ST+T ′ .

�

6. Returning to the original variables

De�nition 6.1. Given ψ = (ψ1, ψ2) ∈ F , we de�ne (u,R, S, µ, ν) ∈ D as

(6.1a) u(x) = U1(X) if x1(X) = x

or, equivalently,

(6.1b) u(x) = U2(X) if x2(X) = x

and1

µ = (x1)#(J ′1(X) dX),(6.1c)

ν = (x2)#(J ′2(Y ) dY ),(6.1d)

R(x) dx = (x1)# (2c(U1(X))V1(X) dX) ,(6.1e)

S(x) dx = (x2)# (−2c(U2(Y ))V2(Y ) dY ) .(6.1f)

The relations (6.1e) and (6.1f) are equivalent to

(6.2a) R(x1(X))x′1(X) = 2c(U1(X))V1(X)

and

(6.2b) S(x2(Y ))x′2(Y ) = 2c(U2(Y ))V2(Y )

for a.e. X and Y . We denote by M : F → D the mapping that to any ψ ∈ F associates
(u,R, S, µ, ν) ∈ F as de�ned above.

We have to prove that the measures (x1)# (c(U1(X))V1(X) dX) and (x2)# (−c(U2(Y ))V2(Y ) dY )
are absolutely continuous with respect to the Lebesgue measure and that (u,R, S, µ, ν)
belongs to D so that the de�nition is well-posed. It will be done in the proof of the
following lemma where an equivalent de�nition of the mapping M is given.

1The push-forward of a measure λ by a function f is the measure f#λ de�ned by f#λ(B) = λ(f−1(B))
for Borel sets B.
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Lemma 6.2. Given ψ = (ψ1, ψ2) ∈ F , let (u,R, S, µ, ν) = M(ψ1, ψ2) as de�ned in
De�nition 6.1. Then, for any Θ = (X ,Y,Z,V,W) ∈ G0 such that (ψ1, ψ1) = DΘ, we
have

(6.3a) u(x̄) = U(s) if x̄ = x(s)

and

µ = x#(V4(X (s))Ẋ (s) ds),(6.3b)

ν = x#(W4(Y(s))Ẏ(s) ds),(6.3c)

R(x) dx = x#

(
2c(U(s))V3(X (s))Ẋ (s) ds

)
,(6.3d)

S(x) dx = x#

(
−2c(U(s))W3(Y(s))Ẏ(s) ds

)
.(6.3e)

The relations (6.3d) and (6.3e) are equivalent to

(6.4a) R(x(s))V2(X (s)) = c(U(s))V3(X (s)) for any s such that Ẋ (s) > 0

and

(6.4b) S(x(s))W2(X (s)) = −c(U(s))W3(X (s)) for any s such that Ẏ(s) > 0,

respectively.

Proof. We decompose the proof into 5 steps.
Step 1. We prove that (6.1) imply (6.3). If x̄ = x1(X), let s = X−1(X). Then, we

have x̄ = x1(X (s)) = x(s) and U1(X) = U1(X (s)) = U(s). Hence, (6.1a) implies (6.3a).
For any measurable set A, we have

µ(A) =
∫
x−1

1 (A)
J ′1(X) dX

=
∫

(x1◦X )−1(A)
J ′1(X (s))Ẋ (s) ds (after a change of variables)

=
∫
x−1(A)

V4(X (s))Ẋ (s) ds (by the de�nition of D)

and therefore µ = x#(V4(X (s))Ẋ (s) ds). One proves in the same way the other identities
in (6.3).
Step 2. We prove that u is a well-de�ned function L2 that is Hölder continuous with

exponent 1/2. Given x̄ such that x̄ = x(s0) = x(s1). Since x is nondecreasing, it implies

that ẋ = V2(X )Ẋ +W2(Y)Ẏ = 0 in [s0, s1]. Hence, V2(X )Ẋ = W2(Y)Ẏ = 0 as both

quantities are positive. By (3.8a), it implies that V3(X )Ẋ =W3(Y)Ẏ = 0 and therefore

U̇ = V3(X )Ẋ +W3(Y)Ẏ = 0

in [s0, s1] and U(s0) = U(s1). The de�nition of u is therefore well-posed. We have∫
R
u2(x) dx =

∫
R
u2(x(s))ẋ(s) ds ≤ ‖U‖2L2
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and u ∈ L2(R). We have

(6.5) u(x(s))− u(x(s̄)) =
∫ s

s̄
U̇(s) ds =

∫ s

s̄
(V3(X )Ẋ +W3(Y)Ẏ) ds.

Since Θ ∈ G0, we have t(s) = 0 which implies that V1(X )Ẋ = W1(Y)Ẏ and, therefore,

V2(X )Ẋ =W2(Y)Ẏ, by (3.8b), and

(6.6) ẋ = 2V2(X )Ẋ = 2W2(Y)Ẏ.

By using the Cauchy�Schwarz inequality and (3.8a), we get∫ s

s̄
|V3(X )| Ẋ ds ≤

(∫ s

s̄
V2

3 (X )Ẋ ds
)1/2(∫ s

s̄
Ẋ ds

)1/2

≤ C
(∫ s

s̄
V2

2 (X )Ẋ ds
)1/2

≤ C
(∫ s

s̄
ẋ ds

)1/2

= C(x(s)− x(s̄))1/2(6.7)

where the constant C depends on |||Θ|||G and |X (s)−X (s̄)|. Similarly, one proves that∫ s
s̄ |W3(Y)| Ẏ ds ≤ C(x(s) − x(s̄))1/2. Hence, (6.5) implies that u is locally Hölder con-
tinuous with exponent 1/2.
Step 3. We show that the measures x#

(
c(U(s))V3(X (s))Ẋ (s) ds

)
and

x#

(
−c(U(s))W3(Y(s))Ẏ(s) ds

)
are absolutely continuous and (6.4a) and (6.4b) hold.

The inequality (6.7) proves that the measure V3(X )Ẋ ds is absolutely continuous with
respect to ẋ ds. For any set A of zero measure, we have

∫
x−1(A) ẋ ds = 0 and therefore∫

x−1(A) V3(X )Ẋ ds = 0. It follows that

x#

(
2c(U(s))V3(X (s))Ẋ (s) ds

)
(A) =

∫
x−1(A)

2c(U)V3(X )Ẋ ds = 0

and the measure x#

(
2c(U(s))V3(X (s))Ẋ (s) ds

)
is absolutely continuous. In the same

way, one proves that x#

(
−2c(U(s))W3(Y(s))Ẏ(s) ds

)
is absolutely continuous and R(x)

and S(x) as given by (6.3d) and (6.3e) are well-de�ned. We have

(6.8)

∫
x−1(A)

R(x(s))ẋ(s) ds =
∫
x−1(A)

2c(U(s))V3(X (s))Ẋ (s) ds

for any measurable set A. For any measurable set B, we have the decomposition
x−1(x(B)) = B ∪ (Bc ∩ x−1(x(B))). Let prove that the set Bc ∩ x−1(x(B)) has measure
zero with respect to ẋ(s) ds. We consider a point s̄ ∈ Bc ∩x−1(x(B)), there exists s ∈ B
such that x(s̄) = x(s). Since x is increasing, it implies that ẋ(s̄) = 0 and therefore∫
Bc∩x−1(x(B)) ẋ(s) ds = 0 so that the set Bc ∩ x−1(x(B)) has zero measure with respect

to ẋ(s) ds. Since V3(X (s))Ẋ (s) ds is absolutely continuous with respect to ẋ(s) ds, it
implies that

∫
Bc∩x−1(x(B)) V3(X (s))Ẋ (s) ds = 0. Hence, taking A = x(B) in (6.8), we
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obtain ∫
B
R(x(s))ẋ(s) ds =

∫
B

2c(U(s))V3(X (s))Ẋ (s) ds

for any Borel set B. Hence,

(6.9) R(x(s))ẋ(s) = 2c(U(s))V3(X (s))Ẋ (s)

which yields

(6.10) R(x(s))V2(X (s)) = c(U(s))V3(X (s))

after simplifying by Ẋ (s). Similarly, we obtain (6.4b).
Step 4. We show that R and S belong to L2 and ux = R−S

2c . We have∫
R
R2(x) dx =

∫
R
R2(x(s))ẋ ds

= 2
∫

R
R2(x(s))V2(X (s))Ẋ ds

= 2
∫
{s∈R|V2(X (s))>0}

(R(x(s))V2(X (s)))2

V2(X (s))
Ẋ ds

≤ 4
∫

R
V4(X )Ẋ ds (by (6.4a) and (3.8a))

≤ 4 ‖J‖L∞(R) ≤ 4|||Θ|||G

because J̇(s) = V4(X )Ẋ +W4(Y)Ẏ and V4 and W4 are positive. Hence R ∈ L2 and,
similarly, one proves that S ∈ L2. For any smooth function φ with compact support, we
have ∫

R
uφx dx =

∫
R
u(x(s))φx(x(s))ẋ(s) ds =

∫
R
U(s)φ(x(s))s ds.

After integrating by parts, it yields∫
R
uφx dx = −

∫
R
U̇(s)φ(x(s)) ds =

∫
R

(V3(X )Ẋ +W3(Y)Ẏ)φ(x(s)) ds

=
∫

R

1
c(U)

(R(x(s))V2(X )Ẋ − S(x(s))W2(Y)Ẏ)φ(x(s)) ds

=
∫

R

1
2c(U)

(R(x(s))− S(x(s))φ(x(s))ẋ ds (by (6.6))

=
∫

R

R− S
2c(u)

φdx,

after a change of variables. Hence, ux = R−S
2c(u) in the sense of distribution.

Step 5. We show that µac = 1
4R

2dx and νac = 1
4S

2dx. Let

(6.11) A = {s | V2(X (s)) > 0} and B = (x(Ac))c.

We have

meas(Bc) =
∫
Ac
ẋ ds = 0
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because ẋ = 0 almost everywhere on Ac, by (6.6). The set B has therefore full measure.
We have x−1(B) ⊂ A. Indeed, for any s ∈ x−1(B), we have x(s) 6= x(s̄) for all s̄ ∈ Ac.
For any measurable subset B′ ⊂ B, we have, by de�nition of µ, that

(6.12) µ(B′) =
∫
x−1(B′)

V4(X (s))Ẋ (s) ds.

Hence, since x−1(B′) ⊂ A,

µ(B′) =
∫
x−1(B′)

V4(X )V2(X )
V2(X )

Ẋ ds

=
∫
x−1(B′)

c2(U)V2
3 (X )

2V2(X )
Ẋ ds (by (3.8a))

=
1
4

∫
x−1(B′)

R2(x(s))ẋ(s) ds (by (6.4a) and (6.6))

=
1
4

∫
B′
R2 dx

and therefore µac = 1
4R

2 dx. Similarly, one proves that νac = 1
4S

2 dx. �

Lemma 6.3. Given (u0, R0, S0, µ0, ν0) ∈ D, let us denote (u,R, S, µ, ν)(T ) = M ◦ ST ◦
L(u0, R0, S0, µ0, ν0) and Z = S ◦ L(u0, R0, S0, µ0, ν0). Then, we have

(6.13) u(t(X,Y ), x(X,Y )) = U(X,Y )

for all (X,Y ) ∈ R2, and

R(t(X,Y ), x(X,Y ))xX(X,Y ) = c(U(X,Y ))UX(X,Y ),(6.14a)

S(t(X,Y ), x(X,Y ))xY (X,Y ) = −c(U(X,Y ))UY (X,Y ),(6.14b)

for almost all (X,Y ) ∈ R2 such that xX(X,Y ) > 0 and xY (X,Y ) > 0. We have

(6.15) ut =
1
2

(R+ S) and ux =
1

2c(u)
(R− S)

in the sense of distributions.

Proof. We consider a solution Z ∈ H. Given (X,Y ) ∈ R2, let us denote t̄ = t(X,Y ) and
x̄ = x(X,Y ). Let (X ,Y,Z,V,W) = E ◦ tt̄(Z). By de�nition, we have t(X (s),Y(s)) = t̄,
and, slightly abusing the notation, x(s) = Z2(s) = x(X (s),Y(s)) and U(s) = Z3(s) =
U(X (s),Y(s)) for all s ∈ R. By Lemma 6.2, we have u(t̄, x̄) = U(s) for any s such that
x(s) = x̄. It implies that, for any s̄ such that

(6.16a) t(X (s̄),Y(s̄)) = t̄ = t(X,Y )

and

(6.16b) x(X (s̄),Y(s̄)) = x̄ = x(X,Y ),

we have
u(t̄, x̄) = U(X (s̄),Y(s̄)).

Then, (6.13) will be proved once we have proved that

(6.17) U(X (s̄),Y(s̄)) = U(X,Y ).
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Let us prove that when (6.16) hold, then either (X,Y ) = (X (s̄),Y(s̄)) or

(6.18) xX = xY = UX = UY = 0,

in the rectangle with corners at (X,Y ) and (X (s̄),Y(s̄)), so that (6.17) holds in both
cases. We consider �rst the case where X (s̄) ≤ X and Y(s̄) ≤ Y . Since the function
x is increasing in the X and Y directions, we must have xX = xY = 0 in the rectangle
[X (s̄), X] × [Y(s̄), Y ] and, by (4.18c), UX = UY = 0 in the same rectangle so that U
is constant and we have proved (6.17). In the case where X (s̄) ≤ X and Y(s̄) ≥ Y ,
since the function t is increasing in the X direction and decreasing in the Y direction,
it follows that tX = tY = 0 in the rectangle [X (s̄), X] × [Y,Y(s̄)]. Hence, xX = xY = 0
and, as before, we prove (6.17). The other cases can be treated in the same way and this
concludes the proof of (6.17) and therefore (6.13) holds. Let us prove (6.14a). By (6.4a)
and the de�nition of E, we get

R(t̄, x(s))xX(X (s),Y(s)) = c(U(X (s),Y(s)))UX(X (s),Y(s))

so that

(6.19) R(t(X,Y ), x(X,Y ))xX(X (s̄),Y(s̄)) = c(U(X (s̄),Y(s̄)))UX(X (s̄),Y(s̄))

for any s̄ such that (6.16) holds. We have proved that when (6.16) is satis�ed, then either
(X,Y ) = (X (s̄),Y(s̄)) or (6.18) holds. Hence, (6.14a) follows from (6.19). Similarly, one
proves (6.14b). For any smooth function φ(t, x) with compact support, we have

(6.20)

∫
R2

u(t, x)φt(t, x) =∫
R2

u(t(X,Y ), x(X,Y ))φt(t(X,Y ), x(X,Y ))(tXxY − xXtY ) dXdY

where we have used (4.18a) and (6.13). By di�erentiating the function φ(t(X,Y ), x(X,Y ))
with respect to X and Y , we get that

φ(t(X,Y ), x(X,Y ))XxY−φ(t(X,Y ), x(X,Y ))Y xX = φt(t(X,Y ), x(X,Y ))(tXxY−tY xX).

We insert this identity in (6.20) and obtain, after integrating by parts,∫
R2

u(t, x)φt(t, x) dtdx = −
∫

R2

((UxY )X − (UxX)Y )(X,Y )φ(t(X,Y ), x(X,Y )) dXdY

= −
∫

R2

((UXxY − UY xX)(X,Y )φ(t(X,Y ), x(X,Y )) dXdY.

We use (6.14) and get∫
R2

u(t, x)φt(t, x) dtdx = −
∫

R2

((R+ S

c(u)
φ
)
◦ (t, x)xXxY dXdY

= −
∫

R2

(1
2

(R+ S)2φ
)
◦ (t, x) (tXxY − txY xX) dXdY

= −
∫

R2

1
2

(R+ S)(t, x)φ(t, x) dtdx.

This proves the �rst identity in (6.15); the second one is proven in the same way. �

We can now de�ne the semigroup mapping S̄T on D, the original set of variables.
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De�nition 6.4. For any T > 0, let S̄T : D → D be de�ned as

S̄T = M ◦ ST ◦ L

Given (u0, R0, S0, µ0, ν0) ∈ D, let us denote (u,R, S, µ, ν)(t) = S̄t(u0, R0, S0, µ0, ν0).
In the theorem that follows, we prove that u(t, x) is a weak solution of the nonlinear
wave equation. However it is not clear if S̄T is a semigroup. Indeed, we have

S̄T ◦ S̄T ′ = M ◦ ST ◦ L ◦M ◦ ST ′ ◦ L.

By the semigroup property of ST , it would follow immediately that S̄T is also a semigroup
if we had L ◦M = Id, but this identity does not hold in general. It is the aim of the last
section to show that S̄T is a semigroup.

7. Relabeling symmetry

We consider the set of transformations of the R2-plane given by

(X,Y ) 7→ (f(X), g(Y ))

for any (f, g) ∈ G2, where G is the group of di�eomorphisms on the line, see De�nition
3.3. It is a subgroup of the group of di�eomorphisms of R2. Such transformations let the
characteristics lines invariant. Indeed, vertical and horizontal lines, which correspond to
the characteristics in our new sets of coordinates, remain vertical and horizontal lines
through this mapping. In this section, we show that the subgroup G2 plays an essential
role by exactly capturing the degree of freedom we have introduced when changing coor-
dinates and introduced the equivalent system (2.13). Given f and g in G, the R2 plane
is stretched in the X and Y direction by the transformations X 7→ f(X) and Y 7→ g(Y ).
The solutions of (2.13) are preserved and we can de�ne an action of G2 on the set of
solutions H.

De�nition 7.1. For any Z ∈ H, f and g in G, we de�ne Z̄ ∈ H as

(7.1) Z̄(X,Y ) = Z(f(X), g(Y )).

The mapping from H×G2 to H given by Z × (f, g) 7→ Z̄ de�nes an action of the group
G2 on H and we denote Z̄ = Z · (f, g).

Proof of well-posedness of De�nition 7.1. For any Ω, given Z ∈ H(Ω) and (f, g) ∈ G2,
let X̄l = f(Xl), Xr = f(Xr), Ȳl = g(Yl), Ȳr = g(Yr) and

Ω̄ = [X̄l, X̄r]× [Ȳl, Ȳr].

Let us prove that Z̄ ∈ H(Ω̄). We have

Z̄X(X,Y ) = f ′(X)ZX(f(X), g(Y )), Z̄Y (X,Y ) = g′(Y )ZX(f(X), g(Y )).

and
Z̄XY (X,Y ) = f ′(X)g′(Y )ZXY (f(X), g(Y )).

By using the linearity of the mapping F (Z) in (2.14), we get

Z̄XY = f ′g′ZXY (f, g)

= f ′g′F (Z(f, g))
(
ZX(f, g), ZY (f, g)

)
= F (Z(f, g))

(
f ′ZX(f, g), g′ZY (f, g)

)
(by the linearity of F (Z))
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= F (Z̄)(Z̄X , Z̄Y )

and Z̄ is a solution of (2.13). Since f and g belong to G, there exists δ > 0 such that
f ′(X) > δ for a.e. X ∈ R and g′(Y ) > δ for a.e. Y ∈ R, see Lemma 3.6. We have
to check that Z̄ ful�lls (4.18). It is not di�cult to do so once one has observed that
the equalities and inequalities in (4.18) enjoy the required homogeneity properties. For
example, we have

2J̄X x̄X = 2f ′2JX(f, g)xX(f, g) = f ′2(c(U(f, g))UX(f, g))2 = (c(Ū)ŪX)2

and

x̄X = f ′xX(f, g) ≥ 0.
We will prove that Z̄ ful�lls the condition (ii) in De�nition 4.13 after we have introduced
the action of G2 on G. �

We can de�ne an action on C as follows. This action corresponds to a stretching of
the curve in the X and Y direction.

De�nition 7.2. Given (X ,Y) ∈ C, we de�ne (X̄ , Ȳ) ∈ C such that

X̄ = f−1 ◦ X ◦ h Ȳ = g−1 ◦ Y ◦ h(7.2)

where h is the re-normalizing function which yields X̄ + Ȳ = 2 Id, that is,

(7.3) (f−1 ◦ X + g−1 ◦ Y
)
◦ h = 2 Id .

We denote (X̄ , Ȳ) = (X ,Y) · (f, g).

Proof of wellposedness of De�nition 7.2. Let us denote v = f−1 ◦ X + g−1 ◦ Y. We
have v − Id ∈ W 1,∞(R) because f−1 − Id, g−1 − Id, X − Id and Y − Id all belong to
W 1,∞(R). There exists δ > 0 such that (f−1)′ ≥ δ and (g−1)′ ≥ δ a.e. and therefore

v̇ ≥ δ(Ẋ + Ẏ) = 2δ. Hence, by Lemma 3.6, we have that v is invertible so that h exists
and h− Id ∈W 1,∞(R). One proves then easily that (X̄ , Ȳ) ∈ C. �

We de�ne the action on G so that it commutes with the • operation and the actions
on H and C, that is,
(7.4) (Z • Γ) · φ = (Z · φ) • (Γ · φ)

for any Z ∈ H, Γ = (X ,Y) ∈ C and φ = (f, g) ∈ G2. We obtain the following de�nition.

De�nition 7.3. For any Θ = (X ,Y,Z,V,W) ∈ G and f, g ∈ G, we de�ne Θ̄ =
(X̄ , Ȳ, Z̄, V̄, W̄) ∈ G as follows

(X̄ , Ȳ) = (X ,Y) · (f, g)

and

V̄(X) = f ′(X)V(f(X)) W̄(Y ) = g′(Y )W(g(Y ))(7.5)

and

(7.6) Z̄ = Z ◦ h
where h is given by (7.3). The mapping from G×G2 to G given by Θ×(f, g) 7→ Θ̄ de�nes
an action of the group G2 on G that we denote Θ̄ = Θ · (f, g).
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To check that this de�nition is well-posed, we have to check that Θ̄ ∈ G. This can
be done without any special di�culty and we omit the details here. Let us however
prove (7.4) in details as we will use it several times in the following. For any Z ∈ H,
Γ = (X ,Y) ∈ C and φ = (f, g) ∈ G2, we denote Θ = (X ,Y,Z,V,W) = Z • Γ, Θ̄ =
(X̄ , Ȳ, Z̄, V̄, W̄) = Θ · φ, Γ̄ = (X̄ , Ȳ) = Γ · φ and Θ̃ = Z̄ · Γ̄. We want to prove that

Θ̃ = Θ̄. We have Z(s) = Z(X (s),Y(s)) and, by (7.6), Z̄(s) = Z(X ◦ h(s),Y ◦ h(s)).
Hence, by (7.2),

Z̃ = Z̄(X̄ , Ȳ) = Z(f ◦ X̄ , g ◦ Ȳ) = Z(X ◦ h,Y ◦ h) = Z̄.
We have V(X (s)) = ZX(X (s),Y(s)) and, by (7.5),

V̄(X̄ (s)) = f ′(X̄ (s))V(f ◦ X̄ (s)) = f ′(X̄ (s))V(X ◦ h(s))

= f ′(X̄ (s))ZX(X ◦ h(s),Y ◦ h(s))

and

Ṽ(X̄ (s)) = Z̄X(X̄ (s), Ȳ(s)) = f ′(X (s))ZX(f ◦ X̄ (s), g ◦ Ȳ(s))

= f ′(X̄ (s))ZX(X ◦ h(s),Y ◦ h(s)).

Hence, Ṽ = V̄. Similarly one proves that W̃ = W̄, which concludes the proof of (7.4).

End of proof of well-posedness of De�nition 7.1. For any φ ∈ G2 and Z ∈ H, it remains
to prove that Z̄, as de�ned by (7.1), ful�lls the condition (ii) in De�nition 4.13. By
this same condition, for any Z ∈ H, there exists a curve Γ = (X ,Y) ∈ G such that
Z •Γ ∈ G. From (7.4), it follows that, for the curve Γ̄ = Γ ·φ, we have Z̄ • Γ̄ ∈ G because
(Z • Γ) · φ ∈ G and therefore Z̄ ful�lls the condition (ii) in De�nition 4.13. �

De�nition 7.4. For any ψ = (ψ1, ψ2) ∈ F and f, g ∈ G, we de�ne ψ̄ = (ψ̄1, ψ̄2) ∈ F as
follows

x̄1(X) = x1(f(X)), Ū1(X) = U1(f(X)), J̄1(X) = J1(f(X)),

x̄2(Y ) = x2(g(Y )), Ū2(Y ) = U2(g(Y )), J̄2(Y ) = J2(g(Y )),

and

V̄1(X) = V1(f(X))f ′(X), V̄2(Y ) = V2(g(Y ))g′(Y ).

The mapping from F ×G2 to F given by ψ × (f, g) 7→ ψ̄ de�nes an action of the group
G2 on F , and we denote

ψ̄ = ψ · φ.

Proof of well-posedness of De�nition 7.4. We have to check that ψ̄ = (ψ̄1, ψ̄2) ∈ F . We
will only check that the identities (3.19) in the de�nition 3.4 of F are ful�lled, as the
other properties can be checked without di�culty. For any curve (X̄ , Ȳ) ∈ C such that
x̄1(X̄ ) = x̄2(Ȳ), let (X ,Y) = (X̄ , Ȳ) · (f, g). We have

x1(X (s)) = x̄1◦f−1◦X (s) = x̄1◦X̄ ◦h−1(s) = x̄2◦Ȳ ◦h−1(s) = x̄2◦f−1◦Y(s) = x2(Y(s))

and therefore, since ψ ∈ F , U1(X (s)) = U2(Y(s)) for all s ∈ R, which implies

Ū1(X̄ ) = U1 ◦ X ◦ h = U2 ◦ Y ◦ h = Ū2(Ȳ)

and this proves (3.19a) for ψ̄. Similarly, one proves that (3.19b) holds for ψ̄. �
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In the following lemma, we show that all the mappings given in (5.9) are equivariant
with respect to the action of the group G2.

Lemma 7.5. The mappings E, tT , C, D and C are G2-equivariant, that is, for all
φ = (f, g) ∈ G2,

(7.7a) E(Z · φ) = E(Z) · φ,

(7.7b) tT (Z · φ) = tT (Z) · φ
for all Z ∈ H and

(7.7c) S(Θ · φ) = S(Θ) · φ
for all Θ ∈ G and

(7.7d) D(Θ · φ) = D(Θ) · φ
for all Θ ∈ G0 and

(7.7e) C(ψ · φ) = C(ψ) · φ
for ψ ∈ F . Therefore ST is G2-equivariant, that is,

(7.8) ST (ψ · φ) = ST (ψ) · φ
for all ψ ∈ F .

Proof. Let us prove (7.7a). We denote Θ = (X ,Y,Z,V,W) = E(Z), Z̄ = Z · φ, Θ̄ =
(X̄ , Ȳ, Z̄, V̄, W̄) = E(Z̄) and Θ̃ = (X̃ , Ỹ, Z̃, Ṽ, W̃) = Θ ·φ. We want to prove that Θ̃ = Θ̄.

First we prove that Γ̃ = Γ̄ where Γ̃ = (X̃ , Ỹ) and Γ̄ = (X̄ , Ȳ). By de�nition (5.1), we
have

X̄ (s) = sup{X ∈ R | t(f(X ′), g(Y ′)) < 0 for all X ′ < X and Y ′ such that X ′+Y ′ = s}.
We have

t(f(X̃ (s)), g(Ỹ(s))) = t(X ◦ h(s),Y ◦ h(s)) = 0,

by the de�nition of (X ,Y) given by (5.1) which implies that t(X (s),Y(s)) = 0 for all
s ∈ R. Hence,

(7.9) X̄ ≤ X̃ .

Assume that X̄ (s) < X̃ (s) for some point s. We have t(f(X̄ (s)), g(Ȳ(s))) = 0 and due to

the monotonicity of t, it implies that t(X,Y ) = 0 for all (X,Y ) ∈ [f ◦ X̄ (s), f ◦ X̃ (s)]×
[g ◦ Ỹ(s), g ◦ Ȳ(s)]. If f ◦ X̄ (s) ≤ 2h(s)− g ◦ X̄ (s), we obtain a contradiction. Indeed, if
we set X ′ = 2h(s)− g ◦ Ȳ(s) and Y ′ = g ◦ Ȳ(s), then we have

X ′ < 2h(s)− g ◦ Ỹ(s) = 2h(s)− Y ◦ h(s) = X ◦ h(s)

so that t(X ′, Y ′) = 0 and X ′+Y ′ = 2h(s), which contradicts the de�nition (5.1) of (X ,Y)
at h(s). If f ◦ X̄ (s) > 2h(s)− g ◦ X̄ (s), then we set X ′ = f ◦ X̄ (s) < X ◦ h(s) = f ◦ X̃ (s)
and Y ′ = 2h(s)− f ◦ X̄ (s). We have t(X ′, Y ′) = 0 and X ′+Y ′ = 2h(s), which also leads

to a contradiction of (5.1). Hence, we have proved that X̄ = X̃ and therefore Γ̄ = Γ̃. It
means that

E(Z · φ) = (Z · φ) • Γ̄ = (Z · φ) • Γ̃ = (Z · φ) • (Γ · φ).
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Hence, by (7.4), it yields

E(Z · φ) = (Z • Γ) · φ = E(Z) · φ,
and we have proved (7.7a). The identity (7.7b) follows directly from the de�nition of tT .
Let us prove (7.7c). For any Θ = (X ,Y,Z,V,W), we denote Z = S(Θ), Z̄ = S(Θ · φ),
Z̃ = Z · φ. We want to prove that Z̃ = Z̄. By de�nition of the solution operator S, we
have

Z̄ • (Γ · φ) = Θ · φ,
and

Z̃ • (Γ · φ) = (Z · φ) • (Γ · φ) = (Z • Γ) · φ = Θ · φ,
by (7.4). Hence, Z̄ and Z̃ are solutions that match the same data on a curve. Since the

solution is unique by Theorem 4.15, we get Z̄ = Z̃. The property (7.7d) follows directly
from the de�nitions. Let us prove (7.7e). For any ψ = (ψ1, ψ2) ∈ F , φ ∈ G2, we denote
ψ̄ = (ψ̄1, ψ̄2) = ψ · φ, Θ = (X ,Y,Z,V,W) = C(ψ), Θ̄ = (X̄ , Ȳ, Z̄, V̄, W̄) = C(ψ̄) and

Θ̃ = Θ · φ. We want to prove that Θ̃ = Θ̄. First, we prove that Γ̃ = Γ̄ where Γ̃ = (X̃ , Ỹ)
and Γ̄ = (X̄ , Ȳ). By de�nition (5.1), we have

(7.10) X̄ (s) = sup{X ∈ R | x1 ◦ f(X ′) < x2 ◦ g(Y ′),

for all X ′ < X and Y ′ such that X ′ + Y ′ = s},
and

X (s) = sup{X ∈ R | x1(X ′) < x2(Y ′), for all X ′ < X and Y ′ such that X ′ + Y ′ = s}.
By continuity, we have x1(X (s)) = x2(Y(s)) so that x1 ◦ X ◦ h = x2 ◦ Y ◦ h. Hence,

x1 ◦ f ◦ X̃ = x2 ◦ g ◦ Ỹ and it implies, by (7.10), that

X̄ ≤ X̃ .
The proof then resembles to what was done above after (7.9). Let us assume that

X̄ (s) < X̃ (s) for some point s. We have f(X̄(s)) < f(X̃ (s)) and g(Ỹ (s)) < g(Ȳ(s)). By
using the monotonicity of x1 and x2, we get

x1 ◦ f ◦ X̄ (s) ≤ x1 ◦ f ◦ X̃ (s) = x2 ◦ g ◦ Ỹ(s) ≤ x2 ◦ g ◦ Ȳ(s) = x1 ◦ f ◦ X̄ (s).

Hence, x1 ◦ f ◦ X̄ (s) = x1 ◦ f ◦ X̃ (s) and x2 ◦ g ◦ Ỹ(s) = x2 ◦ g ◦ Ȳ(s). Since x1

and x2 are decreasing, it follows that x1 and x2 are constant on [f ◦ X̄ (s), f ◦ X̃ (s)]
and [g ◦ Ỹ(s), g ◦ Ȳ(s)], respectively. If f ◦ X̄ (s) ≤ 2h(s) − g ◦ X̄ (s), then we obtain a
contradiction. Indeed, let us set X ′ = 2h(s)− g ◦ Ȳ(s) and Y ′ = g ◦ Ȳ(s), we have

X ′ < 2h(s)− g ◦ Ỹ(s) = 2h− Y ◦ h(s) = X ◦ h(s)

so that x1(X ′) = x2(Y ′) = 0 and X ′+Y ′ = 2h(s), which contradicts the de�nition (3.22)
of (X ,Y) at h(s). If f ◦ X̄ (s) > 2h(s)− g ◦ X̄ (s), then we have

x1(f ◦ X̄ (s)) = x2(2h(s)− f ◦ X̄ (s)),

which, in the same way, leads to a contradiction of (3.22). Thus we have proved that

Γ̃ = Γ̄. We then prove that Z̃ = Z̄, Ṽ = V̄ and W̃ = W̄. It is just a matter of applying
directly the de�nitions. For example, we have

Ū(s) = Ū1 ◦ X̄ (s) = U1 ◦ f ◦ X̄ (s) = U1 ◦ f ◦ X̃ (s) = U1 ◦ X ◦ h(s) = U ◦ h(s) = Ũ(s)
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and

Ṽ1(X) = f ′(X)V1(f(X)) =
f ′(X)x′1(f(X))
2c(U1(f(X)))

=
x̄′1(X)

2c(Ũ1(X))
=

x̄′1(X)
2c(Ū1(X))

= V̄1(X).

The equivariance property (7.8) of ST follows directly from the de�nition of ST and the
equivariance properties (7.7). �

De�nition 7.6. We de�ne by F/G2 the quotient of F with respect to the action of the
group G2 on F , that is,

ψ ∼ ψ̄ if there exists φ ∈ G2 such that ψ̄ = ψ · φ.

De�nition 7.7. Let

F0 = {ψ = (ψ1, ψ2) ∈ F | x1 + J1 = Id and x2 + J2 = Id}
and Π : F → F0 be the projection on F0 given by ψ̄ = (ψ̄1, ψ̄2) = Π(ψ) where ψ̄ ∈ F0 is
de�ned as follows. Let

(7.11) f(X) = x1(X) + J1(X), g(Y ) = x2(Y ) + J2(Y ),

we set
ψ̄ = ψ · φ−1.

Lemma 7.8. The following statements hold:

(i) We have

(7.12) ψ ∼ ψ̄ if and only if Π(ψ) = Π(ψ̄)

so that the sets F/G2 and F0 are in bijection.

(ii) We have

(7.13) M ◦Π = M

and

(7.14) L ◦M|F0 = Id |F0 and M ◦ L = Id

so that the sets D, F0 and F/G2 are in bijection.
(iii) We have

(7.15) Π ◦ ST ◦Π = Π ◦ ST .

Note that the �rst identity in (7.14) is equivalent to

(7.16) L ◦M ◦Π = Π.

Proof. Step 1. We prove (7.12). If ψ̄ ∼ ψ, then there exists φ̃ ∈ G2 such that ψ̄ = ψ · φ̃.
Let φ = (f, g) and φ̄ = (f̄ , ḡ) be given by (7.11) for ψ and ψ̄, respectively. One can check

that φ̄ = φ ◦ φ̃ and therefore

Π(ψ̄) = ψ̄ · (φ̄)−1 = (ψ · φ̃) · (φ ◦ φ̃)−1 = ψ · (φ̃ ◦ (φ ◦ φ̃)−1) = ψ · φ−1 = Π(ψ).

Conversely, if Π(ψ̄) = Π(ψ) then ψ̄ · φ̄−1 = ψ ·φ−1 so that ψ̄ = (ψ ·φ−1) · φ̄ = ψ · (φ−1 ◦φ)
and ψ̄ and ψ are equivalent.
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Step 2. We prove that L ◦M = IdF0 . Given ψ = (ψ1, ψ2) ∈ F0, let us consider
(u,R, S, µ, ν) = L(ψ1, ψ2) and ψ̄ = (ψ̄1, ψ̄2) = M(u,R, S, µ, ν). We want to prove that
ψ̄ = ψ. Let

(7.17) g(x) = sup{X ∈ R | x1(X) < x}.
It is not hard to prove, using the fact that x1 is increasing and continuous, that

(7.18) x1(g(x)) = x

for all x ∈ R and x−1
1 ((−∞, x)) = (−∞, g(x)). For any x ∈ R, we have, by (6.1c), that

(7.19) µ((−∞, x)) =
∫
x−1

1 ((−∞,x))
J ′1(X) dX =

∫ g(x)

−∞
J ′1(X) dX = J1(g(x))

because J1(−∞) = 0. Since ψ ∈ F0, x1 + J1 = Id and we get, by (7.18) and (7.19), that

(7.20) µ((−∞, x)) + x = g(x).

From the de�nition of x̄1, we then obtain that

(7.21) x̄1(X) = sup{x ∈ R | g(x) < X}.
For any given X ∈ R, let us consider an increasing sequence zi tending to x̄1(X) such
that g(zi) < X; such sequence exists by (7.21). Since x1 is increasing and using (7.18),
it follows that zi ≤ x1(X). Letting i tend to∞, we obtain x̄1(X) ≤ x1(X). Assume that
x̄1(X) < x1(X). Then, there exists x such that x̄1(X) < x < x1(X) and (7.21) then
implies that g(x) ≥ X. On the other hand, x = x1(g(x)) < x1(X) implies g(x) < X
because x1 is increasing, which gives us a contradiction. Hence, we have x̄1 = x1. It
follows directly from the de�nitions, since x1 + J1 = Id, that J̄1 = J1 and Ū1 = U1. It
follows from the de�nition (3.34e) and (6.2) that V̄1 = V1 and V̄2 = V2. Thus we have
proved that ψ̄1 = ψ1. In the same way, we prove that ψ̄2 = ψ2, which concludes the
proof that L ◦M = IdF0 .
Step 3. We prove that M ◦ L = Id. Given (u,R, S, µ, ν) ∈ D, let ψ = (ψ1, ψ2) =

L(u,R, S, µ, ν) and (ū, R̄, S̄, µ̄, ν̄) = M(ψ). We want to prove that (ū, R̄, S̄, µ̄, ν̄) =
(u,R, S, µ, ν). Let g be the function de�ned as before by (7.17). The same computation
that leads to (7.20) now gives

(7.22) µ̄((−∞, x)) + x = g(x).

Given X ∈ R, we consider an increasing sequence xi which converges to x1(X) and such
that µ((−∞, xi)) + xi < X. Passing to the limit and since x 7→ µ((−∞, x)) is lower
semi-continuous, we obtain µ((−∞, x1(X))) + x1(X) ≤ X. We take X = g(x) and get

(7.23) µ((−∞, x)) + x ≤ g(x).

From the de�nition of g, there exists an increasing sequence Xi which converges to g(x)
such that x1(Xi) < x. The de�nition (3.34a) of x1 tells us that µ((−∞, x)) + x ≥ Xi.
Letting i tend to in�nity, we obtain µ((−∞, x)) + x ≥ g(x) which, together with (7.23),
yields

(7.24) µ((−∞, x)) + x = g(x).

Comparing (7.24) and (7.22) we get that µ̄ = µ. Similarly, one proves that ν̄ = ν. It is
clear from the de�nitions that ū = u. The fact that R̄ = R and S̄ = S follow from (3.34e)
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and (6.2). Hence, we have proved that (ū, R̄, S̄, µ̄, ν̄) = (u,R, S, µ, ν) and M ◦ L = IdD.
Step 4. We prove (7.15). For any ψ = (ψ1, ψ2) ∈ F , we denote ψT = STψ. Let
φ = (f, g) ∈ G2 and φT = (fT , gT ) ∈ G2 be de�ned as in (7.11) so that Πψ = ψ · φ−1

and ΠψT = ψT · φ−1
T . By using (7.8), we get

ST ◦Π(ψ) = ST (ψ · φ−1) = ST (ψ) · φ−1

and therefore ST ◦Π(ψ) and ST (ψ) are equivalent. Then, (7.15) follows from (7.12). �

We now come to our main theorem.

Theorem 7.9. Given (u0, R0, S0, µ0, ν0) ∈ D, let us denote (u,R, S, µ, ν)(t) = S̄t(u0, R0, S0, µ0, ν0).
Then u is a weak solution of the nonlinear variational wave equation (1.1), that is,

(7.25)

∫
R2

(φt − (c(u)φ)x)Rdxdt+
∫

R2

(φt + (c(u)φ)x)S dxdt = 0

for all smooth functions φ with compact support and where

(7.26) R = ut + c(u)ux, S = ut − c(u)ux.

Moreover, the measures µ(t) and ν(t) satisfy the following equations in the sense of
distribution

(7.27a) (µ+ ν)t − (c(µ− ν))x = 0

and

(7.27b) (
1
c

(µ− ν))t − (µ+ ν)x = 0.

The mapping S̄T : D → D is a semigroup, that is,

S̄t+t′ = S̄t ◦ S̄t′
for all positive t and t′.

Proof. From Lemma 6.3, we know that (7.26) is ful�lled. On can check that (7.25) is
equivalent to

(7.28) Rt − (c(u)R)x + St + (c(u)S)x + c′(u)
(R− S)2

2c(u)
= 0

in the sense of distributions, which makes senses, as R, S belong to L2 and c(u), c′(u)
are bounded. After a change of variables, we have∫

R2

(Rφt − (c(u)R)φx)(t, x) dtdx =
∫

R2

(R(φt − c(u)φx))(t, x)(tXxY − tY xX) dXdY

= 2
∫

R2

(c(u)R(φt − c(u)φx))(t, x)tXxY dXdY

= −2
∫

R2

c(U)UXφ(t, x)Y dXdY

by (6.14a) and because φ(t, x)Y = φt(t, x)tY + φx(t, x)xY = −xY
c (φt − cφx)(t, x). We

integrate by parts and obtain∫
R2

(Rφt − (c(u)R)φx)(t, x) dtdx = 2
∫

R2

(c(U)UX)Y φ(t, x) dXdY
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= 2
∫

R2

(c(U)UXY + c′(U)UXUY )φ(t, x) dXdY.(7.29)

In the same way, one proves that

(7.30)

∫
R2

(Sφt + (c(u)S)φx)(t, x) dtdx = 2
∫

R2

(c(U)UXY + c′(U)UXUY )φ(t, x) dXdY.

We have, after a change of variables,
(7.31)∫

R2

R2 − 2RS + S2

2c(u)
c′(u)φdtdx = 2

∫
R2

(R2 − 2RS + S2

2c(u)2
c′(u)φ

)
(t, x)xXxY dXdY.

We introduce the set A = A1 ∪A2 where

(7.32) A1 = {(X,Y ) ∈ R2 | xX(X,Y ) = 0, xY (X,Y ) > 0 and c′(U)(X,Y ) 6= 0}
and

(7.33) A2 = {(X,Y ) ∈ R2 | xY (X,Y ) = 0, xX(X,Y ) > 0 and c′(U)(X,Y ) 6= 0}.
We claim that

(7.34) meas(A) = meas(A1) = meas(A2) = 0.

We prove this claim later. By using (7.34), we get∫
R2

R2 − 2RS + S2

2c(u)
c′(u)φdtdx = 2

∫
Ac

(R2 − 2RS + S2

2c(u)2
c′(u)φ

)
(t, x)xXxY dXdY

=
∫
Ac

(U2
X

xX
xY + 2UXUY +

U2
Y

xY
xX

)
c′(U)φ(t, x) dXdY

=
∫
Ac

(
2
JXxY
c2(U)

+ 2UXUY +
JY xX
c2(U)

)
c′(U)φ(t, x) dXdY(7.35)

=
∫

R

(
2
JXxY
c2(U)

+ 2UXUY +
JY xX
c2(U)

)
c′(U)φ(t, x) dXdY.(7.36)

Note that (7.34) is necessary to get (7.36) from (7.35) as the integrand in (7.35) does
not vanish on A. After combining (7.29), (7.30) and (7.36), and using the governing
equations (2.13), we get∫

R2

(R+ S)φt − (c(u)(R− S))φx − c′(u)
(R− S)2

2c(u)
φdtdx

= −
∫

R2

(
4c(U)UXY −

2c′

c2
(JXxY + JY xX) + 2c′(U)UY UX

)
φ(t, x) dXdY

= 0,

which proves (7.28) and therefore (7.25) holds. It remains to prove the claim (7.34). Let
us introduce the set

A1(X) = {Y ∈ R | (X,Y ) ∈ A1}.
Let us prove that, for almost every X ∈ R, meas(A1(X)) = 0 and therefore, by Fubini's
theorem, meas(A1) = 0. We consider a point Y0 ∈ A1(X) and a rectangle Ω = [Xl, Xr]×
[Yl, Yr] which contains (X,Y0). Since Z ∈ H(Ω), there exist δ > 0 such that (xX +
JX)(X,Y ) > δ for almost every X ∈ R and all Y ∈ R. Since xX ∈ W 1,∞

Y (Ω), the
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function xX is continuous with respect to Y for almost any given X ∈ R. Formally the
argument goes as follows: We consider a �xed givenX ∈ R and denote f(Y ) = xX(X,Y ).
For any Y0 ∈ A1(X), we have, by de�nition, xX(X,Y0) = f(Y0) = 0. By using (2.13b),
we get

f ′(Y0) = xXY (X,Y ) = 0
because xX = 0 implies UX = 0, see (4.18c). We do not have enough regularity to
di�erentiate (2.13b); but if nevertheless we do so, then we formally obtain

f ′′(Y0) = xXY Y (X,Y0) =
c′

2c
(UY xXY + UXY xY )(X,Y0)

=
c′2

4c4
(JXx2

Y )(X,Y0)

where we have used again the fact xX(X,Y0) = UX(X,Y0) = 0. We have JX(X,Y0) =
(xX + JX)(X,Y0) ≥ δ and xY (X,Y0) > 0, c′2(U(X,Y0)) > 0 because (X,Y0) ∈ A1(X).
Hence, f ′′(Y0) > 0 and it implies that f(Y ) > 0 for all Y di�erent from Y0 in a neigh-
borhood of Y0, so that the points in A1(X) are isolated. Let us now prove this result
rigorously. Again, we consider Y0 ∈ A1(X) and a rectangle Ω = [Xl, Xr]× [Yl, Yr] which
contains (X,Y0). Without loss of generality, we assume that Y0 is a Lebesgue point for
the function Y 7→ xY (X,Y ) and, therefore, since xY (X,Y0) > 0, there exists δ > 0 such
that

(7.37)

∫ Y

Y0

xY (Ȳ ) dȲ > δ′(Y − Y0)

in a neighborhood of Y0. We can choose δ′ > 0 such that, in addition,

c′(U(X,Y )) > δ and JX(X,Y ) > δ

in a neighborhood of Y0 (we recall that U is continuous). We have, after using the
governing equations (2.13),

xX =
∫ Y

Y0

c′

2c
(UY xX + UXxY ) dȲ

=
∫ Y

Y0

c′

2c
(UY

∫ Ȳ

Y0

xXY dỸ + xY

∫ Ȳ

Y0

UXY dỸ ) dȲ

=
∫ Y

Y0

c′

2c

(
UY

∫ Ȳ

Y0

xXY dỸ + xY

∫ Ȳ

Y0

( c′
2c3

(xY JX + JY xX −
c′

2c
UY UX)

)
dỸ
)
dȲ .

Since xXY and UXY are bounded (by (2.13)) and xX(X,Y0) = UX(X,Y0) = 0, we have
that xX(X,Y ) ≤ C |Y − Y0| and UX(X,Y ) ≤ C |Y − Y0| in a neighborhood of Y0 for a
constant C which depends only on |||Z|||H(Ω). Hence,∣∣∣∣∣

∫ Ȳ

Y0

xXY dỸ

∣∣∣∣∣ =

∣∣∣∣∣
∫ Ȳ

Y0

c′

2c
(UY xX + UXxY ) dỸ

∣∣∣∣∣
≤ C

∫ Ȳ

Y0

∣∣∣Ỹ − Y0

∣∣∣ dỸ
≤ C(Y − Y0)2.
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Thus,

(7.38)

∣∣∣∣∣
∫ Y

Y0

c′

2c
(UY

∫ Ȳ

Y0

xXY dỸ ) dȲ

∣∣∣∣∣ ≤ C |Y − Y0|3 .

In the same way, one proves that∣∣∣∣∣
∫ Y

Y0

c′

2c
xY

∫ Ȳ

Y0

( c′

2c3
(JY xX −

c′

2c
UY UX)

)
dỸ ) dȲ

∣∣∣∣∣ ≤ C |Y − Y0|3 .

For Y > Y0, we have∫ Y

Y0

c′

2c
xY

(∫ Ȳ

Y0

c′

2c3
xY JXdỸ

)
dȲ ≥ κ4δ3

4

∫ Y

Y0

xY

(∫ Ȳ

Y0

xY dỸ
)
dȲ

=
κ4δ3

4

(∫ Y

Y0

xY dȲ
)2

≥ κ4δ5

4
(Y − Y0)2

in a neighborhood of Y0. We can check that the same inequality holds for Y < Y0.
Finally, we obtain that, in a neighborhood of Y0,

(7.39) xX(X,Y ) ≥ κ4δ5

4
(Y − Y0)2 − C |Y − Y0|3 ≥

κ4δ5

8
(Y − Y0)2.

To complete the argument, we consider the sets

Ak1(X) = {Y0 ∈ A1(X) ∩ [Yl, Yr] | xX(X,Y0) = 0

and xX(X,Y ) > 0 for all Y ∈ [Y0 −
1
k
, Y0 +

1
k

] \ {Y0}}

for any integer k. By (7.39), we have

A1(X) ∩ [Yl, Yr] = ∪k>0A
k
1(X).

At the same time, since Ak1(X) consists of points separated by a distance of at least 1
k ,

we have meas(Ak1(X)) = 0. Hence, after taking sequences of Yl and Yr which tend to
plus and minus in�nity, respectively, we get meas(A1(X)) = 0 so that meas(A1) = 0 and
the proof of the claim (7.34) is complete. Let us prove (7.27a), that is,∫

R2

(φt − c(u)φx) dµdt+
∫

R2

(φt + c(u)φx) dνdt = 0

for all smooth function φ with compact support. We have, after a change of variables,
that∫

R

(∫
R

(φt − c(u)φx) dµ(t)
)
dt

=
∫

R

(∫
R

(φt(t, x(t, s))− c(u(t, x(t, s)))φx(t, x(t, s)))V4(t,X (t, s))Xs(t, s) ds
)
dt,

where we have added the dependence in t of the values of Θ(t) = L(u,R, S, u, µ, ν)(t)
(which gives x(t, s), V4(t,X), u(t, s) and X (t, s) in the equation above). We proceed to
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the change of variables (X,Y ) 7→ (t(X,Y ), s = 1
2(X + Y )) whose Jacobian is equal to

xX+xY
2c(u) and get

(7.40)

∫
R

(∫
R

(φt − c(u)φx) dµ(t)
)
dt

=
∫

R2

(φt(t, x)− c(u(t, x))φx(t, x))JX(X,Y )Xs(t, s)
(xX + xY )(X,Y )

2c(U(X,Y ))
dXdY.

Since t(X (t, s),Y(t, s)) = t, by de�nition, we get tXXs + tY Ys = 0 and, since X (s) +
Y(s) = 2s, we have Xs + Ys = 2. Hence, (xX + xY )Xs(t, s) = 2xY and (7.40) implies∫

R

(∫
R

(φt − c(u)φx) dµ(t)
)
dt

=
∫

R2

(φt(t, x)− c(u(t, x))φx(t, x))JX(X,Y )
xY

c(U(X,Y ))
dXdY.

Since φ(t, x)Y = − xY
c(u)(φt − c(u)φx)(t, x), it yields∫

R

(∫
R

(φt − c(u)φx) dµ(t)
)
dt = −

∫
R2

φ(t, x)Y JX dXdY.

Similarly, one proves that∫
R

(∫
R

(φt + c(u)φx) dν(t)
)
dt =

∫
R2

φ(t, x)XJY dXdY

so that
(7.41)∫

R2

(φt−c(u)φx) dµdt+
∫

R2

(φt+c(u)φx) dνdt =
∫

R2

(−φ(t, x)Y JX+φ(t, x)XJY ) dXdY = 0,

by integration by parts, as the support of φ is compact. Similarly one proves (7.27b).
Note that the integrand in (7.41) is equal to the exact form d(φdJ) and equation (7.27a)
is actually equivalent to ddJ = 0 while (7.27b) is equivalent to ddK = 0. The proof of
the semigroup property follows in a straightforward manner from the results that have
been established in this section. We have

S̄T ◦ S̄T ′ = M ◦ ST ◦ L ◦M ◦ ST ′ ◦ L

= M ◦Π ◦ ST ◦ L ◦M ◦Π ◦ ST ′ ◦ L by (7.13)

= M ◦Π ◦ ST ◦Π ◦ ST ′ ◦ L by (7.16)

= M ◦Π ◦ ST ◦ ST ′ ◦ L by (7.15)

= M ◦ ST ◦ ST ′ ◦ L by (7.13)

= M ◦ ST+T ′ ◦ L by Theorem 5.5

= S̄T+T ′ .

�

The semigroup of solution we have constructed is conservative in the sense given by
the following theorem.
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Theorem 7.10. Given (u0, R0, S0, µ0, ν0) ∈ D, let us denote (u,R, S, µ, ν)(t) = S̄t(u0, R0, S0, µ0, ν0).
We have

(i) For all t ∈ R

(7.42) µ(t)(R) + ν(t)(R) = µ0(R) + ν0(R).

(ii) For almost every t ∈ R, the singular part of µ(t) and ν(t) are concentrated on
the set where c′(u) = 0.

This theorem corresponds to Theorem 3 in [5]. We use a di�erent proof based on the
coarea formula.

Proof. Let us prove (i). We consider a given time that we denote τ (to avoid any con-
fusion with the function t(X,Y )). As in the proof of the previous theorem, we add the
dependence in time of the values of Θ(τ) = L(u,R, S, u, µ, ν)(τ). In particular, the curve
(X (τ, s),Y(τ, s)) corresponds to the curve where time is constant and equal to τ , that is,
t((X (τ, s),Y(τ, s))) = τ . By de�nition (see (6.3b), and De�nition 5.1), we have, for any
Borel set B,

µτ (B) =
∫
{s∈R | x(τ,s)∈B}

V4(X (τ, s))Ẋ (τ, s) ds(7.43)

=
∫
{s∈R | x(X (τ,s),Y(τ,s))∈B}

JX(X (τ, s),Y(τ, s))Ẋ (τ, s) ds.(7.44)

Here, the notation may be confusing as x denotes two di�erent but of course very related
functions. In (7.43), we have x(τ, s) = Z2(τ, s), which corresponds to the space variable
Z2 parametrized by s at time τ while, in (7.44), x(X,Y ) = Z2(X,Y ), corresponds
to the value of the space variable Z2, where Z(X,Y ) is the solution of (2.13) on the
whole R2 plane. We have Z2(τ, s) = Z2(X (τ, s),X (τ, s)) by (4.15) abd De�nition 5.1.
Correspondingly, we have

ντ (B) =
∫
{s∈R | x(X (τ,s),Y(τ,s))∈B}

JY (X (τ, s),Y(τ, s))Ẏ(τ, s) ds.

Hence,

µτ (R) + ντ (R) =
∫

R
JX(X (τ, s),Y(τ, s))Ẋ (τ, s) + JY (X (τ, s),Y(τ, s))Ẏ(τ, s) ds

= lim
s→∞ J(X (τ, s),Y(τ, s)) ds

= lim
s→∞ J(X (0, s),Y(0, s)) ds, by Lemma 4.14,

= µ0(R) + ν0(R)

Let us prove (ii). Let µτ = (µτ )ac + (µτ )sing be the Radon-Nykodin decomposition of
µτ . We want to prove that, for allmost every time τ ∈ R, we have

(7.45) (µτ )sing({x ∈ R | c′(u(τ, x)) 6= 0}) = 0.

Let us introduce

Aτ = {s ∈ R | xX(X (τ, s),Y(τ, s)) > 0}.
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The set Aτ corresponds to A in (6.11) in the proof of Lemma 6.2. In this same proof,
we obtain that, for any Borel set B,

(µτ )ac(B) = µτ (B ∩ (x(τ, (Aτ )c))c)

so that

(µτ )sing(B) = µτ (B ∩ (x(τ, (Aτ )c))),

because meas(x(τ, (Aτ )c)) = 0. Hence,

(7.46) (µτ )sing(B) =
∫
{s∈R | x(X (τ,s),Y(τ,s))∈B∩(Aτ )c}

JX(X (τ, s),Y(τ, s))Ẋ (s) ds.

We introduce the set

E = {(X,Y ) ∈ R2 | xX(X,Y ) = 0 and c′(U(X,Y )) 6= 0}.

By using (7.46), we get
(7.47)

µτ ({x ∈ R | c′(u(τ, x)) 6= 0}) =
∫
{s∈R | (X (τ,s),Y(τ,s))∈E}

JX(X (τ, s),Y(τ, s))Ẋ (s) ds

By the coarea formula, see [1], we get∫
R
H1(E ∩ t−1(τ)) dτ =

∫
E

√
t2X + t2Y dXdY =

∫
E

xY
c(U)

dXdY = 0

because of (7.34). Here, H1 denotes the one-dimensional Hausdor� measure. Hence, we
have that, for allmost every time τ ∈ R, the set E ∩ t−1(τ) has zero one-dimensional
Hausdor� measure. We claim that, if µτ ({x ∈ R | c′(u(τ, x)) 6= 0}) > 0, then H1(E ∩
t−1(τ)) > 0. Indeed, let us de�ne, for a given τ , the mapping Γτ : s 7→ (X (τ, s),Y(τ, s))
from R to R2. We rewrite (7.47) as

µτ ({x ∈ R | c′(u(τ, x)) 6= 0}) =
∫

Γ−1
τ (E)

JX(X (τ, s),Y(τ, s))Ẋ (s) ds.

In particular it implies that, if µτ ({x ∈ R | c′(u(τ, x)) 6= 0}) > 0, then meas(Γ−1
τ (E)) > 0.

By the area formula, we have

H1(E) ≥ H1(Γτ ◦ Γ−1
τ (E)) =

∫
Γ−1
τ (E)

(X 2
s + Y2

s )1/2 ds ≥ meas(Γ−1
τ (E))

because (X 2
s + Y2

s )1/2 ≥ 1
2(Xs + Ys) = 1. Hence, our claim is proved and it follows that

µτ ({x ∈ R | c′(u(τ, x)) 6= 0}) > 0 for at most almost every τ ∈ R and we have proved
(7.45). �

Theorem 7.11 (Finite speed of propagation). Given t ≥ 0 and x ∈ R, for any two
initial datas ζ0 = (u0, R0, S0, µ0, ν0) and ζ̄0 = (ū0, R̄0, S̄0, µ̄0, ν̄0) in D, we consider the
corresponding solutions (u,R, S, µ, ν)(t) and (u,R, S, µ, ν)(t) given by De�nition 6.4. If
the restrictions of ζ0 and ζ̄0 are equal on [x−κt,x +κt], then the two solutions coincide
at (t,x), that is, u(t,x) = ū(t,x).
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Π

S̄t(u0, R0, S0, µ0, ν0)

(u0, R0, S0, µ0, ν0)

St(X0)

X

[X0]

X0

[X]

F0 D

(u, R, S, µ, ν)(t)

F

L

M

Figure 6. The semigroup S̄t.

Proof. For a given ζ0 = (u0, R0, S0, µ0, ν0), we de�ne ζ̄0 equal to ζ0 on [x − κt,x + κt]
and zero otherwise, i.e.,

(ū0, R̄0, S̄0)(x) =

{
(u0, R0, S0)(x) if x ∈ [x− κt,x + κt]
0 otherwise

and
µ̄0(E) = µ0(E ∩ [x− κt,x + κt]), ν̄0(E) = ν0(E ∩ [x− κt,x + κt])

for any Borel set E. It is enough to prove that the theorem holds for this particular ζ̄0.
We have to compute the solutions for ζ0 and ζ̄0. Let us denote xl = x−κt, xr = x +κt.
We set ψ = C(ζ0) and ψ̄ = C(ζ̄0).
Step 1. We want to compute ψ̄ as a function of ψ. We denote Xl = xl, Yl = xl,

Xr = xr + µ0([xl, xr]), Yr = xr + ν0([xl, xr]) and Ω = [Xl, Xr] × [Yl, Yr]. Let us prove
that

(7.48) x̄1(X) =


X if X ≤ Xl

x1(X + µ0(−∞, xl)) if Xl < X ≤ Xr

X − µ0([xl, xr]) if Xr < X

and

(7.49) x̄2(Y ) =


Y if Y ≤ Yl
x2(Y + ν0(−∞, xl)) if Yl < Y ≤ Yr
Y − ν0([xl, xr]) if Yr < Y.

From the de�nition (3.34a), we have

(7.50) x̄1(X) = sup{x′ ∈ R | x′ + µ̄0(−∞, x′) < X}
First case: X ≤ xl. For any x

′ such that x′ + µ̄0(−∞, x′) < X we have x′ < X. Hence,
x′ < xl and µ̄0(−∞, x′) = 0. It follows that x̄1(X) = X. Second case: Xl < X ≤ Xr.
For any x′ such that x′+ µ̄0(−∞, x′) < X, we have x′ ≤ xr. Let us assume the opposite,
i.e., x′ > xr, then µ̄0(−∞, x′) = µ0((−∞, x′) ∩ [xl, xr]) = µ0([xl, xr]) and therefore
x′ + µ0([xl, xr]) < X ≤ xr + µ0([xl, xr]), which gives a contradiction. We can assume
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without loss of generality that x′ ≥ xl because for x
′ = xl, µ̄0(−∞, x′) = 0 and we have

x′ + µ̄0(−∞, x′) = x′ = xl < X. Thus we have x′ ∈ [xl, xr] and (7.50) rewrites

(7.51) x̄1(X) = sup{x′ ∈ [xl, xr] | x′ + µ0[xl, x′) < X}.

We now want to prove that, for Xl ≤ X ≤ Xr,

(7.52) x1(X + µ0(−∞, xl)) = sup{x′ ∈ [xl, xr] | x′ + µ0[xl, x′) < X}.

For any x′ such that x′ + µ0(−∞, x′) < X + µ0(−∞, xl), we have x′ ≤ xr. Let us
assume the opposite, i.e., x′ > xr, then xr +µ0([xl, xr]) ≤ x′+µ0([xl, x′)) < X implies a
contradiction with the assumption that X ≤ Xr. For x

′ = xl, we have x
′+µ0(−∞, x′) <

X + µ0(−∞, xl) so that we can assume without loss of generality that x′ ≥ xl. Hence,

x1(X + µ0(−∞, xl)) = sup{x′ ∈ R | x′ + µ0(−∞, x′) < X + µ0(−∞, xl)}
= sup{x′ ∈ [xl, xr] | x′ + µ0(−∞, x′) < X + µ0(−∞, xl)}

and (7.52) follows. By comparing (7.51) and (7.52), we get x̄1(X) = x1(X+µ0(−∞, xl))
for Xl < X < Xr. Third case: Xr < X. For x′ = xr, we have x′ + µ̄0(−∞, x′) ≤
Xr = xr + µ0[xl, xr] < X. Hence, x̄1(X) = sup{x′ ∈ [xr,∞) | x′ + µ̄0(−∞, x′) < X}.
Since, for x′ > xr, µ̄0(−∞, x′) = µ0([xl, xr]), it follows that x̄1(X) = X − µ0([xl, xr]).
This concludes the proof of proved (7.48). One proves in the same way (7.49). Let
φ = (f, g) ∈ G2 where f : X 7→ X + µ0(−∞, xl) and g : Y 7→ Y + ν0(−∞, xr). We

denote ψ̃ = ψ · φ. We have proved that

(7.53) x̄1(X) = x̃1(X) for Xl < X ≤ Xr

and

(7.54) x̄2(Y ) = x̃2(Y ) for Xl < Y ≤ Xr.

We denote θ̄ = C(ψ̄) and θ̃ = C(ψ̃).
Step 2. We prove that

(7.55) X̄ (s) = X̃ (s) and Ȳ(s) = Ỹ(s)

for s ∈ [sl, sr] where sl = 1
2(Xl + Yl) and sr = 1

2(Xr + Yr). By using the de�nitions of x1

and x2, we obtain that, for any x ∈ R,

(7.56) x1(x+ µ0(−∞, x)) = x1(x+ µ0(−∞, x]) = x

and that the corresponding statement for x2 holds. Let us now prove that

(7.57) X̃ (sl) = Xl and Ỹ(sl) = Yl.

It follows from (7.56) that

(7.58) x̃1(Xl) = x̃2(Yl) = xl

as we have x̃1(Xl) = x1(xl + µ0(−∞, xl)) = xl = x2(xl + ν0(−∞, xl)) = x̃2(Xl). For any
X < Xl, we have x̃1(X) ≤ x̃1(Xl) = xl. Let us prove that x̃1(X) < x̃1(Xl). We assume
the opposite, i.e., that x̃1(X) = x̃1(Xl) = xl. Then, there exists an increasing sequence
xi such that limi→∞ xi = xl and xi + µ0(−∞, xi) < X + µ0(−∞, xl). It implies that
xl+µ0(−∞, xl) ≤ X+µ0(−∞, xl) because of the lower semicontinuity of x 7→ µ0(−∞, x).
Hence, xl ≤ Xl, which is a contradiction. Thus we have proved that, for any X < Xl,
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x̃1(X) < x̃1(Xl) = x̃2(Yl) ≤ x̃2(2s−X). Hence, X̃(sl) = Xl and (7.57) holds. By using
similar arguments, one also proves that

(7.59) X̃ (sr) = Xr, Ỹ(sr) = Yr and x̃1(Xr) = x̃2(Yr) = xr.

and the corresponding results for X̄ and Ȳ, that is,

(7.60) X̄ (sl) = Xl, Ȳ(sl) = Yl, x̄1(Xl) = x̄2(Yl) = xl

and

(7.61) X̄ (sr) = Xr, Ȳ(sr) = Yr, x̄1(Xr) = x̄2(Yr) = xr.

In particular, we have proved (7.55) for s = sl and s = sr. For any s ∈ (sl, sr), either
Xl < X̄ (s) ≤ Xr or Yl ≤ Ȳ(s) < Yr. We consider only the case where Xl < X̄ (s) ≤ Xr

as the other case can be treated similarly. By de�nition of X̄ , there exists an increasing
sequence Xi such that limi→∞Xi = X̄ (s) and x̄1(Xi) < x̄2(Yi) where Yi = 2s−Xi. For
i large enough, we have Xl < Xi ≤ Xr and, by (7.53), we get

(7.62) x̄1(Xi) = x̃1(Xi) < x̄2(Yi)

If Yi ≤ Yr then x̄2(Yi) = x̃2(Yi) and

(7.63) x̃1(Xi) < x̃2(Yi).

If Yi > Yr then (7.63) holds also. Indeed, let us assume the opposite. By the monotonicity
of x̃1 and x̃2, we get

(7.64) x̃1(Xr) ≥ x̃1(Xi) ≥ x̃2(Yi) ≥ x̃2(Yr).

By (7.59), we have x̃1(Xr) = x̃1(X (sr)) = x̃2(Y(sr)) = x̃2(Yr) and therefore (7.64)
implies that x̃2(Yi) = x̃2(Yr) = xr. From the de�nitions of x2 and x̃2, we know that there
exists a decreasing sequence xj such that limj→∞ xj = x̃2(Yi) and xj+ν0(−∞, xj) ≥ Yi+
ν0(−∞, xl). Letting j tend to in�nity, we get x̃2(Yi)+ν0(−∞, x2(Yi)] ≥ Yi+ν0(−∞, xl).
Hence, as x̃2(Yi) = x̃2(Yr) = xr,

Yr = xr + ν0[xl, xr] ≥ Yi
which is a contradiction and we have proved that (7.63) holds. If Yl < Ȳ(s), we get

(7.65) x̃1(X̄ (s)) = x̄1(X̄ (s)) = x̄2(Ȳ(s)) = x̃2(Ȳ(s))

from (7.48) and (7.49). If Yl = Ȳ(s), x̃2(Ȳ(s)) = xl = x̄2(Ȳ(s)), by (7.59) and (7.61) so

that (7.65) also holds. Then, it follows from (7.63) and (7.65) that X̄ (s) = X̃ (s) and the
proof of (7.55) is complete.

Step 3. Let Z̃ = SΘ̃ and Z̄ = SΘ̄. We prove that

(7.66) t̄(X,Y ) = t̃(X,Y ), x̄(X,Y ) = x̃(X,Y ), Ū(X,Y ) = Ũ(X,Y )

for all (X,Y ) ∈ Ω. Since x̄1 = x̃1 on [Xl, Xr] and x̄2 = x̃2 on [Yl, Yr], we get, from the
de�nition of L, that

Ū1 = Ũ1, V̄1 = Ṽ1, J̃1 = J̄1 + J̃1(Xl), K̃1 = K̄1 + K̃1(Xl)

on [Xl, Xr] and

Ū2 = Ũ2, V̄2 = Ṽ2, J̃2 = J̄2 + J̃2(Yl), K̃2 = K̄2 + K̃2(Yl)
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on [Yl, Yr]. Since, by (7.55), the two paths (X̄ , Ȳ) and (X̃ , Ỹ) in C(Ω) are equal, one can
check, by using the de�nition of the mapping C, that it implies that

t̄(s) = t̃(s), x̄(s) = x̃(s), Ū(s) = Ũ(s), J̃(s) = J̄(s)+ J̃(sl), K̃(s) = K̄(s)+ K̃(sl)

for s ∈ [sl, sr] and
V̄ = Ṽ, W̄ = W̃

on [Xl, Xr] and [Yl, Yr], respectively. The elements Θ̃ and Θ̄ are equal in Ω except that
the energy potentials J and K di�er up to a constant. However one can check that
the governing equation (2.13) is invariant with respect to addition of a constant to the
energy potentials. Hence, by the uniqueness result of Lemma 4.10 which holds on �nite
domains, we get (7.66).
Step 4. We prove that there exists (X0, Y0) ∈ Ω such that

(7.67) t̄(X0, Y0) = t and x̄(X0, Y0) = x.

We have

x̄1(Xl) = x̄2(Yl) = x− κt and x̄1(Xr) = x̄2(Yr) = x + κt

so that

x̄(Xl, Yl) = xl and x̄(Xr, Yr) = xr.

Let P = (Xr, Yl) denote the right-corner of Ω. We have

x̄(P )− xl =
∫ Xr

Xl

x̄X(X,Yl) dX =
∫ Xr

Xl

c(Ū)t̄X(X,Yl) dX

and

t̄(P ) =
∫ Xr

Xl

t̄X(X,Yl) dX.

Hence, using the positivity of t̄X and the assumption that 1
κ < c < κ, we get

(7.68) x̄(P )− xl ≤ κt̄(P ).

Similarly, one proves that xr − x̄(P ) ≤ κt̄(P ), which added to (7.68), yields xl − xr ≤
2κt̄(P ) or, after plugging the de�nition of xl and xr,

(7.69) t ≤ t̄(P ).

The mapping (X,Y ) 7→ (t̄(X,Y ), x̄(X,Y )) is surjective from R2 to R2 and there exists
P0 = (X0, Y0) ∈ R2, which may not be unique, such that (7.67) is ful�lled. Let us assume
that

(7.70) (t̄(X,Y ), x̄(X,Y )) 6= (t,x)

for all (X,Y ) ∈ Ω. By using (7.69) and the monotonicity of the function t and x in the
X and Y directions, we infer that either X0 > Xr and Yl ≤ Y or Y < Yl and X0 ≤ Xr.
We treat only the �rst case as the other case can be treated similarly. We have Y0 ≤ Yr
as, otherwise, x(X0, Y0) ≥ x(Xr, Yr) = xr. We introduce the point P1 = (Xr, Y0) ∈ Ω.
Let us assume x(P1) ≥ x(P0) = x. By the monotonicity of x, we get that x(P1) = x(P0)
and xX(X,Y0) = 0 for X ∈ [Xr, X0]. It implies that tX(X,Y0) = 0 for x ∈ [Xl, Xr] and
therefore t(P1) = t(P0) = t. However this contradicts the original assumption (7.70) and
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we must have that x(P1) < x. By following the same type of computation that lead to
(7.68), we now get

x > x(P1) = xr +
∫ Y0

Yr

xY (Xr, Y ) dY ≥ xr − κt(P1) ≥ xr − κt ≥ x,

which is a contradiction. Hence, (7.70) cannot hold and we have proved (7.67).
Step 5. We now conclude the argument. By de�nition, we have ū(t,x) = Ū(X0, Y0)

for any (X0, Y0) such that (7.67) holds. By (7.66), it follows that Ũ(X0, Y0) = Ū(X0, Y0) =
ū(t,x) and t̃(X0, Y0) = t and x̃(X0, Y0) = x. It gives U(f(X0), g(Y0)) = ū(t,x) and
t(f(X0), g(Y0)) = t and x(f(X0), g(Y0)) = x, so that u(t,x) = ū(t,x), by (6.13).

x− κt x + κt

t = 0

(Xl, Yr)

(X0, Y0)

(Xr, Yr)

(Xl, Yl)

Ω

t

dx = −κdt
dx = κdt

(x, t)

x

(x̄, t̄)

dx = −c(u)dt

dx = c(u)dt

Figure 7. We have t = t(X0, Y0) and x = x(X0, Y0). In the new set
of coordinates (X,Y ), the domain of dependence is given by rectangles.
We de�ne the points (Xl, Yl) and (Xr, Yr) so that they correspond to the
points (x− κt, 0) and (x + κt, 0). It then follows, from the boundedness
of the function c(u) that (X0, Y0) is contained in Ω.

�

8. Examples

There is a lack of explicit solutions for any choice of c except the trivial case of the
linear wave equation for which c is constant. We here discuss two examples; �rst the
linear case with general initial data, and second, a nonlinear case with very simple initial
data.

8.1. The linear wave equation. In the case of the linear wave equation, the coe�cient
c is constant and the equivalent system (2.13) rewrites as

(8.1) ZXY = 0.

We consider general initial data (u0, R0, S0, µ0, ν0) ∈ D, let (ψ1, ψ2) = L(u0, R0, S0, µ0, ν0)
and Θ = (X ,Y,Z,V,W) = C(ψ1, ψ2). From (8.1), we get that

ZX(X,Y ) = V(X) and ZY (X,Y ) =W(X).

Given a point (X,Y ) ∈ R2, we denote s0 = Y−1(Y ) and s1 = X−1(X) so that

(8.2) Y(s0) = Y and X (s1) = X.
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We have

Z(X,Y ) = Z(s0) +
∫ X

X (Y )
ZX(X̄, Y ) dX̄ = Z(s0) +

∫ X

X (Y )
V(X̄) dX̄

and

Z(X,Y ) = Z(s1) +
∫ Y

Y(X)
ZY (X, Ȳ ) dȲ = Z(s1) +

∫ Y

Y(X)
W(Ȳ ) dȲ .

By averaging these two equations, we get

Z(X,Y ) =
1
2

(Z(s0) + Z(s1)) +
1
2

(
∫ X

X (Y )
V(X̄) dX̄ +

∫ Y

Y(X)
W(Ȳ ) dȲ ).

After a change of variables, it yields

(8.3) Z(X,Y ) =
1
2

(Z(s0) + Z(s1)) +
1
2

∫ s1

s0

(V(X (s))Ẋ (s)−W(Y(s))Ẏ(s)) ds.

We recall that for Θ ∈ G, we have V2(X (s))Ẋ (s) = W2(Y(s))Ẏ(s), see, for example,
(3.32). For the �rst component Z1(X,Y ) that we denote t(X,Y ), we have Z1(s) =
t(s) = 0 for all s ∈ R and, after using (3.8b), we get

t(X,Y ) =
1
2c

∫ s1

s0

(V2(X (s))Ẋ (s) +W2(Y(s))Ẏ(s)) ds

=
1
2c

(Z2(s1)−Z2(s0)), by (3.7)

=
1
2c

(x1(X)− x2(Y )), by (3.24b).(8.4)

As far as the second component Z2(X,Y ) = x(X,Y ) is concerned, it follows directly
from (8.3) and (3.24b) that

(8.5) x(X,Y ) =
1
2

(x1(X) + x2(Y )).

For the third component Z3(X,Y ) = U(X,Y ), we have Z3(s0) = u0(x1(X)) and Z3(s1) =
u0(x2(Y )). After using (3.34e) and (3.31), we get, after a change of variables, that∫ s1

s0

(V3(X (s))Ẋ (s) =
∫ s1

s0

(R0(x1(X (s)))x′1(X (s))Ẋ (s) ds =
1
2c

∫ x1(X)

x2(Y )
R0(x) dx.

We use the fact that x1(X (s1)) = x2(Y(s1)) = x2(Y ), which follows from (3.23) and

(8.2). Similarly, we obtain that
∫ s1
s0
W (Y(s))Ẏ(s) ds = − 1

2c

∫ x2(Y )
x1(X) S0(x) dx. Hence, (8.3)

yields

(8.6) U(X,Y ) =
1
2

(u0(x1(X)) + u0(x2(Y ))) +
1
4c

∫ x2(Y )

x1(X)
(R0 + S0) dx.

From (8.4) and (8.5), it follows that x1(X) = x(X,Y )−ct(X,Y ) and x2(Y ) = x(X,Y )+
ct(X,Y ). Therefore, after using (6.13), we recover d'Alembert's formula from (8.6), i.e.,

u(t, x) =
1
2

(u0(x− ct) + u0(x+ ct)) +
1
4c

∫ x+ct

x−ct
(R0 + S0) dx
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for the solution of the linear wave equation. Let us now look at the energy. We use
the same notation as in the proof of Theorem 7.10. For a given time t, (X (t, s),Y(t, s))
denotes the curve corresponding to a given time, that is, t(X (t, s),Y(t, s)) = t (Beware
of the notation, t(·, ·) denotes a function while t, without argument, denotes a constant).
For any point x, we have

µ(t)(−∞, x) =
∫
x(X (t,s),Y(t,s))<x

JX(X (t, s),X (t, s))Xs(t, s) ds.

From (8.4) and (8.5), we get that x(X (t, s),Y(t, s)) < x if and only if x1(X (t, s)) < x+ct.
Since JX(X,Y ) = V4(X) = J ′1(X), we get

µ(t)(−∞, x) =
∫
x1(X (t,s))<x+ct

J ′1(X (t, s))Xs(t, s) ds.

After a change of variables, it yields

µ(t)(−∞, x) =
∫
x1(X)<x+ct

J ′1(X) dX = µ0(−∞, x+ ct).

Hence, for any Borel set B, we have

µ(t)(B) = µ0(B + ct).

Similarly, we get
ν(t)(B) = ν0(B − ct).

8.2. An example with singular initial data. Let

(8.7a) u0(x) = 1, R0(x) = S0(x) = 0

for all x ∈ R and

(8.7b) ν0 = 2µ0 = 2δ

where δ denotes the Dirac delta function. Our intention is to consider initial data for
which all the energy is concentrated in a set of zero measure (in this case the origin)
and that is why we choose u0 equal to a constant.2 Since u0 does not belong to L2(R),
the theory we have developed does not apply directly. However, we can consider the
sequence of solutions (uN , RN , SN , µN , νN ) given by the semigroup S̄t for the following
initial data

uN0 (x) =

{
1 for x ∈ [−N,N ]
0 otherwise

and RN0 (x) = SN0 (x) = 0, ν0 = 2µ0 = 2δ. Given a compact domain in time and space,
we know that for N large enough the solutions will coincide on this compact domain due
to the �nite time of propagation, see Theorem 7.11. Thus we can de�ne the solution of
(1.1) for the initial data (8.7) as the limit of the solutions uN when N tends to ∞. We
see that, by using the same type of construction, we can actually construct solutions for
any initial data such that u0, R0, S0 belong to L

2
loc(R) and µ, ν are (not necessarily �nite)

Radon measures (note that, by de�nition, a Radon measure is �nite on compacts).

2If we choose u0 = 0 (the only constant in L2(R)) then, since c′(0) = 0, one can check from the
governing equations (2.13) that there is no evolution of the solution, and we have that u(t, x) = 0,
2µ(t) = ν(t) = 2δ is the conservative solution.
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For the initial data (u0, R0, S0, µ0, ν0) given by (8.7), let us denote (ψ1, ψ2) = L(u0, R0, S0, µ0, ν0)
as de�ned in De�nition 3.8 and Θ = (X ,Y,Z,V,W) = C(ψ1, ψ2) de�ned by De�ni-
tion 3.5. We �rst �nd

x1(X) =


X if X < 0,
0 if 0 ≤ X ≤ 1,
X − 1 if X > 1,

x2(Y ) =


Y if Y < 0,
0 if 0 ≤ Y ≤ 2,
Y − 2 if Y > 2,

(8.8)

which yields

Γ0 = {(X,Y ) | x1(X) = x2(Y )}
= {(X,X) | X ≤ 0} ∪

(
[0, 1]× [0, 2]

)
∪ {(X,X + 1) | X ≥ 1}.

Furthermore

J1(X) =


0 if X < 0,
X if 0 ≤ X ≤ 1,
1 if X > 1,

J2(Y ) =


0 if Y < 0,
Y if 0 ≤ Y ≤ 2,
2 if Y > 2,

U1(X) = 1, U2(Y ) = 1,

V1(X) = 0, V2(Y ) = 0,

K1(X) =


0 if X < 0,
X/c(1) if 0 ≤ X ≤ 1,
1/c(1) if X > 1,

K2(Y ) =


0 if Y < 0,
−Y/c(1) if 0 ≤ Y ≤ 2,
−2/c(1) if Y > 2.

Next, we obtain

X (s) =


s if s < 0,
0 if 0 ≤ s < 1,
2s− 2 if 1 ≤ s < 3/2,
s− 1/2 if 3/2 ≤ s,

Y(s) =


s if s < 0,
2s if 0 ≤ s < 1,
2 if 1 ≤ s < 3/2,
s+ 1/2 if 3/2 ≤ s,

(8.9a)

and

x(s) =


s if s < 0,
0 if 0 ≤ s < 3/2,
s− 3/2 if 3/2 ≤ s,

(8.9b)

and U(s) = 1 and

J(s) =


0 if s < 0,
2s if 0 ≤ s < 3/2,
3 if 3/2 ≤ s,

K(s) =


0 if s < 0,
− 2s
c(1) if 0 ≤ s < 1,

2(s−2)
c(1) if 1 ≤ s < 3

2 ,

− 1
c(1) if 3/2 ≤ s,

(8.9c)

c(1)V1(X) = V2(X) =


1/2 if X < 0,
0 if 0 ≤ X < 1,
1/2 if 1 ≤ X,

(8.9d)
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B C D

EA

F

2cT

t(X, Y ) = T

(X ,Y)

t(X, Y ) = 0

Figure 8. Plot of the initial data curve and the curve for a given time T .

c(1)W1(Y ) = −W2(Y ) =


1/2 if Y < 0,
0 if 0 ≤ Y < 2,
1/2 if 2 ≤ Y,

(8.9e)

and V3 =W3 = 0 and

c(1)V5(X) = V4(X) =


0 if X < 0,
1 if 0 ≤ X < 1,
0 if 1 ≤ X,

(8.9f)

c(1)W5(Y ) = −W4(Y ) =


0 if Y < 0,
1 if 0 ≤ Y < 2,
0 if 2 ≤ Y.

(8.9g)

In the case of the linear wave equation, the solution is explicit. In Figure 8, we plot
the curve (X ,Y) and the curve t(X,Y ) = T , for a given T . In Figure 8, the letters A to
F denote the regions which are delimited by the neighboring solid or dashed black lines.
The values of Z in these di�erent regions are given in Table 1.

If we consider the choice

(8.10) c(u)2 = β cos2 u+ α sin2 u

where α and β are strictly positive constants, then no explicit solutions are available for
the initial data (8.7). Due to the �nite speed of propagation, we know that

(8.11) U(X,Y ) = 1 on (−∞, 0 ]× (−∞, 0 ]
⋃

[ 0, 1 ]× [ 0, 2 ]
⋃

[ 1,∞)× [ 2,∞).

The measures ν and µ will become regular measures for t nonzero. We take α = 0.2 and
β = 0.1. The solution is illustrated on Figs. 1, 9�12. Here we have used the numerical
method described in Section 9.
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A B C D E F

t(X,Y ) 0 X−Y
2c − Y

2c
X−Y−1

2c
X−1

2c
X−Y+1

2c

x(X,Y ) 0 X+Y
2

Y
2

X+Y−1
2

X−1
2

X+Y−3
2

U(X,Y ) 1 1 1 1 1 1

J(X,Y ) X + Y 0 X 1 1 + Y 3

K(X,Y ) X−Y
c 0 X

c
1
c

1−Y
c −1

c

Table 1. The values of the solution Z = (t, x, U, J,K) of the linear wave
equation for the initial data given by (8.7) in the di�erent domains of the
plane (see Figure 8, the regions A-F are delimited by the dashed and solid
dark lines).

9. A numerical method for conservative solutions

Next we describe a general numerical approach to obtain conservative solutions of
the NVW equation. Traditional �nite di�erence methods will not yield conservative
solutions, and we here use the full machinery of the analytical approach to derive an
e�cient numerical method for conservative solutions.

We discretize the problem as follows. Given N , smin and smax, we set h = (smax −
smin)/N and si = smin + ih for i = 0, . . . , N . Let

Xi = X (si), Yj = Y(sj), Pi,j = [Xi, Xj ]

for i = 0, . . . , N and j = 0, . . . , N . We compute the solution of (2.13) on the domain Ω =
[X0, XN ]× [Y0, YN ]. The algorithm follows the same type of iteration as in the proof of
Lemma 4.10, and we use the same notation here. We approximate the form ZX(X,Yj) dX
on the interval [Xi−1, Xi] by the constant Vi,j and the form ZY (Xi, Y ) dY on the interval

[Yj , Yj+1] by the constantWi,j . We denote by Zhi,j and Z
v
i,j the approximation of Z on the

segments Pi−1,j − Pi,j and Pi,j − Pi,j+1, respectively. The initial curve is approximated

on the piecewise horizontal and vertical line
⋃N−1
i=1 ([Pi,i, Pi,i+1] ∪ [Pi,i+1, Pi+1,i+1]) and

we set

Zhi,i = Z(si), and Vi,i =
1

Xi −Xi−1

∫ Xi

Xi−1

V(X) dX for i = 1, . . . , N,

Zvi,i = Z(si), and Wi,i =
1

Yi+1 − Yi

∫ Yi+1

Yi

W(X) dX for i = 0, . . . , N − 1,

where Z, V and W are given by (8.9). If Xi − Xi−1 (respectively Yj+1 − Yj) is equal
to zero, then we set Vi,i (respectively Wi,i) to zero or an arbitrary value (this value will
not have any impact on the computed solution). We compute the solution iteratively on
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vertical and horizontal strips: Given n ∈ {0, . . . , N}, we assume that the values of

Zhi,j , Vi,j for 1 ≤ i ≤ n, 0 ≤ j ≤ n,(9.1a)

Zvi,j , Wi,j for 0 ≤ i ≤ n, 0 ≤ j ≤ n,(9.1b)

have been computed. Then, we set iteratively, for j = n+ 1, . . . , 1,

Zhn+1,j−1 = Zhn+1,j − (Yj − Yj−1)Wn,j−1,

Vn+1,j−1 = Vn+1,j − (Yj − Yj−1)F (
1
2

(Zhn+1,j + Zvn,j−1))(Vn+1,j ,Wn,j−1),

Zvn+1,j−1 = Zvn,j−1 + (Xn+1 − Yn)Vn+1,j ,

Wn+1,j−1 = Wn,j−1 + (Xn+1 −Xn)F (
1
2

(Zhn+1,j + Zvn,j−1))(Vn+1,j ,Wn,j−1),

and, for i = n+ 1, . . . , 2,

Zhi−1,n+1 = Zhi−1,n + (Yn+1 − Yn)Wi−1,n,

Vi−1,n+1 = Vi−1,n + (Yn+1 − Yn)F (
1
2

(Zhi−1,n + Zvi−1,n))(Vi−1,n,Wi−1,n),

Zvi−1,n+1 = Zvi,n+1 − (Xi −Xi−1)Vi,n+1,

Wi−1,n+1 = Wi,n+1 − (Xi −Xi−1)F (
1
2

(Zhi,n+1 + Zvi,n+1))(Vi,n+1,Wi,n+1),

and

Zv0,n+1 = Zv1,n+1 − (X1 −X0)V1,n+1,

W0,n+1 = W1,n+1 − (X1 −X0)F (
1
2

(Zh1,n+1 + Zv1,n+1))(V1,n+1,W1,n+1).

We have de�ned the quantities in (9.1) for n replaced by n + 1. By induction we have
computed the solution on the whole domain Ω. To compute the solution at a given time
T , we have to extract a curve (X ,Y) ∈ C such that t(X (s),Y(s)) = T for all s ∈ R.
We proceed by iteration and compute a set of grid points that approximates well such a
curve, for example, by taking

i(k) = sup{i ∈ {0, . . . , N} | t(Xi,k, Yi,k) < T},
j(k) = k,

for k = 0, . . . , N . For a given T , the function u(T, x) can be seen as the curve (x, u(T, x))
in R2 which is parametrized by x ∈ R, and we approximate this curve by the points

(x(Xi(k),j(k), Yi(k),j(k)), U(Xi(k),j(k), Yi(k),j(k)))

for k = 0, . . . , N . This method has been used to produce the results presented in Figure 1.
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