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Abstract. We consider systems of hyperbolic balance laws governing flows of an arbitrary
number of components equipped with general equations of state. The components are assumed
to be immiscible.

We compare two such models; one in which thermal equilibrium is attained trough a re-
laxation procedure, and a fully relaxed model in which equal temperatures are instantaneously
imposed. We describe how the relaxation procedure may be made consistent with the second
law of thermodynamics.

Exact wave velocities for both models are obtained and compared. In particular, our for-
mulation directly proves a general subcharacteristic condition: For an arbitrary number of
components and thermodynamically stable equations of state, the mixture sonic velocity of the
relaxed system can never exceed the sonic velocity of the relaxation system.
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1. Introduction

Dynamic simulations of multicomponent flows often involve non-equilibrium processes. Driv-
ing forces towards equilibrium occur in the equations as relaxation source terms, which may be
extremely stiff if the relaxation time towards equilibrium is small. In this paper, we consider
hyperbolic relaxation systems in a form similar to the description by Chen et al. [7]:

∂U

∂t
+

∂F (U )

∂x
+ A(U)

∂W (U)

∂x
+

1

ε
R(U) = 0, (1)

to be solved for the unknown M -vector U . The system is endowed with a m × M constant-
coefficient matrix Q with rank m < M such that

QR = 0 ∀U . (2)

Furthermore, we assume that QAdW is an exact differential:

QA dW = dG(U). (3)

Multiplying (1) on the left by Q we obtain a conservation law for the reduced variable V = QU :

∂V

∂t
+

∂

∂x
(QF (U) + G(U)) = 0. (4)

We now assume that each V uniquely determines a local equilibrium value U = E(V ), satisfying
R(E(V )) = 0 as well as

QE(V ) = V ∀V . (5)
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Now (4) can be closed as a reduced system by imposing the local equilibrium condition for U ,
namely

U = E(V ), (6)

∂V

∂t
+

∂F(V )

∂x
= 0, (7)

where the reduced flux F is defined by

F(V ) ≡ QF (E(V )) + G(E(V )). (8)

Chen et al. [7] studied stability of solutions to such relaxation systems for the special case A = 0,
i.e. the hyperbolic part of (1) is conservative. In particular, they based their analysis on the
requirement that the relaxation term should be entropy dissipative.

We remark that for the general case of non-conservative hyperbolic balance laws, where A dW

in (1) is not an exact differential, the study of uniqueness of solutions requires an extension of the
standard theory for conservative systems. This has been an active area of research in recent years,
see for instance [6, 8].

1.1. The Subcharacteristic Condition. Central to the question of stability of relaxation sys-
tems is the subcharacteristic condition, a concept introduced by Liu [13]. Within our formulation,
this concept may be defined as follows:

Definition 1. Let the M eigenvalues of the relaxing system (1) be given by

λ1 ≤ . . . ≤ λk ≤ λk+1 ≤ . . . ≤ λM (9)

and the m eigenvalues of the relaxed system (6)–(7) be given by

λ̃1 ≤ . . . ≤ λ̃j ≤ λ̃j+1 ≤ . . . ≤ λ̃m. (10)

Herein, the relaxation system (1) is applied to a local equilibrium state U = E(V ) such that

λk = λk(E(V )), λ̃j = λ̃j(V ). (11)

Now let the λ̃j be interlaced with λk in the following sense: Each λ̃j lies in the closed interval

[λj , λj+M−m]. Then the relaxed system (6)–(7) is said to satisfy the subcharacteristic condition

with respect to (1).

Chen et al. [7] were able to prove the following: If the relaxation system (1) may be equipped
with a convex entropy function that is dissipated by the relaxation term, then the subcharacteristic
condition holds. Furthermore, a converse holds for linear systems and general 2 × 2 systems.

Although the subcharacteristic condition is formally neither a necessary nor sufficient condition
for stability in general, it is nevertheless an essential condition for linear stability and is in practice
required for most physically meaningful relaxation processes. Hence the literature commonly puts
a strong focus on this condition, see for instance Baudin et al. [4, 5] for an application to a
two-phase flow model.

A main result of this paper is a proof that the subcharacteristic condition holds for the models
we are studying. In particular, we present explicit expressions for the eigenvalues of the models
by which it may easily be verified that the condition holds.

1.2. Applications to Multiphase Flows. In addition to modelling actual physical processes,
relaxation systems are significant also from the viewpoint of pure numerical analysis – the relax-
ation system (1) may be used as a starting point for devising numerical methods for the relaxed
system (6)–(7). A classic paper in this respect is the work of Jin and Xin [11], who devised a
general method in which a conservative system in the form (7) is recast as the limit ε → 0 of (1),
where M = 2m and the hyperbolic part of (1) is fully linear. By this, they were able to construct
a numerical method where all nonlinearities are encoded in the source terms. Variations of this
approach were applied to the drift-flux two-phase flow model by Evje and Fjelde [10] as well as
Baudin et al. [4, 5].
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Since the works of Saurel and Abgrall [2, 20], there has been considerable interest in apply-
ing various relaxation techniques to multiphase flow models. The starting point for many such
investigations is the two-pressure two-fluid model [3, 19]:

• Conservation of mass:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0, (12)

∂

∂t
(ρ`α`) +

∂

∂x
(ρ`α`v`) = 0, (13)

• Balance of momentum:

∂

∂t
(ρgαgvg) +

∂

∂x

(

ρgαgv
2
g + αgpg

)

− pi ∂αg

∂x
= µv(v` − vg), (14)

∂

∂t
(ρ`α`v`) +

∂

∂x

(

ρ`α`v
2
` + α`p`

)

− pi ∂α`

∂x
= µv(vg − v`), (15)

• Balance of energy:

∂

∂t

(

ρgαg

(

1

2
v2
g + eg

))

+
∂

∂x

(

ρgαgvg

(

1

2
v2
g + eg +

pg

ρg

))

+ pi ∂αg

∂t
= µvv

i(v` − vg), (16)

∂

∂t

(

ρ`α`

(

1

2
v2

` + e`

))

+
∂

∂x

(

ρ`α`v`

(

1

2
v2

` + e` +
p`

ρ`

))

+ pi ∂α`

∂t
= µvv

i(vg − v`), (17)

• Evolution of volume fraction:

∂αg

∂t
+ vi ∂αg

∂x
= µp(pg − p`). (18)

Herein, we use the following nomenclature for phase k ∈ {g, `}:

ρk - density of phase k,
pk - pressure of phase k,
vk - velocity of phase k,
αk - volume fraction of phase k,
ek - specific internal energy of phase k,
pi - pressure at the gas-liquid interface,
vi - local velocity at the gas liquid-interface.

Furthermore, µv and µp are relaxation coefficients and the following relation holds:

αg + α` = 1. (19)

Munkejord [15] fixed µv = 0 and studied the resulting relaxation system for µp → ∞, with an
emphasis on assessing a relaxation scheme based on the Roe Riemann solver, and performing
computations with finite µp. Here the energy equations were neglected.

Several authors [9, 12, 16, 21, 22] have performed analytical and numerical studies of the full
relaxation process where both µp → ∞ and µv → ∞, which results in a five-equation simplified
system also briefly described by Stewart and Wendroff [24]. This system may be written in the
following form [16]:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgv) = 0, (20)

∂

∂t
(ρ`α`) +

∂

∂x
(ρ`α`v) = 0, (21)

∂

∂t
(ρv) +

∂

∂x
(ρv + p) = 0, (22)

∂E

∂t
+

∂

∂x
(v(E + p)) = 0, (23)

∂αg

∂t
+ v

∂αg

∂x
=

αgα`(ρ`c
2
` − ρgc

2
g)

α`ρgc2
g + αgρ`c

2
`

∂v

∂x
, (24)



4 FLÅTTEN, MORIN AND MUNKEJORD

where the mixture density ρ is given by

ρ = ρgαg + ρ`α`, (25)

the mixture total energy E is given by

E = ρgαgeg + ρ`α`e` +
1

2
ρv2, (26)

and v and p are the velocity and pressure common to both phases. In addition to p, v and αg, the
independent physical variables are here the temperatures Tg and T`.

1.3. Outline of This Paper. This paper is motivated by the observation that most existing
works related to the model (20)–(24) assume that the number of independent phases is fixed to 2.
We are interested in generalizing this model to apply to an arbitrary number of components, and
then applying relaxation heat-transfer terms that will drive the model towards thermal equilibrium.
In the fully relaxed limit, we then recover the homogeneous equilibrium model, studied for instance
in [1, 18].

The usefulness of such an extension is twofold:

(1) Several immiscible fluids may coexist without being in thermal equilibrium, and modelling
individual temperatures for each species may be required. For instance, this can occur for
mixtures of hydrocarbons and water relevant for the petroleum industry.

(2) Direct equilibrium calculations for multicomponent mixtures are computationally expen-
sive. Therefore, relaxation schemes based on non-equilibrium models may provide benefits
in terms of efficiency compared to solving equilibrium models directly.

This paper is organized as follows: In Section 2, we detail the models we will be working with.
In Section 2.1, we present the (2N + 1)-equation relaxation model for N components involving N

individual temperatures. We derive necessary and sufficient restrictions on the relaxation terms
imposed by the first and second law of thermodynamics. In Section 2.1.2, we explicitly state our
model in the form (1). In Section 2.1.3, we show that our model reduces to the standard five-
equation model for the special case N = 2. In Section 2.2, we explicitly perform the relaxation
procedure to recover the reduced form (6)–(7).

In Sections 3.1–3.2, we obtain exact expressions for the wave velocities of the models. Our
formulation allows for a direct proof that the subcharacteristic condition as stated in Definition 1
is satisfied. This is stated in Section 3.2.4.

For completeness, we derive an explicit quasilinear formulation of the relaxed system in Sec-
tion 3.3. In Section 4, we summarize and comment on the results of our paper.

2. The Models

The foundation for the models we consider in this paper consists of one mass conservation
equation for each component:

∂

∂t
(ρiαi) +

∂

∂x
(ρiαiv) = 0 ∀i ∈ {1, . . . , N}, (27)

as well as a conservation equation for the total momentum of the mixture:

∂ρv

∂t
+

∂

∂x

(

ρv2 + p
)

= 0, (28)

where for the purposes of this analysis we neglect any momentum source terms. Here

ρi - density of component i,
ρ - density of the mixture,
v - velocity of the mixture,
αi - volume fraction of component i,
p - pressure common to all components,
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and the following relations hold:

ρ =

N
∑

i=1

ρiαi, (29)

N
∑

i=1

αi = 1. (30)

We now state some observations that will prove useful later.

Lemma 1. The mixture density evolution equation can be written as

∂ρ

∂t
+

∂

∂x
(ρv) = 0. (31)

Proof. Sum (27) over all i. �

Lemma 2. The evolution equation for the mass fraction

Yi =
ρiαi

ρ
(32)

can be written as
∂Yi

∂t
+ v

∂Yi

∂x
= 0. (33)

Proof. Write
ρiαi = ρYi (34)

and use (27) and (31).
�

Remark 1. Note that since
N
∑

i=1

Yi = 1, (35)

we have only N − 1 independent mass fraction equations, expressible in vector form

∂Y

∂t
+ v

∂Y

∂x
= 0, (36)

where

Y =







Y1

...

YN−1






. (37)

Lemma 3. The following momentum evolution equation is valid for each component i:

∂

∂t
(ρiαiv) +

∂

∂x

(

ρiαiv
2
)

+
ρiαi

ρ

∂p

∂x
= 0. (38)

Proof. We have
d(ρiαiv) = ρiαi dv + v d(ρiαi) (39)

and also

dv =
1

ρ
(d(ρv) − v dρ) . (40)

Substituting (40) into (39), and using (27)–(28) and (31), we obtain

∂

∂t
(ρiαiv) +

ρiαi

ρ

(

∂

∂x
(ρv2 + p) − v

∂

∂x
(ρv)

)

+ v
∂

∂x
(ρiαiv) = 0, (41)

which simplifies to
∂

∂t
(ρiαiv) + ρiαiv

∂v

∂x
+

ρiαi

ρ

∂p

∂x
+ v

∂

∂x
(ρiαiv) = 0 (42)

by expansion of derivatives. Lemma 3 now follows from the product rule for derivatives.
�
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Lemma 4. The velocity evolution equation can be formulated as follows:

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
= 0. (43)

Proof. Expand derivatives in (38) and use (27).
�

Lemma 5. The following kinetic energy evolution equation is valid for each component i:

∂

∂t

(

1

2
ρiαiv

2

)

+
∂

∂x

(

1

2
ρiαiv

3

)

+
ρiαiv

ρ

∂p

∂x
= 0. (44)

Proof. We expand the time derivative as

∂

∂t

(

1

2
ρiαiv

2

)

=
1

2
v

∂

∂t
(ρiαiv) +

1

2
ρiαiv

∂v

∂t
. (45)

If now now substitute (38) and (43) into (45), we recover Lemma 5 after collecting derivatives.
�

2.1. Relaxation System. In this section, we derive separate energy evolution equations for each
component, where heat is transferred between the components at a rate proportional to their
temperature difference. We start with the assumption that in Lagrangian coordinates, entropy
change is due only to the heat-transfer terms:

ρiαiTi

(

∂si

∂t
+ v

∂si

∂x

)

=
∑

j 6=i

Hij(Tj − Ti), (46)

where
si = si(p, Ti) (47)

is the specific entropy of component i. We further assume that the relaxation coefficients Hij are
independent of the temperatures Tk. From (46), we may then derive energy evolution equations
for each component, using the kinetic energy equation (44) and the fundamental thermodynamic
differential

dei = Ti dsi +
p

ρ2
i

dρi. (48)

Proposition 1. To be consistent with the second law of thermodynamics, the relaxation coefficients

Hij must satisfy

Hij = Hji ≥ 0. (49)

Proof. For the total cross-sectional entropy given by

ω =

N
∑

i=1

ρiαisi, (50)

we obtain the evolution equation

∂ω

∂t
+

∂

∂x
(ωv) =

N
∑

i=1

∑

j 6=i

Hij

Tj − Ti

Ti

(51)

from (46). Now, inside a closed region R the global entropy Ω is given by:

Ω(t) =

∫

R

ω(x, t) dx. (52)

Hence the second law
dΩ

dt
≥ 0 (53)

imposes
N
∑

i=1

∑

j 6=i

Hij

Tj − Ti

Ti

≥ 0. (54)
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Now
N
∑

i=1

∑

j 6=i

Hij

Tj − Ti

Ti

=
∑

i,j>i

(

Hij

Ti

−
Hji

Tj

)

(Tj − Ti)

=
∑

i,j>i

Hij

(Tj − Ti)
2

TiTj

+
∑

i,j>i

(Hij − Hji)
Tj − Ti

Tj

,

(55)

which remains unconditionally non-negative only if

Hij ≥ 0, Hij − Hji = 0 ∀i, j. (56)

�

Proposition 2. The entropy evolution equations (46) with the condition (49) respect conservation

of total energy.

Proof. From (46) and the fundamental differential (48), we obtain

ρiαi

(

∂ei

∂t
+ v

∂ei

∂x

)

−
pαi

ρi

(

∂ρi

∂t
+ v

∂ρi

∂x

)

=
∑

j 6=i

Hij(Tj − Ti), (57)

where ei is the specific internal energy of component i. Using (27), we can rewrite this as

∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv) + p

(

∂αi

∂t
+

∂

∂x
(αiv)

)

=
∑

j 6=i

Hij(Tj − Ti). (58)

Summing over all i and using (30) we obtain

∂

∂t

(

N
∑

i=1

ρiαiei

)

+
∂

∂x

(

v

N
∑

i=1

ρiαiei

)

+ p
∂v

∂x
=

N
∑

i=1

∑

j 6=i

Hij(Tj − Ti), (59)

which by (49) may be simplified to

∂

∂t

(

N
∑

i=1

ρiαiei

)

+
∂

∂x

(

v

N
∑

i=1

ρiαiei

)

+ p
∂v

∂x
= 0. (60)

We now define the total energy E as

E =

N
∑

i=1

ρiαi

(

ei +
1

2
v2

)

. (61)

Summing (44) over all i and adding (60), we obtain an evolution equation for E in conservative
form:

∂E

∂t
+

∂

∂x
(v(E + p)) = 0. (62)

�

2.1.1. Energy Evolution Equations. In this section, we aim to transform (46) into evolution equa-
tions for the energy Ei of each component:

Ei = ρiαi

(

1

2
v2 + ei

)

. (63)

We start by deriving some preliminary results.

Lemma 6. The pressure evolution equation can be written as

∂p

∂t
+ v

∂p

∂x
+ ρc2 ∂v

∂x
= ρc2

∑

i,j>i

(

Hij

(

Γi

ρic
2
i

−
Γj

ρjc
2
j

)

(Tj − Ti)

)

, (64)

where

c2 =

(

ρ

N
∑

i=1

αi

ρic
2
i

)−1

. (65)
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Here

c2
i =

(

∂p

∂ρi

)

si

(66)

represents the single-component velocity of sound, and Γi is the Grüneisen coefficient

Γi =
1

ρi

(

∂p

∂ei

)

ρi

. (67)

Proof. The differential (48) may be rewritten as

dp = c2
i dρi + ΓiρiTi dsi. (68)

From (68) and (46) we obtain

∂p

∂t
+ v

∂p

∂x
= c2

i

(

∂ρi

∂t
+ v

∂ρi

∂x

)

+
Γi

αi

∑

j 6=i

Hij(Tj − Ti), (69)

which by (27) may be rewritten as

αi

ρic
2
i

(

∂p

∂t
+ v

∂p

∂x

)

+
∂αi

∂t
+

∂

∂x
(αiv) =

Γi

ρic
2
i

∑

j 6=i

Hij(Tj − Ti). (70)

Lemma 6 follows from summing over all i. �

Lemma 7. The internal energy evolution equation for component i can be written as

∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv) + αip

ρc2

ρic
2
i

∂v

∂x

= θi

∑

j 6=i

Hij(Tj − Ti) +
ρc2

ρic
2
i

αi

∑

k,j>k

(Hkj(θj − θk)(Tj − Tk)) , (71)

where

θi = 1 −
Γip

ρic
2
i

≡
1

Ti

(

∂ei

∂si

)

p

. (72)

Proof. Substitute (70) into (58) to obtain

∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv) −

αip

ρic
2
i

(

∂p

∂t
+ v

∂p

∂x

)

=

(

1 −
Γip

ρic
2
i

)

∑

j 6=i

Hij(Tj − Ti). (73)

Now (71) follows by substituting (64) into (73).
�

Proposition 3. The evolution equation for the total energy of component i can be written as

∂Ei

∂t
+

∂

∂x
(Eiv) +

ρiαiv

ρ

∂p

∂x
+ αip

ρc2

ρic
2
i

∂v

∂x

= θi

∑

j 6=i

Hij(Tj − Ti) +
ρc2

ρic
2
i

αi

∑

k,j>k

(Hkj(θj − θk)(Tj − Tk)) , (74)

or equivalently

∂Ei

∂t
+

∂

∂x
(Eiv) +

ρiαi

ρ

∂

∂x
(pv) + αip

(

ρ2c2 − ρ2
i c

2
i

ρρic
2
i

)

∂v

∂x

= θi

∑

j 6=i

Hij(Tj − Ti) +
ρc2

ρic
2
i

αi

∑

k,j>k

(Hkj(θj − θk)(Tj − Tk)) . (75)

Proof. Add (44) and (71) to obtain (74). �
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2.1.2. Canonical Relaxation Form. In this section, we explicitly express the above model in the
form (1). We emphasize that since the system is partially non-conservative, there is no obvious
preferred choice of variables in which to express the balance equations; however, conservation of
total energy must be respected.

For the (N = 2)-model previously investigated, the authors [9, 12, 16, 21, 22] commonly choose
to express the equations in terms of total energy and volume fraction, as stated by (20)–(24). This
formulation naturally follows from performing the relaxation procedure on the model (12)–(18).

However, to preserve the symmetry in the equations, we here choose to express our model
in terms of the energy evolution equations for each component. Summing these equations then
automatically yields conservation of total energy, as stated by Proposition 2. In the context of
(1), we obtain:

U =

























ρ1α1

...
ρNαN

ρv

E1

...
EN

























, F (U) =

























ρ1α1v
...

ρNαNv

ρv2 + p

E1v
...

ENv

























, W (U) =

[

pv

v

]

. (76)

Furthermore, the (2N + 1) × 2 matrix A is given by

A(U) =
1

ρ





























0 0
...

...
0 0
0 0

ρ1α1 α1p
(

ρc2−ρ1c2

1

ρ1c2

1

)

...
...

ρNαN αNp
(

ρc2−ρN c2

N

ρN c2

N

)





























. (77)

The relaxation source term is given by

R(U) = −



























0
...
0
0

θ1

∑

j 6=1 h1j(Tj − T1) + ρc2

ρ1c2

1

α1

∑

k,j>k (hkj(θj − θk)(Tj − Tk))

...

θN

∑

j 6=N hNj(Tj − TN) + ρc2

ρN c2

N

αN

∑

k,j>k (hkj(θj − θk)(Tj − Tk))



























, (78)

where
hij = εHij . (79)

2.1.3. Relation to Five-Equation Model. In this section, we wish to illustrate that our model
essentially reduces to the five-equation model [9, 12, 16, 21, 22] for the special case N = 2.

From our general model (76)–(78), we may derive an evolution equation for the volume fraction:

Lemma 8. The evolution equation for the volume fraction of component i can be written as

∂αi

∂t
+ v

∂αi

∂x
+ αi

ρic
2
i − ρc2

ρic
2
i

∂v

∂x

=
Γi

ρic
2
i

∑

j 6=i

Hij(Tj − Ti) − αi

ρc2

ρic
2
i

∑

k,j>k

(

Hkj

(

Γk

ρkc2
k

−
Γj

ρjc
2
j

)

(Tj − Tk)

)

. (80)
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Proof. Substitute (64) into (70) and expand derivatives. �

Now for N = 2, this may be written as

∂α1

∂t
+ v

∂α1

∂x
=

α1α2(ρ2c
2
2 − ρ1c

2
1)

α2ρ1c
2
1 + α1ρ2c

2
2

∂v

∂x
+

α1α2

α2ρ1c
2
1 + α1ρ2c

2
2

(

Γ1

α1

+
Γ2

α2

)

H12(T2 − T1). (81)

Augmenting this with the mass, total momentum and total energy equations (20)–(23), we recover
the formulation of the five-equation model stated in [21], Section 5.5.

2.2. Relaxed System. We now consider the system obtained by letting the relaxation coefficients
Hij tend to infinity, i.e. we achieve instantaneous thermal equilibrium. In addition to the mass and
momentum conservation equations (27) and (28), we replace the componentwise energy evolution
equations (74) with:

• Equality of temperatures:

Ti = Tj = T ∀i, j; (82)

• Conservation of total energy:

∂E

∂t
+

∂

∂x
(v(E + p)) = 0. (83)

In the context of Section 1, the (N + 2) × (2N + 1) matrix Q is given by

Q = [Qij ], Qij =











1 if i = j,

1 if j > i and i = N + 2,

0 otherwise.

(84)

We may then verify that (2) holds. Furthermore, we obtain:

V (U) =















ρ1α1

...
ρNαN

ρv

E















, G(U) =















0
...
0
0
pv















, F(V ) =















ρ1α1v
...

ρNαNv

ρv2 + p

Ev















. (85)

and the local equilibrium value E(V ) is determined by (82).

Remark 2. Note that the matrix Q reduces to the identity matrix for the special case N = 1,

where the equilibrium condition is already satisfied by the relaxation system. However, in Section 1,

we explicitly assume that

rank(Q) < M = 2N + 1. (86)

Throughout this paper, we will assume that N ≥ 2 so that (86) holds.

3. Wave Structure

In this section, we derive the wave velocities associated with the relaxation and relaxed models,
formally given by the eigenvalues of the coefficient matrix of the system in quasilinear form. Our
derivation will rely heavily on the similarities between our systems and the well known Euler
system for single-component gas dynamics.

3.1. Relaxation System. The system (76)–(78) may be expressed in an alternative form as a
composition of 3 parts:

• An “isentropic Euler part”, consisting of (28) and (31);
• A mass fraction part (36);
• An entropy part (46).
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From (36) and (46) we immediately see that si and Y are characteristic variables. Hence v is an
eigenvalue of the system with multiplicity (2N − 1), corresponding to N entropy waves and N − 1
mass fraction waves.

From (28) and (31) we then obtain the remaining eigenvalues:

λ = v ± ĉ, (87)

where

ĉ2 =

(

∂p

∂ρ

)

Y ,s1,...,sN

. (88)

Proposition 4. The mixture sonic velocity ĉ is given by

ĉ2 =

(

ρ

N
∑

i=1

αi

ρic
2
i

)−1

. (89)

Proof. Consider the differential

N
∑

i=1

d(ρiαi)

ρi

=
N
∑

i=1

dαi +
N
∑

i=1

(

αi

ρi

dρi

)

=
N
∑

i=1

(

αi

ρic
2
i

dp + O(dsi)

)

, (90)

which can also be written as
N
∑

i=1

d(ρiαi)

ρi

=

N
∑

i=1

d(ρYi)

ρi

= ρ

N
∑

i=1

dYi

ρi

+

N
∑

i=1

(

Yi

ρi

)

dρ. (91)

We then have

ĉ2 =

(

∂p

∂ρ

)

Y ,s1,...,sN

=

∑N
i=1

Yi

ρi

∑N

i=1
αi

ρic
2

i

, (92)

and (89) follows. �

Remark 3. Note that when N = 2, (89) reduces to a classical expression for the two-phase sonic

velocity, sometimes referred to as the “Wood speed of sound” [21]. This expression is also derived

in [17] by considering one phase as an elastic wall for the other.

3.2. Relaxed System. The relaxed system (85) may also be expressed in a convenient alternative
form as:

• A mass fraction part (36);
• A “mixture Euler” part, consisting of:

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (93)

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0, (94)

∂E

∂t
+

∂

∂x
((E + p)v) . (95)

From (36) we see that there are N−1 characteristics with velocity v corresponding to mass fraction
waves. The remaining 3 eigenvalues may now be found from the Euler system (93)–(95), by means
of the following result:

Proposition 5. The mixture entropy given by

s =
N
∑

i=1

Yisi (96)

satisfies the characteristic equation
∂s

∂t
+ v

∂s

∂x
= 0. (97)
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Proof. The assumption of immiscibility implies that the differential (48) holds individually for each
component. Substituting (48) into (95) and using (61), we recover (97) by textbook simplifications
made possible by (93) and (94).

�

Hence, in addition to the N − 1 mass fraction waves and the mixture entropy wave (97), we
obtain two sonic waves with velocities v ± c̃, calculated in a standard way from the reduced Euler
system (93)–(94). Herein, the sonic velocity c̃ is given by

c̃ =

(

∂p

∂ρ

)

Y ,s

. (98)

3.2.1. Some Thermodynamic Derivatives. In order to obtain an explicit expression for c̃, we will
first need some intermediate results. In particular, the following parameter will prove useful:

ζi =

(

∂T

∂p

)

si

= −
1

ρ2
i

(

∂ρi

∂si

)

p

. (99)

A number of useful thermodynamic derivatives may now be expressed in terms of ζ.

Lemma 9.
(

∂si

∂p

)

T

=
1

ρ2
i

(

∂ρi

∂T

)

p

= −
ζicp,i

T
, (100)

where the specific heat capacity cp,i is given by

cp,i = T

(

∂si

∂T

)

p

. (101)

Proof. The result follows directly from (99) and (101). �

Lemma 10.
(

∂ρi

∂p

)

T

=
1

c2
i

+
ρ2

i ζ
2
i cp,i

T
. (102)

Proof. The result follows from (66), (99), (101) and the relation
(

∂ρi

∂p

)

T

=

(

∂ρi

∂p

)

si

+

(

∂ρi

∂si

)

p

(

∂si

∂p

)

T

. (103)

�

Lemma 11.
(

∂ei

∂T

)

p

= cp,i

(

1 − ζi

p

T

)

. (104)

Proof. The result follows from
(

∂ei

∂T

)

p

= T

(

∂si

∂T

)

p

+
p

ρ2
i

(

∂ρi

∂T

)

p

(105)

and (100). �

Lemma 12.
(

∂ei

∂p

)

T

=
p

(ρici)2
− ζicp,i

(

1 − ζi

p

T

)

. (106)

Proof. The result follows from
(

∂ei

∂p

)

T

= T

(

∂si

∂p

)

T

+
p

ρ2
i

(

∂ρi

∂p

)

T

(107)

as well as (100) and (102). �



WAVE PROPAGATION IN MULTICOMPONENT FLOW MODELS 13

3.2.2. The Relaxed Sound Velocity c̃. Armed with these results, we are now able to obtain an
explicit expression for c̃ as given by (98). To this end, we first state the following Lemma:

Lemma 13. The differential (90) can be written as

N
∑

i=1

d(ρiαi)

ρi

=

N
∑

i=1

(

αi

ρic
2
i

)

dp − ρ

∑N

i=1 ζiCp,i
∑N

i=1 Cp,i

ds

+

(

T

N
∑

i=1

Cp,i

)−1




N
∑

i=1

ζ2
i Cp,i ·

N
∑

i=1

Cp,i −

(

N
∑

i=1

ζiCp,i

)2


 dp + O(dY ), (108)

where the extensive heat capacity Cp,i is given by

Cp,i = ρiαicp,i. (109)

Proof. Use (100) and (102) to obtain

N
∑

i=1

d(ρiαi)

ρi

=

N
∑

i=1

(

αi

ρi

dρi

)

=

N
∑

i=1

(

αi

ρic
2
i

+ ζ2
i

Cp,i

T

)

dp −

N
∑

i=1

(

ζi

Cp,i

T

)

dT. (110)

Furthermore, use (100) and (101) when differentiating (96) to obtain

ds =

N
∑

i=1

(

Yi

cp,i

T

)

dT −

N
∑

i=1

(

Yiζi

cp,i

T

)

dp + O(dY ). (111)

Substitute (111) for dT in (110), and (108) follows. �

To achieve further simplification, we will find use for a general summation lemma:

Lemma 14.

∑

i

(x2
i yi) ·

∑

i

yi −

(

∑

i

(xiyi)

)2

=
∑

j>i

yiyj(xj − xi)
2. (112)

Proof.

∑

i

(x2
i yi) ·

∑

i

yi −

(

∑

i

(xiyi)

)2

=
∑

i

(x2
i y

2
i ) +

∑

i6=j

x2
i yiyj −

∑

i

(x2
i y

2
i ) −

∑

i6=j

xixjyiyj

=
∑

i6=j

(

x2
i yiyj − xixjyiyj

)

=
∑

j>i

(

(x2
i + x2

j )yiyj − 2xixjyiyj

)

=
∑

j>i

yiyj(xj − xi)
2. (113)

�

Proposition 6. The relaxed mixture sonic velocity (98) may be written as

c̃−2 = ĉ−2 + ρ

(

T

N
∑

i=1

Cp,i

)−1
∑

j>i

Cp,iCp,j(ζj − ζi)
2, (114)

where ĉ, given by (89), is the mixture sonic velocity of the relaxation system of Section 2.1.

Proof. Lemma 14 allows us to write (108) as

N
∑

i=1

d(ρiαi)

ρi

=





N
∑

i=1

αi

ρic
2
i

+

(

T

N
∑

i=1

Cp,i

)−1
∑

j>i

Cp,iCp,j(ζj − ζi)
2



dp−ρ

∑N

i=1 ζiCp,i
∑N

i=1 Cp,j

ds+O(dY ).

(115)
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Using (91), we may then express the mixture sound velocity as

c̃−2 =

(

∂ρ

∂p

)

Y ,s

=

(

N
∑

i=1

Yi

ρi

)−1




N
∑

i=1

αi

ρic
2
i

+

(

T

N
∑

i=1

Cp,i

)−1
∑

j>i

Cp,iCp,j(ζj − ζi)
2



 , (116)

and (114) follows.
�

3.2.3. Alternative Formulations. Several equivalent formulations of the equilibrium mixture sound
velocity c̃ are known from the literature. For equilibrium flow of two immiscible components,
Städtke [23] obtained the following result:

c̃−2 = ρ

(

α1γ1 + α2γ2 −
T

Cp,1 + Cp,2

(α1β1 + α2β2)
2

)

, (117)

where

βi = −
1

ρi

(

∂ρi

∂T

)

p

, (118)

γi =
1

ρi

(

∂ρi

∂p

)

T

. (119)

Proposition 7. The expression (114) is equivalent to (117) when N = 2.

Proof. Using (100) and (102) to substitute for βi and γi in (117), we recover

c̃−2 = ĉ−2 +
ρ

T

Cp,1Cp,2(ζ2 − ζ1)
2

Cp,1 + Cp,2

(120)

which corresponds to (114) for N = 2. �

Furthermore, Abgrall [1] derived the general result

c̃2 =

N
∑

i=1

YiPi +
ρe + p

ρ
Pε, (121)

where the parameters P are defined through

dp =

N
∑

i=1

Pi d(ρiαi) + Pε d(ρe) (122)

with

e =

N
∑

i=1

Yiei. (123)

In Section 3.3, we will show that the expression (114) can be written in the form (121) for our
model.

3.2.4. The Subcharacteristic Condition. Although related formulations of the mixture sound ve-
locity c̃ already exist in the literature, the particular formulation (114) we have obtained in this
paper will now prove useful. In particular, it straightforwardly leads to the following result:

Proposition 8. Assume that the relaxation sonic velocity ĉ given by (89) is real and non-zero,

i.e. ĉ2 > 0. Then the relaxed system of Section 2.2 satisfies the subcharacteristic condition given

by Definition 1, with respect to the relaxation system of Section 2.1, subject only to the condition

Cp,i > 0 ∀i, (124)

which is assured by thermodynamic stability theory.
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Proof. We observe that the difference

c̃−2 − ĉ−2 = ρ

(

T

N
∑

i=1

Cp,i

)−1
∑

j>i

Cp,iCp,j(ζj − ζi)
2 (125)

is strictly non-negative under the condition (124). Hence

c̃ ≤ ĉ, (126)

and the equality holds only if all ζi are equal. Furthermore, in the context of Definition 1, we
have that M = 2N + 1 and m = N + 2, and we assume that N ≥ 2 as stated in Remark 2. The
eigenvalues are given by

λ1 = v − ĉ, (127)

λ2, . . . , λ2N = v, (128)

λ2N+1 = v + ĉ (129)

and

λ̃1 = v − c̃, (130)

λ̃2, . . . , λ̃N+1 = v, (131)

λ̃N+2 = v + c̃. (132)

The interlacing condition of Definition 1 becomes

λ̃j ∈ [λj , λj+N−1] ∀j, (133)

which by inspection of (127)–(132) yields the following conditions:

v − c̃ ∈ [v − ĉ, v], (134)

v ∈ [v, v], (135)

v + c̃ ∈ [v, v + ĉ], (136)

which by (126) are all satisfied. �

3.3. Quasilinear Formulation. In this section, we derive an explicit quasilinear formulation of
the relaxed system described in Section 2.2. More precisely, we express the system in the form

∂V

∂t
+ A(V )

∂V

∂x
= 0, (137)

where

A(V ) =
∂F(V )

∂V
. (138)

In addition to facilitating further analysis, such a formulation provides advantages when devising
numerical methods for the model. An application of this has already been presented in [14].

3.3.1. Some Intermediate Results. We will start by deriving some intermediate differentials that
will prove useful for our further analysis.

Lemma 15. The internal-energy differentials satisfy

N
∑

i=1

Vi dei =

(

p − T

∑N
i=1 Cp,i

∑N

i=1 ζiCp,i

)

N
∑

i=1

dVi

ρi

+

(

T

ρĉ2

∑N
i=1 Cp,i

∑N

i=1 ζiCp,i

+

∑

j>i Cp,iCp,j(ζj − ζi)
2

∑N

i=1 ζiCp,i

)

dp.

(139)

Proof. Use Lemmas 11 and 12, as well as the definition (89), to obtain

N
∑

i=1

Vi dei =
N
∑

i=1

(

Cp,i

(

1 − ζi

p

T

))

dT +

(

p

ρĉ2
−

N
∑

i=1

ζiCp,i

(

1 − ζi

p

T

)

)

dp. (140)

Use (110) to eliminate dT from (140), and simplify by use of Lemma 14. �
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Lemma 16. The total specific internal-energy differential may be expressed as

d(ρe) =
N
∑

i=1

(

ei +
p

ρi

)

dVi − T

∑N

i=1 Cp,i
∑N

i=1 ζiCp,i

N
∑

i=1

dVi

ρi

+
T

ρc̃2

∑N

i=1 Cp,i
∑N

i=1 ζiCp,i

dp. (141)

Proof. Use
N
∑

i=1

Vi dei = d(ρe) −

N
∑

i=1

ei dVi (142)

in (139) and simplify using (114). �

Lemma 17. The pressure differential may be expressed as

dp = ρc̃2

N
∑

i=1

dVi

ρi

−
ρc̃2

T

∑N
i=1 ζiCp,i
∑N

i=1 Cp,i

(

N
∑

i=1

(

ei +
p

ρi

−
1

2
v2

)

dVi + v dVN+1 − dVN+2

)

. (143)

Proof. Use

d(ρe) =
1

2
v2

N
∑

i=1

dVi − v dVN+1 + dVN+2 (144)

in (141) and solve for dp. �

Lemma 18. The pressure-transport differential may be expressed as

d(pv) =vρc̃2

N
∑

i=1

dVi

ρi

− v
ρc̃2

T

∑N

i=1 ζiCp,i
∑N

i=1 Cp,i

N
∑

i=1

(

ei +
p

ρi

−
1

2
v2

)

dVi −
pv

ρ

N
∑

i=1

dVi

(

p

ρ
− v2 ρc̃2

T

∑N
i=1 ζiCp,i
∑N

i=1 Cp,i

)

dVN+1 + v
ρc̃2

T

∑N
i=1 ζiCp,i
∑N

i=1 Cp,i

dVN+2.

(145)

Proof. use

d(pv) = v dp + p dv (146)

together with (29) and (40) in (143). �

3.3.2. The Jacobi Matrix. We will find it convenient to split the flux vector into convective and
pressure terms as follows:

F(V ) = Fc(V ) + Fp(V ), (147)

where

Fc(V ) = vV (148)

and

Fp(V ) =



















0
0
...
0
p

pv



















, V =



















V1

V2

...
VN

VN+1

VN+2



















=



















ρ1α1

ρ2α2

...
ρNαN

ρv

ρe + 1
2
v2



















. (149)

Then we may write

A(V ) = Ac(V ) + Ap(V ), (150)

where

Ac(V ) =
∂Fc(V )

∂V
and Ap(V ) =

∂Fp(V )

∂V
. (151)
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Proposition 9. The convective Jacobian matrix Ac can be written as

Ac(V ) =



















(1 − Y1)v −Y1v . . . −Y1v Y1 0
−Y2v (1 − Y2)v . . . −Y2v Y2 0

...
. . .

. . .
...

...
...

−YNv −YNv . . . (1 − YN )v YN 0
−v2 −v2 . . . −v2 2v 0

−
(

e + 1
2
v2
)

v −
(

e + 1
2
v2
)

v . . . −
(

e + 1
2
v2
)

v e + 1
2
v2 v



















, (152)

where

e =

N
∑

i=1

Yiei. (153)

Proof. From (148) we obtain

dFc = v dV + V dv, (154)

which together with (29) and (40) yields the result.
�

Proposition 10. The pressure Jacobian Ap can be written as

Ap = A1 +
ρc̃2

T

∑N

i=1 ζiCp,i
∑N

i=1 Cp,i

A2, (155)

where

A1(V ) =





















0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

. . .
. . .

...
...

...

0 0 . . . 0 0 0
ρc̃2

ρ1

ρc̃2

ρ2

. . . ρc̃2

ρN
0 0

v
(

ρc̃2

ρ1

− p
ρ

)

v
(

ρc̃2

ρ2

− p
ρ

)

. . . v
(

ρc̃2

ρN

− p
ρ

)

p
ρ

0





















(156)

and

A2(V ) =





















0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

. . .
. . .

...
...

...
0 0 . . . 0 0 0

1
2
v2 − e1 −

p
ρ1

1
2
v2 − e2 −

p
ρ2

. . . 1
2
v2 − eN − p

ρN

−v 1

v
(

1
2
v2 − e1 −

p
ρ1

)

v
(

1
2
v2 − e2 −

p
ρ2

)

. . . v
(

1
2
v2 − eN − p

ρN

)

−v2 v





















. (157)

Proof. The result follows directly from Lemmas 17 and 18 applied to (149). �

By the above calculations, it follows that the relaxed system of Section 2.2 can be written in
the form (137), with

A = Ac + A1 +
ρc̃2

T

∑N

i=1 ζiCp,i
∑N

i=1 Cp,i

A2, (158)

where Ac, A1 and A2 are given by (152), (156) and (157).
We are now in position to prove the following:

Proposition 11. The mixture sound velocity c̃, given by (114), satisfies Abgrall’s formula (121).

Proof. From Lemma 17 it follows that

Pi =
ρc̃2

ρi

−
ρc̃2

T

∑N
i=1 ζiCp,i
∑N

i=1 Cp,i

(

ei +
p

ρi

)

(159)
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and

Pε =
ρc̃2

T

∑N
i=1 ζiCp,i
∑N

i=1 Cp,i

(160)

in the context of (122). By this, (121) simplifies to the trivial identity

c̃2 =

N
∑

i=1

Yi

ρc̃2

ρi

=

N
∑

i=1

αic̃
2 = c̃2. (161)

�

4. Summary

We have studied a relaxation system modelling the flow of an arbitrary number of immiscible
fluids. The fluids are assumed to flow with the same velocities and to be in mechanical equilibrium,
i.e., to have the same pressure. Thermal equilibrium is not assumed, instead heat transfer has
been modelled by a relaxation procedure. The relaxation procedure has been carefully chosen
to respect the first and second law of thermodynamics. In this respect, we have extended upon
previous works [12, 21], that considered the special case of two separate fluids.

Furthermore, we have studied the relaxed limit where thermal equilibrium is instantaneously
imposed. This relaxed limit is sometimes referred to as the homogeneous equilibrium model. We
have derived a formulation of the mixture sound velocity of this relaxed model, from which it
is straightforward to see that the relaxed system unconditionally satisfies the subcharacteristic

condition. The physical interpretation of this result is that the instantaneous equilibrium condition
imposes a slower mixture sound velocity compared to the non-equilibrium case. Although this
result may be obtained by other means, the proof presented in this paper seems original, and
provides insights into the effects of relevant thermodynamic parameters on sonic propagation.
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