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1 Introduction

This paper is concerned with a blow-up criterion for the two-dimensional Navier-Stokes
equations of compressible isentropic flows which describe the conservation of mass and
momentum, and can be written in the following form:

ρt + div (ρu) = 0, (1.1)

ρ(ut + u · ∇u) = µ∆u + (λ + µ)∇div u−∇P, (1.2)

where u = (u, v) ∈ R2 and ρ ∈ R+ denote the velocity and density, respectively. The
physical constants µ, λ are the viscosity coefficients satisfying µ > 0, λ + µ ≥ 0, P is the
pressure having the following form in the isentropic flow case:

P = aργ, (1.3)

where γ ≥ 1 is the specific heat ratio and a > 0 is a gas constant.
For the sake of simplicity, we will consider an initial boundary value problem for (1.1),

(1.2) in the domain Ω := {(x, y) ∈ R2; 0 < x, y < 1} with initial data

(ρ,u)|t=0 = (ρ0,u0) in Ω (1.4)

and boundary conditions

u|x=0 = u|x=1 = 0, uy|y=0 = uy|y=1 = 0,

v|y=0 = v|y=1 = 0, vx|x=0 = vx|x=1 = 0.
(1.5)

In the last decades mathematical aspects for the compressible Navier-Stokes equations
have been extensively studied and significant progress has been made in the study of global
in time existence for the system (1.1)–(1.3). Assuming that the initial data are sufficiently
small, Matsumura and Nishida [15, 16] first proved the global existence of smooth solutions
to initial boundary value problems and the Cauchy problem for (1.1)–(1.3), and the existence
of global weak solutions was shown by Hoff [9]. For large data, however, it is still an open
question whether a global smooth solution to (1.1)–(1.3) exists or not, except certain special
cases, such as the spherically symmetric case in domains without the origin, see [11] for
example. Concerning weak solutions to the multidimensional compressible Navier-Stokes
equations, the existence of global weak solutions in the isentropic flow case was first shown
by Lions [14], and his result was then improved and generalized in [6, 12, 13], and among
others. We also mention that for non-isentropic flows, Feireisl [7, 8] recently obtained the
global existence of the so-called “variational solution” in the case of real gases in the sense
that the energy equation is replaced by an energy inequality. However, this result excludes
the case of ideal gases unfortunately.

Xin [20], Rozanova [17] showed the non-existence of global smooth solutions when the
initial density is compactly supported, or the initial mass is bounded and solutions decay
to zero sufficiently fast. Since the system (1.1)–(1.3) is a model of non-dilute fluids, these
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non-existence results are natural to expect when vacuum regions are present initially. Thus,
it is very interesting to investigate whether a strong or smooth solution will still blow up in
finite time, when there is no vacuum initially.

Fan and Jiang [4] proved the following blow-up criterion for the local strong solutions to
(1.1)–(1.5) in the case of two dimensions:

lim
T→T∗

(
sup

0≤t≤T
‖ρ‖L∞ +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2

) )
= ∞, provided 7µ > 9λ. (1.6)

The condition (1.6) shows that if ρ is regular, the smoothness of u can then be guaranteed,
and therefore, a strong solution (ρ,u) can exist for all time.

Recently, Huang and Xin [10] established the following blow-up criterion, similar to the
Beale-Kato-Majda criterion for ideal incompressible flows [1], for the isentropic compressible
Navier-Stokes equations:

lim
t→T∗

∫ T

0

‖∇u‖L∞dt = ∞, (1.7)

provided
7µ > λ. (1.8)

Very recently, Huang and Xin’s result [10] for isentropic flows has been extended to non-
isentropic flows [5].

In view of the non-existence results of global smooth solutions due to Xin [20] and
Rozanova [17], we think that presence of vacuum could be the reason that prevents a local
smooth solution from extending to any time. In other words, if the density is away from
vacuum (ρ = 0) and the concentration of mass (ρ = ∞), then a strong solution should exist
globally in time. The aim of the current paper is to prove this assertion. More precisely, a
global strong solution to (1.1)–(1.5) exists provided that the density is pointwise bounded
from below and above.

Before giving our main result, we state the following local existence of the strong solutions
with initial vacuum, the proof of which can be found in [3].

Proposition 1.1 (Local Existence) Assume that the initial data ρ0, u0, θ0 satisfy

ρ0 ≥ 0, ρ0 ∈ W 1,q(Ω) for some 2 < q ≤ 6, u0 ∈ H1
0 (Ω) ∩H2(Ω), (1.9)

and the compatibility condition

−µ∆u0 − (µ + λ)∇divu0 +∇P (ρ0) = ρ
1/2
0 g for some g ∈ L2(Ω). (1.10)

Then, there exist a T∗ > 0 and a unique strong solution (ρ,u) to (1.1)–(1.5), such that

ρ ≥ 0, ρ ∈ C([0, T∗],W 1,q), ρt ∈ C([0, T∗], Lq),

u ∈ C([0, T∗], H1
0 ∩H2) ∩ L2(0, T∗; W 2,q), ut ∈ L∞(0, T∗; L2) ∩ L2(0, T∗; H1

0 ).
(1.11)
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Remark 1.1 The local existence of strong solutions is shown for the three-dimensional non-
isentropic case in [3], where q > 3 is required (because of W 1,q ↪→ L∞ in R3). Here for our
two-dimensional isentropic case, q > 2 is sufficient.

Now, we are in a position to state the main result of this paper.

Theorem 1.1 (Blow-up criterion) Let ρ0 ∈ W 1,q (q > 2), u0 ∈ H2, and m̄ ≤ ρ0 ≤ M̄ for
some positive constants m̄, M̄ . Also assume that the initial data ρ0,u0 are compatible with
the boundary conditions (1.5). If T ∗ < ∞ is the maximal time of existence, then

lim
T→T ∗

(
‖ρ‖L∞((0,T )×Ω) + ‖ρ−1‖L∞((0,T )×Ω)

)
= ∞.

We will prove Theorem 1.1 by contradiction in the next section. In fact, the proof
of the theorem is based on a priori estimates under the assumption that ‖ρ‖L∞((0,T )×Ω) +
‖ρ−1‖L∞((0,T )×Ω) is bounded for any T ∈ [0, T ∗). The a priori estimates are then sufficient
for us to apply the local existence theorem to extend a local solution beyond the maxi-
mal time of existence T ∗, consequently, contradicting to the assumption of boundedness of
‖ρ‖L∞((0,T )×Ω) + ‖ρ−1‖L∞((0,T )×Ω).

The key step in getting the a priori estimates is to bound higher order derivatives of
(ρ,u). The boundary conditions (1.5) could induce some difficulties, if we try to bound the
higher order derivatives of (ρ,u) directly. Instead, we will adapt and modify the arguments
in [18] to first bound the vorticity curlu and the viscous flux (2µ + λ)div u − P (cf. [14])
as well as their first-order derivative, since the vorticity and the viscous flux satisfy the
evolution equations (2.3) and (2.4) with the classical Dirichlet and Neumann boundary
conditions (2.7) that are easier to handle (than (1.5)). Then, with the help of the estimates
for the vorticity and the viscous flux, we can bound the higher order derivatives of (ρ,u).

Throughout this paper, we will use the following abbreviations:

Lp ≡ Lp(Ω), Hm ≡ Hm(Ω), Hm
0 ≡ Hm

0 (Ω).

2 Proof of Theorem 1.1

Let 0 < T < T ∗ be arbitrary but fixed. Throughout this section we denote by C (or
C(X, · · · ) to emphasize the dependence of C on X, · · · ) a general positive constant which
may depend continuously on T . Let (ρ,u) be a strong solution to the problem (1.1)–(1.5)
in the function space given in (1.11) on the time interval [0, T ].

We will prove Theorem 1.1 by a contradiction argument. To this end, we suppose that

‖ρ‖L∞((0,T )×Ω) + ‖ρ−1‖L∞((0,T )×Ω) ≤ C for any T < T ∗, (2.1)

we will deduce a contradiction to the maximality of T ∗.
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First, we show the standard energy estimate. In fact, denoting

h(ρ) :=





a
(ργ − ρ

γ − 1
− ρ + 1

)
, γ > 1,

a(ρ log ρ− ρ + 1), γ = 1,

we multiply (1.2) by u in L2(Ω), integrate by parts, use (1.5) and (1.1) to deduce

d

dt

∫

Ω

[ρ|u|2
2

+ h(ρ)
]
dx +

∫

Ω

(
µ|∇u|2 + (µ + λ)|div u|2

)
dx = 0.

Integration of the above identity with respect to t and use of Poincaré’s inequality give

‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1) ≤ C. (2.2)

Without loss of generality, we may assume µ = 1 in the calculations that follow. Next,
we will adapt and modify the arguments due to Vagaint and Kazhikhov [18] to derive a priori
estimates on the vorticity and the viscous flux under the assumption (2.1). Introducing

A := uy − vx = −curlu, B := (2 + λ)div u− P,

L :=
1

ρ
(Ay + Bx), H :=

1

ρ
(−Ax + By),

and recalling µ = 1 as well as the equations (1.1) and (1.2), we obtain, after a straightforward
calculation, the following equations (see [18, (14)–(15)]):

At + u · ∇A + Adiv u = Ly −Hx, (2.3)

Bt + u · ∇B − ρP ′(ρ)div u + (2 + λ)(u2
x + 2vxuy + v2

y) = (2 + λ)(Lx + Hy), (2.4)

ρ(Lt + u · ∇L)− ρL div u + uy · ∇A + ux · ∇B +
[
A div u

]
y
− [

ρP ′(ρ)div u
]
x

+(2 + λ)(u2
x + v2

y + 2vxuy)x = (Ly −Hx)y + (2 + λ)(Lx + Hy)x, (2.5)

ρ(Ht + u∇H)− ρH div u− ux · ∇A + uy · ∇B − [
A div u

]
x
− [

ρP ′(ρ)div u
]
y

+(2 + λ)(u2
x + v2

y + 2vxuy)y = −(Ly −Hx)x + (2 + λ)(Lx + Hy)y, (2.6)

with the following boundary conditions:

A|∂Ω = 0, Bx|x=0 = Bx|x=1 = By|y=0 = By|y=1 = 0,

L|x=0 = L|x=1 = 0, Ly|y=0 = Ly|y=1 = 0,

H|y=0 = H|y=1 = 0, Hx|x=0 = Hx|x=1 = 0.

(2.7)
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If we multiply (2.3) and (2.4) by A and (2 + λ)−1B in L2(Ω) respectively, integrate by
parts and make use of (2.7), we get

∫

Ω

A
(
At + u · ∇A + A div u

)
dxdy +

∫

Ω

(LAy −HAx)dxdy

+
1

2 + λ

∫

Ω

B(Bt + u · ∇B)dxdy − 1

2 + λ

∫

Ω

ρBP ′(ρ)div u dxdy

+

∫

Ω

B(u2
x + 2vxuy + v2

y)dxdy +

∫

Ω

(LBx + HBy)dxdy = 0,

which, by recalling the definition of (L,H) and employing the boundary conditions for (u, v),
yields

1

2

d

dt

∫

Ω

(
A2 +

B2

2 + λ

)
dxdy +

∫

Ω

(Ay + Bx)
2 + (−Ax + By)

2

ρ
dxdy

+
1

2

∫

Ω

A2div u dxdy − 1

2(2 + λ)

∫

Ω

B2 div u dxdy − 1

2 + λ

∫

Ω

ρBP ′(ρ)div u dxdy

+

∫

Ω

B |div u|2dxdy + 2

∫

Ω

B(uyvx − uxvy)dxdy = 0. (2.8)

Recalling that B := (2 + λ)div u− P , we easily find

|div u|2 =
1

2 + λ
div u (B + P ).

Hence, the identity (2.8) turns to

1

2

d

dt

∫

Ω

(
A2 +

B2

2 + λ

)
dxdy +

∫

Ω

(Ay + Bx)
2 + (−Ax + By)

2

ρ
dxdy

= −1

2

∫

Ω

A2 div u dxdy +
1

2(2 + λ)

∫

Ω

B2div u dxdy

+
1

2 + λ

∫

Ω

(
ρP ′ − P (ρ)

)
B div u dxdy − 2

∫

Ω

B(uyvx − uxvy)dxdy

≡ I1 + I2 + I3 + I4. (2.9)

We have to estimate each term in (2.9). First, the second term on the left-hand side
of (2.9) can be bounded as follows, using (2.1), integration by parts and the boundary
conditions (2.7).

I5 : =

∫

Ω

(Ay + Bx)
2 + (−Ax + By)

2

ρ
dxdy

≥ C

∫

Ω

(
(Ay + Bx)

2 + (−Ax + By)
2
)
dxdy

= C

∫

Ω

(A2
y + A2

x + B2
x + B2

y)dxdy. (2.10)
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Keeping in mind that

div u =
1

2 + λ
(B + P ), curlu = −A,

we have (see [2, 19])

‖∇u‖Lp + ‖∇v‖Lp ≤ C‖div u‖Lp + ‖curlu‖Lp

≤ C(‖A‖Lp + ‖B‖Lp + ‖P‖Lp). (2.11)

Obviously,
‖A‖2

L2 + ‖B‖2
L2 ≤ C(‖∇u‖2

L2 + ‖∇v‖2
L2 + ‖P‖2

L2). (2.12)

Thus, we use Cauchy-Schwarz’s inequality, (2.1), and (2.11) with p = 2, (2.12) and Gagliardo-
Nirenberg’s inequality in two dimensions (‖ · ‖2

L4 ≤ C‖ · ‖L2‖∇ · ‖L2) to bound I1 as follows.

I1 ≤ C‖div u‖L2‖A‖2
L4

≤ C(1 + ‖A‖L2 + ‖B‖L2)‖A‖L2‖∇A‖L2

≤ Cε−1(1 + ‖A‖4
L2 + ‖B‖4

L2) + ε‖∇A‖2
L2 , 0 < ε < 1. (2.13)

In the same manner, we can obtain

I2 ≤ C‖div u‖L2‖B‖2
L4

≤ Cε−1(1 + ‖A‖4
L2 + ‖B‖4

L2) + ε‖∇B‖2
L2 (2.14)

and
I3 ≤ C‖div u‖L2‖B‖2

L2 ≤ C(1 + ‖A‖4
L2 + ‖B‖4

L2). (2.15)

The estimate of I4 is more involved but in a similar way, we have

I4 = −2

∫

Ω

B(vxuy − vyux)dxdy

≤ 2‖B‖L2‖vxuy − vyux‖L2

≤ C‖B‖L2‖∇u‖2
L4

≤ C‖B‖L2

(‖div u‖2
L4 + ‖curlu‖2

L4

)

≤ C‖B‖L2

(‖B + P‖2
L4 + ‖A‖2

L4

)

≤ C‖B‖L2

(
1 + ‖A‖2

L4 + ‖B‖2
L4

)

≤ C‖B‖L2

(
1 + ‖A‖L2‖∇A‖L2 + ‖B‖2

L2 + ‖B‖L2‖∇B‖L2

)

≤ Cε−1(1 + ‖A‖4
L2 + ‖B‖4

L2) + ε‖∇A‖2
L2 + ε‖∇B‖2

L2 , 0 < ε < 1. (2.16)

Notice that from (2.1) and (2.2) it follows that
∫ t

0

(‖A‖2
L2 + ‖B‖2

L2)(t)dt ≤ C. (2.17)

Therefore, substituting (2.10)–(2.16) into (2.9), taking ε appropriately small, applying Gron-
wall’s inequality and using (2.17), we conclude
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Lemma 2.1

‖(A,B)‖L∞(0,T ;L2) + ‖(A,B)‖L2(0,T ;H1) ≤ C,

‖u‖L∞(0,T ;H1) ≤ C.

Next, we derive bounds on L and H by careful calculations. Multiplying the equations
(2.5) and (2.6) by L and H in L2(Ω), respectively, integrating by parts, using (2.7) and
(1.1), we obtain

1

2

d

dt

∫

Ω

ρ(L2 + H2)dxdy +

∫

Ω

(
(Ly −Hx)

2 + (2 + λ)(Lx + Hy)
2
)
dxdy

=

∫

Ω

ρ(L2 + H2)div u dxdy −
∫

Ω

A(Hx − Ly)div u dxdy

−
∫

Ω

ρP ′(ρ)(Lx + Hy)div u dxdy −
∫

Ω

L(uy · ∇A + ux · ∇B)dxdy

−
∫

Ω

H(−ux · ∇A + uy∇B)dxdy − (2 + λ)

∫

Ω

(Lx + Hy)(u
2
x + 2uyvx + v2

y)dxdy

≤ C‖div u‖L2‖(L,H)‖2
L4 + C‖A‖L4‖div u‖L4‖(Hx, Ly)‖L2 + C‖div u‖L2‖Lx + Hy‖L2

+C‖L‖L4(‖uy‖L4‖Ax‖L2 + ‖vy‖L4‖Ay‖L2 + ‖ux‖L4‖Bx‖L2 + ‖vx‖L4‖By‖L2)

+C‖H‖L4(‖ux‖L4‖Ax‖L2 + ‖vx‖L4‖Ay‖L2 + ‖uy‖L4‖Bx‖L2 + ‖vy‖L4‖By‖L2)

+C‖Lx + Hy‖L2(‖ux‖2
L4 + ‖vx‖L4‖uy‖L4 + ‖vy‖2

L4)

≤ C(1 + ‖B‖L2)‖(L,H)‖2
L4 + C(1 + ‖B‖L4)‖A‖L4‖(∇L,∇H)‖L2

+C(1 + ‖B‖L2 + ‖∇u‖2
L4)‖(∇L,∇H)‖L2 + C‖(L,H)‖L4‖∇u‖L4‖(∇A,∇B)‖L2

≤ C‖(L,H)‖2
L4 + C‖(A,B)‖2

L4‖(∇L,∇H)‖L2 +
1

16
‖(∇L,∇H)‖2

L2

+C‖(L,H)‖L4‖(A,B)‖L4‖(∇A,∇B)‖L2 + C‖(A,B)‖2
L4‖(∇L,∇H)‖L2

≤ C‖(L,H)‖2
L2 +

1

8
‖(∇L,∇H)‖2

L2 + C‖(A,B)‖4
L4 + C‖(∇A,∇B)‖2

L2 ,

which, by applying Gronwall’s inequality, yields

Lemma 2.2
‖(L,H)‖L∞(0,T ;L2) + ‖(L,H)‖L2(0,T ;H1) ≤ C.

Finally, we estimate the spatial and temporal derivatives of the density in Lq(Ω) space
for q > 2. More precisely, we have

Lemma 2.3
‖∇ρ‖L∞(0,T ;Lq) ≤ C,

where q > 2 is the same as in Theorem 1.1.
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Proof. We differentiate (2.1) with ∂i, multiply the resulting equation by |∂iρ|q−2∂ρ (q > 2)
in L2(Ω), and make use of Hölder’s inequality to obtain

1

q

d

dt

∫

Ω

|∇ρ|qdxdy ≤ C‖∇u‖L∞‖∇ρ‖q
Lq + C‖∆u‖Lq‖∇ρ‖q−1

Lq ,

whence,
d

dt
‖∇ρ‖Lq ≤ C‖∇u‖L∞‖∇ρ‖Lq + C‖∆u‖Lq . (2.18)

To control the term ∆U on the right-hand of (2.18), we first note that A and B satisfy

{
Ay + Bx = ρL,

−Ax + By = ρH
(2.19)

with boundary conditions (2.7)1. Thus, we can apply the regularity result in [18] to the
problem (2.19) to obtain

‖∇A‖Lq + ‖∇B‖Lq ≤ C(‖L‖Lq + ‖H‖Lq). (2.20)

Recalling the definition of (A,B,L, H) and the inequality (2.11)1, employing (2.1), we find

‖∆u‖Lq ≤ C(‖∇A‖Lq + ‖∇B‖Lq + ‖∇ρ‖Lq). (2.21)

Now, if we define

I(t) := sup
Ω
|∇u(·, t)|, M(t) := 1 + sup

Ω
|div u(·, t)|+ sup

Ω
|curlu(·, t)|,

then we have by an inequality from [18, 21] that

I(t) ≤ CM(t) log(e + ‖D2u‖Lq)

≤ CM(t) log(e + ‖∇A‖Lq + ‖∇B‖Lq + ‖∇ρ‖Lq)

≤ CM(t)(‖∇A‖Lq + ‖∇B‖Lq) log(e + ‖∇ρ‖Lq)

≤ C(‖A‖L∞ + ‖B‖L∞ + 1)(‖∇A‖Lq + ‖∇B‖Lq) log(e + ‖∇ρ‖Lq)

≤ C(‖∇A‖Lq + ‖∇B‖Lq)2 log(e + ‖∇ρ‖Lq)

≤ C‖(L,H)‖2
Lq log(e + ‖∇ρ‖Lq)

≤ C‖(∇L,∇H)‖2
L2 log(e + ‖∇ρ‖Lq). (2.22)

So, inserting (2.21) and (2.22) into (2.18), applying Gronwall’s inequality and Lemma
2.2, we conclude

‖∇ρ‖L∞(0,T ;Lq) ≤ C, q > 2,

which proves the lemma. ¤
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Lemma 2.4

‖ut‖L2(0,T ;L2) + ‖u‖L2(0,T ;H2) ≤ C, (2.23)

‖ut‖L∞(0,T ;L2) + ‖ut‖L2(0,T ;H1) + ‖u‖L∞(0,T ;H2) ≤ C. (2.24)

Proof. Multiplying the momentum equation (1.2) by ut and integrating with respect to
x, we find that

∫

Ω

ρ|ut|2dx +
µ

2

∫

Ω

|∇u|2t dx = −
∫

Ω

ρu · ∇uutdx +

∫

Ω

∇P · utdx. (2.25)

Using Lemma 2.1 and (2.1), the terms on the right-hand side of (2.25) can be bounded as
follows. ∫ T

0

∫

Ω

∇P · utdxdt ≤ Cε−1‖P‖L2(0,T ;H1) + ε‖ut‖L2(0,T ;L2),

∫ T

0

∫

Ω

ρu · ∇uutdxdt ≤ Cε−1‖u · ∇u‖L2(0,T ;L2) + ε‖ut‖L2(0,T ;L2)

≤ Cε−1(‖u‖L2(0,T ;Lp) + ‖∇u‖L2(0,T ;Lq)) + ε‖ut‖L2(0,T ;L2)

≤ Cε−1 + ε‖ut‖L2(0,T ;L2),

here 1/p+1/q = 1. Inserting the above two estimates into (2.25) and taking ε small, we get

‖ut‖L2(0,T ;L2) + ‖∇u‖L∞(0,T ;L2) ≤ C. (2.26)

On the other hand, we may apply the regularity theory of elliptic systems to the mo-
mentum equation (1.2):

µ∆u + (λ + µ)∇div u = ρ(ut + u · ∇u) +∇P,

to obtain
‖u‖H2 ≤ C(‖ut‖L2 + ‖u · ∇u‖L2 + ‖∇P‖L2),

which, together with (2.26) and (2.1), gives

‖u‖L2(0,T ;H2) ≤ C. (2.27)

Now, to show (2.24), we differentiate (1.2) with respect to t, multiply the resulting equa-
tion by ut in L2(Ω), make use of (1.1) and integrate by parts to infer, after a straightforward
calculation, that

1

2

d

dt

∫

Ω

ρ|ut|2dx + µ

∫

Ω

|∇ut|2 + (λ + µ)(div ut)
2dx =

∫

Ω

Pt div utdx

−2

∫

Ω

ρu · ∇ut · utdx−
∫

Ω

ρu · ∇(u · ∇u · ut)dx−
∫

Ω

ρut · ∇u · utdx. (2.28)

10



By the equation of state, P satisfies

Pt + div (Pu) + (γ − 1)Pdiv u = 0,

which combined with (2.28) results in

1

2

d

dt

∫

Ω

(ρ|ut|2 + γP (div u)2)dx +

∫

Ω

µ|∇ut|2dx

≤
∫

Ω

(
2ρ|u| |ut| |∇ut|+ ρ|u| |ut| |∇u|2 + ρ|u|2|ut| |∇2u|+ ρ|u|2|∇u| |∇ut|

+ρ|ut|2|∇u|+ |∇P | |u| |∇ut|+ γP |u| |∇u| |∇2u|+ γ(γ − 1)

2
P |∇u|3

)
dx

=
8∑

i=1

Ji. (2.29)

Next, we have to estimate Ji, (i = 1, · · · , 8). Utilizing (2.1), Hölder’s inequality, and
Sobolev’s imbedding theorem, Lemma 2.1, and the interpolation inequality, we can bound
Ji (i = 1, 2) as follows.

J1 =

∫

Ω

2ρ|u| |ut| |∇ut|dx

≤ C‖u‖L6‖ut‖L3‖∇ut‖L2

≤ C‖∇u‖L2‖ut‖1/2

L2 ‖ut‖1/2

L6 ‖∇ut‖L2

≤ Cε−1‖ut‖L2‖∇ut‖L2 + ε‖∇ut‖2
L2

≤ Cε−3‖√ρut‖2
L2 + ε‖∇ut‖2

L2 ,

and

J2 =

∫

Ω

ρ|u| |ut| |∇u|2dx

≤ C‖u‖L4‖ut‖L2‖∇u‖2
L8

≤ C‖∇u‖L2‖ut‖L2‖u‖2
H2

≤ C‖√ρut‖L2‖u‖2
H2

≤ ‖u‖2
H2‖√ρut‖2

L2 + C‖u‖2
H2 .

In the same manner, the terms Ji (i = 3, · · · , 8) can be bounded, and we have

J3 =

∫

Ω

ρ|u|2|ut| |∇2u|dx

≤ C‖u‖2
L12‖ut‖L3‖∇2u‖L2

≤ C‖∇u‖2
L2‖∇ut‖L2‖∇2u‖L2

≤ ε‖∇ut‖2
L2 + Cε−1‖u‖2

H2 ,
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J4 =

∫

Ω

ρ|u|2|∇u| |∇ut|dx

≤ C‖u‖2
L12‖∇u‖L3‖∇ut‖L2

≤ Cε−1‖u‖2
H2 + ε‖∇ut‖2

L2 ,

and

J5 =

∫

Ω

ρ|ut|2|∇u|dx

≤ C‖ut‖2
L4‖∇u‖L2

≤ C‖ut‖L2‖∇ut‖L2

≤ Cε−1‖ut‖2
L2 + ε‖∇ut‖2

L2 ,

where Gagliardo-Nirenberg’s inequality has also been used,

J6 =

∫

Ω

|∇P | |u| |∇ut|dx ≤ Cε−1‖∇ρ‖2
L2‖u‖2

L∞ + ε‖∇ut‖L2 ≤ Cε−1‖u‖2
H2 + ε‖∇ut‖L2 ,

where we have also applied Lemma 2.3,

J7 = γ

∫

Ω

P |u| |∇u| |∇2u|dx ≤ C‖u‖L6‖∇u‖L3‖∇2u‖L2 ≤ C‖u‖2
H2 ,

and

J8 =
γ(γ − 1)

2

∫

Ω

P |∇u|3dx ≤ C‖∇u‖2
L4‖∇u‖L2 ≤ C‖u‖2

H2 .

Substituting the above estimates for Ji into (2.29) and taking ε small, we obtain by
applying Gronwall’s inequality and using (2.27) that

‖ut‖2
L∞(0,T ;L2) + ‖ut‖2

L2(0,T ;H1) ≤ C. (2.30)

With the help of (2.30), an application of the regularity theory of elliptic systems to (1.2)
implies

‖u‖L∞(0,T ;H2) ≤ C. (2.31)

Thus, from (2.26), (2.27), (2.30) and (2.31) we get the lemma.
¤

Remark 2.1 We should point out here that in fact, the estimate of u in L∞(0, T ; H2) can
simply follow from Lemmas 2.2 and 2.3. Indeed, recalling the definition of L,H, and the fact
that L,H,∇ρ ∈ L∞(0, T ; L2), one can apply the elliptic regularity to get ‖u‖L∞(0,T ;H2) ≤ C
immediately. With the help of this boundedness, the proof of Lemma 2.4 can be much
simplified.
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Lemma 2.5
‖ρt‖L∞(0,T ;Lq) + ‖u‖L2(0,T ;W 2,q) ≤ C.

Proof. By virtue of Sobolev’s imbedding theorem and (2.24), one easily obtains

‖u‖L∞((0,T )×Ω) ≤ C. (2.32)

Since ρt = −u · ∇ρ− ρ div u, we have by (2.1), (2.32) and Lemma 2.3 that

‖ρt(t)‖Lq ≤ ‖u‖L∞‖∇ρ‖Lq + ‖ρ‖L∞‖div u‖Lq ≤ C, t ∈ [0, T ],

while applying the regularity theory of elliptic equations to (1.2) and using Sobolev’s imbed-
ding theorem, we obtain

‖u(t)‖W 2,q ≤ C(‖ut‖Lq + ‖u · ∇u‖Lq + ‖∇ρ‖Lq)

≤ C(‖∇ut‖L2 + ‖u‖L∞‖∇u‖Lq + ‖∇ρ‖Lq)

≤ C(‖∇ut‖L2 + ‖u‖H2 + ‖∇ρ‖Lq).

If we integrate the above inequality over t, we immediately see that ‖u‖L2(0,T ;W 2,q) is bounded
from above. The proof of the lemma is complete. ¤

By virtue of Lemmas 2.1, 2.3–2.5, we see that at time t = T ∗, the function (ρ,u)|t=T ∗ =
limt→T ∗(ρ,u) satisfy the conditions imposed on the initial data in the local existence theorem
given in Proposition 1.1. Hence we can take (ρ,u)|t=T ∗ as the initial data at t = T ∗ and
apply Proposition 1.1 to extend our local solution beyond T ∗ in time. This contradicts the
maximality of T ∗, and therefore the assumption (2.1) does not hold. This completes the
proof of Theorem 1.1.
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