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Abstract

With discretized particle velocity space, a unified gas-kinetic scheme for entire Knudsen
number flows is constructed based on the BGK model. In comparison with many existing
kinetic schemes for the Boltzmann equation, the current method has no difficulty to get
accurate solution in the continuum flow regime, such as the solution of the Navier-Stokes
(NS) equations with the time step being much larger than the particle collision time, and
the rarefied flow solution, even for the free molecule flow. The unified scheme is an extension
of the gas-kinetic BGK-NS scheme from the continuum flow to the rarefied regime with the
discretization of particle velocity space. The success of the method is due to the un-splitting
treatment for the particle transport and collision in the evaluation of local solution of the
gas distribution function. For these methods which use operator splitting technique to solve
the transport and collision separately, it is usually required that the time step is less than
the particle collision time, which basically makes these methods useless in the continuum
flow regime, especially in the high Reynolds cases. Theoretically, once the physical process
of particle transport and collision is modeled statistically by the gas-kinetic Boltzmann
equation, the transport and collision become continuous operators in space and time, and
their numerical discretization should be done consistently. With the use of the integral
solution of the BGK, the unified scheme can simulate the flow accurately in the whole flow
regime from the continuum Navier-Stokes solutions to the free molecule flow. At the same
time, the time step in the high Reynolds number continuum flow region is only determined
by the CFL condition of the macroscopic equations, instead of particle collision time.
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1. Introduction

The development of accurate numerical methods for all flow regimes is challenging. An
excellent example is the nozzle flow for controlling aerospace orbit, where both continuum
and vacuum flows exist from gas container to the nozzle exit. Both the kinetic methods,
such as direct simulation Monte Carlo (DSMC), and modern CFD techniques based on the
Navier-Stokes (NS) equations, encounter computational difficulties when applied to these
flows. The DSMC method requires that the time step and cell size are less than the particle
collision time and mean free path, which subsequently introduce enormous computational
cost in the high density regime. On the other hand, the conventional continuum NS methods
are inapplicable for capturing non-equilibrium effects in the rarefied flow regime. High-order
hydrodynamic equations are mostly limited to the transition flow regime only [19]. In recent
years, the hybrid methods which combine NS and kinetic approaches have been often used to
model flows which have both continuum and rarefied regimes [23, 9, 5, 26, 8]. A buffer zone
is used to couple different approaches with the assumption of correctness of both methods in
this zone. These approaches may sensitively depend on the location of the interface between
different methods. Certainly, it is required that both methods are reliable in the buffer
zone. But, in reality it may become that neither method can be applied there. For example,
in many hybrid methods, it is assumed that in the buffer zone the flow can be correctly
described by the NS equations, which means that the extension of the kinetic approach to
the buffer zone should have the correct NS limit as well. But, this is just the difficult part
for the kinetic approach. So, in order to accurately simulate the whole flow regimes, it is still
desirable to have a single kinetic method which presents accurately the NS solution in the
continuum flows and the collision-less Boltzmann solution in the free molecule regime. This
can be done dynamically through the numerical discretization of the Boltzmann equation,
instead of geometrically through the zone separations.

The Boltzmann equation describes the time evolution of the density distribution of a
monatomic dilute gas with binary elastic collisions. The fluid dynamic Navier-Stokes (NS),
Burnett and Super-Burnett equations can be derived from the Boltzmann equation. The
Boltzmann equation is valid from the continuum flow regime to the free molecule flow. So,
theoretically a unified kinetic method which is valid in the whole range of Knudsen number
can be developed if the numerical discretization is properly designed. In the framework of
deterministic approximation, the most popular class of methods is based on the so-called
discrete velocity methods (DVM) or Discrete Ordinate Method (DOM) of the Boltzmann
equation [7, 33, 16, 13, 1, 17]. These methods use regular discretization of particle velocity
space. Most of these methods can give accurate numerical solution for high Knudsen number

2



flows, such as those from the upper transition to the free molecule regime. However, in the
continuum flow regime, it is recognized that they have difficulty in the capturing of the
Navier-Stokes solutions, especially for the high Reynolds number flows, where the intensive
particle collisions take place. Under this situation, because the time step in these methods
must be less than the particle collision time, which makes them prohibitive in the continuum
flow application. In order to get unconditionally stable schemes with large time step, it is
natural to use implicit or semi-implicit method for the collision part [13, 21, 11]. However,
even though a scheme could overcome the stability restriction and use large time step, there is
still accuracy concern, because many of the schemes have the same numerical mechanism as
Flux Vector Splitting (FVS) methods in the continuum regime, where the intrinsic numerical
dissipation is proportional to time step [30], which poisons the NS solution.

In order to develop a kinetic scheme for the whole flow regime, much effort has been
paid on the development of the so-called asymptotic preserving (AP) scheme. As defined in
[11], a kinetic scheme is AP if (1). it preserves the discrete analogy of the Chapman-Enskog
expansion when the Knudsen numbers go to Zero. (2). in the continuum regime, the time
step is not restricted by the particle collision time. Besides the above two conditions, we
may need the third one as well, (3). the scheme has at least second-order accuracy in both
continuum and free molecule regimes. Therefore, the AP scheme is the appropriate choice to
solve the kinetic equation. For example, for the AP scheme in the nozzle simulation, with a
uniform time step in the whole domain, this time step must be much larger than the particle
collision time in the inner high density region, and be the same order or less in the outer
rarefied and free molecular regions. Many approaches have been developed to develop kinetic
AP methods [2, 9, 11, 21]. To the current stage, it seems that the only AP scheme for the
NS asymptotic in the continuum regime is the method developed by Bennoune, Lemou, and
Mieussens [2]. Their deterministic method is based on a decomposition of the Boltzmann
equation into a system which couples a kinetic equation (non-equilibrium) with a fluid one
(equilibrium). The fluid part of this system degenerates, for small particle collision time,
into the NS equations. However, in the collision-less limit, the physical basis of separating
a distribution function into an equilibrium and a non-equilibrium part is questionable. The
accuracy of the above scheme in the collision-less limit has to be tested as well. In other
words, AP scheme should not only have the accuracy in the continuum flow regime, the
validity of the kinetic method in the collision-less limit should be kept as well.

In order to develop an AP scheme for the kinetic equation, we need a correct understand-
ing of the Boltzmann equation. Even though the individual particle movement has distinct
transport and collision process, once this process is described by the statistical model, such
as the Boltzmann equation, the transport and collision processes are coupled everywhere
in space and time. To separate them numerically, such as the operator splitting methods,
is inconsistent with the underlying physical model. As shown in this paper, a simple up-
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winding discretization for the particle transport term in the Botltzmann equation, i.e., ufx

term, is basically an operator splitting scheme and introduces difficulties to get AP property.
Without correctly discretizing this term, any other modification in the kinetic method may
not work properly in the whole flow regime. In the high Knudsen number flow regime, the
decoupling of transport and collision may not become a problem, because the numerical
error introduced due to the decoupling (being proportional to time step) is much less than
the physical one (being proportional to particle collision time). But, it cannot be tolerated
in the continuum flow regime, especially for an AP method.

In the past years, the gas-kinetic BGK-NS scheme for the Navier-Stokes solutions has been
well developed [29], and has been successfully applied for the continuum flow simulations from
nearly incompressible to hypersonic viscous and heat conducting flows [25, 31, 32, 12, 15]. In
the BGK-NS method, the particle velocity space is continuous and is integrated out in the
flux evaluations in a finite volume scheme. This is not surprised because in the fluid regime,
based on the Chapman-Enskog expansion the gas distribution function for the viscous flow
is well-defined. Therefore, the efficiency of the BGK-NS method is similar to the traditional
NS flow solver, where the same CFL condition is used for the determination of time step.
Theoretically, any kinetic scheme with NS asymptotic AP property should be able to recover
the BGK-NS scheme in the continuum limit. So, different from other approaches, in this
paper we are going to extend the BGK-NS method for the continuum flow to the rarefied
regime, which includes the free molecule limit. In order to do that, we have to discretize
the particle velocity space as well, because the real gas distribution function in the highly
non-equilibrium region can be hardly described by a Maxwellian distribution function and
its derivatives. So, the current method can be also considered as a discrete velocity version
of the BGK-NS scheme.

2. Kinetic theory and Discrete Ordinate Method

In this paper, we will present the unified scheme for all Knudsen number flows. The
one-dimensional kinetic equation will be used to illustrate the idea. In this section, we are
going to first introduce the kinetic equation and the traditional discrete ordinate method
(DOM). In the next section, the unified method will be presented.

The one-dimensional gas-kinetic BGK equation can be written as [6, 3]

ft + ufx =
g − f

τ
, (1)

where f is the gas distribution function and g is the equilibrium state approached by f .
Both f and g are functions of space x, time t, particle velocities u, and internal variable ξ.
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The particle collision time τ is related to the viscosity and heat conduction coefficients. The
equilibrium state is a Maxwellian distribution,

g = ρ(
λ

π
)

K+1

2 e−λ((u−U)2+ξ2),

where ρ is the density, U is the macroscopic velocity in the x direction, λ is equal to m/2kT ,
m is the molecular mass, k is the Boltzmann constant, and T is the temperature. For 1D
flow, the total number of degrees of freedom K in ξ is equal to (3−γ)/(γ−1). For example,
for a diatomic gas with γ = 7/5, K is equal to 4 to account for the particle motion in the
y and z-directions, as well as two rotational degrees of freedom. In the equilibrium state,
the internal variable ξ2 is equal to ξ2 = ξ2

1 + ξ2
2 + ... + ξ2

K . The relation between mass ρ,
momentum ρU , and energy ρE densities with the distribution function f is





ρ
ρU
ρE



 =

∫

ψαfdΞ, α = 1, 2, 3, (2)

where ψα is the component of the vector of moments

ψ = (ψ1, ψ2, ψ3)
T = (1, u,

1

2
(u2 + ξ2))T ,

and dΞ = dudξ1dξ2...dξK is the volume element in the phase space with dξ = dξ1dξ2...dξK .
Since mass, momentum, and energy are conserved during particle collisions, f and g satisfy
the conservation constraint,

∫

(g − f)ψαdΞ = 0, α = 1, 2, 3, (3)

at any point in space and time.
Before we introduce discrete ordinate method, let’s first discretize the space, time, and

particle velocity. For a numerical cell j in space, i.e., x ∈ [xj−1/2, xj+1/2], at the time level
tn, and at discretized particle velocity interval k, i.e., u ∈ [uk − 1

2
∆u, uk + 1

2
∆u], the phase

space averaged partilcle distribution function becomes

f(xj, t
n, uk) = fn

j,k =
1

∆x∆u

∫ xj+1/2

xj−1/2

∫ uk+ 1

2
∆u

uk−
1

2
∆u

f(x, tn, u)dxdu, (4)

where ∆u is the particle velocity interval and ∆x = xj+1/2 − xj−1/2 is the cell size.
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The BGK equation (1) can be written as

ft = −ufx +
g − f

τ
. (5)

Integrating the above equation in a control volume
∫ xj+1/2

xj−1/2

∫ tn+1

tn
dxdt, and keeping the particle

velocity space continuous, the differential equation becomes an integral equation

fn+1
j = fn

j +
1

∆x

∫ tn+1

tn
(ufxj−1/2

(t) − ufxj+1/2
(t))dt +

1

∆x

∫ tn+1

tn

∫ xj+1/2

xj−1/2

g − f

τ
dxdt, (6)

where fj+1/2 is the gas distribution function at the cell interface xj+1/2. The above equation
is exact and there is no any numerical error introduced yet. For a kinetic scheme, two terms
on the right hand side of the above equation have to be numerically evaluated.

A standard operator splitting method is to solve the above equation in the following steps
[8, 33]. The equation (6) is decoupled to

fj
∗ = fj

n +
1

∆x

∫

(ufxj−1/2
(t) − ufxj+1/2

(t))dt, (7)

for the transport across a cell interface, and

ft =
g − f

τ
, (8)

for the particle collision or source term inside each cell. In the transport part, the collision-
less Boltzmann equation or upwinding approach,

ft + ufx = 0, (9)

is used for the flux evaluation at the cell interface. For example, for a 1st-order method, the
upwinding flux is based on the following solution at the cell interface,

fj+1/2 =

{

fj, , u ≥ 0,
fj+1, u < 0,

(10)

which is dynamically equivalent to the flux vector splitting scheme. The above transport
and collision steps can be also coupled using Runge-Kutta method within a time step.

If we take conservative moments ψα on Eq.(6), due to the conservation of conservative
variables during particle collision step, the update of conservative variables becomes

W n+1
j = W n

j +
1

∆x

∫ tn+1

tn
(Fxj−1/2

(t) − Fxj+1/2
(t))dt, (11)
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where W is the averaged conservative mass, momentum, and energy densities inside each
cell, and F =

∫

uψαf0(x − ut)dΞ is the flux based on the collisionless Boltzmann equation.
The above scheme for the update of macroscopic flow variables is physically identical to the
kinetic flux vector splitting schemes (KFVS) [22, 10]. The only difference is the initial gas
distribution function f0 at the beginning of each time step. For the KFVS scheme, an equi-
librium state is prepared for f0, and for the DOM f0 is explicitly updated from the equation
with discretized particle velocity space. But, this will not change the numerical dissipative
mechanism in the KFVS method, where the numerical dissipation is proportional to time
step. Therefore, if a large time step could be used for the DOM method in the continuum
flow regime, the numerical dissipation would also make DOM scheme be inaccurate for the
NS solutions. It is a well-known defect for all Flux Vector Splitting methods [27]. So, in the
continuum flow regime, for the DOM method the requirement of time step being less than
the particle collision time is not only for the stability consideration, but also a necessary
condition for the accuracy. But, this constraint deviates the above scheme away from an AP
method for the NS solutions.

In order to design an AP scheme which is valid for both NS equations and the free
molecule limit, the full BGK equation has to be solved in the flux evaluation in Eq.(6)
across a cell interface,

ft + ufx =
g − f

τ
. (12)

The necessity of using the above equation can be understood in the following. First, let’s
forget about numerical mesh. Since the Boltzmann equation couples the particle transport
and collision everywhere, at any point in space and time (x, t), both collision and transport
exist. For example, ufx(x, t) and (g−f)/τ are continuous function of x and t. Now let’s put
the mesh into the space. For these molecules, if they move in a zig-zag way from one place
to another place in a time step within the same cell, in terms of the cell resolution these
molecules will only contribute to the modification of particle distribution function through
the particle collisions, such as ft = (g−f)/τ . However, for those zig-zag movement molecules,
within a time step if they pass through the cell interface, their contributions will be the first
term on the right hand side of Eq.(6). Physically, the dynamics for those molecules within
a cell or across a cell interface should be the same, and both transport and collision exist in
their movements. In this way, those molecules passing through cell interface do suffer from
particle collision during their passage moving towards the cell interface.

3. Unified Kinetic Scheme in all Flow Regimes

In this section, we will present a unified kinetic scheme based on the BGK model for all
flow regimes. The current method is a natural extension of the gas-kinetic BGK-NS method
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from the compressible Navier-Stokes equations to all Knudsen number flow. In this section,
only one-dimensional formulation will be presented. The extension to 2D and 3D cases are
straightforward for the kinetic method.

With the discretization of space xj, time tn, and particle velocity uk, the finite volume
solution of the kinetic equation (6) is

fn+1
j,k = fn

j,k +
1

∆x

∫

(ukfj−1/2,k − ukfj+1/2,k)dt +
1

∆x

∫ ∫

g − f

τ
dxdt. (13)

where fn
j,k is the cell averaged distribution function in jth-cell x ∈ [xj−1/2, xj+1/2] at particle

velocity uk. Instead of using upwinding scheme for the evaluation of the distribution function
at a cell interface, the solution fj+1/2,k in the above equation is constructed from the integral
solution of the BGK model,

fj+1/2,k = f(xj+1/2, t, uk, ξ) =
1

τ

∫ t

0

g(x′, t′, uk, ξ)e
−(t−t′)/τdt′ (14)

+e−t/τf0,k(xj+1/2 − ukt),

where x′ = xj+1/2−u(t−t′) is the particle trajectory. In the above equation, the distribution
function f0 at particle velocity uk should be given initially at the beginning of each time step,
and a high-order reconstruction can be used to construct its subcell resolution, such as using
TVD and ENO methods. In order to simplify the notation, in the following the cell interface
xj+1/2 = 0 and tn = 0 are used. For example, around each cell interface xj+1/2, at time step
tn the initial distribution function becomes,

f0(x, tn, uk, ξ) = f0,k(x, 0) =

{

f l
j+1/2,k [1 + σj,kx] , x ≤ 0,

f r
j+1/2,k [1 + σj+1,kx], x > 0,

(15)

where nonlinear limiter can be used to reconstruct f l
j+1/2,k, f r

j+1/2,k and the corresponding
slopes σj,k. For the integral solution of the equilibrium state, since the macroscopic variables
inside each cell are known, we can first use a continuous particle velocity space to evaluate
the integral. For an equilibrium state g around a cell interface (xj+1/2 = 0, t = 0), same as
the BGK-NS scheme, it can be expanded with two slopes [29],

g = g0

[

1 + (1 − H[x])ālx + H[x]ārx + Āt
]

, (16)

where H[x] is the Heaviside function defined as

H[x] =
{

0, x < 0,
1. x ≥ 0.

8



Here g0 is a local Maxwellian distribution function located at x = 0. Even though, g is
continuous at x = 0, but it has different slopes at x < 0 and x > 0. In g, āl, ār, and Ā are
related to the derivatives of a Maxwellian distribution in space and time. In the calculation
of the equilibrium state in space and time, it is not necessary to use a distribution function
with discretized velocity space. Based on the macroscopic flow distribution functions inside
each cell, we can construct its solution with a continuous particle velocity space first, then
take its corresponding value at the specific particle velocity when necessary. The expansion
of the above equilibrium distribution is coming from a Taylor expansion of a Maxwellian
in space and time. In order to have AP scheme for the Navier-Stokes equations, to keep
the 1st-order expansion of an equilibrium state in space and time is necessary. Certainly, if
you would like to have a higher than second-order accuracy scheme, a high-order expansion
needs to be used [15].

The dependence of āl, ār and Ā on the particle velocities can be obtained from a Taylor
expansion of a Maxwellian and have the following form,

āl = āl
1 + āl

2u + āl
3

1

2
(u2 + ξ2) = āl

αψα,

ār = ār
1 + ār

2u + ār
3

1

2
(u2 + ξ2) = ār

αψα,

Ā = Ā1 + Ā2u + Ā3
1

2
(u2 + ξ2) = Āαψα,

where α = 1, 2, 3 and all coefficients āl
1, ā

l
2, ..., Ā3 are local constants.

The determination of g0 depends on the determination of the local macroscopic values of
ρ0, U0 and λ0 in g0, i.e.,

g0 = ρ0(
λ0

π
)

K+1

2

e−λ0((u−U0)2+ξ2),

which can be determined uniquely using the compatibility condition of the BGK model.
Taking the limit t → 0 in Eq.(14) and substituting its solution into Eq.(3), the conservation
constraint at (x = xj+1/2, t = 0) gives

W0 =

∫

g0ψdΞ =
∑

k

(

f l
j+1/2,kH(uk) + f r

j+1/2,k(1 − H(uk))
)

ψ (17)

where W0 = (ρ0, ρ0U0, E0)
T is the macroscopic conservative flow variables located at the

cell interface at time t = 0. Since f l
j+1/2,k and f r

j+1/2,k have been obtained earlier in the
initial distribution function f0 around a cell interface, the above moments can be evaluated
explicitly. Therefore, the conservative variables ρ0, ρ0U0, and E0 at the cell interface can be
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obtained, from which g0 is uniquely determined. Different from the BGK-NS method, the
integration of f0 term in BGK-NS is replaced by the sum in particle velocity due to the
discretization of particle velocity space. Also, due to the particle velocity discretization, the
gas distribution function has more freedom to recover any distribution function in the highly
non-equilibrium flow regime and the governing equations underlying the current approach
can be beyond the NS in the general case. For the equilibrium state, λ0 in g0 can be found
from

λ0 = (K + 1)ρ0/(4(E0 −
1

2
ρ0U

2
0 )).

Then, āl and ār of g in Eq.(16) can be obtained through the relation of

W̄j+1(xj+1) − W0

ρ0∆x+
=

∫

ārg0ψdΞ = M̄0
αβ





ār
1

ār
2

ār
3



 = M̄0
αβār

β, (18)

and

W0 − W̄j(xj)

ρ0∆x−
=

∫

ālg0ψdΞ = M̄0
αβ





āl
1

āl
2

āl
3



 = M̄0
αβāl

β, (19)

where the matrix M̄0
αβ =

∫

g0ψαψβdΞ/ρ0 is known, and ∆x+ = xj+1 − xj+1/2 and ∆x− =
xj+1/2 − xj are the distances from the cell interface to cell centers. Therefore, (ār

1, ā
r
2, ā

r
3)

T

and (āl
1, ā

l
2, ā

l
4) can be found following the procedure as BGK-NS method [29]. In order

to evaluate the time evolution part Ā in the equilibrium state, we can apply the following
condition

d

dt

∫

(g − f)ψΞ = 0,

at (x = 0, t = 0) [14] and obtained

M̄0
αβĀβ = (∂ρ/∂t, ∂(ρU)/∂t, ∂E/∂t)T

=
1

ρ0

∫

[

u
(

ālH[u] + ār(1 − H[u])
)

g0

]

ψdΞ. (20)

Up to this point, we have determined all parameters in the initial gas distribution function
f0 and the equilibrium state g at the beginning of each time step t = 0. After substitut-
ing Eq.(15) and Eq.(16) into Eq.(14), the gas distribution function f(xj+1/2, uk, t) at the
discretized particle velocity uk can be expressed as

fj+1/2,k(0, t) = (1 − e−t/τ )g0

+
(

τ(−1 + e−t/τ ) + te−t/τ
) (

ālH[uk] + ār(1 − H[uk])
)

ukg0

10



+τ(t/τ − 1 + e−t/τ )Āg0

+e−t/τ
(

(1 − uktσj,k)H[uk]f
l
j+1/2,k + (1 − uktσj+1,k)(1 − H[uk])f

r
j+1/2,k

)

= g̃j+1/2,k + f̃j+1/2,k, (21)

where g̃j+1/2,k is all terms related to the integration of the equilibrium state g and f̃j+1/2,k

is the terms from initial condition f0 in the integral solution. The above time-accurate gas
distribution function can be used in Eq.(13) for the fluxes at a cell interface. In order to
solve Eq.(13) for the gas distribution function fn+1

j,k , we can first take moment ψ on Eq.(13).
Due to the vanishing of the particle collision term for the conservative variables, we have

W n+1
j = W n

j +
1

∆x

∫ ∫ tn+1

tn
u(g̃j−1/2,k − g̃j+1/2,k)ψdtdu

+
1

∆x

∑

k

∫ tn+1

tn
uk(f̃j−1/2,k − f̃j+1/2,k)ψdt, (22)

where the integration of the equilibrium part g̃ can be evaluated exactly in a continuous par-
ticle velocity space and the integration of the non-equilibrium part f̃ can be done using the
quadrature. For the update of the conservative variables, the difference between the above
formulation and the BGK-NS scheme is that the discrete sum is used for the integration of
the initial distribution function f0 in particle velocity space. For a highly non-equilibrium
flow, the real distribution function f0 can be a complicated function, and a discrete version
with the discretization of particle velocity space has to be used. For the original BGK-NS
scheme [29], since the NS solutions are the target, the initial gas distribution function f0 can
be reconstructed from the distribution of macroscopic variables according to the Chapman-
Enskog expansion. Therefore, the specific form of initial condition f0 can be mathematically
described using simple function. In the continuum limit, due to the sufficient number of
particle collisions and with the condition of time step being much larger than the particle
collision time, the integration of the equilibrium part g̃j−1/2 and g̃j+1/2 will be dominant and
gives a corresponding NS distribution function by itself [28], and the contribution from initial
terms f̃j−1/2,k and f̃j+1/2,k vanishes. As a result, the updated discrete form of the distribution
function fn+1

j,k will present a Chapman-Enskog NS distribution function. Therefore, in the
continuum flow regime, the BGK-NS scheme with continuous particle velocity space and the
current unified method with discretized particle velocity space will become the same scheme.
In the continuum flow regime, for the NS solutions only the update of the conservative vari-
ables through the above equation (22) is enough, because the gas distribution function fn+1

j,k

can be constructed from the updated conservative variables. Therefore, for the continuum
only, like the BGK-NS scheme [29], we don’t basically update the gas distribution function.
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This also illustrate that in terms of the conservative variables update, the unified scheme
is an AP method in the continuum regime. However, the unified scheme is not limited
to continuum flow. Even in the highly non-equilibrium flow regime, Equation (22) for the
update of conservative variables is still correct. For example, in the collisionless limit, the
non-equilibrium part f̃j−1/2,k and f̃j+1/2,k will take dominant effect, and the contribution
from the equilibrium part vanishes. Therefore, the unified scheme has the collision-less limit
correct as well.

In general, based on the above updated conservative variables, we can immediately obtain
the equilibrium gas distribution function gn+1

j,k , therefore the unified kinetic scheme for the
update of gas distribution function inside each cell can be written as

fn+1
j,k = fn

j,k +
1

∆x

(

∫ tn+1

tn
uk(g̃j−1/2,k − g̃j+1/2,k)dt +

∫ tn+1

tn
uk(f̃j−1/2,k − f̃j+1/2,k)dt

)

+
∆t

2
(
gn+1

j,k − fn+1
j,k

τn+1
+

gn
j,k − fn

j,k

τn
), (23)

where trapezoidal rule has been used for the time integration of collision term. Since the
conservative variables at time step tn+1 have been obtained, the corresponding local particle
collision time τn+1 can be evaluated as well. So, from the above equation, a unified scheme
for the update of gas distribution function becomes

fn+1
j,k = (1 +

∆t

2τn+1
)−1

[

fn
j,k +

1

∆x

(

∫ tn+1

tn
uk(g̃j−1/2,k − g̃j+1/2,k) dt

+

∫ tn+1

tn
uk(f̃j−1/2,k − f̃j+1/2,k)dt

)

+
∆t

2
(
gn+1

j,k

τn+1
j

+
gn

j,k − fn
j,k

τn
j

)

]

, (24)

where no iteration is needed for the update of the above solution.

4. Physical and Numerical Analysis

In the previous section, we present a unified kinetic scheme based on the kinetic BGK
model. The scheme is a natural extension of BGK-NS scheme for the NS solutions to the
rarefied flow regimes with discretized particle velocity space. The scheme can be further
understood in the following aspects.

The scheme presented in the last section can be considered as a hybrid scheme between
macroscopic and microscopic approaches. The traditional hybrid approach is based on a
geometrical approach. In different flow regions, different governing equations are solved. At

12



the same time, different patches are connected through buffer zone. However, instead of
solving different governing equations as most hybrid schemes do, we couple them in the way
of evaluating the flux function across the cell interface. In the continuum flow regime, the
intensive particle collision will drive the system close to equilibrium state. Therefore, the
part based on the integration of equilibrium state g̃j+1/2,k in Eq.(21) at the cell interface
will automatically take a dominant role. It can be shown that in smooth flow region g̃j+1/2,k

gives precisely the NS gas distribution function. Since there is one-to-one correspondence
between macroscopic flow variables and the equilibrium distribution, the integration of the
equilibrium one can be also fairly considered as a macroscopic composition part of the scheme.
In the free molecule limit with inadequate particle collisions, the integral solution at the cell
interface will automatically present a purely upwinding scheme, where the particle transport
from f̄j+1/2,k will be the main part. Therefore, the scheme also captures the flow physics
in the collisionless limit. This kind of hybrid approach can be considered as a dynamic
one instead of geometrical one. The reason for most approaches to use a geometrical way
is due to the fact that their fluxes function across a cell interface are solely based on the
kinetic upwinding discretization, i.e., the so-called f̃j+1/2,k term in Eq.(21). As we know, the
kinetic upwinding is only correct in the collisionless or highly non-equilibrium regime. In
the traditional hybrid scheme, the computational domain has to be divided into equilibrium
and non-equilibrium flow regions. Physically this kind of geometrical division is artificial
and there should have no region where both approaches are applicable, because the above
two approaches have significant dynamic differences in their flux evaluation. In our case,
we have a single computation domain and the dynamic differences in the particle behavior
is obtained by solving the full approximate Boltzmann equation, which is valid all the way
from the continuum to rarefied flows.

Asymptotic Preserving for the NS solution in the continuum limit is a preferred property
for the kinetic scheme. In order to design an AP scheme which is valid for both NS equations
and the free molecule limit, it is necessary to solve the full BGK equation for the flux
evaluation in Eq.(6) across a cell interface,

ft + ufx =
g − f

τ
. (25)

The necessity of using the above equation can be understood in the following. First, let’s
forget about numerical mesh. Since the Boltzmann equation couples the particle transport
and collision everywhere, at any point in space and time (x, t), both collision and transport
exist. For example, ufx(x, t) and (g − f)/τ are continuous function of x and t. When
evaluating particle transport across a cell interface, dynamically all particles in a small
domain around the cell interface will effect the particle evolution through transport and
collision. In other words, those molecules passing through cell interface do suffer from particle
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collisions as well. The collisionless or upwinding discretization which accounts only for
f̃j+1/2,k term in Eq.(21) is physically incorrect.

As shown in the last section, the distinguishable point of the current scheme is the
collisional BGK is solved for the flux evaluation at a cell interface. For the continuum
flow regime, only conservative flow variables are concerned. The flux evaluation for the
conservative variables update in Eq.(22) is simply a discretized version of the BGK-NS
method for the NS equations. For the unified scheme, for the continuum flow, we can use
the time step which is much larger than the particle collision time, i.e., ∆t >> τ . In this
case, the distribution function for the flux evaluation at the cell interface Eq.(21) will become

fj+1/2(t) = g0(1 − τ(āu + Ā) + tĀ), (26)

which is exactly the Chapman-Enskog expansion of the NS solution [29], and where ā =
ālH[uk] + ār(1 − H[uk]). In other words, in the continuum limit, the integral solution from
the equilibrium state is dominant, and the updating of the macroscopic flow variables follow
the NS solutions. In other words, the unified scheme provides an accurate NS solutions in the
update of the conservative variables inside each cell. It is an AP method and the accuracy
of the unified scheme in the continuum flow regime is O(τ(∆t)2) [18, 20]. Theoretically, in
the continuum limit it is not necessary to evaluate the distribution function anymore. If a
simple upwinding method is used for the flux evaluation, as done by most kinetic methods, an
artificial viscosity term being proportional to time step ∆t will be introduced in its governing
equations. So, in this case, the kinetic scheme can only become an asymptotic preserving
method for the Euler equations only.

In the free molecule limit, i.e., τ → ∞, the unified scheme will become

fn+1
j,k = fn

j,k −
∫ tn+1

tn
uk(f̄j−1/2,k − f̄j+1/2,k)dt, (27)

where only the initial term f0 in the integral solution of the BGK model Eq.(14) appears.
The above equation is a purely free molecule transport equation. So, in this limit the unified
kinetic scheme is a valid one.

5. Numerical Experiments

The development of accurate kinetic methods for simulating flows in entire Knudsen
number regime is difficult. The discrete ordinate methods (DOM) of Yang-Huang, Mieussens,
and Li-Zhang [33, 13, 16] are accurate numerical methods in all Knudsen numbers, but the
limitation of the time step on these schemes in the continuum flow regime makes them
impossible be applied in computations. But, still the results from DOM methods can be
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used as a benchmark solution for these flows if the computational cost is affordable. This
is also true all many other kinetic methods, such as DSMC and direction Boltzmann solver
[4, 1].

In this section, in order to test the unified scheme we are going to present two one-
dimensional test cases for free molecule flow to continuum Euler and NS solutions. The flow
features of different local Knudsen numbers will be covered. In the following, we are going
to test three schemes, which are the unified scheme (unified BGK), discrete ordinate method
(BGK-DOM) [33], and the continuum flow solver BGK-NS for NS solutions [29]. The unified
scheme will be applied to all Knudsen number flow regime. BGK-DOM will be applied to
rarefied and near continuum flows where it is applicable. The BGK-NS will be applied to
near continuum and continuum flows. For the unified BGK method, in all test cases the
time step is determined by the CFL condition with CFL number 0.9. For the BGK-DOM,
the time step is limited by the particle collision time, which is on the order of ∆t ≤ 2τm,
where τm is the minimum particle collision time in the domain. For the BGK-NS code, the
time step is also determined by the CFL condition.

The first case is the standard Sod test. In the computational domain x ∈ [0, 1], 100 cells
with uniform mesh in space are used. In the particle velocity space, 200 points with uniform
distribution are used. Certainly, this number can be much reduced. But, the propose here is
to test the code instead of optimizing the velocity space. The initial condition for the mass
density, velocity, and pressure is

(ρl, Ul, pl) = (1.0, 0.0, 1.0), x ≤ 0.5,

(ρr, Ur, pr) = (0.125, 0.0, 0.1), x > 0.5.

The reference mean free path ℓmfp is evaluated by reference state with pref = 1.0, ρref = 1.0,
and the viscosity coefficient µref , which is defined by

ℓmfp =
16

5
√

2π

µref√
ρrefpref

.

So, the local mean free path in the gas becomes

ℓlocal =
µ

µref

√

ρref

ρ

pref

p
ℓmfp,

where µ =
√

p
pref

ρref

ρ
µref is determined as hard sphere molecules. For the Sod test case, the

initial mean free path of the left state is equal to the reference mean free path, and the mean
free path of the right side gas is about 9 times of the left. With the variation of µref , we
can basically simulate flows with different degree of rarefaction. In the simulating cases with
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reference viscosity coefficients µref = 10, 1.0, 10−3, and 10−5, and the corresponding mean
free path for the left state of the Sod test become 12.77, 1.277, 1.277×10−3, and 1.277×10−5,
which cover the flows from free molecule to continuum one. A useful parameter is the local
flow Knudsen number, which is defined by

Knlocal =
ℓlocal

ρ

dρ

dx
.

For example, for the case of µref = 1.0, the local mean free path is much greater than 1. So,
with the unit length of computational domain, the flow is basically free molecule one.

Figure 1 shows the simulation results of density, velocity, temperature, and Knudsen
number for the case with µref = 10. As shown in the Knudsen number plot, it is basically
the free molecule flow. The results from the unified BGK precisely recovers the exact solution
of the collision-less Boltzmann equation. Figure 2 shows the same calculation at µref = 1.0,
where the collision-less, unified BGK, and BGK-DOM results are plotted. From the local
Knudsen number plot, it is obvious that most part of the flow is still in the collision-less
regime. At µref = 10−3, the flow is near continuum flow. Figure 3 shows the solutions from
all three schemes, which are unified BGK, BGK-DOM, and BGK-NS. Since the BGK-NS is
an accurate Navier-Stokes flow solver [29, 31, 32], its solution can be used as a benchmark NS
solution. Figure 3 clearly shows that unified BGK and BGK-DOM can get the NS solution
as well. As µref gets to 10−5, the flow is basically in the continuum regime. It becomes
impossible for BGK-DOM method to get solution due to computational cost. So, figure 4
shows the solutions from unified BGK and BGK-NS only. In this case, unified BGK basically
becomes a shock capturing scheme for the Euler solution because the numerical mesh size
cannot resolve the physical structure at all.

The second test case is designed as a case which covers flow in the upper and lower
transition regimes. The purpose is to show the efficiency of unified BGK and BGK-DOM
method. The computational domain is x ∈ [0, 2] with different number of mesh points. The
initial condition for this case

(ρl, ul, pl) = (0.001, 0.0, 0.001), x ≤ 0.8,

(ρm, um, pm) = (10.0, 0.0, 10.0), 0.8 < x ≤ 1.2,

(ρr, ur, pr) = (0.001, 0.0, 0.001), 1.2 < x ≤ 2.0.

(28)

We have tested this case with two reference viscosity coefficients µref = (10−3, 10−4). The
mean free path in the central region and two sides are (1.27 × 10−4, 1.27 × 10−5) and
(1.27, 0.127). The corresponding collision times are (1.0 × 10−4, 1) and (1.0 × 10−5, 0.1).
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Therefore, the flows are basically in the upper and lower transition regimes. In this calcula-
tion, for the BGK-DOM method, the time step in this calculation is limited to ∆t ≤ 2τm,
where τm is the minimum particle collision time. For the unified scheme, the time step is
determined by the CFL condition. As we know, BGK-DOM method is actually an accurate
flow solver in all Knudsen number regime. The problem for it is that the time step is limited
and the scheme will become extremely expensive in the continuum limit. In the following
test, we would like to show that the unified scheme can present accurate solutions with a
much larger time step. Also, in order to test the sensitivity of the solution on the numerical
mesh size, three meshes with 50, 100 and 200 will be used in the domain. The first one is
the upper transition flow calculation with µref = 10−3. Figure 5 shows the temperature and
local Knudsen number distributions by the unified scheme and BGK-DOM in three different
mesh sizes. As shown in the figure, with the similar solution the unified scheme can use
a larger time step, which is on the order of 10 times. In the lower transition regime with
µref = 10−4, figure 6 presents temperature and local Knudsen number distributions with
three different mesh sizes. As shown, the unified scheme can use a time step which is on the
order of 100 times larger than the time step used in BGK-DM method. At the same time,
the solutions from unified scheme are more accurate than the BGK-DOM method. For the
continuum high Reynolds number continuum flows, the reference viscosity coefficients can be
on the order of 10−7, 10−8, under these conditions, the BGK-DOM method is computation-
ally prohibitive due to its extreme cost. However, under these conditions the time step used
by the unified scheme can be 105, 106 times larger than the BGK-DOM time step. Also, in
the continuum flow regime, the unified scheme will converge to the BGK-NS method, where
the Navier-Stokes solutions can be confidently obtained by the unified method.

6. Conclusion

In this paper, we present a unified kinetic approach for flows in the entire Knudsen
number. The validity of the approach is based on its full representation of particle movement,
i.e., transport and collision. Different from many other approaches, the critical step is that
the integral solution of the kinetic model is used in the flux evaluation across the cell interface.
The integral solution gives an accurate representation in both continuum and free molecule
flows. The current scheme can be considered as a dynamic hybrid method, where the different
flow behavior is obtained through the different limits of the integral solution of a single
kinetic equation, instead of solving different governing equations in different flow regimes.
The weakness for the most current existing kinetic methods is that a purely upwinding
technique is used in the flux evaluation for the transport term ufx, which is equivalent to
solving the collisionless Boltzmann equation and its solution is only a partial solution of
the integral solution used in the unified scheme. Theoretically, the Boltzmann equation
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is a statistical model, where the dynamic separation of transport and collision disappears.
Both transport and collision processes take place everywhere in space and time. So, there
is no reason to believe that these particles which transport across the cell interface will not
suffer particle collision during its movement toward the cell interface. Therefore, an ”exact”
integral solution of the full kinetic equation has to be used and it is the key for the success
of the unified scheme.

The numerical tests presented in this paper validate the current approach in both contin-
uum and rarefied flow regime. For the continuum flow at high Reynolds number, a standard
CFL condition for the macroscopic NS equations is used to determine the time step for the
unified scheme, which is much larger than the particle collision time. Overall, the unified
scheme is an AP method for the kinetic BGK equation. The method presented in this paper
can be easily extended to 2D and 3D cases. Also, the unified scheme for Shakhov model and
full Boltzmann equation will be considered in the near future [24, 6].
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Figure 1: Sod test: Unified BGK and collisionless Boltzmann solutions at µref = 10.
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Figure 2: Sod test: Unified BGK, BGK-DOM, and collisionless Boltzmann solutions at µref = 1.
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Figure 3: Sod test: Unified BGK, BGK-DOM, BGK-NS, and Euler Solutions at µref = 10−3
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Figure 4: Sod test: Unified BGK, BGK-NS, and Euler solutions at µref = 10−5
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Figure 6: Test: Unified BGK and BGK-DOM solutions with different mesh size and time step at µref = 10−4
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