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Abstract. We consider a problem in the theory of optimal control proposed for the first
time by Bressan. We characterize the associated minimum time function using tools from
geometric measure theory and we obtain as a corollary an existence theorem for a related
variational problem.

1. Introduction

In this paper we deal with a problem in the theory of optimal control introduced for the
first time by Alberto Bressan in [5] and which has been subsequently studied in several
papers (see [6], [7], [8] and [9]). The problem models the spread of fire in a forest or that
of a contaminating agent.

Consider a continuous multifunction F : R
2 7→ R

2 with compact, convex values (that is,
F (x) is a compact convex set for every x and F (xn) → F (x) in the sense of Hausdorff when
xn → x). A bounded, open set R0 ⊂ R

2 is the initial contaminated set and F describes the
speed at which the contamination might spread. A controller can construct one-dimensional
rectifiable sets γ (or “walls”) which block the spreading of the contamination, without
exceeding a certain length. More precisely, consider a continuous function ψ : R

2 7→ R+

and a constant ψ0 with ψ ≥ ψ0 > 0. We denote by γ(t) ⊂ R
2 the portion of the wall

constructed within time t ≥ 0 and we make the following assumptions (H1 denotes the
one-dimensional Hausdorff measure):

(H1) γ(t1) ⊆ γ(t2) for every 0 ≤ t1 ≤ t2;
(H2)

∫
γ(t)

ψ dH1 ≤ t for every t ≥ 0.

A strategy γ satisfying (H1)–(H2) will be called an admissible strategy.
At each time t, the contaminated set consists of the points reached by absolutely con-

tinuous trajectories x(·) which start in R0, solve the differential inclusion ẋ ∈ F (x) and do
not cross the walls γ. That is,

Rγ(t) :=
{

x(t)
∣∣∣ x ∈ W 1,1 ∩ C([0, t], R2) , x(τ) 6∈ γ(τ) ∀τ ,

x(0) ∈ R0 and ẋ(τ) ∈ F
(
x(τ)

)
for a.e. τ

}
.

(1)

The purpose of this paper is to study the minimum time function at which a point gets
contaminated. We will be able to characterize this function via a suitable modification
of the usual Hamilton-Jacobi partial differential equation. In the paper [7] Bressan and
the first author introduced a variational problem on the set of admissible strategies and
proved the existence of a minimizer (this problem is connected to that of confining the
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fire in a bounded set, see for instance [8]). An interesting byproduct of our analysis is a
shorter proof of this existence result. The prize to pay is the use of some more advanced
techniques in geometric measure theory.

1.1. Minimum time function. Given an admissible strategy γ, for any x ∈ R
2 we set

T γ(x) := inf{t > 0 : x ∈ Rγ(t)}. (2)

T γ(x) is the time at which the contaminating agent reaches x. Obviously T γ vanishes
identically on R0 and the total contaminated set is given by {T γ < +∞}.

If γ(t) = ∅ for every t, then T γ is the minimum time function of a classical control
problem. Let us introduce the hamiltonian function related to it.

Definition 1.1. H(x, p) := sup
q∈F (x)

{p · q} − 1.

In what follows, we will always assume that

(H3) There is a constant λ > 0 s.t. Bλ(0) ⊂ F (x) for all x.

It is well known that, under (H3) and the assumption γ = ∅, T γ is a Lipschitz map and
satisfies the Hamilton-Jacobi equation

H(x,∇T γ(x)) = 0 for a.e. x ∈ R
2 \ R0. (3)

Indeed, T γ is characterized as the viscosity solution of (3) in R
2 \R0 with boundary value

equal to 0 (see for instance [11] or [4]).
Assume for the moment that γ∞ := ∪tγ(t) is a sufficiently regular curve. Then T γ

must be a viscosity solution of (3) in {T γ < ∞} \ (R0 ∪ γ∞). Moreover, T γ has jump
discontinuities on γ∞. We can regard it as a “ viscosity solution of (3) with obstacles
γ∞”. In this note we propose a suitable mathematical definition of this concept and use
it to characterize T γ . The strength of our result is its generality, which will give us a few
interesting corollaries. In order to state our main theorem, we need some notation.

1.2. Main Theorem. We start by introducing the “complete strategies”, which were first
defined in [7]. The definition is motivated by the following example. Assume that γ is an
admissible strategy and consider a family of sets η(t) satisfying (H1) and H1(η(t)) = 0 for
every t. Then γ(t)∪ η(t) satisfies (H1)–(H2). In other words, given an admissible strategy
γ, we can increase its effectiveness by adding an H1-negligible amount of walls.

Definition 1.2. An admissible strategy γ is complete if

(i) γ(t) =
⋂
s>t

γ(s);

(ii) γ(t) contains all its points of positive upper density, i.e. all x s.t.

lim sup
r↓0

H1(Br(x) ∩ γ(t))

r
> 0 . (4)

The following proposition follows from standard geometric measure theory.

Proposition 1.3 (Lemma 4.2 of [7]). Let γ be an admissible strategy. Then there exists a
complete admissible strategy γc such that
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(iii) γ(t) ⊂ γc(t);
(iv) H1(γc(t) \ γ(t)) = 0 except for a countable number of times t.

An interesting byproduct of the results of this note is a proof of the intuitive fact that
γc has the maximum effectiveness among all strategies which differ from γ by a negligible
amount of walls (that is, γc has the largest minimum time function in this set of strategies,
cp. with Theorem 1.5 below).

We next introduce some notation in order to describe our “viscosity solution” to the
Hamilton-Jacobi equation with obstacles.

Definition 1.4. Given a measurable function u : R
2 → [0,∞] and a t ∈ [0,∞[ we set

ut := u ∧ t = min{u, t}.
For a given strategy γ, a measurable u : R

2 → [0,∞] belongs to the class Sγ if the
following conditions hold for every t ∈ [0,∞[:

(a) ut ∈ SBVloc(R
2), H1(Jut

\γ(t)) = 0 and ut ≡ 0 on R0;
(b) If ∇ut denotes the absolutely continuous part of Dut, then

H(x,∇ut(x)) ≤ 0 for a.e. x . (5)

SBVloc(R
2) is a linear subspace of BVloc(R

2) (where the latter is the space of functions
having bounded variation on every bounded open subset of R

2). For its precise definition
we refer to the next Section. We are now ready to state the main result of this paper.

Theorem 1.5. Let γ be an admissible strategy. Assume (H1), (H2), (H3) and

(H4) the initial set R0 is open and ∂R0 has zero 2–dimensional Lebesgue measure.

Then T γ ∈ Sγ and T γc

is the unique maximal element of Sγ, that is

for every v ∈ Sγ we have v ≤ T γc

a.e.. (6)

1.3. A variational problem. Besides its intrinsic interest, Theorem 1.5, together with
the SBV compactness theorem of Ambrosio and De Giorgi, yields a direct proof of the
existence of minima for the variational problem first studied in [7]. More precisely, consider
two continuous, non-negative functions α, β : R

2 7→ R+ and define

Rγ
∞ :=

⋃

t>0

Rγ(t) , γ∞ :=
⋃

t>0

γ(t) and (7)

J(γ) :=

∫

Rγ
∞

α dL2 +

∫

γ∞

β dH1 , (8)

Note that the functional J is well defined: the set Rγ
∞ is indeed measurable by Theorem 1.5

because Rγ
∞ = {T γ < ∞} (however, the measurability of Rγ

∞ can also be proved directly;
cp. with Lemma 3.1 of [7]). As a consequence of Theorem 1.5 we have the following.

Corollary 1.6 (Cp. with Theorem 1.1 of [7]). In addition to (H1)–(H4) assume that:

(H5) α ≥ 0, β ≥ 0, α is locally integrable and β is lower semicontinuous.

Then, there exists a strategy that minimizes J among all the admissible ones.
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2. Preliminaries on BV functions

Most of this section will be devoted to prove the following technical proposition, which
is a key point of our proof. We refer below for the definition of approximate continuity.

Proposition 2.1. Let u ∈ Sγ and assume γ is a complete strategy. Then there is a
measurable function ũ having the following properties:

(i) u = ũ a.e. (i.e. ũ is a representative of u);
(ii) ũt is approximately continuous at every x 6∈ γ(t);
(iii) If Φ : [0, 1] × [0, 1] → R

2 is a C1 diffeomorphism (of [0, 1]2 with its image) and ατ

denotes the curve {Φ(τ, s) : s ∈ [0, 1]}, then the following holds for a.e. τ and for
every t:

If ατ ∩ γ(t) = ∅, then w(·) := ũt(Φ(τ, ·)) is Lipschitz and

ẇ(s) = ∇ut(Φ(τ, s)) · ∂sΦ(τ, s) for a.e. s

H(Φ(τ, s),∇ut(Φ(τ, s))) ≤ 0 for a.e. s .





(9)

In the proposition above it is crucial that the Lipschitz regularity holds for w in its
pointwise definition: we do not need to redefine it on a set of measure zero!

A second technical point is the next proposition. This time, however, the statement is
a well-known fact for BV functions and we refer to the monograph [1]. In what follows,
the derivative of BV functions v, which are Radon measures, will be decomposed into its
absolutely continuous part and its singular part, using the notation Dv = ∇vL2 + Dsv.

Theorem 2.2 (Approximate Differentiability). Let v be a BV (Ω) function and Dv =
∇vLn + Dsv. Then, at a.e. x ∈ Ω there exists a measurable set B (possibly depending on
x) such that:

(i) lim
r↓0

Ln(Br(x) \ B)

rn
= 0;

(ii) lim
z→x,z∈B

v(z) − v(x) − 〈∇v(x), (z − x)〉

|z − x|
= 0 .

Or, in the language of [12], v is approximately differentiable at a.e. x with approximate
differential given by ∇v(x).

2.1. Decomposition of Du, SBV functions and slicing. We list here several fine
properties of BV functions which will play a crucial role throughout the paper. From now
on, given a Radon measure µ on a Borel set E ⊂ R

n, we will denote its total variation
on E by ‖µ‖TV (E). If u is a BV function, the singular part of Du, namely the measure
Dsu, can be further decomposed into, respectively, a Cantor part and a jump part, i.e.
Dsu = Dcu + fνHn−1 Ju, where:

• Ju is the jump set of u and it is a rectifiable set of dimension n − 1;
• Hn−1 Ju denotes the measure µ s.t. µ(E) = Hn−1(Ju ∩ E);
• ν is a Borel vector field orthogonal to Ju and with |ν| = 1;
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• f is a Borel scalar function;
• Dcu(E) = 0 for every Borel set E with Hn−1(E) < ∞.

A BV function u belongs to SBV if Dcu vanishes. We refer to Chapter 3 of [1] for the
details.

In the case of one-dimensional BV functions, the jump set Ju consists of countably many
points. The measure Du will then be denoted by du

ds
and we will use u′ for the L1 function

∇u. The decomposition above reads then as

du

ds
= u′L1 +

∑

si∈Ju

f(si)δsi
+ Dcu . (10)

Each f(si) is, thus, a real number and Dcu is the singular nonatomic part of the measure
du
ds

(see Section 3.2 of [1]).
Next, recall the following theorem (cp. with Section 3.11 of [1]).

Theorem 2.3 (Slicing). A function u ∈ L1([0, 1]2) belongs to BV iff

(1) The functions u(y, ·) and u(·, y) belong to BV ([0, 1]) for a.e. y;
(2) The following integral is finite

∫ (
‖ d

ds
u(y, ·)‖TV ([0,1]) + ‖ d

ds
u(·, y)‖TV ([0,1])

)
dy .

The function u belongs to SBV if and only if the two conditions above hold and, in addition

(3) u(y, ·) and u(·, y) belong to SBV for a.e. y.

Moreover, if u ∈ SBV and we write Du = ∇uL2 + fνH1 Ju, the following identity is
valid for a.e. y ∈ [0, 1]:

d

ds
u(y, ·) = 〈∇u, (0, 1)〉L1 +

∑

si∈J(y)

αiδsi
, (11)

where J(y) := {s : (y, s) ∈ Ju} and αi = f(y, si)〈ν(y, si), (0, 1)〉.

Remark 2.4. The obvious modification of Theorem 2.3 holds in coordinates which are
locally C1-diffeomorphic to the cartesian ones. For instance the theorem holds in polar
coordinates (except at the origin).

2.2. Fine properties of 1-d BV functions. When I is an interval and u ∈ BV (I), we
can change the values of u on a set of zero Lebesgue measure so to gain a function ũ with
the following properties (see Section 3.2 of [1]):

• ũ is continuous at every point t ∈ I \ Ju;
• u+(t) = lim

τ↓t
ũ(τ) and u−(t) = lim

τ↑t
ũ(τ) exist (and are finite) at every t ∈ Ju.

Moreover, the coefficients f(si) of (10) satisfy f(si) = u+(si) − u−(si). It is customary
to set ũ(si) := (u+(si) + u−(si))/2. ũ is then called the precise representative of u. The
following Proposition is a simple corollary of the properties of the precise representative.
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Proposition 2.5. If I is an interval, u ∈ BV (I) and Ju = ∅, then the precise representa-
tive ũ is continuous. If in addition u ∈ SBV (I), then ũ ∈ W 1,1 ∩ C and its distributional
derivative is the L1 function u′.

2.3. More on fine properties. The properties listed above for 1-d BV functions can be
suitably generalized to the higher-dimensional case. In order to do that we must introduce
the concept of approximate continuity.

Definition 2.6. A measurable map u : R
n ⊃ E → [−∞, +∞] is said approximately

continuous at x ∈ E if there is a measurable set A such that

lim
r↓0

Ln((E \ A) ∩ Br(x))

rn
= 0;

lim
y→x,y∈A

u(y) = u(x) .

We recall, then, the following classical result in real analysis and its improved version
for BV functions (we refer to Section 3.7 of [1]).

Proposition 2.7. Measurable maps are approximately continuous a.e.. If u is a BV map of
n variables, then we can redefine it on a set of measure zero so to get a precise representative
ũ which is approximately continuous at every point x which satisfies

lim
r↓0

|Du|(Br(x))

rn−1
= 0 . (12)

If N denotes the set of points where (12) fails, then Hn−1(N \Ju) = 0. Moreover, for every
x ∈ Ju, there exist two distinct values u+(x) and u−(x) and a measurable set G such that:

lim
r↓0

Ln(Br(x) \ G)

rn
= 0; (13)

lim
y→x, y∈G, 〈(y−x),ν(x)〉<0

ũ(y) = u−(x); (14)

lim
y→x, y∈G, 〈(y−x),ν(x)〉>0

ũ(y) = u+(x). (15)

Finally, it is useful for our analysis that, roughly speaking, points of approximate con-
tinuity of traces of BV functions and points of approximate continuity of the functions
themselves, coincide “most of the time”. The precise statement is given below. We restrict
ourselves to the case of 2-dimensional BV functions, which is the one really needed for our
purposes. However, the statement can be suitably generalized to any dimensions.

Proposition 2.8. Let u ∈ BV ([0, 1]2) and consider the function ũ of Proposition 2.7.
Then, the following property holds for a.e. y:

• If (y, x) 6∈ Ju ∩ ({y} × [0, 1]), then

lim
z→x,(y,z) 6∈Ju

ũ(y, z) = ũ(y, x) . (16)
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Proof. First of all, consider the two sets of y’s, N1 and N2 such that (1) of Theorem 2.3
apply. For each y ∈ N2, let G2

y be the set of points y of approximate continuity of u(·, y)
and set

G2 := ∪tG
2
t × {t} .

Finally, let N be the set of Proposition 2.7 and recall that H1(N \ Ju) = 0.
We are now ready to give the set of y’s for which the conclusion of the Proposition holds.

More precisely, y has to satisfy the following conditions:

(c1) y ∈ N1 and ({y} × [0, 1]) ∩ (N \ Ju) = ∅;
(c2) (y, x) ∈ G2 for a.e. x ∈ [0, 1].

Fix a y satisfying the two conditions above and an x with (y, x) 6∈ Ju. We claim that

(Cl) v(·) := ũ(y, ·) is approximately continuous at any such x.

Assume for the moment that (Cl) holds. By the classical properties of 1d BV functions
(see Section 2.2), after redefining v on a set of measure zero, we get a new ṽ which is
continuous at every x 6∈ Ju. On the other hand, we must have v(x) = ṽ(x) at every point
where v is approximately continuous. So, after having proved (Cl), we conclude that ṽ and
ũ(y, ·) coincide at every point x with (y, x) 6∈ Ju. This proves the proposition.

It remains to show (Cl). We argue by contradiction and assume it is false. Then at some
x with (y, x) 6∈ Ju, we have a constant η > 0 with the following property. If we define

Ar := {z ∈]x − r, x + r[: |ũ(y, z) − ũ(y, x)| ≥ η} ,

then

lim sup
r↓0

L1(Ar)

r
≥ η .

Now, set A′
r := {z ∈ Ar : (y, z) ∈ G2}. By (c2) L1(Ar \A′

r) = 0. We further restrict A′
r by

setting A′′
r := {z ∈ A′

r : (τ, z) ∈ G2 for a.e. τ}. Then, by Fubini, L1(A′
r \ A′′

r) = 0. Hence

lim sup
r↓0

L1(A′′
r)

r
≥ η . (17)

On the other hand, for z ∈ A′′
r , (recalling that (y, z) ∈ G2) we can write

|ũ(τ, z) − ũ(y, z)| ≤

∣∣∣∣
d

dt
u(·, z)

∣∣∣∣ (]y − r, y + r[) =: g(r, z) (18)

for every τ ∈]y − r, y + r[∈ G2 (and hence for a.e. τ ∈]y − r, y + r[). Since, by (c1),
(y, x) 6∈ N , we know that

lim
r↓0

1

r

∫ x+r

x−r

g(r, z) dz ≤ lim
r↓0

|Du|(B2r(y, x))

r
= 0 . (19)

So, for the set

Cr := A′′
r ∩ {z : g(r, z) < η/2}
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we have

lim
r↓0

L1(A′′
r \ Cr)

r
= 0 , which implies lim sup

r↓0

L1(Cr)

r
≥ η . (20)

Consider finally the set Dr := {(τ, z) : z ∈ Cr, |τ − y| < r} ∩ G2. It turns out that:

• lim supr↓0 r−2|Dr| ≥ η/2;
• Dr ⊂ B2r((y, x));
• If (τ, z) ∈ Dr, then

|ũ(τ, z) − ũ(y, x)| ≥ |ũ(y, z) − ũ(y, x)| − |ũ(τ, z) − ũ(y, z)| ≥ η −
η

2
=

η

2
.

The existence of the sets Dr obviously contradict the approximate continuity of ũ at (y, x),
which must hold because (y, x) 6∈ N . ¤

Proof of Proposition 2.1. Consider for any t the SBV map ut. Consider now the precise
representative ũt of ut, given by Proposition 2.7. ũt and ut differ on a set of measure zero
Lt. Moreover, ũt is approximately continuous at all points x for which

lim
r↓0

|Dut|(Br(x))

r
= 0 . (21)

On the other hand, by the definition of Sγ, we have Dut = ∇utL
2 + fνH1 γ(t). Now,

since 0 ≤ ut ≤ t a.e., it is a standard fact that |f | ≤ t. Moreover, since H(x,∇ut(x)) ≤ 0
for a.e. x, assumption (H3) implies that |∇ut(x)| ≤ λ−1. Thus |Dut| ≤ λ−1L2 + tH1 γ(t)
and, if (21) fails, we necessarily have

lim sup
r↓0

H1(γ(t) ∩ Br(x))

r
> 0 . (22)

The completeness of γ, implies that:

ũt is approximately continuous at every x 6∈ γ(t). (23)

Obviously, if t < τ , then ũt(x) ≤ ũτ (x) for a.e. x. Moreover, if x is a point of approximate
continuity of ũt and ũt(x) < t, then

(a) x is a point of approximate continuity for ũτ for every τ ;
(b) ũτ (x) = ũt(x) for every τ > t and ũτ (x) ≤ ũt(x) for every τ ≤ t.

Set then ũ(x) := supt ũt(x).

Step 1 First we prove assertion (i), that is ũ = u a.e.. Indeed, consider first the set
AN := {ũ < N}, where N ∈ N. Then ũ = ũN on the set A′

N ⊂ AN of points of approximate
continuity for ũN and ũ. Indeed, at such a point x we have ũN(x) ≤ ũ(x) < N . Thus we
can apply (a) and (b), from which we conclude ũ(x) = supτ ũτ (x) = ũN(x). Observe next
that |AN \ A′

N | = 0 and that ũN = uN on a set A′′
N ⊂ A′

N with |A′
N \ A′′

N | = 0. On the
other hand, on every x ∈ A′′

N we have uN(x) < N and thus u(x) = uN(x) = ũN(x) = ũ(x).
So, u = ũ a.e. on AN .

Since ∪NAN = {ũ < ∞}, it remains to show that u = ∞ a.e. on A := {ũ = ∞}.
Consider now the subset A′ ⊂ A of points x where all ũN are approximately continuous.
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Clearly |A \ A′| = 0. On the other hand, on each x ∈ A′ we necessarily have ũN(x) = N .
Otherwise, by (a) and (b) we would have ũ(x) = supτ ũτ (x) = ũN(x) < N , contradicting
ũ(x) = ∞. Consider next the set A′′ ⊂ A′ of points x where ũN(x) = uN(x) for every N .
Again |A′ \A′′| = 0. Hence, for every x ∈ A′′ we have uN(x) = ũN(x) = N . Letting N ↑ ∞
we conclude u(x) = ∞ for every x ∈ A′′.

Step 2 We claim next that, if ũt is approximately continuous at x, so is ũt (observe
that ũt is the precise representative of ut, whereas ũt = ũ ∧ t). Assume indeed that ũt

is approximately continuous at x. Let then E be a measurable set satisfying the require-
ments of Definition 2.6. Obviously, if we reduce further E taking all the points y ∈ E of
approximate continuity for ũt, the new set still satisfies the requirements of Definition 2.6.
With a slight abuse of notation, we keep the name E for this second set. Next, if y ∈ E,
either ũt(y) < t, and hence ũ(y) = ũt(y) (because ũt is approximately continuous at y and
hence (b) applies), or ũt(y) = t and hence ũ(y) ≥ t. In both cases, ũt(y) = ũt(y). For the
same reasons ũt(x) = ũt(x). We therefore conclude that

lim
y∈E,y→x

ũt(y) = lim
y∈E,y→x

ũt(y) = ũt(x) = ũt(x) .

This shows that all the points of approximate continuity of ũt are points of approximate
continuity of ũt. Thus assertion (ii) follows from (23). Finally, assertion (iii) follows easily
from Proposition 2.8, Theorem 2.3 and assertion (ii). ¤

3. Zig-zag construction and faster trajectories

3.1. Zig-zag constructions. In this section we outline a crucial construction for our
proof of Theorem 1.5. The basic idea is borrowed from [7], but we require several technical
improvements. We assume that

(Z1) γ is an admissible strategy, not necessarily complete;
(Z2) t ∈]0,∞[ and x0 is a point such that

lim
r↓0

H1(Br(x0) ∩ γ(t))

r
= 0 . (24)

Lemma 3.1 (Zig-zag). Assume (Z1)–(Z2) and let ε be any given positive number. Then
there is a set G of radii such that

lim
r↓0

L1([0, r] \ G)

r
= 0 (25)

and the following property holds.
If Bε(v) ⊂ F (x0), µ|v| ∈ G and τ < t − µ, then there exists a Lipschitz trajectory

z : [τ, τ + µ] → R
2 satisfying the following assumptions

(z1) z(τ) = x0, z(τ + µ) = x0 + µv;
(z2) ż(s) ∈ F (z(s)) for a.e. s;
(z3) z(s) 6∈ γ(t) for every s.

Assume in addition that γ is a complete strategy, u ∈ Sγ and ũ is the function given by
Proposition 2.1. Then, we can require the following additional property:
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(z4) w(s) := ũt(z(s)) is Lipschitz, ut is approximately differentiable at z(s) for a.e. s
and the following identities hold:





ẇ(s) = ∇ut(z(s)) · ż(s)

H(z(s),∇ut(z(s))) ≤ 0
. (26)

For v and µ as above and τ < t there exists a trajectory z : [τ − µ, τ ] → R
2 enjoying

(z2)–(z4) but with z(τ − µ) = x0 − µv and z(τ) = x0.

Proof. The proof of the first assertion of the Theorem follows essentially from the same ar-
guments proving the second assertion. We assume therefore that the strategy γ is complete
and prove the existence of a set G satisfying (25) (and of the corresponding trajectories
satisfying (z1)–(z4)).

Without loss of generality we assume v = (1, 0) and x0 = 0. Observe also that (by the
continuity of the multifunction F ) there is a δ > 0 such that:

Bε/2((cos θ, sin θ)) ⊂ F (x) if |x| < δ and |θ| ≤ δ. (27)

By the properties of ũ, we know that ũt is approximately continuous at 0. Let therefore A
be a measurable set such that

(AC1) r−2|Br \ A| → 0 for r ↓ 0;
(AC2) ũt(x) → ũt(0) if x ∈ A and x → 0.

Next, fix a small positive number α < δ to be chosen later. For every r consider the arc
of circle ηr := {r(cos θ, sin θ) : |θ| ≤ α}. We denote by H the set of radii r such that
γ(t) ∩ ηr = ∅. By (Z2) it easily follows that

lim
r↓0

L1([0, r] \ H)

r
= 0 . (28)

On the other hand, by Proposition 2.1 we can conclude that, for a.e. r ∈ H:

(G1) w = ũt|ηr
is Lipschitz;

(G2) the derivative of w at p ∈ ηr is the tangential component of ∇ut(p) for H1–a.e.
p ∈ ηr;

(G3) H(p,∇ut(p)) ≤ 0 for H1–a.e. p ∈ ηr.

We define G as the set of elements r ∈ H which satisfy (G1)–(G3) and which are smaller
than a positive constant c0 (to be chosen later). Then (25) holds. Next, for every N ∈ N

and any angle θ ∈] − α, α[ consider the segment

σθ,N := {ρ(cos θ, sin θ) : 2−(N+2) ≤ ρ ≤ 2−N} .

We say that (θ,N) is good if

(G4) The conditions corresponding to (G1)–(G3) are satisfied for ũ|σθ,N
;

(G5) There is a ρ = ρ(N, θ) between 3
8
2−N and 2−N−1 such that

ρ(N, θ)(cos θ, sin θ) ∈ A .
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Obviously, again by (Z2) and by (AC1), there is a constant c0 such that, for every N with
2−N ≤ c0 there always exists an angle θN for which (θN , N) is good.

It is also easy to conclude that, by possibly choosing c0 smaller, there is always a radius
rN ∈]2−(N+2), 3

8
2−N [ belonging to H. Assume therefore that µ ∈ G. Let N0 be the largest

natural number such that 2−N0 ≥ µ. We construct a piecewise smooth curve joining µ(1, 0)
and (0, 0) as follows.

• We first let p0 be the intersection of σθN0
,N0

with the arc ηµ and we let ψ0 be the
arc contained in ηµ joining µ(1, 0) and p0.

• We then let q0 := σθN0
,N0

∩ ηrN0
and denote by σ0 the segment with endpoints p0

and q0;
• We let p1 := σθN0+1,N0+1 ∩ ηrN0

and let ψ1 be the arc contained in ηrN0
joining q0

and p1.

We proceed inductively. The trajectory consists of infinitely many radial segments σi and
of infinitely many arcs ψi. We call their union Ψ. The sum the lengths of σi is exactly
µ. The sum of the lengths of ψi is bounded from above by Cαµ, where C is a geometric
constant independent of α and µ. We can go at all speeds up to 1+ε/2 along the segments
σi (by (27)) and at all speeds up to λ along the arcs ψi (by (H3)).

Therefore, it is surely possible to go along the trajectory Ψ with a map z : [τ, τ +µ] → Ψ
satisfying (z1) and (z2) if the following inequality holds:

µ
(
1 +

ε

2

)−1

+ Cα
µ

λ
≤ µ .

However, this is certainly the case if α is chosen sufficiently small. Next, since Ψ∩γ(t) = ∅,
z obviously satisfies (z3).

Now, the function w = ũt ◦ z is obviously locally Lipschitz on ]τ, τ +µ] because of (G1)–
(G4). Moreover, (26) is satisfied, and therefore the Lipschitz constant of w on any interval
[τ +ν, τ +µ] is bounded by a constant C independent of ν > 0 (recall indeed that, by (H3),
if H(x, p) ≤ 0, then |p| ≤ λ−1). This means that w extends to a continuous function w̃ on
[τ, τ + µ] and, in order to conclude the proof, it suffices to check that w̃(τ) = w(τ). Note
that by our construction, the points ρ(i, θi)(cos θi, sin θi) belong to the trajectory Ψ and
they are hence equal to z(τi) for some sequence τi ↓ τ . But then z(τi) ∈ A, and by (AC2),
we have that w(τi) = ũt(z(τi)) converges to ũt(0) = w(τ). This completes the proof. ¤

3.2. Faster trajectories. The last technical tool of the paper comes again from an idea
of [7] (cp. to Lemma 7.1 therein). The obvious proof is left to the reader.

Lemma 3.2 (Faster trajectory). Let x : [0, T ] → R
2 be an admissible trajectory, i.e.:

• ẋ(t) ∈ F (x(t)) for a.e. t;
• x(t) 6∈ γ(t) for every t;
• x(0) ∈ R0.

Let 0 < ε < δ and consider the trajectory x♯ : [0, T − ε] → R
2 given by

x♯(t) = x

(
T

T + δ + ε
(t + δ + 2ε)

)
.
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0
ψ1

p2
σ0

µ(1, 0)
ψ0

σ1

p0

p1
q1

q0

Figure 1. The zig-zag curve constructed in the proof of Lemma 3.1.

For δ and ε appropriately small, we have

• B2ε(ẋ
♯(t)) ⊂ F (x♯(t)) for a.e. t;

• x♯(t) 6∈ γ(t + ε) for every t;
• x♯(0) ∈ R0.

4. Proof of Theorem 1.5: Part I

In this section we prove that T γ belongs to Sγ under the only assumption that γ is an
admissible strategy. Thus we have to show that T γ satisfies the requirements (a) and (b)
of Definition 1.4.

4.1. Condition (a). Obviously T γ ≡ 0 on R0.

Step 1 We fix t > 0 and start by showing that T γ
t belongs to SBVloc. For an arbitrary

x ∈ R, we set lx := {(x, y) : y ∈ R} and lx,γ := lx ∩ γ(t). We claim that

(Cl) T γ
t is locally Lipschitz on the interior of lx \ lx,γ , with Lipschitz constant smaller

than λ−1 (where λ is the constant in (H3)).

We will prove this claim later. Obviously the same proof gives the following symmetric
statement, where l′y := {(x, y) : x ∈ R} and l′y,γ = l′y ∩ γ(t):

(Cl’) T γ
t is locally Lipschitz on the interior of l′y \ l′y,γ with constant smaller than λ−1.

First of all, (Cl) and (Cl’) imply the measurability of T γ
t . Indeed, recall that γ is rectifiable

and hence Borel measurable. Therefore, for every fixed integer j > 0 it is possible to find
a closed set Γj ⊂ γ(t) such that H1(γ(t) \ Γj) < 1

j
. Let Vj, Hj ⊂ R be the projections of

the set γ(t) \ Γj respectively on the horizontal and the vertical axis. (Cl) and (Cl’) imply
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that T γ
t is locally Lipschitz on

Cj := [((R \ Hj) × R) ∩ (R × (R \ Vj))] \ Γj .

Indeed, fix (x1, y1) ∈ Cj. Since Γj is closed, there is a ball B centered at (x1, y1) such that
B∩Γj = ∅. Consider any other point (x2, y2) ∈ B and let σ and η be the segments joining,
respectively, (x1, y1) with (x1, y2) and (x1, y2) with (x2, y2). Since x1 6∈ Hj and y2 6∈ Vj,
the intersections η ∩ γ(t) and σ ∩ γ(t) must be contained in Γj. On the other hand the
segments σ and η are also contained in B and thus we conclude that η∩γ(t) = σ∩γ(t) = ∅.
Therefore (Cl) and (Cl’) imply that

|T γ
t (x1, y1) − T γ

t (x2, y2)| ≤
|x1 − x2| + |y1 − y2|

λ

Observe next that L1(Hj) + L1(Vj) < 2/j. Thus, R
2 \

⋃
Cj has zero Lebesgue measure

and, having concluded that T γ
t is locally Lipschitz on each set Cj, we infer that T γ

t is
measurable.

Note that, if lx,γ is finite, (Cl) clearly implies that the restriction T γ
t |lx is an SBV function

with finitely many jumps. On the other hand we have the coarea formula
∫

♯(lx,γ) dx ≤ H1(γ(t)) < ∞ , (29)

which implies that (lx,γ) is finite for a.e. x. Since 0 ≤ T γ
t ≤ t, each jump has size at most

t and we therefore bound
∫ R

−R

‖ d
dy

T γ
t (x, ·)‖TV (]−R,R[) dx ≤

∫ R

−R
(λ−1 + t ♯(lx,γ)) dx

(29)
< +∞ . (30)

The same argument applies if we fix the y coordinate and let x vary. We can therefore
apply Theorem 2.3 to conclude that T γ

t ∈ SBV (] − R,R[2) for every positive R. This
shows that T γ

t ∈ SBVloc.

We now come to the proof of (Cl). We fix Y = (x, y) ∈ lx \ lx,γ and distinguish two
cases:

Case 1: τ := T γ
t (x, y) < t. In this case T γ

t (x, y) = T γ(Y ). We fix ε < t−τ
2

and

δ < min
{
ε, λ−1dist ((x, y), lx,γ)

}
. (31)

Let Z = (x, z). When |z − y| < δ we consider the path ϕ : [0, λ−1|z − y|] → R
2 given by

ϕ(s) =

(
x, y +

z − y

|z − y|
λs

)
= Y +

Z − Y

|Z − Y |
λs.

It is easy to see that ϕ̇ ∈ F (ϕ) (because of (H3)) and that ϕ(s) 6∈ γ(t). On the other hand,
if T is a given time in ]τ, τ + ε[, there is an admissible path ψ : [0, T ] → R

2 which starts
from a point ψ(0) ∈ R0 and reaches Y = (x, y). If we join the paths ψ and ϕ in the obvious
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way, then we obtain an admissible path which reaches Z = (x, z) at a time T + λ−1|z − y|.
Since T can be chosen arbitrarily close to τ = T γ(x, y), we conclude

T γ(x, z) ≤ T γ(x, y) +
1

λ
|z − y| . (32)

On the other hand, a symmetric argument shows

T γ(x, z) ≥ T γ(x, y) −
1

λ
|z − y| , (33)

which therefore completes the proof of the claim.

Case 2: T γ(x, y) ≥ t. In this case T γ
t (x, y) = t and, since T γ

t ≤ t, it suffices to show

T γ(x, z) ≥ t − λ−1|z − y| (34)

for any z sufficiently close to y. On the other hand, if (34) were false for a sufficiently close
z, we could argue as in (32) reversing the roles of z and y and finding

T γ(x, y) ≤ T γ(x, z) + λ−1|z − y| < t ,

which contradicts our assumption T γ(x, y) ≥ t.

Step 2 To complete the proof that (a) in Definition 1.4 is satisfied, we must show that
the jump set J of T γ

t is contained in γ(t). Let A be the set of x’s such that ♯lx,γ < ∞
and B the set of y’s for which ♯l′y,γ < ∞. In the previous subsection we have shown that

L1(R \ A) = 0 and that for any x ∈ A the jump set Jx of T γ
t |lx is contained in γ(t). By

Theorem 2.3, there is a further set A′ ⊂ A with L1(A \ A′) = 0 such that Jx = J ∩ lx for
every x ∈ A′. We thus conclude that J ∩ (A′ × R) ⊂ γ(t) and L1(R \ A′) = 0. Arguing
similarly for the y coordinates, we conclude the existence of a set B′ with L1(R \ B′) = 0
such that

J ⊂ γ(t) ∪
((

(R \ A′) × R
)
∩

(
R × (R \ B′)

))
. (35)

On the other hand
((

(R \ A′) × R
)
∩

(
R × (R \ B′)

))
= (R \ A′) × (R \ B′). But, since J

is a 1-d rectifiable set, H1(JT γ
t
∩ ((R \ A′) × (R \ B′)) = 0.

4.2. Condition (b). We start by observing that (5) holds a.e. on {T γ
t = t}. Indeed, if

this set has measure zero, then there is nothing to prove. Otherwise, using Theorem 2.2
and the Lebesgue Theorem it is easy to show that ∇T γ

t = 0 a.e. on {T γ
t = t}. Since (H3)

implies that H(X, 0) < 0 for every X, this proves our claim. The same observation shows
that (5) holds at every X ∈ R0.

We fix next a point X such that

• T γ(X) = T γ
t (X) < t;

• T γ
t is approximately differentiable with differential ∇T γ

t (X);
• X 6∈ R0 and

lim
r↓0

H1(γ(t) ∩ Br(X))

r
= 0 . (36)
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Clearly, a.e. X ∈ R
2 \ (R0 ∪ {T γ

t = t}) satisfies these requirements. Our aim is to show

∇T γ
t (X) · w ≤ 1, for every w ∈

◦

F (X) . (37)

From this easily follows that:

H(X,∇T γ
t (X)) = sup

w∈
◦

F (X)

∇T γ
t (X) · w − 1 ≤ 0. (38)

We now show (37) and fix, therefore, w ∈
◦

F (X). Choose ε ∈]0, 1/2[ so that B2ε(w) ⊂
F (X) and T γ(X) + 2ε < t. Apply Lemma 3.1 with x0 = X, t, ε and u = T γ . Let
τ ∈]T γ(X), T γ(X) + ε[ and v a vector in Bε(w). G is the set given by Lemma 3.1. If µ is
such that µ|v| ∈ G and µ < ε, let z : [τ, τ +µ] be the trajectory given by the first assertion
of Lemma 3.1. Since τ ∈]T γ(X), T γ(X) + ε[, there exists a trajectory x : [0, τ ] → R

2 such
that

• x(0) ∈ R0, x(τ) = X;
• ẋ(s) ∈ F (x(s)) for a.e. s;
• x(s) 6∈ γ(s) for every s.

Obviously, if we extend x to [0, τ + µ] by setting x(s) = z(s) for s ∈ [τ, τ + µ], x continues
to enjoy the same properties. This implies that T γ(X + µv) < τ + µ. Let now τ converge
to T γ(X) to conclude

T γ
t (X + µv) ≤ T γ(X + µv) ≤ T γ(X) + µ = T γ

t (X) + µ .

Since T γ
t is approximately differentiable at X, we find a set B satisfying (i) and (ii) of

Theorem 2.2. Clearly, for every η > 0, there are µ < η and v ∈ Bε(w) such that X+µv ∈ B
and µ|v| ∈ G.

We thus conclude that, for every ε > 0 and κ > 0, we find µ < ε and v ∈ Bε(w) such
that

∇T γ
t (X) · v ≤

T γ
t (X + µv) − T γ

t (X)

µ
+ κ ≤ 1 + κ .

We thus can estimate

∇T γ
t (X) · w ≤ ∇T γ

t (X) · v + |∇T γ
t (X)||w − v|

≤ |∇T γ
t (X)|ε + 1 + κ . (39)

Letting κ and ε go to 0 we conclude

∇T γ
t (X) · w ≤ 1 .

5. Proof of Theorem 1.5: Part II

In this section we prove the second part of Theorem 1.5. We first claim that Sγ = Sγc

.
The inclusion Sγ ⊂ Sγc

is obvious. In order to show the opposite inclusion, recall that
there is a countable set C of t’s such that H1(γc(t) \ γ(t)) = 0 for every t 6∈ C. Thus, let
u ∈ Sγc

. The only thing we need to show is that H1(Jut
\γ(t)) = 0 for t ∈ C, since for t 6∈ C

this identity is trivial. Fix therefore a t ∈ C and a point x in Jut
. Let u−

t (x) and u+
t (x)

be the left and right approximate values of ut at x, according to Proposition 2.7. To fix
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ideas, assume u+
t (x) > u−

t (x) (recall that the two values are necessarily different!). Then,
for τ > u−

t (x), we obviously conclude that x is not a point of approximate continuity for τ .
Choose a sequence {τi} ⊂ R \ C with τi ↑ t. According to Proposition 2.7, our argument
shows

H1

(
Jut

\
⋃

i

Juτi

)
= 0 . (40)

On the other hand H1(Juτi
\γc(τi)) = 0, H1(γc(τi) \γ(τi)) = 0 and γ(τi) ⊂ γ(t). Therefore

we conclude H1(Jut
\ γ(t)) = 0.

Having proved that Sγ = Sγc

, we can assume that γ itself is a complete strategy and aim
at proving that T γ is the maximal element of Sγ . Thus we consider an arbitrary u ∈ Sγ

and, to simplify the notation, we assume that u = ũ, where ũ is the function of Proposition
2.1. Our goal is to show that u ≤ T γ a.e.. This condition is obvious on R0 and on the set
{T γ = +∞}. Thus, we can assume that

• X 6∈ R0, X 6∈ γ∞, u is approximately continuous at X and T γ(X) < ∞ .

We fix therefore such a point X and we will show that, for every positive ε, u(X) ≤
T γ(X) + ε.

Using Lemma 3.2 we can assume that, for some positive T < T γ(X)+ε and some δ > 0,
there exists a trajectory x : [0, T ] → R

2 such that

• x(0) ∈ R0;
• B2δ(ẋ(t)) ⊂ F (x(t)) for a.e. t;
• x(t) 6∈ γ(t + δ) for every t;
• x(T ) = X.

We next define a set P ⊂ [0, T ]: s belongs to P if and only if there is a trajectory
y : [0, s] → R

2 with the following properties:

(P1) y(0) = x(0) and y(s) = x(s);
(P2) ẏ(σ) ∈ F (y(σ)) for a.e. σ;
(P3) w := uT+δ ◦ y is Lipschitz and for a.e. σ we have

either ẇ(σ) = 0 or





uT+δ is approximately differentiable at y(σ)

ẇ(σ) = ∇uT+δ(y(σ)) · ẏ(σ)

H(y(σ),∇uT+δ(y(σ))) ≤ 0





. (41)

We will show below that:

• P has a maximal element;
• the maximal element of P is necessarily T .

We assume, for the moment, these two facts and conclude our proof. Since T ∈ P, there
is a trajectory y : [0, T ] → R

2 satisfying (P1)–(P3). Note that, in a neighborhood of 0,
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the trajectory y takes values in R0, where uT+δ vanishes identically. Hence w(0) = 0.
Moreover, for a.e. σ, either ẇ(σ) = 0 or

ẇ(σ) = ∇uT+δ(y(σ)) · ẏ(σ) ≤ sup
v∈F (y(σ))

∇uT+δ(y(σ)) · v

= 1 + H(y(σ),∇uT+δ(y(σ)) ≤ 1 . (42)

Therefore we conclude

uT+δ(X) = w(T ) =

∫ T

0

ẇ(τ) dτ ≤ T . (43)

But this implies u(X) = uT+δ(X) < T γ(X) + ε, which is the desired conclusion.

Step 1. P has a maximal element.
Let S := supP . If x(S) = x(0), then the assertion is trivial. Therefore, without loss of

generality, we assume X := x(S) 6= x(0). We let {si} be a sequence in P converging to
S and we denote by yi the corresponding trajectories satisfying the conditions (P1)–(P3).
The idea is that, for i sufficiently large, we will be able to prolong the trajectory to reach
X. This will be done by adding a zig-zag curve to a portion of yi.

Next, we set

ai :=
x(S) − x(si)

S − si

and, passing to a subsequence, we assume that ai converges to some point. We set a equal
to this limit if it is different from 0 (we call this the principal case). If not, we distinguish
two possibilities. If x(si) = x(S) for some i, then we trivially have S ∈ P. Indeed, it
suffices to put y(τ) = yi(τ) for τ ≤ si and y(τ) = x(si) = x(S) for τ ∈ [si, S] to get
a trajectory y satisfying (P1), (P2) and (P3). Otherwise, we can assume (passing to a
subsequence) that

x(S) − x(si)

|x(S) − x(si)|

converges to some limit ã with |ã| = 1. In this case we set a := λã/2 and we call it
secondary case. It will be clear from the proof below that this situation is just a variant of
the principal case. We therefore assume that a 6= 0 is the limit of the ai and leave to the
reader the obvious modifications for the secondary case.

Note that, by our assumptions on F , it follows easily that B2δ(a) ⊂ F (x(S)). Next
choose v = (1 + κ)a, where κ is a positive constant, chosen so that Bδ(v) ⊂ F (x(S)). To
fix ideas, assume a = (1, 0) and x(S) = 0. Fix moreover α > 0 (to be chosen later), set
τi = S − si and consider, for every i and for every β ∈]α/2, α[ the set Qi,β delimited by

• the segments

d+ = [τi(1 − β)(cos β, sin β), τi(1 + β)(cos β, sin β)]

and

d− = [τi(1 − β)(cos β,− sin β), τi(1 + β)(cos β,− sin β)] ;
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• the arcs ar− and ar+ with radii, respectively, τi(1−β) and τi(1+β) and delimited,
respectively, by the pair of points

τi(1 − β)(cos β,− sin β) τi(1 − β)(cos β, sin β)

and by the pair of points

τi(1 + β)(cos β,− sin β) τi(1 + β)(cos β, sin β) .

See Figure 2.

d+

d−

β
ar+

ar−

(τi, 0)

Figure 2. The set Qi,β

Observe that 0, u and τ = S satisfy the assumptions of the Lemma 3.1 if we choose
t = S + δ. Let, therefore G be the set of radii given by the Lemma. We want, for i
sufficiently large, choose a β such that the following conditions hold:

(a) τi(1 − β)|a| = τi(1 − β)(1 + κ)−1|v| belongs to G, so that there exists a trajectory
as in Lemma 3.1;

(b) The restriction on ∂Qi,β of the function ut is a Lipschitz function ζ;
(c) ut is approximately differentiable at H1–a.e. point x ∈ ∂Qi,β, and satisfies

H(x,∇ut(x)) ≤ 0;
(d) The derivative of ζ corresponds, H1–a.e. on x ∈ ∂Qi,β, to the tangential component

of ∇ut.

According to Proposition 2.1, the last three conditions are satisfied for a.e. β such that
∂Qi,β ∩ γ(t) = ∅. Since

lim
r↓0

H1(Br(0) ∩ γ(t))

r
= 0

and

lim
r↓0

L1(G ∩ [0, r])

r
= 0
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the existence of such a β is guaranteed if i is sufficiently large.
Now, we choose such a β = β(i) for every i and set Qi := Qi,β(i). Note that yi(si) ∈ Qi

if i is large enough. Moreover, since yi(0) = x(0) and x(0) 6= 0, we have yi(0) 6∈ Qi, for
any i large enough. Thus, for large i’s, there is a s̃i < si such that yi(s̃i) ∈ ∂Qi. Now we
let z : [S − τi(1 − β)(1 + κ)−1, S] → R

2 be the trajectory given by the last assertion of
Lemma 3.1, which is joining the points z(S − τi(1 − β)(1 + κ)−1) = x(S) − τi(1 − β)(1, 0)
and 0 = x(S). Note that the first point belongs to ∂Qi.

Next, observe that the perimeter of Qi can be bounded by 10τiβ. If α is chosen sufficiently
small, the number

ω := S − τi(1 − β)(1 + κ)−1 − s̃i

is larger than 5βτi/λ. Indeed, we have the inequalities

5βτiλ
−1 ≤ 5ατiλ

−1

ω ≥ S − τi(1 − α)(1 + κ)−1 − si = τi

[
1 − (1 − α)(1 + κ)−1

]
.

Hence the inequality ω ≥ 5βτiλ
−1 holds whenever

κ + α

1 + κ
≥

5α

λ
.

Thus, the choice of α depends only on κ and λ, which were fixed a priori.
Having chosen α accordingly small, we can find a trajectory

ϕ : [s̃i, S − τi(1 − β)(1 + κ)−1] → ∂Qi

which joins ϕ(s̃i) = yi(s̃i) and

ϕ(S − τi(1 − β)(1 + κ)−1) = z(S − τi(1 − β)(1 + κ)−1)

and satisfies ϕ̇(σ) ∈ F (ϕ(σ)) for every σ.
We join z and ϕ into a single trajectory z on [s̃i, S], for which we have the following

conclusions:

• w = ut ◦ z is Lipschitz;
• for a.e. σ, either ż(σ) = 0 or ut is approximately differentiable at z(σ) and the

approximate differential satisfies H(z(σ),∇ut(z(σ))) ≤ 0;
• for a.e. σ, either ẇ(σ) = 0 or d

dσ
ut ◦ z(σ) = ∇ut(z(σ)) · ż(σ) for a.e..

Next join the trajectory yi|[0,s̃i] to the trajectory z in order to build a new trajectory y.
We claim that y satisfies the requirements (P1)–(P3), thus showing that S ∈ P. Indeed, y
satisfies all the requirements with ut = uS+δ in place of uT+δ. Thus, the computations (42)
and (43) are still valid if we replace T with S and we infer uS+δ(y(σ)) ≤ σ ≤ S < S + δ
for every σ. Therefore, the properties (P1)–(P3) with the desired value T ≥ S can be
easily inferred from the following facts, which are easy consequences of the definitions of
approximate differentiability and approximate continuity. Assume a ∈ R and ua(x) < a.
Then

• If ua is approximately continuous at x, so is any ub with b > a;
• If ua is approximately differentiable at x, so is any ub with b > a and the corre-

sponding approximate differentials coincide.
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This completes the proof that S ∈ P.

Step 2. The maximal element of P is T .
Let S be the maximal element. Then, it is obvious that x(s) 6= x(S) for every s > S.

In particular, if S < T , we must have x(T ) 6= x(S). Assume by contradiction that S < T
and, for s > S, consider the vectors

v(s) :=
x(s) − x(S)

s − S
.

Recall that B2δ(ẋ(σ)) ∈ F (x(σ)). By our assumptions on the multifunction F , it follows
easily that Bδ(x(s)) ⊂ F (x(S)) provided s is sufficiently close to S. Therefore, we can
apply Lemma 3.1. Given the set of radii G, it follows that, for any ε > 0, there is
0 < s < S + ε with |s − S||v(s)| ∈ G. We can therefore construct a zig-zag curve
z : [S, s] → R

2 satisfying the assumptions of the Lemma with t = S + δ, with z(S) = x(S)
and z(s) = z(S)+(s−S)v(s) = x(s). Now, since S ∈ P, there is a trajectory y : [0, S] → R

2

satisfying (P1), (P2) and (P3) with y(S) = x(S). On the other hand, joining z and y into
one single trajectory ỹ, we can argue as in the previous step to conclude that ỹ : [0, s] → R

2

satisfies (P1), (P2) and (P3). Since ỹ(s) = x(s), this implies that s ∈ P, thus contradicting
the maximality of S.

6. Proof of Corollary 1.6

Let {γk} be a minimizing sequence of admissible strategies for the functional J . Consider

the completions ηk of γk. Then, Rγk

∞ ⊃ Rηk

∞ (because, by Theorem 1.5 T γk

≤ T ηk

).
Moreover, H1(ηk

∞ \ γk
∞) = 0. Thus, we conclude J(γk) ≥ J(ηk). Therefore, without loss

of generality we can assume that the minimizing sequence of strategies {γk} consists of
complete strategies.

Consider the corresponding maximum time functions T k := T γk

. Note that the functions
T k belong to the space of functions GSBV (see Section 4.5 of [1]; this space is just a
variant of the space of SBV functions introduced by Ambrosio and De Giorgi). Note also
that |DT k

t | ≤ λ−1L2 + tH1 γ(t). This uniform bound allows to apply the compactness
theorem for GSBV functions (see Theorem 4.36 of [1]), which is just a variant of the SBV
compactness Theorem of Ambrosio and De Giorgi. Hence, after passing to a subsequence,
we can assume that T k converges pointwise a.e. to a function u satisfying the following
properties:

(a) ut is an SBV function for every t;
(b) Jut

is a rectifiable set and
∫

Jut

ψ dH1 ≤ lim inf
k

∫

J
Tk

t

ψ dH1 ≤ t

(see Theorem 5.22 of [1]);
(c) ∇T k

t converges weakly, in every Lp with p < ∞, to ∇ut (see Corollary 5.31 of [1]).

For each t, denote by γ(t) the set of points where the precise representative of ut is not
approximately continuous. It is not difficult to see that γ(t) ⊂ γ(s) for every s > t.
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Moreover, by Proposition 2.7, H1(γ(t) \ Jut
) = 0. It follows, therefore, from (b) that γ(t)

satisfies (H2) and, hence, it is an admissible strategy.
Note next that, H is a continuous function and that H(x, ·) is convex for every x. Then,

the property H(x,∇T k
t (x)) ≤ 0 for a.e. x implies, by (c), H(x,∇ut(x)) ≤ 0 for a.e. x.

Thus, u ∈ Sγ. So, if we consider the completion γc of γ, we conclude T γc

≥ u.
Since T k converges pointwise a.e. to u, we conclude that

1{u<∞}(x) ≤ lim inf
k↑∞

1{T k<∞}(x) for a.e. x.

Thus, recall that α ≥ 0 and use Fatou’s Lemma to conclude
∫

Rγc

∞

α dL2 =

∫

{T γc
<∞}

α dL2 ≤

∫

{u<∞}

α dL2

≤ lim inf
k↑∞

∫

{T k<∞}

α dL2 = lim inf
k↑∞

∫

Rγk

∞

α dL2 . (44)

On the other hand, by the Semicontinuity Theorem for SBV functions (see again Theorem
5.22 of [1]), ∫

Jut

β dH1 ≤ lim inf
k↑∞

∫

J
Tk

t

β dH1 ≤ lim inf
k↑∞

∫

γk
∞

β dH1 .

Since ∫

γc
∞

β dH1 = sup
t<∞

∫

Jut

β dH1 ,

we conclude that ∫

γc
∞

β dH1 ≤ lim inf
k↑∞

∫

γk
∞

β dH1 . (45)

From (44) and (45) it follows trivially that J(γc) ≤ lim infk J(γk). Hence, γc is the desired
minimizer.
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