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Abstract

This macroscopic approach is based on the conception of fluid ele-
ments which represent (mass)-points and (point)-masses at the same
time. As individual point the fluid element owns a momentum and as
collective domain a potential of energy. This dualistic view has the
advantage that the basic equations of fluid mechanics can be simpli-
fied. If the system is reduced to a balance of momentum and energy
the continuity equation does not explicitly become part of it. Then,
the number of dynamic variables in the classical equations will be re-
duced to four: the momentum vector and a quantity of energy leading
to a kinematic representation in the end. In case of incompressible
flows agreement is reached with the Navier-Stokes equations. Compu-
tational results concern unsteady three-dimensional flows, particularly
showing the formation of Taylor vortices in a turning cylinder and of
spiral vortices behind a backwards-facing step in a channel flow. As
a remarkable result of this approach a deeper insight into the phe-
nomenon of turbulence could be achieved.

1. Introduction

The conservation laws of fluid mechanics can be derived in integral or differ-
ential form. The former assumes constancy of mass of identifiable particles
inside a finite, time-dependent fluid volume being transported with the flow,
while the differential form applies to a fixed volume passed through. Each
modus operandi leads to the continuity equation concerning conservation of
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mass, where the integral definition corresponds to a concept of the contin-
uum that consists of basic particles not being connected without gap.

However, both definitions of the continuum - the ”granular” interpreta-
tion and its literal meaning ”continuous” - are deficient. Thus, in a strictly
continuous domain no border will be definable. No sub-domain may be cut
out of a "cloud” which will endure with respect to time. But even the as-
sumption of a fluid element which consists of identifiable material particles
is insufficient. A cohesion of these particles, i.e. a spatiotemporal closed sys-
tem, do not exist normally - particularly not in a whirling compressible flow.
For instance, Howard Brenner [1] realized that ”because individual molecules
freely enter and leave such a body through its permeable surface due to their
respective ” Brownian” motions, a material fluid particle is not permanently
composed of the same matter”. However, Brenner is not going thus far to
deny the relevance of constancy of mass in the context of the basic equations.
Consequently Brenner in his comprehensive publication has to postulate two
different kinds of velocity in compressible flows: the mass velocity, appearing
in the continuity equation, and the momentum velocity of the Navier-Stokes
Equations. By the way, an indication of this problem may be found in the
"Hydrodynamics” of Landau-Lifschitz [2]. As will be seen, this problem of
two velocities disappears when the condition of constancy of mass of a fluid
element becomes irrelevant.

In spite of such objections the construct fluid element cannot be relin-
quished. This holds for visualizations (e.g. colored volumes) and in the same
degree for numerical simulations. Therefore the only option to agree with
physical reality would be to adopt a duality of the fluid element as particle and
field of user-defined spatiotemporal dimensions. As individual point it owns
a momentum and as collective domain a potential of energy whichever origin.
On the one hand the physics of trajectories (Euler, Navier-Stokes) does ap-
ply and on the other hand - below a limit of resolution - the thermodynamic
state. Both classifications are coupled in the fluid element and accordingly
the basic equations. Though subliminally any modeling of dissipative phe-
nomena in detail is impossible and could be considered last but not least
as reductionist these phenomena are implicitly involved by the macroscopic
interaction of convection, friction and diffusion. In this view only a physical
effect like pressure on the surrounding fluid elements is detectable, inevitably
scaled down to a scalar quantity as necessary and sufficient. Then in respect



of the dualistic nature of fluid elements the number of dynamic variables
in the classical equations is reduced to four: the momentum vector and a
quantity of energy. Because these terms connect mass with velocity they
are more universal than the concept ”"density of mass”. Consequently the
fields of momentum and energy already determine the distribution of mass
depending on initial conditions and temporally accumulated divergences of
velocities. Altogether, mass can be considered as ”passive” and only obtains
dynamic quality as momentum. As far as the basic equations are concerned
then the variable density of mass has to be replaced by the individual fluid
element which interacts with its neighbors. Furthermore, because mass is
only involved linearly both in momentum and energy, these quantities may
be reduced to kinematic variables.

After all a mathematical aspect should be mentioned. Though for reasons
of clearness the fluid element has been considered as spatiotemporal finite,
the basic equations should be regarded as differential equations and not as
relations of differences. Because starting out from the insight that it is not
decidable whether infinite decimal numbers are zero or not, the existence of
infinitely small elements is ensured (s.[3]). By the way an analogy to chem-
ical reaction kinetics may be mentioned. Reaction rates and concentration
gradients are alike acceleration potentials of fluid mechanics, where the flux
of forces also is essential. Without going into detail these analogies may be
extended on the production of entropy in fluid flows, steady or unsteady, and
near or far from equilibrium. In the latter case a negative entropy production
is possible leading to instabilities like turbulence.

The present approach has a previous history. Already in 1983 a math-
ematical model was proposed in order to simplify numerical calculations
concerning fluid flows of high Reynolds-numbers [4]. Though the applied
equations led to remarkable results in qualitative as well as in quantitative
respect (e.g. [5]), the physical background left questions open. In literature
three publications were concerned with this model: A comparison with the
Navier-Stokes-Equations using symmetry methods [6], an alternative math-

ematical approach to non-equilibrium phenomena [7] and a doctoral thesis
[8].



2. Basic Equations

In the kinetic theory of gases the number of elementary particles (m.) n x m,
per unit of volume (V) substitutes density of mass. Then the (internal)
kinetic energy of a fluid element is determined by the product number of
particles X average value of the square of microscopic velocities, identical to
the sum of these squared terms. In this context it has to be kept in mind
that it is irrelevant whether there are many particles of low speed or a few
particles of high speed. Thus the densit}; of the (internal) kinetic energy of a

fluid element is given by ey = % ) %L = % X ¢, where the positive quan-

tity ¢ does not include a detailed knowledge of microscopic processes. The

dimension of ¢ = Y, %i is (length/time)? , while the dimension of mass
density does not occur in ¢. Which modes of energy are actually present
may remain open at first, whether identified as internal energy, pressure or
thermodynamic potential, and depends last not least on the fluid and flow
parameters. Thus A. Sommerfeld in his classical textbook [9] denotes fluid
pressure as "quasi potential energy of forces being effective within the fluid

element”.

Based on the assumption that fluid elements will cover the total sub-
liminal energy of the flow field, the universal law of conservation is valid
concerning the term T ¢. Then, eliminating % the conservation equation
reads in differential form:

19J0) >
— 4+ divJ =0 1
5 (1)
where the energy flux Jis composed of a convective and a “non-convective”
(diffusion) fraction. If the latter is assumed to be proportional to the gradient
of ¢ itself - comparable to the term of heat conduction in the hydrodynamic
energy equation, eq.(1) becomes:

g—(f + div (¢0) = € Ag ¢ = kinematic coefficient of substance (2)

The kinetic energy of a fluid element as an entirety is on the contrary not
subject to a conservation law. This results directly from the dual character
of the fluid element as particle and field. In case of single component fluids
the term % may be eliminated as multiplication factor. Moreover, formula
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(2) corresponds to the well known relations which describe transport of heat
in the continuum if convection is neglected. These are:
dq

5 = div and ] = —kgrad T (3)

(q = heat quantity, x = heat conduction, T = temperature)

Eq. (2) is different from the hydrodynamic energy equation in so far as the
dissipation of energy of motion into internal energy (heat) does not explic-
itly appear. However, implicitly the powers of friction and pressure forces
are taken into account by means of the interaction of fluid elements on the
macroscopic level. Thus the relevant terms of the equation of momentum
influence for their part convection and diffusion of potential energy. For in-
stance, a small loss of energy by diffusion will mean an increase of irreversible
energy production provided that transport by convection is unchanged. Con-
sequently additional terms of power are not required as in the case of the
much more complicate hydrodynamic energy equation with three scalar vari-
ables, e.g. pressure, temperature and density, instead of one.

Furthermore, in order to get a closed system of equations an equation of
motion is required based on the Navier-Stokes equations. However, it has
to be taken into account that this approach replaces the continuous mass
density p by single fluid elements. Accordingly the fluid element represents
one pseudo-mass point in the macroscopic flow field. Disregarding gravity
effects the momentum equation then reads:

D —
p Eﬁ = —gradp + p R
. men D M MeN =
to : —U = — grad— R
passing into v DY grad 17 o + v

With the number of particles reduced to one (n=1) and the constant term
me/V eliminated we get:

D

Eﬁ — —grad ¢ + R R = friction (4)

where %(ﬁ represents pressure as assumed and ¢ its kinematic reduction.



For reasons of symmetry the mathematical approach [4] only considered
bulk viscosity, a restriction that will not be maintained here. A universally
valid notation of friction terms reads - with kinematic coefficients of substance
o/ )

R = «agrad div 9y — § curl curl ¥ (5)

and in the Stokes-approximation

—

1
R = v (A7 + 3 grad div 7) v = kinematic viscosity (6)

In the cause-and-effect chain these friction forces influence the energy field
by the convective flux div (¢#) , while the energy distribution governs the
macroscopic velocity field. It is this feedback between particle and field that
links mechanical work with heat production in agreement with the first law
of thermodynamics. Therefore, there is no need to add the power of friction
forces to the hydrodynamic energy equation explicitly.

3. Some flow simulations

In the following some computational results are presented concerning 3D-
flow configurations, particularly with regard to a turning cylinder filled with
a fluid and the flow behind a backwards facing step. Because of the complex
flow configurations the calculations confine themselves to qualitative results.
As characteristic numbers the Reynolds-, Prandtl- and Sommerfeld-Number
come into consideration. The latter is related to the pressure loss in a chan-
nel flow. The ratio of shear to bulk viscosity is determined by the Stokes
Approximation. The temperature dependency of material parameters has
been disregarded as well as gravity effects. The reproducible generation of
vortices and their disintegration, whether by experiment or numerical simu-
lation, requires well-defined time dependent boundary conditions which are
difficult to obtain in general.

Rather simple to realize, however, is the configuration of a turning cylin-
der (see e.g. [10]. Here, the start-up procedure (spin-up) differs from the
spin-down procedure of the cylinder coming to rest. Fig. (1) shows the
evolution of Taylor vortices in a spin-up- process (axial-radial cross sec-
tion) which are azimuthal of helical structure. The calculation has been
done using cylindrical coordinates applying the boundary conditions: spin-
up: Ushen(to) = 0, Ushen(t > to) > 0, Vgpen = 0.
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Fig.2
These vortices develop because of the frictional grip at the walls of a turning
cylinder. In this context it is interesting that the Taylor vortices seem to
have little influence on the pressure distribution (Fig.2). Helical vortices are
presumably a very ”economic” flow configuration.

The disintegration of Taylor vortices depending on increasing Reynolds
Numbers (700 and 1000 respectively) concerning a Couette Flow between
rotating cylinders is shown in Fig.3.
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Less clear is the flow behind a step in a 3D-channel flow (Fig.4-6). Then,
two effects will overlap: the development of vortices behind the step and on
the other hand vortices caused by friction at the walls of the channel. Even
here visualization shows helical vortices which, however, are more difficult to
realize because they develop being interconnected in three dimensions.



— Fig.4

Local eddies melt together and extensive flow patterns disintegrate. Ac-

tually these mechanisms remind of the motion of gyroscopes which influence
each other.
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Fig.4/5 show vector fields and stream lines respectively in different cross
sections of the channel. Finally Fig.6 illustrates a single result of such inter-
action leading to helical patterns in three dimensions.

4. On the Origin of Turbulence

There are two fundamental forms of motion resulting from the interaction
of fields of velocity and energy: spiral patterns and waves which may be
considered as the main sources of turbulence, depending on dimensionless
numbers, but independent of scales of space and time. A vivid example of



the development of helical vortices is given by the simulation of the flow
over a vertical oriented plate (Fig.7), where the image plane is the plane of
symmetry in the midst of a channel, while the distance of the plate to the
walls above and below should be different. Then the mechanism of vortex
separation, leading to a vortex-street in the end, can be visualized showing
the phenomenon of reverse rotating vortices which will influence each other
in such a way that one eats up the other alternately. Furthermore the grow-
ing vortex will separate - carried along with the outer flow. Of course, single
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Closed-loop line integrals (circulation) will only exist in the borderline case
when symmetric configurations like torus-shaped smoke rings are generated.
Depending on adequate flow conditions such vortex rings can stick to solid
surfaces or separate. In order to illustrate this two examples are given: Fig.8
shows the cross section of a simulated pipe flow around a disk (Reynolds
number 100), which will not separate in steady flow - corresponding to [11]).
On the other hand an unsteady shock wave is obtained starting from a high
pressure gradient in the pipe. Then flow separation occurs (see Fig.9), asso-
ciated with a small vortex ring which will disappear by and by (see the blue
points in the low pressure phase).

In this context it has turned out that to go without the continuity equa-
tion the basic equations will avoid discontinuity surfaces. As is well known
shock waves have a small but finite thickness - conditions which are met by
the equations of momentum and energy which involve terms of viscosity and
diffusion (see [12]). The equation of continuity only includes a convective
transport of mass, so that discontinuity surfaces would require the Rankine-
Hugoniot-Relations if necessary. Discontinuous distributions of uniform mass
are only conceivable under outer space conditions.
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The influence of wawves on complex flow configurations will essentially be due
to the phenomenon of interferences. A simple simulation of a flow through
a double-slit (Fig.10) shows the difference between the velocity field (no in-
terference) and the energy potential (with interference) in a cross section
downstream.
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Whether a flow will turn out to be laminar or turbulent thus depends on a
great variety of local and regional area interactions, flow and fluid parame-
ters like initial- and boundary conditions and material coefficients. For this
reason it seems almost impossible to predict these highly complex processes
by means of reductionist approaches like incompressibility, plane flow or spe-
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cial disturbance functions which may trigger a transition to turbulence under
certain conditions. Therefore, a chance to achieve a realistic forecast of un-
steady compressible flows will only result from considerable computational
effort. Two examples, obtained with minimal computational equipment, may
provide an indication of future possibilities. So Fig.11 shows a photo of as-
cending smoke! and Fig.12 similar swirls in a channel flow behind a step.
Furthermore Fig.13 reproduces vorticity in a boundary layer due to trans-
verse gradients.
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Finally the irreversible dynamics of fluid flows is associated with thermody-
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namics and in particular the dissipation of motion to internal energy. In the
hydrodynamic energy equation this function is described by the dissipation
function which is deduced from mechanical stresses. However, as far as ther-
modynamics is concerned it seems more reasonable to relate the irreversible
processes, i.e. the production of entropy, to the product flux x force, equiv-
alent to wvelocity x gradient of potential energy. Fig.14 shows the temporal
development of this product starting from a system at rest but from a non-
equilibrium state of potential energy. Far from equilibrium fluctuations occur
which contain negative entropy production.

5. Extension to Magnetohydrodynamics

The variable ¢ has been introduced here as the (internal) energy per fluid
element - without specifying the mode of energy. The underlying cause has
been that parameters of substance, boundary conditions and generally reduc-
tionistic simplifications will affect the mode of energy. Thus W.Moehring?
identified the variable ¢ as enthalpy starting from the Euler equations of the
isotropic flow of an ideal gas.

Consequently the potential of an electric field may be part of ¢ as well. In
this case the equations of fluid mechanics are insufficient and have to be
extended to magnetohydrodynamics. Accordingly a relation to the Maxwell
equations of electrodynamics has to be established. In this context it is useful
that electric charges are always bound to elementary particles, a situation
similar to the hydrodynamic approach, given here, where continuous mass
density is replaced by particle density. The coupling of the equations of fluid
mechanics and electrodynamics is based on two requirements: the consider-
ation of Lorentz forces in an equation of motion and the idea of abstracting
the different kinds of electric currents, particularly the convective and induc-
tive modes, to a more general term of energy flow. As to the latter Ohm’s
law indicates the current to be proportional to the electric field and hence
to the gradient of an electric potential. The feedback to a potential also has
the advantage that the gradient will be independent of a frame of reference.
With current i o grad¢ from the Maxwell-equations then follows:

OE

T + el B = fVé

2Max Planck Institut fiir Stréomungsforschung, Goettingen: private communication
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B .
aa—t + curl E = 0

Coefficient f has the dimension of a frequency [1/t] resulting from a non-
dimensional representation with the electric field strength E[1/t?] and the
magnetic field B [1/t]. This assumption also seems to be justified because the
influence of the electric field may be related to microscopic plasma vibrations
of definite frequency and separation of charges. Consequently the fluid flow
is not effected in the case of zero frequency and vanishing Lorentz forces.
Only the vector product 7 x B of the Lorentz term will explicitly be involved
in the resulting equation of motion because the contribution of the electric
field strength is already covered by grad ¢.

The term c¢? in the Maxwell-equations concerns the speed of light, which
- following the mass-energy relation - may be replaced by ¢y = const as
a reference value. A non-dimensional representation of the total system of
differential equations, which includes the electromagnetic field, then reads:

%{;’ — §xB = - grad ¢ + é R R = friction forces

?’)_f + div (¢7) = RelPr A¢ )
—aa—lj + curl B = Nl_N grad ¢

% + el E = 0

with the relations to the dimensional quantities (*)
6=y K= L = et i VG B BB - YR B
Usx = /¢y and the non-

s

the characteristic length L, the flow parameter
dimensional characteristic numbers

_ Lo, _ Lo _ V%
Re = —/—; RePr = —— and NN_T_L'

A verification of this approach including the influence of electromagnetic
fields requires considerable effort. which cannot be provided here. Merely a
simple numerical simulation of a starting 3D-channel flow has been done.
The enclosed figures (Fig.15/16) show
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the magnetic field in different cross sections with the remarkable result that
during the start-up period the sense of direction will change because the in-
flow and outflow of the conductive fluid means charge reversal at the same
time. Finally, an influence of the term #x B on the boundary layer thickness
might be verified.

6. Conclusion

The construct fluid element is inherently of dualistic nature and generally
not of material entirety. It may be considered as point and collective domain
at the same time. As particle the fluid element owns a macroscopic veloc-
ity and as a domain it represents thermodynamic quantities. So the energy
equation does not require terms which describe the power of friction forces,
because effects of these terms are definitely taken into account by the balance
equation of momentum. Friction is a phenomenon between individual fluid
elements, but not detectable beyond a limit of resolution.

After all, the feedback of fluid elements ”with itself” results in the fact
that the spatiotemporal dimension of an element is insignificant, as long as
the dimensionless numbers as the Reynolds Number do not change. Perhaps
this is the most important result of the hypothesis proposed here. Indepen-
dent of the degree of resolution then flow phenomena will be self-similar,
meaning that phenomena like turbulence do not differ qualitatively from
other unsteady flow configurations.

Finally it is worth mentioning that the basic equations (2/3) take a par-

14



ticularly compressed and meaningful form when pressure and friction forces
are introduced as tensor divergence. Then these equations read - with the
tensor divergence Div, stress tensor 7 and convective and diffusive energy
flux .J :

E = +DiVT
g—f — div .J
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