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A. This paper investigates the origin of divergence errors in MHD simulations. For
that purpose, we introduce the concept of discrete involutions for discretized conservation
laws. This is done in analogue to the concept of involutions for hyperbolic conservation
laws, introduced by Dafermos. By exploring the connection between discrete involutions
and resonance, especially for constrained transport like MHD, we identify the lack of pos-
itive central viscosity and the assumption of one-dimensional physics in the calculation of
intercell fluxes as the main sources of divergence errors. As an example for the conse-
quences for numerical schemes, we give a hint how to modify Roe-type schemes in order
to decrease the divergence errors considerably and, thus, stabilize the scheme.

1. I

Hyperbolic conservation laws are usually equipped with additional conditions. Most
important is the existence of a convex entropy, which singles out the physical relevant so-
lution out of the large set of possible weak solutions. Sometimes, especially when there is
no convex entropy, or the system degenerates into a weakly or resonant hyperbolic system,
other laws have to be included to find physical solutions. In the first case (convex entropy),
the additional law is for an additional variable, namely the entropy, which depends on the
state variables, but is no state variable itself. In the latter case, we have additional par-
tial differential equations for the state variables themselves. In the first case the additional
law is a partial differential equation or inequality of evolution type, usually a conservation
law itself, in the second it is a first order non-evolutionary constraint. These additional
constraints are, as Dafermos points out [10, 9], involutions for the underlying system of
conservation laws. So the resulting system, which includes both, the evolution system and
the condition, has more equations than unknowns. If the involution is satisfied by the initial
state for the evolution equations, it is satisfied by the solution of the evolution system for
all times. Thus, in the continuous setting, the constraint is merely a condition on the initial
state.

These constraints play an important role in many branches of physics, the most famous
of which is the area of electromagnetic modelling and plasma physics. Here we face con-
straints for the electric field as well as for the magnetic field. In numerical simulations
this may cause severe problems, because in general it is impossible to reproduce these
conditions exactly. This results in unphysical forces and thus completely useless solu-
tions [6, 31], especially in Magnetohydrodynamics (MHD). In MHD many codes com-
pletely fail. But this is not the case with all numerical schemes.
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First, there are approaches, which are designed to model the constraint numerically.
Many of them are done on staggered grids [3, 4, 13]. Some newer approaches also work
on collocated grids [39, 38, 35, 26, 27, 28, 15, 14, 40] or in the context of Discontinuous-
Galerkin schemes [5]. Usually this class of schemes is referred to as constrained transport.

A second family of schemes are based on a modification of the system of partial dif-
ferential equations which makes the constraint part of the evolution system itself. In the
context of plasma physics, a popular approach is to transport the involution term, in this
case the divergence of the magnetic field, with the flow velocity. This was first suggested
for numerical simulations by Brackbill and Barnes [6] and put forward by employing the
full symmetrizable form of the MHD-equations by Powell et al. [33, 34]. In [15, 14, 40],
this approach is even combined with constrained transport. Another possibility is to apply
a kind of a generalized Lagrange multiplier approach [31], a method which can show up
in several variants: resulting in a Hodge-projection scheme, resulting in a parabolic treat-
ment of the involution term [25], resulting in a hyperbolic system – the involution term is
radiated with an artificial speed out of the computational domain [30, 29] – or it results in
a treatment of the involution in the manner of a telegraph equation [11, 23]. In the context
of electromagnetic models and plasma physics these approaches are usually referred to as
divergence cleaning.

A third class of schemes are stable without any modification or special discretization
technique. This is the case in many physical contexts. For Magnetohydrodynamics it is
only reported very scarcely. But still there are some examples: The scheme of Zachary,
Malagoli and Colella [41], an upwind method, published already in 1994, has this property.
Another example is the scheme presented by Balbás and Tadmor[2], which in contrary
is a central scheme. They still need some intermediate cleaning steps to obtain physical
relevant solutions, but only at a few time steps in a long interval [41, 1]. Both schemes have
in common that they discretize the full equations, while most schemes, for the computation
of inter-cell fluxes, employ one-dimensional physics in the direction of the normal of the
cell face. This shows that there is something special in discretizing the multidimensional
equations directly.

Therefore, in this study, we put forward the investigations started in [21] and take a
closer look at involutions and their relation to constrained transport and resonance. We
also take a closer look at the discretization of conservation laws in terms of finite differ-
ences for the partial derivatives in the equations. We define discrete analogues of the most
important types of involutions and look for sufficient conditions for the existence of dis-
crete involutions to a given discretized conservation law. We single out a class of linear
schemes for which the discrete involutions are exact. We consider the interplay between
discrete involutions and resonance, and we study the role of central numerical viscosity
and the assumption of one-dimensional physics in the computation of inter-cell fluxes. As
a result, applying full physics in the computation of inter-cell fluxes and a suitable amount
of central viscosity on the resonant wave lead to a stable scheme also in the MHD context.
As an example, we show how to apply the Harten entropy-fix in a smart way to adjust the
viscosity on the resonant wave. There are still some divergence errors, but the work needed
in divergence cleaning can be considerably reduced.

The plan of the paper is as follows: First, we give an overview on the concept of in-
volutions and its connections to resonance and constrained transport. Section 3 presents
a theory for discrete involutions. Also some standard schemes are investigated whether
they yield exact or only approximate involutions. The key is a shift in the interpretation
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of numerical schemes. Some terms, traditionally considered to be part or the spatial dis-
cretization, are identified to be essentially part of the time discretization. This helps us in
Sect. 4 to investigate the interplay between discrete involutions, resonance, central numer-
ical viscosity, and the assumption of one-dimensional physics. Also we show numerical
evidence of the theoretical results (Section 4.4). In this course, we present, as an example,
a modification of the Roe-scheme which minimizes the production of divergence errors.

2. H C L  I

2.1. Definition and a sufficient condition. The starting point of our considerations is the
general conservation law

(1) qt + ∇ · F(q) = 0 ,

where q denotes the vector of conserved quantities and F = (F1, F2, . . . ) denotes the flux.
The Fi are the directional fluxes in the (space) directions given by the standard unit vectors
ei. The corresponding flux Jacobians will be denoted by Ai.

The system (1) is called hyperbolic if for all directions

n =
∑

i

niei , ‖n‖ = 1 ,

the according flux Jacobian
An =

∑
i

niAi

is diagonalizable with real eigenvalues. It is called strictly hyperbolic if, in addition, all
eigenvalues are distinct. If it is not diagonalizable but still all eigenvalues are real it is
called weakly hyperbolic or resonant hyperbolic. In this survey we restrict the analysis to
systems which are, at least, weakly hyperbolic.

The system (1) has an involution if there exist constant matrices Mi so that the condition

(2)
∑

i

Mi qxi = 0 ,

also called the involution of system (1), holds true for all times if it is satisfied by the initial
data.

In his work on hyperbolic systems with involutions, Dafermos [9, 10] concentrates on a
subclass which includes most of the physically relevant cases:

Theorem 1. Let the system (1) and matrices Mi be given. If the directional fluxes fulfil the
following antisymmetric condition

(3) MiF j + M jFi = 0 ∀ i, j = 1, 2, . . . ,

then ∑
i

Mi qxi

is an involution of system (1) and satisfies the additional condition

(4)
∂

∂t

(∑
i

Mi qxi

)
= 0 .

As a consequence,
∑

i Mi qxi not only makes up an involution of (1), but in addition
is constant in time, independent of the initial state. This shows that (3) is a rather strong
condition. But, as Sect. 2.2 shows, many important systems satisfy condition (3). In the
following sections this is used to find discrete analogues for the concept of involutions.
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For the understanding of the following sections, it is necessary to understand the proof of
Theorem 1. Summed up the proof consists in four steps:

(1) Apply
∑

i Mi
∂
∂xi

to the conservation law (1).
(2) Constant matrices commute with partial derivatives.
(3) Partial derivatives commute with each other.
(4) Due to condition (3) all terms including fluxes vanish.

In more detail, we find after application of step 1∑
i

Mi
∂

∂xi

∂

∂t
q +

∑
i

Mi
∂

∂xi

∑
j

∂

∂x j
F j(q) = 0 .

Now we make use of the facts 2 and 3 to obtain
∂

∂t

(∑
i

Mi
∂

∂xi
q
)

+
∑
i, j

∂2

∂xix j
Mi F j(q) = 0 .

Since the operator ∂2

∂xi x j
is symmetric and, according to (3), Mi F j(q) is antisymmetric, the

last sum vanishes, which completes the proof. �

2.2. Examples for hyperbolic systems with involutions. A whole bunch of examples
for systems with involutions satisfying (3) can be found in the above mentioned works by
Dafermos [9, 10] and in the studies by Torrilhon and Fey [38, 39, 37]. Here we present
only few of them:

As an introductory example, Dafermos [10] presents the equations for isentropic pro-
cesses of thermoelastic nonconductors of heat:

Ft − ∇v = 0 ,
vt − ∇ · T(F) = 0

(5)

with the deformation gradient F, velocity v, and the stress tensor T. Since the time evo-
lution of the deformation gradient F is a gradient, it is curl-free. Therefore ∇ × F is an
involution for system (5). The matrices Mi (i = 1, . . . , 3) are in R3×6, and, while the right
half is zero, the left half reads as

(6) Mleft
1 =

 0 0 0
0 0 −1
0 1 0

, Mleft
2 =

 0 0 1
0 0 0
−1 0 0

, Mleft
3 =

 0 −1 0
1 0 0
0 0 0

.
With these matrices, condition (3) is satisfied.

An important hyperbolic system with involution are the vacuum Maxwell equations

Et − c2(∇ × B) = −
j
ε0

,(7)

Bt + (∇ × E) = 0 ,(8)

∇ · E =
q
ε0

,(9)

∇ · B = 0(10)

with the electric field E, magnetic induction B, electric current j, charge density q, speed
of light c, and the constants ε0 and µ0. In the absence of electric charge and current this is
a homogeneous hyperbolic conservation law, where the divergence of both fields, E and B
is preserved. The matrices involved in condition (2) and (3) are

(11) Mi =

(
eT

i 0T

0T eT
i

)
.
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Since the models of plasma-physics are obtained by using the Maxwell equations, they
also inherit the involutions. In the MHD-equations no evolution equation for the electric
field is included. Thus, only the divergence of the magnetic field is inherited as an involu-
tion. The full equations of ideal compressible magnetohydrodynamics are

ρt + ∇ · [ρv] = 0 ,(12)

(ρv)t + ∇ ·
[
ρv ◦ v + (p +

1
2

B2)I − B ◦ B
]

= 0 ,(13)

Bt + ∇ ·
[
B ◦ v − v ◦ B

]
= 0 ,(14)

et + ∇ ·
[
(e + p +

1
2

B2)v − B(v · B)
]

= 0 ,(15)

∇ · B = 0 .(16)

The last equation (16) is the involution for the evolution system (12)–(15). The asymmetric
condition (3) is satisfied with Mi = (0, 0, 0, 0, eT

i , 0). Thus, the MHD-equations nicely fit
into the framework given by Dafermos [9, 10].

In [16], Gilman argues that the classical “shallow water” equations of geophysical fluid
dynamics should be useful for studying the global dynamics of the solar tachocline and
demonstrates the existence of an MHD analogon that would allow taking into account
the strong toroidal magnetic field likely to be present there. So he presents a derivation
analogous to that for the classical shallow water equations and comes up with the following
system of shallow water magnetohydrodynamics (SMHD)

ht + ∇ · [hv] = 0 ,

(hv)t + ∇ · [hv ◦ v − hB ◦ B +
gh2

2
I] = 0 ,

(hB)t − ∇ × [v × (hB)] = 0

(17)

with the involution

(18) ∇ · (hB) = 0 ,

This inherits most of its behaviour from the original MHD-system (12)–(15). The main
difference is that, due to the averaging over the third space dimension, the magnetic field
B is now replaced by hB, where h denotes the height of the fluid layer under consideration
and g is the gravitational constant.

Since the structure of the critical part of the evolution for the vorticity transport (??),
MHD, and SMHD is similar, we also consider the linear model problem of Fey and Torril-
hon [39], which resembles the common behaviour of those systems in the simplest possible
setting. For a given velocity field v, constant in space and time, we consider

(19) Bt − ∇ × (v × B) = 0 ,

or in divergence form,

(20) Bt + ∇ · (B ◦ v − v ◦ B) = 0 .

Obviously the asymmetric condition (3) is satisfied with Mi = eT
i and the divergence of B

makes up an involution for the system. This is a model for divergence-preserving transport.
For the sake of completeness, we also present the model for curl-preserving transport

given by Fey and Torrilhon [39]

(21) Pt + ∇(v · P) = 0 ,
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or in divergence form,

(22) Pt + ∇ ·
(
[v · P] I

)
= 0 .

Here again, it can be seen from the flux form that (3) is satisfied. The matrices Mi are the
same as those presented in (6), and from (21) it is seen that the resulting involution is ∇×P.

The last four systems, MHD, SMHD, and the model systems for constraint preserving
transport, have one point in common: dependent on the velocity field, they might lose full
hyperbolicity. In general they are only weakly, or resonant, hyperbolic.

2.3. Resonant hyperbolic problems and involutions. In this section we consider the
relation between involutions and resonant hyperbolic systems.

2.3.1. Resonance. In physics, systems which allow for solutions growing unboundedly in
time, usually are called resonant. The most famous example is the harmonic oscillator with
a periodic exciting force. If the frequency of the excitation meets the eigenfrequency of the
system, the amplitude grows unboundedly. A similar behaviour can be found for weakly
hyperbolic systems. The model equations for divergence-preserving transport (19) provide
a nice example for resonance. Let in the 2-d case v = (u, v)T = (0, v)T . Then the system is
only weakly hyperbolic and reads as

B1t + vB1y = 0 ,(23)
B2t − vB1x = 0 .(24)

This means that B1 is transported in y-direction and acts as a source for B2. If B1 varies
only in y-direction, the source is constant and, thus B2 grows unboundedly with a constant
rate. We will go back to this example later.

Of the systems with evolutions provided in the previous section, some are fully hy-
perbolic, some are only resonant hyperbolic. Dafermos [10] points out that system (5) is
hyperbolic if the inner energy, which defines the stress tensor, is rank-one convex. Thus,
hyperbolicity depends on the state.

Although in any space direction all wave speeds are ±c, the Maxwell equations are
fully hyperbolic. They allow for no resonant effects except from those introduced by outer
source terms.

In contrast, the MHD and SMHD equations allow for resonant states. By using the mag-
netohydrodynamic approximation for the electric field, E ≈ −v×B, the induction equation
attains the structure of divergence preserving transport. If we set B = (B1 = 0, B2, B3)T ,
v = (u = 0, v,w)T , i. e. velocity and magnetic field are perpendicular to the first space
direction, then the flux Jacobian in that direction has zero as a sixfold eigenvector with
five-dimensional eigenspace. The system is only resonant hyperbolic. Whenever the ve-
locity and the magnetic field are in one plane, the flux Jacobian in the direction perpendic-
ular to that plane is deficient, the system is only resonant hyperbolic. A similar situation
occurs when the velocity component parallel to the magnetic field equals ±a, where a is
the speed of sound, and the magnetic field is a

√
ρ. Then zero is a fourfold eigenvalue with

three-dimensional eigenspace. Again the system is only resonant hyperbolic.
Due to the reduction of the physical problem to two space dimensions, for the shallow

water MHD the same resonance as for MHD occurs when velocity and magnetic field
are parallel. Another resonant case can be found if we have v = (u = ±cg, v)T , where

cg =

√
B2

1 + gh is the magneto-gravitational speed. In this case, zero is a double eigenvalue
with one-dimensional eigenspace.
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The model system for divergence preserving transport (19) shares the resonant be-
haviour, as can be seen at the beginning of this section. The flux Jacobian in the direction
perpendicular to the velocity is deficient, the system is only resonant hyperbolic. For the
model system for curl-preserving transport, the situation is similar.

We will go into detail for this in the following sections.

2.4. Relation of involutions to zero eigenvalues and resonance. In this section we in-
vestigate the connection between involutions, zero eigenvalues and resonance in more de-
tail. First we want to recall some considerations of Dafermos [10]. The antisymmetric
condition (3) is equivalent to

(25) MiA j + M jAi = 0 ∀ i, j .

If we take the unit vector n = (n1, n2, n3)T we find for the flux Jacobian An in direction of
n

MnAn =
(∑

i

niMi

)(∑
j

n jA j

)
=

∑
i, j

nin jMiA j

= 0 .

(26)

As a consequence, the range of An is a subset of the kernel of Mn, and therefore the
dimension of the kernel of An is greater than or equal to the rank of Mn. In particular, we
know that it is at least one. We always have a zero eigenvalue for systems which satisfy the
antisymmetric condition (3), and equality would mean that the rows of Mn are just the left
eigenvectors of An for the zero eigenvalue. As a consequence, in the case of equality, the
zero eigenvalue has a full set of eigenvectors and, thus, can not destroy the hyperbolicity of
the system. An example for this are the vacuum Maxwell equations with zero as a double
eigenvalue and we have

(27) Mi =

(
eT

i 0T

0T eT
i

)
,

which makes up a linearly independent set of two left eigenvectors. In the case that the
range of An is a proper subset of the kernel of Mn things might be worse, as can be seen
with the above example systems.

If we apply these considerations to the divergence-free transport (19), we find that the
rank of Mn is one for all directions n. But if n ⊥ v, there is no transport in direction of n,
and hence, the multiplicity of the zero eigenvalue of An is three. If v, and thus also An, does
not vanish completely the system matrix can not be diagonalized, because the eigenspace
has dimension two. A similar consideration holds for the curl-free transport (21). In this
case, except for v = 0, the rows of Mn always form a basis of the space of left eigenvectors
of An, proving again that both prototypes for constrained transport are merely resonant
hyperbolic.

2.4.1. A quantitative view on resonance for divergence- and curl-preserving transport.
For a quantitative view on resonance for divergence-preserving transport, we revisit the
example (29), (30) from the beginning of the last section and look at it in more detail: let
in the 2-d case v = (u, v)T = (0, v)T . It follows from the considerations at the beginning of
Sect. 2.4 that A1 is not diagonalizable. We can therefore expect resonance phenomena in
the first space direction. Since u = 0 and

(28) An = (nT · v)I − v ◦ n ,
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we can rewrite the system as

B1t + vB1y = 0 ,(29)
B2t + vB2y = v(B1x + B2y) = v(∇ · B) .(30)

The source is in the evolution equation of the second component of B and is proportional
to the involution ∇ · B. If B is divergence-free there is no resonance at all. In general the
2-d system can be rewritten as

(31) Bt +
∑

i

viBxi = −
(∑

j

A jMT
j
)∑

i

MiBxi .

Investigating the right hand side of this equation, we find just the negative of the Powell
correction term [33]. Therefore, if we had added the Powell correction term to the right
hand side of system (19), we would have obtained a non resonant, fully hyperbolic system,
in this simple linear case pure advection. Although not pure advection, the Powell system
in the full MHD equations is also fully hyperbolic without any resonance.

In the 3-d case there is just one additional factor to include. The system can be rewritten
as

(32) Bt +
∑

i

viBxi = −
1
2
(∑

j

A jMT
j
)∑

i

MiBxi .

Adding 1
2
(∑

j A jMT
j
)∑

i MiBxi to the right hand side of system (19) would lead to pure
advection and, thus, to a fully hyperbolic system.

In full MHD in three space dimensions with the usual ordering of the equations, the
addition of 1

2
(∑

j A jMT
j
)∑

i MiBxi with Mi = ei+4, makes the resulting system fully hy-
perbolic. Nevertheless, for the use in numerical schemes, the original Powell correction is
more convenient due to its simpler form of left and right eigenvectors.

In the same way, for curl-preserving transport (21), we get

(33) Pt +
∑

i

viPxi = −
(∑

j

A jMT
j
)(∑

i

MiPxi

)
,

where the last sum is just the involution. If the constraint is satisfied for the initial data,
curl-preserving transport reduces to pure transport. Otherwise it is a transport with a source
which is a linear function of the involution term. Since the involution term is constant in
time, the source term is also constant in time. All in all the situation is quite similar to that
in divergence preserving transport. Because of that, and because curl-preserving transport
plays a minor part in practical applications, we won’t go into further detail for that.

3. A       

This section is dedicated to the construction of discrete analogues of the concept of
involutions for discretized conservation laws as well as a discrete analogue of Theorem 1
and its proof.

For this purpose, we first give some remarks on the notion and notation of Finite Differ-
ence schemes for hyperbolic conservation laws. This is necessary since the usual notation
doesn’t allow to transfer the results of Sect. 2.1 to the discrete case.

After that, we show how this transfer could be accomplished. We give discrete versions
of Theorem 1 for semidiscrete, fully discrete, and a special case of linear schemes. In this
context, we have to introduce exact and approximate discrete involutions.

Finally, we investigate some standard schemes. Which discrete version of Theorem 1
will apply to them? Will we find exact or only approximate discrete involutions? Although
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rarely used in practice, these schemes are role models for most of the usual schemes,
showing which behavior we have to expect from these methods.

3.1. On the notion and notation of Finite Difference schemes for hyperbolic conser-
vation laws. In this paper we employ a rather strict, but still general, notion and notation
of Finite Difference schemes for hyperbolic conservation laws. If I is the set of all index
vectors i involved in the computation, including both, time- and space-indexes, a difference
operator for some time-derivative is given by

(34)
∂̂

∂̂t
qj =

1
∆t

∑
i∈I

αi,j qi ,

where the coefficients αi,j are allowed to be matrix valued and to depend on anything, they
only have to be bounded in time and space, and ∆t is some characteristic time step size.
We use the hat to distinguish difference operators from the corresponding derivatives. The
inclusion of ∆t into the formula makes the further considerations more convenient. For
space derivatives we write in the same way

(35)
∂̂

∂̂xk
qj =

1
∆x

∑
i∈I

βk
i,j qi ,

where the index k denotes the space direction, and ∆x is some characteristic space step
size, for example the minimal inradius of the grid cells. All other differential operators,
like divergence, curl, gradient, mixed or higher derivatives, are discretized by means of the
operators given in (34) and (35), where the difference operator for each space direction and
for the time are fixed. Thus, for example, the second derivative of some quantity q with
respect to direction xk has to be discretized by ∂̂

∂̂xk

( ∂̂

∂̂xk
q
)
. We introduce this strict notation

to be able to transfer the proof of Theorem 1 to the discrete case. As a consequence of the
notation, in the following, the term ∂̂/∂̂t is merely an abbreviation for any discrete time
difference of order q. This can be done because the difference between any two difference
operators of order q is also O(∆tq). For the other partial derivatives a similar consideration
holds. This is a fact which we extensively use in our arguments. With these operators a
discretized hyperbolic conservation law reads as:

(36)
∂̂

∂̂t
qj +

∑
r

∂̂

ˆ∂xr
Fr(qj) = 0 .

Note that this is not the way, the scheme is constructed. But any Finite Volume or Finite
Difference scheme can artificially be rewritten in that way. This also is not the usual no-
tation of discretized hyperbolic conservation laws in the literature. Normally, a simpler
difference operator is chosen and applied to a system, where the physical flux function F
is replaced by a numeric flux function G, which depends on the state in several grid cells.
But this is not suitable for the investigation of discrete involutions, since we have to rely
on the antisymmetric condition (3), which depends on F and is usually not satisfied if F is
replaced by G1. As we will see in Sect. 3.2.2, sometimes parts of G have to be considered
as a contribution to the discrete time derivative instead of the space derivative.

1By applying the concept of numerical flux functions on a one-dimensional equidistant grid, it would be

even possible to write all schemes, including implicit schemes, as
qn+1

i −qn
i

∆t −
Gn

i+1/2−Gn
i−1/2

∆x . All details are hidden
in the definition of the numerical flux function G. In the same way, for every computational grid, a difference
formulation can be found which only depends on the grid itself.
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3.2. Proofs for discrete involutions. To prove the existence of discrete involutions, we
first have to define them:

Definition 1. If for a discretized hyperbolic conservation law (39)

(37)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
→ 0

as the time and space step size go to zero, it is called an approximate discrete involution
for (39). If we have equality, i. e.

(38)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
= 0 ,

we call it an exact discrete involution for (39).

We prove three discrete versions of Theorem 1, a general fully discrete, a semi-discrete
version, and a linear special case.

3.2.1. The general fully discrete case. We start with the fully discrete general case. To
prove that the antisymmetric condition (3) is sufficient for the existence of discrete involu-
tions, we first have to investigate the commutators of the difference operators given in the
previous section.

If we have for some quantity h

∂̂

∂̂x
hj = (hx)j + O(∆xp)(39)

and

∂̂

∂̂t
hj =

1
∆t

∑
i∈I

αi,jhi(40)

= (ht)j + O(∆tq) ,(41)

we can verify the following:

∂̂

∂̂t

( ∂̂
∂̂x

h
)
j =

1
∆t

∑
i∈I

αi,j
[
(hx)i + O(∆xp)

]
=
∂̂

∂̂t
(hx)j + O

(∆xp

∆t
)

= (hxt)j + O(∆tq) + O
(∆xp

∆t
)
.

(42)

With a similar consideration, for ∂̂

∂̂x

( ∂̂
∂̂t

h
)
j, we find for the commutator of both discrete

partial derivatives

(43)
∂̂

∂̂t

( ∂̂
∂̂x

h
)
j −

∂̂

∂̂x

( ∂̂
∂̂t

h
)
j = O

(∆xp

∆t
)

+ O
(∆tq

∆x
)
.

If for a simulation the time step and space step stay of the same order for all time, i. e. ∆t =

Os(∆x) (the subscript s means that the order relation between ∆t and ∆x is symmetric), the
commutator (43) simplifies to

(44)
∂̂

∂̂t

( ∂̂
∂̂x

h
)
j −

∂̂

∂̂x

( ∂̂
∂̂t

h
)
j = O(∆xmin{p,q}−1) .
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But this is not always true, especially when resonance comes into play. If we consider the
commutator of two different discrete space derivatives, e. g. in x- and y-direction, and both
are of the same order of accuracy, p, we obtain

(45)
∂̂

∂̂y

( ∂̂
∂̂x

h
)
j −

∂̂

∂̂x

( ∂̂
∂̂y

h
)
j = O(∆xp−1) .

The commutator of a discrete derivative and a Matrix M can be obtained in the same
way. It is

(46) M
∂̂

∂̂t
(h)j −

∂̂

∂̂t
(Mh)j = O(∆tq) .

Thus, no loss of accuracy is introduced.
With these preparations, the following Theorem can be proved:

Theorem 2. Let the following (weakly) hyperbolic conservation law be given

(47) qt + ∇ · F(q) = 0

together with constant matrices M` which satisfy

(48) M`Fr + MrF` = 0 ∀ `, r = 1, 2, . . .

Furthermore let ∂̂/∂̂t be a time discretization of order q and ∂̂/ ˆ∂xr be space differences of
order p.

If we discretize the conservation system (47) with these discrete operators, then we
obtain the following analogue of (4):

(49)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
= O

(∆xp

∆t
)

+ O
(∆tq

∆x
)

+ O(∆xp−1) ∀ j .

As a direct consequence, we can state the following corollary:

Corollary 1. If in addition to the conditions of Theorem 2 the time and space step are of
the same order, i. e. ∆t = O(∆x) and ∆x = O(∆t), then (49) can be simplified to

(50)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
= O(∆xmin{p,q}−1) ∀ j .

This applies to linear systems and, in general, to nonlinear non-resonant systems. For
general nonlinear resonant systems things might be worse. We will consider the general
case in more detail in Sect. 4.

Proof. (of Theorem 2)
For a fixed index j, the discretized conservation law reads

(51)
∂̂

∂̂t
qj +

∑
r

∂̂

ˆ∂xr
Fr(qj) = 0 .

Now we apply
∑
` M`

∂̂
ˆ∂x`

to that system:

(52)
∑
`

M`
∂̂

ˆ∂x`

∂̂

∂̂t
qj +

∑
`

M`
∂̂

ˆ∂x`

∑
r

∂̂

ˆ∂xr
Fr(qj) = 0 .



12 FRIEDEMANN KEMM

By applying the identities (45) and (46), we find for the double summation term:∑
`

M`
∂̂

ˆ∂x`

∑
r

∂̂

ˆ∂xr
Fr(qj) =

∑
`,r

∂̂

ˆ∂x`

∂̂

ˆ∂xr
M`Fr(qj) + O(∆xp)

=
∑
`,r

∂̂

ˆ∂xr

∂̂

ˆ∂x`
M`Fr(qj) + O(∆xp) + O(∆xp−1)

(53)

By using identities (53) and the antisymmetric condition (48), we get

(54)
∑
`

M`
∂̂

ˆ∂x`

∑
r

∂̂

ˆ∂xr
Fr(qj) = O(∆xp−1) .

Therefore, by using the identities for the commutators (44) and (46), we can rewrite (52)
as

0 =
∑
`

M`
∂̂

ˆ∂x`

∂̂

∂̂t
qj + O(∆xp−1)

=
∂̂

∂̂t

∑
`

M`
∂̂

ˆ∂x`
qj + O

(∆xp

∆t
)

+ O
(∆tq

∆x
)

+ O(∆xp−1) ,

(55)

which is equivalent to (49). �

This theory is valid in the case of sufficiently smooth solutions. A numerical scheme
cannot distinguish between discontinuous solutions and smooth solutions with high gradi-
ents. So at the first glance, the Theorem directly transfers to that case. But due to stability
reasons, one has to take measures to prevent unphysical oscillations, which results in the
need of some limiting technique, like TVD, ENO/WENO etc. As a consequence of the
application of limiting, the order of the scheme near discontinuities is lowered. Thus, the
estimate (49) is much weaker near discontinuities than in smooth regions.

3.2.2. The semi-discrete case. For the semi-discrete case, we have to consider the con-
struction via numerical flux functions in more detail. In the context of finite volumes,
numerical schemes usually are represented in the semi discrete form

(56)
∂

∂t
qj −

∑
k∈Kj

Gk(q) = 0 ,

where Kj denotes the set of all cell faces of cell j, and g denotes a numerical flux function,
normal to the cell face. This numerical flux function is allowed to depend on several qi, i. e.
on the values of q in several cells of the computational grid. Therefore, (56) represents a
system of ordinary differential equations in time. When we solve this, using some standard
scheme for ODE’s, at a first glance the discrete time derivative only depends on values in
the same space point. But this is not true for many choices of the numerical flux function
g.

We now take a closer look at a typical example: One of the most important nonlinear
schemes is the scheme by Harten, Lax, and van Leer [19], which for our purposes, is a
nice model since it clearly distinguishes between the central and the upwinding part of the
viscous flux. For this, the numerical flux function reads

(57) GHLL(qr,q`) =
1
2
(
f (qr) + f (q`)

)
−

1
2

S R + S L

S R − S L

(
f (qr) − f (q`)

)
+

S RS L

S R − S L
(qr − q`)

with some bounding signal speeds S L and S R for the Riemann problem defined by the
states left and right of the cell face, q` and qr. If S R = −S L = ∆x

∆t for Cartesian equidistant
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grids, this is just the numerical flux of the Lax-Friedrichs scheme. If we have a tighter but
still symmetric choice S R = −S L of the bounding speeds we find the Rusanov- or Local-
Lax-Friedrichs scheme. In (57) there are three contributions: a symmetric one, that would
leave us with central differences of second order in space, an upwinding term, and another
symmetric term, that does not depend on the flux, but only on the state q itself. The second
and third terms both contribute to the numerical viscosity. If we write the resulting scheme
in the fully discrete difference form

∂̂

∂̂t
qj + ∇̂ · F(qj) = 0 ,

the third term becomes a part of the time difference instead of the space difference. For the
semi-discrete scheme, the central viscosity terms make up an additional sum:

(58)
∂

∂t
qj +

∑
r

∂̂

∂xr
Fr(qj) +

∑
k∈K

γk,jqk = 0 .

Thus, an analogue of Theorem 2 is true with (49) is replaced by

(59)
∂

∂t

(∑
`

M`
∂̂

∂x`
qj

)
+

∑
k∈K

γk,j
(∑

`

M`
∂̂

∂x`
qk

)
= O

(∆xp

∆t
)

+ O
(∆tq

∆x
)

+ O(∆xp−1) ,

which can be interpreted as a discrete heat equation with a source term of order O( ∆xp

∆t ) +

O( ∆tq

∆x ) +O(∆xp−1). With a suitable choice of the central part of the numerical viscosity, we
can expect the discrete involution to converge to zero in time. With a poor choice, it might
increase in time, even if the right hand side of (59) vanishes.

3.2.3. A linear special case. In this section, we consider a linear special case, which al-
lows for exact discrete involutions. As a consequence of the previous sections, the ap-
proximation error in discrete involutions is mainly due to the commutators of the discrete
differential operators. A smaller contribution is due do the commutator of these opera-
tors with the matrices Mi, which make up the involution (2). If the commutators vanish,
the involution is exact. We take a closer look at discrete differential operators that can be
rewritten as

(60)
∂̂

∂̂t
hj =

∑
i∈I

α̃ihj+i

for the time derivative and

(61)
∂̂

ˆ∂x`
hj =

∑
i∈I

β̃`i hj+i ,

where i and j are index vectors and I is a set of index vectors. This is a typical situation
on structured grids, staggered or collocated. Here in addition, we require the coefficients
α̃i and β̃k

i to depend only on their index i. Thus, the resulting scheme for a hyperbolic
conservation law is linear. If now the coefficients commute with each other, for the mixed
derivatives, which are just double summations, we find

(62)
∂̂

ˆ∂x`

( ∂̂
∂̂t

hj
)

=
∂̂

∂̂t

( ∂̂

ˆ∂x`
hj

)
.

They commute; the commutator vanishes. For the coefficients to commute with the Mi

we have the additional requirement that the Mi are square matrices or the coefficients are
scalar. So, in most cases we are restricted to scalar coefficients, especially for divergence
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preserving transport. With these preparations we can state the following discrete analogue
of 1:

Theorem 3. Let the following (weakly) hyperbolic conservation law be given

(63) qt + ∇ · F(q) = 0

together with constant matrices Mi that satisfy

(64) M`Fr + MrF` = 0 ∀ `, r = 1, 2, . . .

Furthermore let the following linear difference operators be given

∂̂

ˆ∂x`
qj =

∑
i∈I`

β̃`i qj+i ,(65)

∂̂

∂̂t
qj =

∑
k∈K

α̃kqj+k ,(66)

and the coefficients βk and α`i commute with each other and with the Mi.
If we discretize the conservation law (63) with the finite difference operators (65) and (66),

then the following analogue of (4) holds true:

(67)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
= 0 ∀ j ,

the discrete involution is exact.

If we assume the scheme to be constructed by means of numerical flux functions and
consider the semi-discrete form, equation (67) has to be replaced by

(68)
∂

∂t

(∑
`

M`
∂̂

∂x`
qj

)
+

∑
k∈K

γ̃k
(∑

`

M`
∂̂

∂x`
qj+k

)
= 0 .

This is true if the coefficients β̃`i arising from the upwind part of the numerical flux function
satisfy the above mentioned requirements: they commute with each other and with the Mi.
If, for example, the HLL-flux (57) is applied to a constant coefficient hyperbolic system,
the resulting coefficients β̃`i are scalar constants.

3.3. Discrete involutions and standard schemes. In the beginning of Sect. 3, we raised
the question, which type of discrete involutions, if at all, we will find with standard schemes.
Will we find exact ones or only approximate ones? Here we restrict our study to constant
coefficient schemes. Thus, the only remaining question is: do the coefficients commute.
We consider the Lax-Friedrichs, Lax-Wendroff, upwind-, and leapfrog scheme followed by
a remark on the use of Runge-Kutta schemes for the time-discretization. If these schemes
are applied to a constant coefficient hyperbolic system, which means Fi(q) = Aiq, due to
the constant signal speeds, a constant time-step can be chosen, so that not only the coeffi-
cients of the space discretization are constant, but also those of the time difference.

Although the schemes investigated in this section are rarely used in their pure form,
most schemes in practical use are generalizations of these simple methods and, thus, inherit
some of the properties of the underlying linear scheme. The results will be explored in
Sect. 4 to study the interplay of discrete involutions and resonance.
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3.3.1. The Lax-Friedrichs scheme. The behaviour of the Lax-Friedrichs scheme is best
understood, if we take a careful look on its derivation. The starting point is the desire for a
simple symmetric scheme. Therefore, the most obvious choice is to take central differences
of second order in space and forward differences in time. In one space dimension, this leads
to the simple explicit scheme

(69)
qn+1

k − qn
k

∆t
+

F(qn
k+1) − F(qn

k−1)
2∆x

= 0 .

Since this turns out to be unconditionally unstable, one looks for a replacement. In the Lax-
Friedrichs scheme this modification is done in a symmetric way. In the time discretization,
the value qn

k is replaced by the arithmetic mean of its neighbours in space:

(70)
qn+1

k − 1
2 (qn

k+1 + qn
k−1)

∆t
+

F(qn
k+1) − F(qn

k−1)
2∆x

= 0 .

An interesting consequence of this construction is that qn+1
k does not depend on qn

k . An
advantage of this is the possibility to use the scheme in a staggered manner, meaning
that in each time step we toggle between evaluating at odd and even indexes. This gave
rise to the development of the Nessyahu-Tadmor scheme [32]. As a disadvantage, in non
staggered use of the scheme, high frequency oscillations are observed [7].

It is possible to rewrite the scheme in the usual conservation form, making the difference
between formulas (69) and (70) part of the numerical flux function. In the sense of applying
discrete difference operators instead of the analytic ones to the conservation law (1), this
would result in an additional, viscous flux. But the difference, although made part of the
numerical flux, still remains part of the time discretization because the correction term does
not include any contributions of the flux function f (·). Thus, we have

∂̂

∂̂t
qk =

qn+1
k − 1

2 (qn
k+1 + qn

k−1)
∆t

=
qn+1

k − qn
k

∆t
−

∆x2

2∆t
qn

k+1 + 2qn
k + qn

k−1

∆x2 .

(71)

If we apply this discrete time derivative to a scalar quantity h, the condition

(72)
∂̂

∂̂t
hk = 0 ∀ k

is the same as applying a simple explicit method to the heat equation

(73) ht −
∆x2

2∆t
hxx = 0 .

If we solve heat equation (73) exactly, employing homogeneous Dirichlet conditions on
the boundaries, we find that h converges to zero at any place. If, instead of the scalar h, we
apply equation (72) to a vector quantity h the same holds true for every component of h.
In several space dimensions, we get a spatial anisotropic heat equation, e. g.

ht −
∆x2

2∆t
hxx −

∆y2

2∆t
hyy −

∆z2

2∆t
hzz = 0

for three dimensions. As a consequence, e. g. in the case of homogeneous Dirichlet bound-
ary conditions, all components of h converge to zero. Therefore, if we have a conservation
law

qt + ∇ · F(q) = 0
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with an involution ∑
i

Mi qxi = 0 ,

discretized with the Lax-Friedrichs scheme and boundary conditions, which are consistent
with the involution, then ∑

i

Mi
∂̂

ˆ∂xi
q

is an exact discrete involution, which even converges to zero in time.
Since the Balbas-Tadmor scheme [2] by its construction is close to the Lax-Friedrichs

scheme, we can already at this point expect that it produces only small divergence errors,
which are even nicely damped away.

We will use this considerations later on to identify in numerical flux functions the terms
which have to be considered a contribution to the discrete time derivative instead of the
space derivative. And we will employ a systematic control on these terms, namely the
central viscosity, to minimize the production of divergence errors in a standard scheme.

3.3.2. The Lax-Wendroff scheme. To study the Lax-Wendroff scheme, we start with the
simplest possible system of conservation laws: the scalar linear advection equation

(74) qt + aqx = 0 .

The idea for the Lax-Wendroff scheme and its relatives is to start with a Taylor expansion
in time:

(75) q(x, t + ∆t) = q(x, t) + ∆tqt(x, t) +
1
2

∆t2qtt(x, t) + O(∆t3) .

Using the original conservation law (74) and its time derivative, the time derivatives in (75)
can be replaced by space derivatives:

(76) q(x, t + ∆t) = q(x, t) − a∆tqx(x, t) +
1
2

a2∆t2qxx(x, t) + O(∆t3) .

From this we get the Lax-Wendroff scheme by applying standard second order central
differences for first and second space derivatives. If we use standard upwind differences of
second order, we find the Beam-Warming scheme. The arithmetic mean of both schemes
results in the Fromm scheme.

Let us now concentrate on the Lax-Wendroff scheme. Since, according to the above
choice, we have

(77)
∂̂

∂̂x
q j =

q j+1 − q j−1

2∆x
,

for the discrete second space derivative, we would expect

(78)
∂̂

∂̂x

( ∂̂
∂̂x

q j

)
=

q j+2 − 2q j + q j−2

4∆x2 .

But the Lax-Wendroff scheme employs

(79)
∂̃

˜∂x2
q j =

q j+1 − 2q j + q j−1

∆x2 ,

which is apparently not the same. To interpret this as a part of the space discretization,
we would have to write it in terms of the difference operator (77). But this is impossible.
Therefore, it is impossible to interpret the viscosity term of the Lax-Wendroff scheme as
a part of the space discretization, even in the simple case of the one dimensional scalar
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advection equation. Instead, we have to view it as a part of the time difference. Thus, the
time difference would read as

∂̂

∂̂t
qn

j =
qn+1

j − qn
j

∆t
+

1
2

a2∆t2
qn

j+1 − 2qn
j + qn

j−1

∆x2

=
1
∆t

qn+1
j −

( 1
∆t

+ a2 ∆t2

∆x2

)
qn

j +
1
2

a2 ∆t2

∆x2 (qn
j+1 + qn

j−1) .

A similar formula would be found for a one-dimensional linear system of conservation
laws. But then, we would have to replace a by the system matrix A. Thus, the coefficients
in the discrete time derivative become matrix valued. So, Theorem 3 can only be applied
to a small number of systems, namely those, for which the system matrix A and the matrix
M which makes up the involution commute.

If we had used (78) instead of (79) for the second derivative, it would have been possible
to interpret the viscous term as a part of the discrete space derivative. But in the case of
a system this, again, leads to matrix valued coefficients – this time in the discrete space
derivative. Thus, the same restrictions apply as for the original Lax-Wendroff scheme. In
addition, for systems in several space directions we would have to require the matrices Ai

for the different space directions to commute with each other.
For systems in several space dimensions we only show a two-dimensional example

(80) qt + Aqx + Bqy = 0 .

For this the analogue of (76) reads as

q(x, y, t + ∆t) = q(x, y, t) − ∆t(Aqx + Bqy)

+
1
2

∆t2(A2qxx + ABqyx + BAqxy + B2qyy) + O(∆t3) .
(81)

Apparently, the same arguments hold as for one space dimension. If we take the viscous
term as part of the time difference, we can apply Theorem 3, as long as both of A and B
commute with both of the matrices Mx and My making up an involution of system (80).
This extends to higher dimensions in a straight forward manner.

If the matrices do not commute, we only find – provided the viscous term is taken as
part of the time difference –

(82)
∑
`

M`
∂̂

∂̂t

∂̂

ˆ∂x`
qj = 0 .

This is a much weaker condition than (67). In fact, numerical experiments show that the
approximation of the involution is in no way better than for any nonlinear scheme of the
same order.

For the Beam-Warming scheme, the results are quite similar. Now, most second or-
der schemes, especially those based on TVD-limiters, are constructed by using weighted
means of the Lax-Wendroff, as a central scheme, and the Beam-Warming, as an upwind
scheme. Thus, for these schemes, we can not expect the conditions of Theorem 3 to hold.
The best we can hope for, is an approximate involution in the sense of Theorems 2 and 1.

3.3.3. The upwind-scheme. For a scalar conservation law, the upwind scheme assigns a
one sided difference operator to each space derivative. This operator takes into account
the upwind direction, i. e. for positive signal speed, backward differences are used and for
negative signal speeds forward differences. In the case of a linear system, the upwind
method is applied to each characteristic field.
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The simple case: full upwinding. The simplest case is full upwinding: in each space di-
rection for all characteristic fields the same upwind direction is found. In this case all
discrete space derivatives ∂̂/ ˆ∂xr are one sided standard differences of first order, forward
or backward, depending on the upwind direction for xr.

The effects of this can be nicely seen, when the scheme is applied to the linearized
induction equation of two-dimensional magnetohydrodynamics:

(83) Bt − ∇ × (v × B) = 0 , v = (u, v)T ≡ constant

with positive velocity components u and v. As Fey and Torrilhon [39] point out, this is an
interesting example, modeling most of the important properties of real MHD, at least in the
context of involutions. It is a linear conservation system with∇·B as an involution. With the
matrices M1 = (1 0) and M2 = (0 1), we find that it satisfies the conditions for Theorem 1.
Thus, with appropriate difference operators, we will obtain a discrete involution.

In space, we employ two different types of differences. First we use standard upwind.
Since there is only one nonzero wave speed for each space direction, we end up just with
one-sided differences for ∂̂/∂̂x and ∂̂/∂̂y. So we have no matrix valued coefficients, and the
conditions of Theorem 3 are satisfied. For a second test, we employ the Corner-Transport-
Upwind (CTU) scheme, a variant of standard upwind, which takes into account the direc-
tion of the transport. This results in the transverse upwind differences

∂̂

∂̂x
h = (1 − cy)

hi, j − hi−1, j

∆x
+ cy

hi, j−1 − hi−1, j−1

∆x
,

∂̂

∂̂y
h = (1 − cx)

hi, j − hi, j−1

∆y
+ cx

hi−1, j − hi−1, j−1

∆y
,

(84)

where cx and cy denote the directional Courant numbers. In time, we always employ for-
ward differences of first order. Therefore we expect the involution to be constant in time.

First example. As initial data, we discretize the divergence free field B = (B1, B2)T with

B1 = cos(2πx + πy) B2 = −2 cos(2πx + πy)

on a 320×320 grid for the square region [−1, 1]×[−1, 1] with periodic boundary conditions.
For the discrete initial values, we employ a rather naive method: we just evaluate at the cell
center. Thus, the initial divergence is not exactly zero. The results are shown in Figure 1.
In the left picture we see that the discrete divergence measured in upwind differences is
constant in time, it sticks to its initial value, if the standard upwind scheme is used. In the
right picture, the same is found for the divergence measured in transverse differences with
the according CTU-scheme employed. Although not depicted here, in both cases not only
the norm of the divergence is constant. The discrete divergence itself is constant, as was
predicted by the above theory.

The divergence measured in central differences, although almost zero in the initial state,
grows to approach the divergence measured in terms of the difference operator used in the
scheme, which is indeed much larger.

From this, we can draw two important conclusions: First, the usual technique of project-
ing the magnetic field to a divergence free field with respect to some higher order central
difference is insufficient. The projection should be done with respect to the difference op-
erator actually used in the scheme. For general nonlinear systems with changing upwind
directions, this is nearby impossible. Especially, it is impossible to provide a “divergence
free” initial state that is adequate for all cases. Second, upwind schemes, by their lack of
central viscosity, are unable to damp the divergence error introduced by the initial state.
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F 1. Smooth example: time behaviour of the L2-norm of the dis-
crete divergence for standard upwind (left) and corner transport upwind
(right), measured with central differences, upwind differences, and trans-
verse upwind differences.

Second example. As a second example, we present an oblique Riemann-problem, a piece-
wise constant initial state with discontinuity normal to (1, 1)T reproduced on a Cartesian
grid. The discontinuity is just the diagonal of the cells it intersects. For the left and right
state and the state in the cells with the discontinuity, we take

(85) Bl =

(
0
0

)
, Br =

(
1
−1

)
, and thus B∗r = B∗l =

(
1/2
−1/2

)
for the cells intersected by the discontinuity, i. e. we project the data onto the grid in a
finite volume manner. The data are analytically divergence free. For u, v > 0 they are also
discrete divergence free when we employ upwind differences. For u > 0, v < 0, they are
not.

In Figure 2 it can be seen that also in the discontinuous case the divergence measured
in the differences used in the scheme is constant. Figure 2 also shows that the initial
state has to be divergence free with respect to the differences used in the scheme. If not,
the divergence will raise pretty soon. The worst results are obtained, when we do a wrong
upwinding (lower row). For linear systems like our model problem, this is no issue. But for
nonlinear systems like full MHD, this adds a new problem to the lack of exact involutions:
Since the upwind direction depends on the state, it is in general impossible to know the
difference operators in advance. So, the best we can get is an initial divergence in the order
of the scheme itself.

The general case. For the investigation of the general case, we start with a one dimensional
situation:

(86) qt + Aqx = 0 .

For a hyperbolic conservation law, A can be decomposed into

(87) A = RΛL ,

where R and L = R−1 are the matrices of the right and left eigenvectors of A and Λ is the
diagonal matrix of the eigenvalues of A. By manipulating the entries of Λ one can easily
construct matrices A+, A− and |A| which have the same eigenvectors as A but differ in their
eigenvalues: For A+ all negative eigenvalues are replaced by zero, for A− the positive ones,
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and for |A| we replace all eigenvalues by their absolute values. Using these matrices, we
can write the resulting discrete space difference operator as

∂̂

∂̂x
(Aqk) = A+ qk − qk−1

∆x
+ A−

qk+1 − qk

∆x

=
1

∆x

[
A+qk − A+qk−1 + A−qk+1 − A−qk

]
=

1
∆x

[
−A+qk−1 + |A|qk + A−qk+1

]
= −

1
2∆x

[
(|A| + A)qk−1 − 2|A|qk + (|A| − A)qk+1

]
.

(88)

From these manipulations it can be easily seen that it is impossible to write the difference
operator without matrix valued coefficients. Therefore, Theorem 3 can only be applied if
A and the matrix M for the involution commute. In the multidimensional case, we have to
require that all Ar and M` commute with each other. Thus, in general, we find no exact
involutions for the upwind scheme, especially when the involution is a divergence.

Since most high quality numerical flux functions are based on upwinding, this implies
that in real world computations, we can only expect an approximate involution in the sense
of Theorem 2. In addition, the lack of central viscosity prevents the scheme frome damping
the errors in the involution.
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3.3.4. A remark on the use of Runge-Kutta schemes. Runge-Kutta schemes play an impor-
tant role in numerical simulations of time-dependent problems. They are also the method
of choice for the starting procedure in a multistep scheme like leapfrog and its variants.
Therefore, we are interested in the effects of using them for systems with involutions.

If the space discretization is done with differences satisfying the conditions of Theo-
rem 3, then we get

(89)
∂

∂t

(∑
`

M`
∂̂

∂x`
qj

)
= 0 .

If a consistent one step method is applied to that, the resulting scheme is involution pre-
serving. When taken as a starting procedure for leapfrog, it also leads to an involution
preserving scheme.

If the scheme is constructed by means of numeric flux functions, we get for the semi-
discrete involution the expression given in (68) if the requirements given there are satis-
fied. This expression includes the central numerical viscosity. It corresponds to a dis-
cretized parabolic equation. When the numerical viscosity is reasonable, any stable time
discretization shows the same behaviour as we found in Sect. 3.3.1 for the involution in the
Lax-Friedrichs scheme.

4. D   

In this section we identify discrete involutions and resonance as they key one needs to
understand how divergence errors arise in MHD-simulations and destroy them.

By means of a computational example we show how resonance makes the estimates for
the discrete involution in Theorem 2 worthless. We study the role of the central viscosity of
the scheme and explain why the Balbas-Tadmor scheme [2, 1] and the Zachary-Malagoli-
Colella scheme [41] produce only small divergence errors. In this course, we present a
modification of the Roe-solver which shows the same stability. This modification is not
intended to replace divergence cleaning, but to reduce the errors which have to be swept
out of the computational domain.

4.1. The de Sterck test. The De Sterck test [36] is a special configuration for a shallow
water MHD flow. It shows a strong tendency to develop resonant phenomena and, thus,
to single out numerical schemes which are prone to divergence errors. The test problem
imposes a supersonic horizontal grid-aligned inflow on the left boundary of a rectangular
domain. The initial state in the lower half of the domain, and also of the left boundary,
contains a resonant mode. The initial data in the upper half are

(90) h = 2 , u = 5.5 , v = 0 , B1 = 0.5 , B2 = 0 ,

and in the lower half

(91) h = 1 , u = 4.5 , v = 0 , B1 = 2 , B2 = 0 .

The gravitational constant is set to one. Since the discontinuity is aligned with the grid,
the initial data are discrete divergence free for any reasonable difference operator. We
performed a test on a 200×200 grid for the domain [−1, 1] × [−1, 1] with the Local Lax-
Friedrichs scheme (LLF). The numerical flux over the cell faces is computed with 1d-
physics. This is a widespread approach. In one-dimensional physics a one-dimensional
divergence constraint applies. Thus the equation for hB1, in the full MHD the equation for
B1, can be eliminated. The component hB1, or B1 in full MHD, is constant in space and
time and, thus, only a parameter. The reduced 1d-system is fully hyperbolic. When used
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F 3. Absolute value of u− cg for De Sterck test with LLF based on
one-dimensional physics. First six time steps (top row 1–3, bottom row
4–6). Note the different scaling in the last picture.

for multi-dimensional simulations, this introduces two difficulties: on each cell face the
parameter for the magnetic field component normal to the face has to be chosen in some
way, and we lose control over part of the viscosity of the scheme, namely the viscosity on
the neglected wave. But this is exactly the wave which is responsible for resonance. For
the first six time steps the absolute value of the resulting fastest wave speed, u − cg, with

the magnetogravitational speed cg =

√
B2

1 + gh is plotted in Figure 3. It turns out that, in
this case, resonance, once initiated, grows very fast. It also affects the wave speeds, which
depend on the magnetic field. When we consider the estimate for the general discrete
involution

(92)
∂̂

∂̂t

(∑
`

M`
∂̂

ˆ∂x`
qj

)
= O

(∆xp

∆t
)

+ O
(∆tq

∆x
)

+ O(∆xp−1) ∀ j

from Theorem 2, we find that the first order term, namely O
(
∆xp/∆t

)
is most critical. The

fast growing wave speeds result in a fast decreasing time step. Thus, the estimate (92) be-
comes weaker each time step. Divergence errors drive resonance, and resonance weakens
the bound for the growth of the divergence errors.

In computations on Cartesian grids it is common to configure the initial state in a way
that all discontinuities are aligned with the grid. For a piecewise constant initial state, con-
sistent with the constraint, this means that for any consistent difference operators the dis-
crete initial state also satisfies the discrete constraint. The involution can only be violated
by rounding errors. Since rounding errors are O(1), the introduced error in the involution is
of order O(1/∆x). Grid refinement results in even stronger resonance phenomena. The nu-
merical viscosity and, thus, the damping of the resonance is reduced. Hence, for a scheme
which fails due to resonance, it is impossible to improve the situation by grid refinement.
The situation is even worse, as can be verified by the numerical tests in Sect. 4.4.

4.2. The role of the central numerical viscosity. To study the role of central numerical
viscosity in more detail we begin with a simple example. In Figure 4, we show numerical
results for the situation described in the beginning of Sect. 2.3.1. We trigger resonance by
a jump of B1 in the middle of the computational domain. Apparently the resonance effects
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are much weaker if we employ the Lax-Friedrichs scheme instead of the CIR scheme. The
main difference between these two schemes is that the LF-scheme is central while the CIR
scheme employs wave wise upwinding. Thus, the LF-scheme provides central viscosity,
while the CIR-scheme does not.

But in the general case, the Lax-Friedrichs scheme, due to its high viscosity, is not
preferable. Therefore, in practical use other schemes based on numerical flux functions are
used. At this point, we reconsider the HLL-flux (57):

(93) GHLL(qr,q`) =
1
2
(
f (qr) + f (q`)

)
−

1
2

S R + S L

S R − S L

(
f (qr) − f (q`)

)
+

S RS L

S R − S L
(qr − q`) .

Obviously, the viscosity terms are closely related to the signal speeds. This is a gen-
eral issue [20, 24, 12, 18]. Therefore, in practise, the central viscosity can not be chosen
arbitrarily high. A simple approach is HLL with S L = −S R, which refers to the Local-Lax-
Friedrichs scheme. This choice imposes a lower bound on the viscosity for all waves, thus
also for the resonant wave2. This is a prototype for many schemes, which do not explicitly
resolve the resonant wave. Both, the Balbas-Tadmor scheme [2] and the Zachary-Malagoli-
Colella scheme [41] belong to this class.

As a prototype of schemes which, by construction, explicitly resolve all waves, we con-
sider the Harten entropy-fix [17] for the Roe-solver – not to be confused with the Harten-
Hyman entropy-fix [18] –, which allows to impose a lower bound for the viscosity on each
wave separately. It is constructed such that the viscosity depends smoothly on the wave
speeds. Harten replaces the absolute value of an eigenvalue λ of the Roe-matrix by

(94) φ(λ) =

|λ| if |λ| ≥ δ ,
(λ2 + δ2)/(2δ) if |λ| < δ ,

where δ is a small parameter. The numerical viscosity is bounded below by δ/2. Since ad-
ditional numerical viscosity on a single wave is equivalent to the splitting of the wave into
two weaker waves [24, 18], the optimal, i. e. the maximal admissible, choice for the pa-
rameter is twice the largest absolute value of an eigenvalue of the Roe-matrix: δ = 2 |λmax|.
This puts the same amount of viscosity on the wave as in the LLF scheme. A simpler,
but still reasonable choice would be δ = 2 |u|. The speeds of the waves resulting from the
corresponding splitting of the original resonant wave would be ±λmax or ±u respectively.

4.3. The assumption of one-dimensional physics in flux computations. To study the
role of the assumption of one-dimensional physics in the construction of numerical flux
functions, we start with an example. In section 4.1, we demonstrated the effects of res-
onance by applying the LLF-scheme with the numerical flux based on one-dimensional

2Since resonance only occurs in certain physical states, it would be more correct to call it the wave which
might become resonant. But for the sake of readability, we stick to this simplistic formulation.
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F 5. Absolute value of u − cg for De Sterck test with LLF for full
system. First six time steps (top row 1–3, bottom row 4–6).

physics to the De Sterck test case. Now we repeat the same computation without the as-
sumption of one-dimensional physics. The results are presented in Figure 5. As one would
expect by the considerations of the previous section, the resonance is nicely damped. The
divergence errors are much smaller than with the one-dimensional physics in Figure 3.
Something got lost by the assumption of one-dimensional physics. The resulting viscosity
seems to be weak or even antidiffusion on the resonant wave. Thus, in a scheme which
uses projection to prevent divergence errors, the projection has to be done more often to
keep the simulation stable. The work, saved by the easier flux computation, results in a
much higher work for divergence cleaning.

The assumption of one-dimensional physics in the flux computation would, on a Carte-
sian grid, imply that all terms including B1x, B2y and B3z are neglected. In general, this
leads to a modeling error and, thus, to an error of order O(∆x−2) in numerical simulations.
But in standard implementations of MHD it is still at least of order O(∆x). This can be
verified by the following considerations:

We restrict our analysis to the x-direction in a Cartesian grid. In most codes the choice
of the parameter B1 is done in dependence on its values in the cells neighbouring to the
cell face at which the flux has to be evaluated. Usually it is taken to be a weighted mean
of these values. Thus, for the resulting full flux function we still have, if written for some
one-dimensional situation, at the i-th interface,

(95) G(qi−l, . . . ,qi+k)→ F1(q) , if qi+r → q for r = −l, . . . , k .

Hence, the flux function and, by applying the Lax-Wendroff theorem, the scheme itself
is consistent. In smooth regions this implies an order of at least one. In addition, the
error introduced to the antisymmetric condition (3) (when applied to G instead of F) is
small. The actual order of such schemes can only be tested by measuring the experimental
order of convergence (EOC). There is no direct control on the differences used. As a
matter of experience, these schemes are most prone to failure due to divergence errors.
The schemes by Zachary, Malagoli and Colella [41] and Balbás and Tadmor[2], mentioned
in the introduction, do not employ the assumption of one-dimensional physics at any place.

For our prototype system, the linearized induction equation (20) in two space dimen-
sions, the flux in x-direction is (0, −vB1 + uB2)T . Let us assume that u is positive and we
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employ the upwind scheme. The flux-term uB2 is always treated with upwind differences.
If we take the parameter B1 to be the value in the cell left of the cell face for which the
numerical flux is to be computed, we end up with full upwinding, and, according to Theo-
rem 3, find an exact discrete involution. If we take the value of B1 from the cell right of the
cell face, the flux-term −vB1 is discretized with downwind differences. The conditions of
Theorem 3 are not longer valid. If we define ∂̂/∂̂x to be the upwind difference operator and
∂̃/∂̃x to be the downwind operator, the actual discretization for the second flux component
at a fixed grid point xi reads

∂̂

∂̂x

(
uB2

)
i −

∂̃

∂̃x

(
vB1

)
i =

∂̂

∂̂x

(
−vB1 + uB2

)
i −

[ ∂̂
∂̂x
−
∂̃

∂̃x

](
vB1

)
i

=
∂̂

∂̂x

(
−vB1 + uB2

)
i − v

B1i+1 − 2B1i + B1i−1

∆x

=
∂̂

∂̂x

(
−vB1 + uB2

)
i − v∆x

(
B1xxi + O(∆x2)

)
.

(96)

A similar consideration can be done for the y-direction. Summed up, the divergence error
introduced in one time step is of order Os(∆x), which means that ∆x is in turn of the
same order as the divergence error. If instead of the value right to the cell face, we take a
weighted mean with weight α for the right hand value, the error is just multiplied by α but
still of the same order.

This is not too bad. Thus, the main reason for the problems arising from one-dimensional
physics is the loss of control on the numerical viscosity on the resonant wave.

4.4. Numerical experiments. In this section, we present some numerical experiments3

for the De-Sterck test with a Roe-type scheme without the assumption of one-dimensional
physics. Analytically, the problem results in a steady state, which has been already reached
at time t = 0.8. To study the long-term effects, we went on to time t = 4.8. The left half
of Figure 6 gives a comparison of the scheme with and without entropy fix. As entropy
fix, we employ the above mentioned Harten fix with parameter δ = 2 |λmax| or δ = 2 |u| for
the resonant wave and δ = 10−8 for the other waves. As Figure 6 shows, the effects of the
central viscosity introduced by the entropy fix are strong. While the computation without
the fix does not even reach the steady state, the computation with the fix survives the
whole simulation without the need of an intermediate projection step. The choice δ = 2 |u|
is weaker, but still yields reasonable results. The right half of Figure 6 demonstrates the
influence of the limiter on the stability. Although the limiter does not change anything on
the resonant wave itself, since it propagates with zero speed, the choice of limiters for the
other waves show some effect. For short times, the more compressive limiters, see [22],
yield better results. But the unphysical forces arising from the divergence errors are much
better resolved. The better resolution of discontinuities results in steeper gradients and,
thus, in higher divergence errors. In the long-term run, the error exceeds the error obtained
with the classical MC-Limiter.

Next, we investigate the influence of the grid resolution and the order of the scheme.
On the one hand, a higher grid resolution and a higher order would, by the estimate (49) in
Theorem 2, we would expect a positive effect. But on the other hand, the higher resolution
and the higher order lower the numerical viscosity and allow for steeper gradients and,
thus, for higher divergence errors near shocks. As Figure 7 shows, the second argument
dominates for the grid resolution. On a fixed grid, the higher order scheme performs better.

3Numerical experiments in this paper are done with clawpack [8].
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Figure 8, finally, presents results of highly resolved computations, 200×200 grid cells,
with the second order schemes. The basic structure of the solution is preserved even for
the long-term run. But the divergence errors have infected all of the lower half of the
computational domain. At the places with the highest divergence errors, disturbances of
the solution can be seen in the contour plot of the height. The computations with the high
resolving limiters in Figure 8 show an area with severe destruction of the solution. With
the MC-limiter, this effect is weaker.

The situation is the same as for the schemes by Balbas and Tadmor [2, 1] and Zacharay,
Malagoli, and Colella [41]. It is still reasonable to employ some sort of divergence clean-
ing. But one can resort to a weaker one. In the case of a projection to a divergence
free field, the time interval between two projections can be considerably increased, since
the computation is still stable. In a scheme based on hyperbolic or mixed type GLM-
divergence-cleaning [11], the divergence errors which have to be transported out of – and
thus through a significant part of – the computational domain are much smaller.
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F 8. De-Sterck test with Harten fix on 200×200 grid for second
order computation with highly compressive limiters at time t = 0.8 (left)
and t = 4.8 right. Upper row: height; lower row: divergence

5. C  O

In this study, we investigated the origin of divergence errors in MHD simulations. The
concept of involutions, introduced by Dafermos [10, 9], turned out to be the key of under-
standing of the issue. Especially when, like in MHD, the involutions are closely related
to resonance, their exact reproduction in the discrete case is needed to prevent the numer-
ical schemes from failing due to unphysical forces. If an involution satisfies Dafermos’
sufficient condition (3), discrete analogues of Theorem 1 give quantitative information on
the possible errors. For some linear schemes, the discrete involutions are even exact. The
introduction of central viscosity in the scheme provides a tool to reduce resonant effects.
It turns the discrete involution into a parabolic equation, which damps the involution and,
for example in the case of MHD, the resonance. But this only works if for the computa-
tion of the intercell fluxes the full multidimensional physics is taken into account. If the
intercell fluxes are computed with the assumption of one-dimensional physics, in addition
to not explicitly resolving the resonant wave, we completely neglect it. The resulting cen-
tral viscosity cannot be controlled and, thus, be even of the wrong sign. There is simply
no possibility to control it. Employing fluxes with full physics, like in the Balbas Tad-
mor scheme [1] and the Zacharay Malagoli Colella scheme [41], considerably stabilizes
the scheme. In Roe-type schemes, we can explicitly tune the amount of central viscosity
introduced by the flux function. If we employ the maximal admissible amount of viscosity
on the resonant wave, the scheme is stable even for very long runs. Due to the disturbances
of the solution, which are caused by the growing divergence errors, it is still reasonable
to employ some sort of divergence cleaning. But one can resort to a weaker one. In the
case of a projection to a divergence free field, the time interval between two projections
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can be considerably increased. The computation is still stable. In a GLM-scheme [11], the
disturbances introduced by the transport of divergence errors through the computational
domain are minimized.

In summary, divergence errors in MHD are mainly caused by resonance and a lack of
positive central viscosity in the applied numerical scheme, where the second most often re-
sults from the assumption of one-dimensional physics in the calculation of intercell fluxes.

Acknowledgements. First, I would like to thank Prof. G. Bader, whose probing questions
gave rise to this study. Many thanks also to the participants of the 8th Hirschegg Workshop
on Conservation Laws, especially to Manuel Torrilhon, for the deep inspiring discussions
on the subject. I am also grateful to Felix Rieper for many interesting discussions and the
proofreading of the manuscripts.

R

1. Jorge Balbás, personal communication at the 12th Conference on Hyperbolic Problems, University of Mary-
land, June 2008.

2. Jorge Balbás and Eitan Tadmor, Nonoscillatory central schemes for one- and two-dimensional magneto-
hydrodynamics equations. II: High-order semidiscrete schemes., SIAM J. Sci. Comput. 28 (2006), no. 2,
533–560 (English).

3. Dinshaw S. Balsara, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys.
174 (2001), 614–648.

4. Dinshaw S. Balsara and Daniel S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to
ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys. 149 (1999), 270–
292.
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