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Abstract. We obtain a well-posedness result of an entropy solution to a mul-
tidimensional scalar conservation law with discontinuous (quasi-homogeneous)
flux satisfying crossing conditions, but with no genuine nonlinearity assump-
tions. The proof is based on the kinetic formulation of the equation under
consideration and it does not involve any transformation of the original equa-
tion or existence of strong traces. Also, we propose Brenier’s transport-collapse
type operator corresponding to the problem under consideration.

1. Introduction

In the paper, we are looking for the existence and uniqueness to the following
Cauchy problem:

∂tu + Divx f(x, u) =0, u = u(t, x), t ≥ 0, x ∈ IRd. (1)

u|t=0 =u0(x) ∈ L∞(IRd), a ≤ u0 ≤ b, (2)

where the flux vector f(x, λ) = (f1(x, λ), . . . , fd(x, λ)), λ ∈ IR, is assumed to be
continuously differentiable with respect to u ∈ IR and discontinuous with respect
to x ∈ IRd so that, for every λ ∈ IR, the discontinuity is placed on the manifold
Γ ⊂ IRd of co-dimension one which divides the space IRd into two domains. This
assumption is not substantial, and considerations can be easily repeated for more
complicated situations of (d− 1)-dimensional manifolds.

More precisely, we assume that there exist two domains ΩL and ΩR such that:

IRd = ΩL ∪ Γ ∪ ΩR, ΩL ∩ ΩR = Γ, (3)

and that, by denoting

κL(x) =

{
1, x ∈ ΩL

0, x /∈ ΩL

, κR(x) =

{
1, x ∈ ΩR

0, x /∈ ΩR

,

we can rewrite (1) in the form:

∂tu + Divx (gL(x, u)κL(x) + gR(x, u)κR(x)) = 0. (4)

In the sequel, by A(x̂i) we imply that the quantity A does not depend on xi

but only on x1, . . . , xi−1, xi+1, . . . , xd. With such a convention, we assume that the
functions gL, gR ∈ C1(IRd+1; IRd) are of the form:

gL(x, u) = (g1L(x̂1, u), . . . , gdL(x̂d, u)),

gR(x, u) = (g1R(x̂1, u), . . . , gdR(x̂d, u)).
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The substantial demand on the functions gL and gR is so called ”crossing con-
dition” introduced in [8].

Definition 1. (The crossing conditions) We say that the functions gL and gR

satisfy the crossing conditions if for every i = 1, . . . , d

giR(x̂i, u)− giL(x̂i, u) < 0 < giR(x̂i, v)− giL(x̂i, v) ⇒ u < v. (5)

Conservation laws like (1) have a number of important applications, and pose
several analytical challenges not present in the now classical situation where the
flux is continuous. We shall avoid listing of numerous references and remind read-
ers on [18], where the problem was opened, and address them to [2] and references
therein where one can find thorough description, analysis, but also a kind of uni-
fication of previous works on the problem. We stress that most of papers on the
subject were addressed on the one-dimensional situation of the problem, while in
the multidimensional case there are very few results. We are listing them right now
without getting into details of the papers [1, 11, 14, 15].

Concerning existence, the main difficulty is the lack of a spatial variation bound.
The uniqueness question is perhaps more difficult. First there is the fact that most
equations like (1) have more than one reasonable notion of solution [5]. Once a
notion of solution is selected, there is the problem of characterizing it in a way that
is useful for analysis.

In order to explain our ideas more concisely, let us consider one-dimensional
variant of the problem:

∂tu + ∂x(f(u)H(x) + g(u)H(−x)) = 0

u|t=0 = u0(x), 0 ≤ u0 ≤ 1,
(6)

where f(0) = g(0) = f(1) = g(1) = 0. If it holds f ≡ g, we can apply the Kruzhkov
entropy admissibility concept [9] which provides existence and uniqueness of a weak
solution to (6). Probably the first successful attempt to adapt Kruzhkov’s concept
on the case of scalar conservation law with discontinuous flux was made in [8].
There, the following definition is used:

Definition 2. [8] Let u be a weak solution to problem (6).
We say that u is an entropy admissible weak solution to (6) if the following

entropy condition is satisfied for every fixed ξ ∈ R:

∂t|u− ξ|+ ∂x

{
sgn(u− ξ)

[
H(x)(f(u)− f(ξ)) + H(−x)(g(u)− g(ξ))

]}
(7)

− |f(ξ)− g(ξ)|δ(x) ≤ 0 in D′(IR+ × IR).

This definition, together with the ”crossing condition” (f(u)−g(u) < 0 < f(v)−
g(v) ⇒ u < v) provided uniqueness to the considered Cauchy problem. In [10], by
introducing the change of the unknown function u = α(v)H(x) + β(v)H(−x) for
appropriate bijections

α, β : [0, 1] → [a′, b′] ⊂ IR (8)

we transformed the equation in (6) so that the crossing conditions were satisfied.
This provided uniqueness in a rather general situation. Existence is obtained by
considering separately subintervals of [0, 1] on which functions f and g are genuinely
nonlinear, and the subintervals where the genuine nonlinearity is lost. This enabled
us to apply results from [14, 13] to complete the paper.
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Figure 1. Situation from [11] for i = 1, . . . , d.

We were not able to extend latter techniques on the multidimensional case. It
appears that a proper way out lies in using semi-entropies

|z|+ =

{
z, z > 0
0, z ≤ 0

, |z|− =

{
0, z > 0
−z, z ≤ 0

rather than standard entropies. First substantial application of the semi-entropies
was given in [3]. There, the function u is said to be an entropy solutions if for every
ξ ∈ (0, 1):

∂t|u− ξ|± + ∂x

{
sgn±(u− ξ)

[
H(x)(f(u)− f(ξ)) + H(−x)(g(u)− g(ξ))

]}
(9)

− |g(ξ)− f(ξ)|±δ(x) ≤ 0 in D′(IR+ × IR),

where sgn±(z) = (|z|±)′. It is clear that by putting separately + and − in (9), and
then adding the resulting expressions, we reach to (7). However, it can be (fairly
easily) shown that (7) implies (9) in the case when a solution to (4), (2) satisfying
(7) admits traces at x = 0. This means that the problem of non-uniqueness also
remains when one uses semi-entropies instead of entropies. Continuing in this
direction, we remark that, if the crossing condition is violated, as shown in [2],
uniqueness of the entropy admissible solution to (6) does not hold in general even
in the one-dimensional case.

We shall show in this paper that if semi-entropies are applied and the crossing
condition is satisfied, then we have uniqueness to (6) no matter whether the traces
exist. However, mere application of semi-entropies and the classical Kruzhkov’s
techniques was not enough to prove existence and uniqueness. It was necessary
to introduce original kinetic type formulation of problem (6) (compare [3, Section
3.3.1] with [12]), and to apply original techniques in the proof (compare [3, Section
3.4] with [17]). In [11], we have adapted techniques from [3] to prove existence and
uniqueness to the multidimensional problem (4), (2), but the constructed stable
semigroup was rather special. It was tacitly assumed that the functions f and g are
compactly supported so that the transformation u = (kR +v)H(x)+(kL+v)H(−x)
for appropriate kL, kR rendered the flux from (4) in a position in which it was
possible to apply techniques from [3] (see Figure 1). Also, we had certain structural
conditions on the interface.
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Figure 2. Dotted line is the boundary of Ω1. Dashed line is
the boundary of Ω2. Both lines contain the edge of the interface
(hollow point). Γ = Γ1 ∪ Γ2 is the interface.

Here, we further develop techniques from [3, 11] which enables us to prove well-
posedness to (4), (2) assuming that the flux is such that the crossing conditions and
the maximum principle is satisfied. Finally, we remark that by using the transfor-
mation of type (8) which render fluxes not satisfying the crossing conditions to the
ones satisfying the crossing conditions (as in [10]), we obtain existence and unique-
ness for different semigroups (see [10, Remark 2] and [2, Section 6.2]) corresponding
to different physical situations (see [5]).

The paper is organized as follows.
In the first part of the paper (Section 2), we shall consider the case when the

discontinuity manifold is piecewise parallel to the coordinate hyper-planes (Figure
2). We shall prove that the Cauchy problem corresponding to such situation is
well-posed.

In the second part (Section 3), we extend the results on the case of an arbitrary
manifold which can be approximated by a manifold which is piecewise parallel to
coordinate hyper-planes.

In the Appendix, we give a remark on a possible extension of Brenier’s transport-
collapse scheme [4] on scalar conservation laws with discontinuous flux.

2. Admissibility conditions for the piecewise parallel interface

In this section, we shall introduce admissibility conditions first for the situation
when the interface is piecewise parallel to coordinate hyper-planes.

Assume that the interface (hyper-polyhedron) Γ contains n parts parallel to the
coordinate hyper-planes. We can split the space IRd (excluding the edges of the
interface) on open sets Ωj , j = 1, . . . , n, such that each Ωj , j = 1, . . . , n, contains a
single part of the interface which is parallel to a coordinate hyper-plane (excluding
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edges of the hyper-polyhedron forming the interface; see Figure 2). In other words:

Γ = Cl




n⋃

j=1

{x ∈ IRd : xkj = cj} ∩ Ωj


 ; IRd = Γ ∪




n⋃

j=1

Ω̄j


 ;

Γj = Cl (Γ ∩ Ωj) ; Γj ∩ Ωs =

{
∅, s 6= j,

Γj , s = j
, s, j = 1, . . . , n,

(10)

where for j ∈ {1, . . . , n}, we have appropriate kj-th coordinate (i.e. kj ∈ {1, . . . , d}),
and cj , j = 1, . . . , n, are appropriate constants.

Definition 3. Let u0 ∈ L∞(IRd), a ≤ u0 ≤ b a.e. on IRd. Let u ∈ L∞(IR+ × IRd).
1. The function u is an entropy sub-solution (respectively entropy super-solution)

of problem (4), (2) if for any ξ ∈ IR and any ϕ ∈ C1
0 (IR× Ωj), j ∈ 1, . . . , n:

∫

IR+×IRd

(u− ξ)±∂tϕdtdx (11)

+
∫

IR+×IRd

d∑

i=1

sgn±(u− ξ)
(

(giL(x̂i, u)− giL(x̂i, ξ)) H(cj − xkj
)

+ (giR(x̂i, u)− giR(x̂i, ξ))H(xkj − cj)
)
∂xiϕdtdx

+
∫

IRd

(u0 − ξ)±ϕ(0, x)dx

−
∫

IR+×IRd−1

(
gkjL(x̂kj , ξ)−gkjR(x̂kj , ξ)

)±
ϕ|xkj

=cj dx̂kj dt ≥ 0.

2. The function u is an entropy solution if it is a weak entropy process sub- and
super-solution at the same time.

We shall also need notions of nonlinear weak-? convergence and entropy process
sub and super solution.

Definition 4. Let Ω be an open subset of IRd and (un) ⊂ L∞(Ω) and u ∈ L∞(Ω×
(0, 1)). The sequence (un) converges towards u in the nonlinear weak-? sense if

∫

Ω

g(un(x))ψ(x)dx →
∫ 1

0

∫

Ω

g(u(x, λ))ψ(x)dxdλ as n →∞,

∀ψ ∈ L1(Ω), ∀g ∈ C(IR).

Any bounded sequence of L∞(Ω) has a subsequence converging in the nonlinear
weak-? sense.

Theorem 5. [7] Let Ω be an open subset of IRd and (un) be a bounded sequence of
L∞(Ω). Then (un) admits a subsequence converging in the nonlinear weak-? sense.

Using the nonlinear weak-? convergence concept, we introduce the notion of
entropy process super and sub solutions.

Definition 6. Let u0 ∈ L∞(IRd), a ≤ u0 ≤ b a.e. on IRd. Let u ∈ L∞([0,∞) ×
IRd × (0, 1)).

1. The function u is an entropy process sub-solution (respectively entropy process
super-solution) of problem (4), (2) if for any ξ ∈ IR and any ϕ ∈ C1

0 (IR+ × Ωj),
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j ∈ 1, . . . , n:
∫ 1

0

dλ

∫

IR+×IRd

(u− ξ)±∂tϕdtdx (12)

+
∫ 1

0

dλ

∫

IR+×IRd

d∑

i=1

sgn±(u− ξ)
(

(giL(x̂i, u)− giL(x̂i, ξ)) H(cj − xkj )

+ (giR(x̂i, u)− giR(x̂i, ξ))H(xkj
− cj)

)
∂xi

ϕdtdx

+
∫

IRd

(u0 − ξ)±ϕ(0, x)dx

−
∫

IR+×IRd−1

(
gkjL(x̂kj , ξ)−gkjR(x̂kj , ξ)

)±
ϕ|xkj

=cj dx̂kj dt ≥ 0.

2. The function u is an entropy solution if it is a weak entropy process sub- and
super-solution at the same time.

It is not difficult to prove the existence of an entropy process solution to (4), (2).
The proof is application of standard arguments given in e.g. [11, Theorem 2.8].

Theorem 7. There exists an entropy process solution to (4), (2).

Proof: We shall briefly recall arguments proving the theorem. First, we regularize
the characteristic functions appearing in (4). Then, since gL(x, a) = gL(x, b) =
gR(x, a) = gR(x, b) = 0, we conclude that family of entropy admissible solutions
(uε)ε∈(0,1) to the regularized equation satisfy a ≤ uε ≤ b. According to Theorem
5, (uε) admits the nonlinear weak-? limit along a subsequence which we denote by
u ∈ L∞(IR+ × IRd × (0, 1)). Since (uε) are entropy admissible, by letting ε → 0
along the subsequence defining the function u, we reach to (11). 2

We shall prove the following comparison principle which establishes the unique-
ness and existence of entropy admissible solutions to (4), (2) in the case when the
interface is piecewise parallel to coordinate axis.

Theorem 8. Any two entropy process solutions u and v to (4), where gL and gR

satisfy the crossing conditions (5), with initial conditions u0 and v0, respectively,
satisfy the following relation for any T > 0 and any ball B(0, R) ⊂ IRd:

∫ 1

0

dη

∫ 1

0

dλ

∫ T

0

∫

B(0,R)

(u(t, x, λ)−v(t, x, η))±dxdt

≤T

∫

B(0,R+CT )

(u0(x)−v0(x))±dx,

(13)

for a constant C > 0 independent of T, R > 0.

The proof of the theorem is based on the kinetic formulation of (11). Before we
introduce it, we need some auxiliary notions. For functions u, v ∈ L∞(IR+ × IRd ×
(0, 1)), u0, v0 ∈ L∞(IRd; [a, b]), we denote:

h±(t, x, λ, ξ) = sgn±(u(t, x, λ)− ξ), j±(t, x, η, ξ) = sgn±(v(t, x, η)− ξ)

h0
±(x, ξ) = sgn±(u0(x)− ξ), j0

±(x, ξ) = sgn±(u0(x)− ξ).

The functions h± and j± we call equilibrium functions.
In the sequel, we shall imply

∫
t,x,ξ

· =
∫

IR+×IRd×IR
· dtdxdξ.
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Definition 9. Denote

GiL(x, ξ) = ∂ξgiL(x, ξ), GiR(x, ξ) = ∂ξgiR(x, ξ).

Let u0 ∈ L∞(IRd; [a, b]) and u ∈ L∞(IR+ × IRd × (0, 1)).
The function u is a kinetic process super-solution (respectively kinetic process

sub-solution) to (4), (2) if there exists m± ∈ C(IRξ;w−?M+(IR+×IRd)) such that
m+(·, ξ) vanishes for large ξ (respectively, m−(·, ξ) vanishes for large −ξ), and such
that for any j = 1, . . . , n, and every ϕ ∈ C1(IR+ × Ωj × (0, 1)),

∫ 1

0

dλ

∫

t,x,ξ

h±× (14)

×
(
∂t+

d∑

i=1

(
GiL(x̂i, ξ)H(cj −xkj )+GiR(x̂i, ξ)H(xkj−cj)

)
∂xi

)
ϕ

+
∫

x,ξ

h0
±,kϕ|t=0−

∫

t,x̂kj
,ξ

∂ξ

(
gkjL(x̂kj

, ξ)−giR(x̂kj
, ξ)

)±
ϕ|xkj

=cj

=
∫

t,x,ξ

∂ξϕdm±.

As in [11, Proposition 1] we can prove the following proposition. It is basically
obtained by appealing on the Schwarz lemma for non-negative distributions and
(then) differentiating (12) with respect to ξ ∈ IR.

Proposition 10. The entropy process admissible solution is at the same time the
kinetic process solution.

In the sequel, we shall denote by h± and j± equilibrium functions correspond-
ing to the entropy process solutions u and v to (4) with initial conditions u0 ∈
L∞(IRd; (a, b)) and v0 ∈ L∞(IRd; (a, b)), respectively.

We shall also need the following known formula. It holds for a θ ∈ C1
0 (IR+×IRd),

and arbitrary functions αi : IRd−1 → IR:
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+j−)
(
∂tθ (15)

+
d∑

i=1

(GiL(x̂i, ξ)H(αi(x̂i)−xi)+GiR(x̂i, ξ)H(xi−αi(x̂i))) ∂xiθ
)

=
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x

(
|u(t, x, λ)− v(t, x, η)|+∂tθ

+
d∑

i=1

sgn+(u(t, x, λ)− v(t, x, η))×

×
((

giL(x̂i, u(t, x, λ))− giL(x̂i, v(t, x, η))
)
H(αi(x̂i)−xi)

+
(
giR(x̂i, u(t, x, λ))− giR(x̂i, v(t, x, η))

)
H(xi−αi(x̂i))

)
∂xiθ

Finally, we need a lemma concerning the traces of the entropy process solutions
along the line t = 0.
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Lemma 11. Assume that the bounded functions u = u(t, x, λ) and v = v(t, x, η)
are two entropy process solutions to (4) corresponding to the initial condition u0 ∈
L∞(IRd; [a, b]) and v0 ∈ L∞(IRd; [a, b]), respectively.

Introduce the cut-off function

ωε(s) =
∫ |s|

0

ρε(r)dr, ρε(r) = ε−1ρ(ε−1r), s ∈ IRd, r ∈ IR, (16)

where ρ ∈ C∞c ((0, 1)) is a non-negative function with total mass one. The proof is
the same as the proof of [11, Lemma 3.2.].

It holds for every ϕ ∈ C1
0 (IR× IRd):

lim
n→∞

∫ 1

0

dλ

∫ 1

0

dη

∫

IR+×IRd

|u(t, x, λ)− v(t, x, η)|±ω′1/n(t)ϕ(t, x)dtdx

≤
∫

IRd

|u0(x)− v0(x)|±ϕ(0, x)dtdx

(17)

Finally, we shall need a lemma concerning properties of convolution operators.
Notations are taken from the previous lemma.

Lemma 12. [6, Lemma II.1.] Suppose that a ∈ C1(IRd) and u ∈ Lp
loc(IR

d), 1 ≤
p < ∞. Then (au) ? ρε − a(u ? ρε) → 0 as ε → 0 in the Sobolev space W 1,p

loc (IRd).

2.1. Proof of Theorem 8. Assume that for every i = 1, . . . , d the functions giL

and giR satisfy the crossing conditions, i.e. they are such that there exists a unique
point pi ∈ (a, b) such that for every x ∈ IRd

giL(x̂i, ξ) ≤ giR(x̂i, ξ), ξ > pi; and giL(x̂i, ξ) ≥ giR(x̂i, ξ), ξ < pi. (18)

Let ψL
p,ε, ψ

R
p,ε ∈ C1(IR) be non-negative monotonic functions such that

ψL
p,ε(ξ) + ψR

p,ε(ξ) ≡ 1, ξ ∈ IR,

ψL
p,ε(ξ) ≡ 0, ξ ≤ p + ε,

ψR
p,ε(ξ) ≡ 0, ξ ≥ p− ε.

(19)

Next, take the functions:

IR+ × IRd × IR 3 (t, x, ξ) 7→ ρε,σ,ζ(t, x, ξ) =
d∑

i=1

ρi
ε,σ,ζ(t, x, ξ) =

d∑

i=1

ρε(t)ρζ(ξ)ρσ(xi),

IR+ × IRd 3 (t, x) 7→ ρε,σ(t, x) =
d∑

i=1

ρi
ε,σ(t, x) =

d∑

i=1

ρε(t)ρσ(xi),

where ρε is defined in (16), and let

j±,εj ,σj ,ζj (t, x, ξ, η) = j± ? ρεj ,σj ,ζj (t, x, ξ, η)

h±,εh,σh,ζh
(t, x, ξ, λ) = h± ? ρεh,σh,ζh

(t, x, ξ, λ).

Notice that
j±,εj ,σj = lim

ζj→0
j±,εj ,σj ,ζj = j± ? ρεj ,σj

h±,εh,σh
= lim

ζh→0
h±,εh,σh,ζh

= h± ? ρεh,σh
,

where the limit is understood in the strong L1
loc sense.
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Now, fix s ∈ {1, . . . , n} and choose the following test function

ϕ(t, x, ξ) = θ ? ρε,σ,ζ ,

where suppθ ⊂ IR+ × (Ωs\Γ)× IR, in the place of the function ϕ from (14).
For ε, σ, ζ small enough, the following also holds:

suppθ ? ρε,σ,ζ ⊂ IR+ × (Ωs\Γ)× IR.

Therefore, for the equilibrium functions h±, (14) becomes:
∫ 1

0

dλ

∫

t,x,ξ

h± ? ρεh,σh,ζh
∂tθ (20)

+
d∑

i=1

(
h±

(
GiL(x̂i, ξ)H(cs−xks

) + GiR(x̂i, ξ)H(xks
−cs)

))
? ρεh,σh,ζh

∂xiθ

=
∫

t,x,ξ

∂ξθm
εh,σh,ζh
± .

where mεh,σh,ζh
± = m± ? ρεh,σh,ζh

, while for the equilibrium functions j±
∫ 1

0

dη

∫

t,x,ξ

j± ? ρεj ,σj ,ζj ∂tθ (21)

+
d∑

i=1

(
j±

(
GiL(x̂i, ξ)H(cs−xks) + GiR(x̂i, ξ)H(xks−cs)

))
? ρεj ,σj ,ζj ∂xiθ

=
∫

t,x,ξ

∂ξθq
εj ,σj ,ζj

± ,

where q
εj ,σj ,ζj

± = q± ? ρεj ,σj ,ζj .
Next, in (20) take instead of± the sign + and θ(t, x, ξ) = −ψL

ε,pks
(ξ)ϕ(t, x)j−,εj ,σj ,ζj

where ϕ ∈ C1
0 (IR+ × (Ωs\Γ)), and integrate over η ∈ (0, 1). Similarly, for the same

function ϕ, in (21) take instead of± the sign− and θ(t, x, ξ) = −ψL
ε,pks

(ξ)ϕ(t, x)h+,εh,σh,ζh
,

and integrate over λ ∈ (0, 1).
By adding the resulting expressions, we obtain:
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh,ζh
j−,εj ,σj ,ζj )ψ

L
ε,p

(
∂t (22)

+
d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
ϕ

=
∫ 1

0

dη

∫

t,x,ξ

ϕ∂ξ(−ψL
ε,pks

j−,εj ,σj ,ζj )m
εh,σh,ζh
+

+
∫ 1

0

dλ

∫

t,x,ξ

ϕ∂ξ(−ψL
ε,pks

h+,εh,σh,ζh
)qεj ,σj ,ζj

−

+ Rks

εh,σh,ζh
(ϕj−,εj ,σj ,ζj ) + Qks

εj ,σj ,ζj
(ϕh+,εh,σh,ζh

) + oεj+σj+ζj (1) + oεh+σh+ζh
(1),

where the estimates oεj+σj+ζj (1) → 0 as εj + σj + ζj → 0, and oεh+σh+ζh
(1) → 0

as εh + σh + ζh → 0 follow from Lemma 12 and we shall omit them in the sequel.
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The terms Rks

εh,σh,ζh
and Qks

εj ,σj ,ζj
are defined by

Rks

εh,σh,ζh
(ϕ)=

∫

t,x,ξ

h+,εh,σh,ζh

(
GksL(x̂ks , ξ)H(cs−xks)+GksR(x̂ks , ξ)H(xks−cs)

)
∂xks

ϕ

−
(
h+

(
GksL(x̂ks

, ξ)H(cs−xks
)+GksR(x̂ks

, ξ)H(xks
−cs)

))
? ρεh,σh,ζh

∂xks
ϕ,

Qks

εj ,σj ,ζj
(ϕ)=

∫

t,x,ξ

j+,εj ,σj ,ζj

(
GksL(x̂ks

, ξ)H(cs−xks
)+GksR(x̂ks

, ξ)H(xks
−cs)

)
∂xks

ϕ

−
(
j−

(
GksL(x̂ks

, ξ)H(cs−xks
)+GksR(x̂ks

, ξ)H(xks
−cs)

))
? ρεj ,σj ,ζj

∂xks
ϕ,

and, according to the Friedrichs lemma:

Rks

εh,σh,ζh
(ϕj−,εj ,σj ,ζj

) = O(
ζh

σj
), Qks

εj ,σj ,ζj
(ϕh+,εh,σh,ζh

) = O(
ζj

σh
).

Finding the derivative in ξ on the right-hand of (22), and bearing in mind that
∂ξ(−j−,εj ,σj ,ζj

) > 0 and ∂ξ(−h+,εh,σh,ζh
) > 0, we conclude from (22) after letting

ζh, ζj → 0:
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )ψ

L
ε,pks

(
∂t (23)

+
d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
ϕ

≥−
∫ 1

0

dη

∫

t,x,ξ

ϕj−,εj ,σj ∂ξψ
L
ε,pks

dmεh,σh
+ −

∫ 1

0

dλ

∫

t,x,ξ

ϕhk
+,εh,σh

∂ξψ
L
ε,pks

dq
εj ,σj

−

Let us now remove the conditions imposed on the support of function ϕ. In (23),
for an arbitrary function θ ∈ C1

0 (IR+ × Ωs), put:

ϕ(t, x) = θ(t, x)ω1/n(xks − cs),

where ω is given by (16). We get:
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )ψ

L
ε,pω1/n(xks − cs)× (24)

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
θ

+
∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )ψ

L
ε,pks

θ×

×
(
∂t +

d∑

i=1

(
GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)

)
∂xi

)
ω1/n(xks−cs)

≥−
∫ 1

0

dη

∫

t,x,ξ

θj−,εj ,σj ∂ξψ
L
ε,pks

ω1/n(xks − cs)dmεh,σh
+

−
∫ 1

0

dλ

∫

t,x,ξ

θh+,εh,σh
ω1/n(xks−cs)∂ξψ

L
ε,pks

dq
εj ,σj

− .
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In order to cope with the problematic term in the previous expression containing
derivatives of ω1/n, choose in (14) the sign + instead of ±, and for an arbitrary
θ ∈ C1

0 (IR+ × Ωj × IR):

ϕ(t, x, ξ) = (−(1− ω1/n(xks
− cs))ψL

ε,pks
θj−,εj ,σj ,ζj

) ? ρεh,σh,ζh
.

Noticing that ∂ξ(−j−,εj ,σj ,ζj
) > 0, we get after letting ζj , ζh → 0 (see the transition

from (22) to (23)):

∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )θψ

L
ε,p

(
∂t (25)

+
d∑

i=1

(GiL(x̂i, ξ)H(cs−xks
)+GiR(x̂i, ξ)H(xks

−cs)) ∂xi

)
ω1/n(xks

− cs)

+ on(1) +O(ε)

≤
∫ 1

0

dη

∫

t,x,ξ

(1− ω1/n(xks − cs))θj−,εj ,σj ∂ξψ
L
ε,pks

dmεh,σh
+ ,

where on(1) (→ 0 as n →∞) and O(ε) are standard Landau symbols which depend
only on θ, ∇xθ and ∂tθ. The term O(ε) comes from the following relation:

∫

t,x,ξ

∂ξ (gksL(x̂ks , ξ)−gksR(x̂ks , ξ))
+

ψL
ε,pks

θ = O(ε),

where O(ε) obviously depends on ‖ψL
ε,pks

θ‖∞ and supp(ψL
ε,pks

θ). The term on(1) is
a consequence of the fact 1− ω1/n(xks − cs) → 0, n →∞, almost everywhere.

Taking into account (25), we get from (24):

∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )ψ

L
ε,pks

× (26)

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
θ + on(1) +O(ε)

≥−
∫ 1

0

dη

∫

t,x,ξ

θj−,εj ,σj ∂ξψ
L
ε,pdmεh,σh

+

−
∫ 1

0

dλ

∫

t,x,ξ

ω1/n(xks−cs)θh+,εh,σh
∂ξψ

L
ε,pdq

εj ,σj

− .

Now, in (20), take instead of ± the sign + and −ψR
ε,p(ξ)θ(t, x)j−,εj ,σj ,ζj in place

of the test function, where θ ∈ C1
0 (IR+ × Ωs) disappears in the neighborhood of

the discontinuity manifold Γ, and integrate over η ∈ (0, 1). Similarly, for the same
function ϕ, in (21), take instead of ± the sign − and −ψR

ε,p(ξ)θ(t, x)h+,εh,σh,ζh
in

place of the test function, and integrate over λ ∈ (0, 1). Summing the resulting
expressions, letting ζh, ζj → 0, and applying the procedure which led from (23) to
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(26) with changed roles of h+ and j−, we get for an arbitrary θ ∈ C1
0 (IR+ × Ωs):

∫ 1

0

dλ

∫ 1

0

dη

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj

)ψR
ε,p

(
∂t (27)

+
d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
θ +O(ε) + on(1)

≥ −
∫ 1

0

dη

∫

t,x,ξ

ω1/n(xks−cs)θj−,εj ,σj ∂ξψ
R
ε,pdm+,εh,σh

−
∫ 1

0

dλ

∫

t,x,ξ

θh+,εh,σh
∂ξψ

R
ε,pdq−,εj ,σj

.

Now, add (26) and (27). We get after taking into account ψL
ε,p + ψR

ε,p ≡ 1, ∂ξψ
L
ε,p =

−∂ξψ
L
ε,p ≥ 0 (due to the crossing conditions), −j− > 0, and h+ ≥ 0:

∫ 1

0

dη

∫ 1

0

dλ

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )

(
∂tθ

+
d∑

i=1

(GiL(x̂i, ξ)H(αi(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xiθ
)

+ on(1)

≥ −
∫ 1

0

dη

∫

t,x,ξ

(1− ω1/n(xks−cs))θj−,εj ,σj ∂ξψ
R
ε,pdm+,εh,σh

−
∫ 1

0

dλ

∫

t,x,ξ

(1− ω1/n(xks−cs))θh+,εh,σh
∂ξψ

R
ε,pdq−,εj ,σj ≥ 0,

and from here, letting εh, εj , σh, σj → 0, and n → ∞, and appealing to (15), we
conclude:

∫ 1

0

dλ

∫ 1

0

dη

∫

t,x

(
|u(t, x, λ)− v(t, x, η)|+∂tθ +

d∑

i=1

sgn+(u(t, x, λ)− v(t, x, η))×

(28)

×
(
giL(x̂i, u(t, x, λ))− giL(x̂i, v(t, x, η))

)
H(cs−xks)

+
(
giR(x̂i, u(t, x, λ))− giR(x̂i, v(t, x, η))

)
H(xks−cs)

)
∂xiθ ≥ 0.

To proceed, denote by Γ̃ set of edges of the interface Γ, and notice that any test
function ϕ ∈ C1

0 (IR× (IRd\Γ̃)) can be written as a sum

ϕ =
n∑

j=1

ϕj ,

where supp(ϕj) ⊂ IR× Ωj , j = 1, . . . , n.
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Therefore, from (28), we conclude that the following holds for every ϕ ∈ C1
0 (IR×

(IRd\Γ̃)):
∫ 1

0

dλ

∫

IR+×IRd

(v − u)±∂tϕdtdx (29)

+
∫ 1

0

dλ

∫

IR+×IRd

d∑

i=1

sgn±(v − u)×

×
(

(giL(x̂i, v)− giL(x̂i, u))κL(x) + (giR(x̂i, v)− giR(x̂i, u)) κR(x)
)
∂xiϕ

+
∫

IRd

(v0 − u0)±ϕ(0, x)dx ≥ 0.

Now, denote by Γ̃ε an ε-neighborhood of the set Γ̃. Let ωε ∈ C1(IRd) be such that

ω̃ε(x) =

{
1, x /∈ Γ̃2ε

0, x ∈ Γ̃ε.

Notice that

|∂xi ω̃ε| ≤ C

ε

meas(supp(∂xi ω̃ε)) ≤ C̃ε2,
(30)

for some constants C and C̃, since codim(Γ̃) ≥ 2.
Then, take an arbitrary ϕ ∈ C1

0 (IR × IRd) and put in (29) ϕω̃ε. We conclude
from (30):

∫ 1

0

dλ

∫

IR+×IRd

(v − u)±∂tϕdtdx

+
∫ 1

0

dλ

∫

IR+×IRd

d∑

i=1

sgn±(v − u)×

×
(

(giL(x̂i, v)− giL(x̂i, u))κL(x) + (giR(x̂i, v)− giR(x̂i, u)) κR(x)
)
∂xiϕ

+
∫

IRd

(v0 − u0)±ϕ(0, x)dx ≥ O(ε).

From here, using the standard procedure (e.g. [9]) and (17), we arrive at (13).
This completes the proof.
A simple corollary of Theorem 7 and Theorem 8 is (see e.g. [3, Page 377]):

Corollary 13. There exists a unique entropy weak solution to (4), (2).

3. Admissibility conditions for the general interface

In order to formulate the admissibility conditions in the general case, we shall
assume that for every i ∈ {1, . . . , d} the interface Γ can be represented in the form

Γ = {x ∈ IRd : xi = α(x̂i)}, (31)

for Lipschitz continuous functions αi, i = 1, . . . , d. We can safely assume that the
latter representation holds only locally, but to avoid unnecessary complications, we
shall assume exactly (31).
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If not stated differently, we will use notions and notations from the previous
section. We are going to use the following admissibility conditions.

Definition 14. Let u0 ∈ L∞(IRd), a ≤ u0 ≤ b a.e. on IRd. Let u ∈ L∞([0,∞) ×
IRd).

1. The function u is an entropy sub-solution (respectively entropy super-solution)
of problem (4), (2) if for any ξ ∈ IR and any ϕ ∈ C1

0 (IR× IRd):
∫

IR+×IRd

(u− ξ)±∂tϕdtdx (32)

+
∫

IR+×IRd

d∑

i=1

sgn±(u− ξ)×

×
(

(giL(x̂i, u)− giL(x̂i, ξ)) H(αi(x̂i)− xi)

+ (giR(x̂i, u)− giR(x̂i, ξ))H(xi − αi(x̂i))
)
∂xi

ϕdtdx

+
∫

IRd

(u0 − ξ)±ϕ(0, x)dx

−
d∑

i=1

∫

IR+×IRd−1
(giL(x̂i, ξ)−giR(x̂i, ξ))

±
ϕ|xi=αi(x̂i)dtdx̂i ≥ 0.

2. The function u is an entropy solution if it is a weak k-entropy process sub-
and super-solution at the same time.

If we assume that u ∈ L∞([0,∞)×IRd× (0, 1)) and integrate (32) over λ ∈ (0, 1)
then the function u is an entropy process sub (super) solution to (4), (2). Existence
of the entropy process sub and super solutions exist for the general case as well and
the proof is completely the same as the proof of [11, Theorem 2.8] (in other words,
Theorem 7 holds).

3.1. Proof of Theorem 8 in the case of general interface. We shall prove
that every entropy admissible solution for the Cauchy problem with the interface
in the general form can be approximated by a sequence of entropy solutions to the
Cauchy problem with the interface in the special form. Since solutions to Cauchy
problems with special interface are stable, this will imply stability of the solution
to the Cauchy problem in the general situation that we are considering here.

So, fix an δ > 0 and approximate the given interface Γ by a manifold Γδ which is
piecewise parallel to the coordinate hyper-planes and satisfies dist(Γ, Γδ) ≤ δ, and
it divides the space IRd into two parts ΩL,δ and ΩR,δ. We assume that for every
relatively compact K ⊂⊂ IRd it holds

∫

K

(|(κL,δ − κL)(x)|+ |(κR,δ − κR)(x)|) dx = O(δ), (33)

where κL,δ and κR,δ are characteristic functions to ΩL,δ and ΩR,δ, respectively, and
O(δ) depends only on K.

Denote by uδ a unique entropy admissible solution in the sense of Definition 3
to the following Cauchy problem
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∂tuδ + Divx (gL(x, uδ)κL,δ(x) + gR(x, uδ)κR,δ(x)) = 0,

uδ

∣∣∣
t=0

= u0(x).
(34)

Denote by Ωδ
j , j = 1, . . . , rδ, sets such that (10) is satisfied with Γ replaced by

Γδ, and n replaced by rδ. Since uδ is entropy admissible, it satisfies for every
ϕ ∈ C1

0 (IR× Ωδ
j × IR), j = 1, . . . , rδ, the following kinetic relation:

∫ 1

0

dλ

∫

t,x,ξ

hδ
±× (35)

×
(
∂t+

d∑

i=1

(
GiL(x̂i, ξ)H(cδ

j −xkj )+GiR(x̂i, ξ)H(xkj−cδ
j)

)
∂xi

)
ϕ

+
∫

x,ξ

h0
±,kϕ|t=0−

∫

t,x̂kj
,ξ

∂ξ

(
gkjL(x̂kj , ξ)−giR(x̂kj , ξ)

)±
ϕ|xkj

=cδ
j

=
∫

t,x,ξ

∂ξϕdmδ
±,

where hδ
± are equilibrium functions corresponding to uδ, and mδ

± are non-negative
measures satisfying the corresponding conditions from Definition 9.

Next, take the entropy process solution u ∈ L∞(IR+ × IRd × (0, 1)) to (4), (2)
(the Cauchy problem that corresponds to the interface Γ). It satisfies the following
kinetic relation for every ϕ ∈ C1

0 (IR× IRd × IR)

∫ 1

0

dλ

∫

t,x,ξ

h±×

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(αi(x̂i)−xi)+GiR(x̂i, ξ)H(xi−αi(x̂i))) ∂xi

)
ϕ

+
∫

x,ξ

h0
±,kϕ|t=0dxdξ−

d∑

i=1

∫

t,x̂i,ξ

∂ξ (giL(x̂i, ξ)−giR(x̂i, ξ))
±

ϕ|xi=α(x̂i)dx̂idtdξ

=
∫

t,x,ξ

∂ξϕdm±dξ,

for non-negative measures m± (satisfying the appropriate conditions from Defini-
tion 9), and equilibrium functions h± corresponding to the function u. We can
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rewrite the latter relation for ϕ ∈ C1
0 (IR× Ωδ

j × IR) in the form

∫ 1

0

dλ

∫

t,x,ξ

h±× (36)

×
(
∂t+

d∑

i=1

(
GiL(x̂i, ξ)H(cδ

j−xkj )+GiR(x̂i, ξ)H(xkj−cδ
j)

)
∂xi

)
ϕ

+
∫

x,ξ

h0
±ϕ|t=0−

∫

t,x̂i,ξ

∂ξ (giL(x̂i, ξ)−giR(x̂i, ξ))
±

ϕ|xi=α(x̂i)

=
∫

t,x,ξ

∂ξϕdm±

+
∫ 1

0

dλ

∫

t,x,ξ

h±
( d∑

i=1

(
GiL(x̂i, ξ)

(
H(αi(x̂i)−xi)−H(xkj−cδ

j)
)

+ GiR(x̂i, ξ)
(
H(xi−αi(x̂i))−H(xkj

−cδ
j)

) )
∂xi

)
ϕ,

Since the left-hand sides of (35) and (36) are the same, and the measures m±
and mδ

± are non-negative, we can repeat the procedure from the proof of Theorem
8 to obtain for θ ∈ C1

0 (IR× Ωδ
s), s ∈ {1, . . . , rδ} fixed:

∫ 1

0

dλ

∫

t,x,ξ

(−h+,εh,σh
hδ
−,εj ,σj

)× (37)

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
θ

+O(ε) + on(1)

≥
∫ 1

0

dλ

∫

t,x,ξ

h+

( d∑

i=1

(
GiL(x̂i, ξ)

(
H(αi(x̂i)−xi)−H(xks−cδ

s)
)

+ GiR(x̂i, ξ)
(
H(xi−αi(x̂i))−H(xks−cδ

s)
) )

∂xi

)
(θψL

ε,pks
hδ
−,εj ,σj

)

+
∫ 1

0

dλ

∫

t,x,ξ

h+,εh,σh

( d∑

i=1

(
GiL(x̂i, ξ)

(
H(αi(x̂i)−xi)−H(xks−cδ

s)
)

+ GiR(x̂i, ξ)
(
H(xi−αi(x̂i))−H(xks−cδ

s)
) )

∂xi

)
×

× ((ω1/n(xks−cs)−1)ψL
ε,pks

θhδ
−,εj ,σj

)

Now, take an arbitrary θ ∈ C1
0 (IR+ × IRd). Denote by Γ̃δ set of edges of the

hyper-polyhedron Γδ. Denote by ω̃m the cut off function such that ω̃m(x) ≡ 0 in
the 1/m-neighborhood of Γ̃, and ω̃m(x) ≡ 1 out of 2/m-neighborhood of Γ̃. Since
codimΓ̃δ ≥ 2, by inserting ω̃mθ into (37) and letting m → ∞, we conclude that it



WELL-POSEDNESS FOR DISCONTINUOUS FLUX 17

holds:
∫ 1

0

dλ

∫

t,x,ξ

(−h+,εh,σh
hδ
−,εj ,σj

)× (38)

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(cs−xks
)+GiR(x̂i, ξ)H(xks

−cs)) ∂xi

)
θ

+O(ε) + on(1)

≥
∫ 1

0

dλ

∫

t,x,ξ

h+

( d∑

i=1

(
GiL(x̂i, ξ)

r∑
s=1

κΩδ
s

(
H(αi(x̂i)−xi)−H(xks−cδ

s)
)

+ GiR(x̂i, ξ)
r∑

s=1

κΩδ
s

(
H(xi−αi(x̂i))−H(xks

−cδ
s)

) )
∂xi

)
(θψL

ε,pks
hδ
−,εj ,σj

)

+
∫ 1

0

dλ

∫

t,x,ξ

h+,εh,σh

( d∑

i=1

(
GiL(x̂i, ξ)

r∑
s=1

κΩδ
s

(
H(αi(x̂i)−xi)−H(xks

−cδ
s)

)

+GiR(x̂i, ξ)
r∑

s=1

κΩδ
s

(
H(xi−αi(x̂i))−H(xks−cδ

s)
) )

∂xi

)
×

× ((ω1/n(xks−cs)−1)ψL
ε,pks

θhε
−,εj ,σj

),

where κΩδ
s

is the characteristic function of the set Ωδ
s.

Next, denote by v ∈ L∞(IR+ × IRd × (0, 1)) the nonlinear weak-? limit along a
subsequence to the family (uδ). Denote j−(t, x, ξ) = sgn−(ξ − v(t, x, η)). It holds
for any θ ∈ C1

0 (IR+ × IRd)

lim
δ→0

∫

t,x

hδ
−,εj ,σj

θ =
∫ 1

0

dη

∫

t,x

j− ? ρεj ,σj θ.

Having this in mind, we get from (38) after letting δ → 0 and taking (33) into
account:

∫ 1

0

dη

∫ 1

0

dλ

∫

t,x,ξ

(−h+,εh,σh
j−,εj ,σj )× (39)

×
(
∂t+

d∑

i=1

(GiL(x̂i, ξ)H(cs−xks)+GiR(x̂i, ξ)H(xks−cs)) ∂xi

)
θ

+O(ε) + on(1) ≥ 0.

Finally, letting here n →∞, and ε, εh, σh, εj , σj → 0, we reach to (28). The rest of
the proof is standard and relies on (17) and the procedure from [9].

The proof is over.

4. Appendix

In this section, we shall propose a possible extension of the transport-collapse
operator of Y.Brenier [4]. It seems to be rather nontrivial to rigorously prove
appropriate convergence results, and we will keep our considerations at the level of
informal arguing.



18 D. MITROVIĆ

Original transport-collapse scheme [4] was actually based on the kinetic formula-
tion which was explicitly formulated more than ten years later [16, 12]. The kinetic
formulation for the Cauchy problem for a homogeneous scalar conservation law

∂tu + ∂xf(u) = 0, (t, x) ∈ IR+ × IRd,

u|t=0 = u0(x),
(40)

has the form

∂th + f ′(ξ)∂xh = −∂ξm,

h|t=0 = h(u0, ξ) =





1, 0 ≤ ξ ≤ u0(x)
−1, u0(x) ≤ ξ ≤ 0,

0, else

, (41)

where m is a non-negative measure, and

h(u, ξ) =





1, 0 ≤ ξ ≤ u(t, x)
−1, u(t, x) ≤ ξ ≤ 0,

0, else

where u is the entropy solution to (40). Then, instead of (41), Brenier (implicitly)
considers

∂th + f ′(ξ)∂xh = 0, h|t=0 = h(u0, ξ), (42)

which he solves using the standard method of characteristics. The solution is
h(u, ξ) = h(u0(x− f ′(ξ)t), ξ). Then, relying on the fact that

∫
h(u, ξ)dξ = u(t, x), (43)

the transport-collapse operator T (t) is introduced

(T (t)u0)(x) =
∫

ξ

h(u0(x− f ′(ξ)t), ξ). (44)

The main statement in the transport-collapse framework is the following theorem.

Theorem 15. Denote by u the entropy solution to Cauchy problem (40). It holds

u(t, x) = lim
n→∞

(
T

(
t

n

))n

u0(x).

We shall explain in one-dimensional case how one could extend the transport-
collapse framework on the discontinuous flux case. The transport-collapse princi-
ple in the multidimensional case is bit more involved but the extension is rather
straightforward. We shall spend couple of lines on this issue at the end of the
section.

Accordingly, consider Cauchy problem (6). We have proved in Section 2 that
the latter Cauchy problem admits a unique weak solution satisfying the following
kinetic relation

∂th±+∂x (g′(ξ)H(−x)+f ′(ξ)H(x))−∂ξ(g(ξ)−f(ξ))±δ(x)=∂ξm±(t, x, ξ), (45)

where, as before, h±(u, ξ) = sgn±(u(t, x)− ξ), and m± are positive measures.
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Now, assume that the functions g and f have intersection at the point 0 < p < 1,
and are such that

f(ξ)− g(ξ) ≥ 0, ξ ∈ (p, 1),

f(ξ)− g(ξ) ≤ 0, ξ ∈ (0, p).

Following the transport-collapse principle, we shall replace (45) by the following
linear equations:

∂th+ + ∂x (g′(ξ)H(−x) + f ′(ξ)H(x))h+ = 0, ξ ∈ (0, p), (46)

∂th− + ∂x (g′(ξ)H(−x) + f ′(ξ)H(x))h− = 0, ξ ∈ (p, 1). (47)

Remark that we have removed not only the measures m± from (45) but also term
containing δ-distributions. It is necessary to be done since the terms containing δ
distributions disappear for ξ belonging to the intervals where equations (46) and
(47) are defined.

Consider only (46) since (47) is considered analogically. Appropriate system of
characteristics has the form:

ẋ = g′(ξ)H(−x) + f ′(ξ)H(x), x(0) = x0,

ḣ+ = (g′(ξ)− f ′(ξ))δ(x), h+(0) = h+(u0(x0), ξ), ξ ∈ (0, p).

The functions on the right-hand side of the latter equations are too singular to
provide existence of solutions. Therefore, following the construction of the entropy
solution to (6) (see Theorem 7), we regularize the functions H and δ to obtain the
following, globally solvable, system of characteristics:

ẋ = g′(ξ)Hε(−x) + f ′(ξ)Hε(x), x(0) = x0,

ḣ+ = (g′(ξ)− f ′(ξ))δε(x), h+(0) = h+(u0(x0), ξ), ξ ∈ (0, p).
(48)

Denote by hTC
+,ε(t, x, ξ) the solution to the latter system. Applying the similar

procedure on (47), we reach to the function hTC
−,ε(t, x0, ξ) representing the solution

to (48) with h+ replaced by h− for ξ ∈ (p, 1).
Next, notice that

h+(u, ξ) = h(u, ξ)− sgn−(ξ),

h−(u, ξ) = h(u, ξ)− sgn+(ξ),

and thus ∫ p

0

h+(u, ξ)dξ =
∫ p

0

(
h(u, ξ)dx− sgn−(ξ)

)
dξ,

∫ 1

p

h−(u, ξ)dξ =
∫ 0

p

(
h(u, ξ)dx− sgn+(ξ)

)
dξ,

Summing the latter two equations, we conclude:
∫ p

0

h+(u, ξ)dξ +
∫ 1

p

h−(u, ξ)dξ = u− p.

Having this in mind, analogically with (42), (43), and (44), we introduce the ap-
proximate transport-collapse operator:

Tε(t)u0(x) =
∫ p

0

hTC
+,ε(u, ξ)dξ +

∫ 1

p

hTC
−,ε(u, ξ)dξ − p. (49)
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We conjecture the following:

Conjecture 16. Denote by u the entropy solution to Cauchy problem (40). It
holds

u(t, x) = lim
ε→0

lim
n→∞

(
Tε

(
t

n

))n

u0(x). (50)

In the multidimensional case, we need to approximate the interface by a manifold
which is piecewise parallel to the coordinate hyper-planes. With the notation from
Section 3 (more precisely (33)), we introduce the approximate transport-collapse
operator for every Ωδ

j , j = 1, . . . , nδ:

T j
ε,δ(t)u0(x) =

∫ pj

0

hj,TC
+,ε,δ(u, ξ)dξ +

∫ 1

pj

hj,TC
−,ε,δ(u, ξ)dξ − pj ,

where pj , j = 1, . . . , d, are the intersection point of the functions gijL and gijR for
ij ∈ {1, . . . , d} such that Γ ∩ Ωj ⊂ {xij

= cj}. The functions hj,TC
±,ε,δ, j = 1, . . . , nδ,

are solutions to the multi-dimensional analogue of the system of characteristics
given by (48).

Assume for simplicity that Ωj , j = 1, . . . , nδ, are disjoint, and that instead (10)

they satisfy IRd = Cl
(⋃nδ

j=1 Ωj

)
. We conjecture the following:

Conjecture 17. Denote by u the entropy solution to Cauchy problem (4), (2) with
the interface Γ in the general form. It holds

u(t, x) = lim
δ→0

lim
ε→0

lim
n→∞

nδ∑

k=1

κΩk
(x)

(
T k

ε,δ

(
t

n

))n

u0(x), (51)

where κΩk
is the characteristic function of the set Ωk, k = 1, . . . , nδ.

The transport-collapse procedure is of importance since it provides an explicit
formula for the solution to the considered Cauchy problem. For instance, by fixing
large n = Nk, N ∈ IN , k > 1, and putting ε = 1/N (we probably need a larger
order of convergence for n than for ε since we first let n → ∞ and then ε → 0)
we obtain a numerical scheme that should converge toward the entropy solution to
(6). More precisely, we define:

u(t + ∆t, x) =
(

T1/N

(
∆t

N

))Nk

u(t, x).

We believe that this approximation depends only on the rate of n/ε, and that
it is independent on the choice of subsequences since we have a unique entropy
solution to (4), (2). In the multidimensional case, we have three parameters and
we should probably choose them so that rate of convergence of n is larger than the
rate of convergence of ε, and the rate of convergence of ε is larger that the rate of
convergence of δ.

Still, in order to justify the latter procedures it is necessary first to prove Con-
jecture 16 and Conjecture 17, and then to obtain error estimates for the transport-
collapse procedures (50) and (51) in order to understand relations between pa-
rameters n, ε, and δ. At the moment, we are far from being able to settle these
questions.
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