STRONG TRACES FOR ENTROPY SOLUTIONS OF
HETEROGENEOUS ULTRA-PARABOLIC EQUATIONS

JELENA ALEKSIC AND DARKO MITROVIC

ABSTRACT. We prove that entropy solutions of heterogeneous ultra-parabolic
equations satisfying a traceability condition admit strong traces at ¢ = 0.
In particular, this property is satisfied by entropy solutions to heterogeneous
scalar conservation laws. The tools that we are using are (Panov’s extension
of) H-measures and the kinetic approach.

1. INTRODUCTION

The aim of this paper is to prove the existence of strong traces at ¢ = 0 for
entropy solutions of an ultra-parabolic equation

Opu + divy f(z,u) Z O, (bij(x,1)0,u), (1)
i,5=1
where u = u(t,z) € L®(R" x R?) is the unknown function, (t,z) € RY :=
Rt x R*= (0,00) x R, k <d, k,d € IN.
We assume the following:
e The function f € C'(IR? x IR; IR?);
e The matrix b(z, A) = [b;;(z, A)]; j=1,..k € (C(IR? x ZR))ka, is nonnegative
definite in the sense that for almost all z € IR?,

(b(a, M€, &) = ez, N[E]*, €€ R*, A€ R, (2)

where (-,-) denotes the scalar product in IR*. The nonnegative function
c fulfills the following: there exists a partition {€,,}memn, m are open,
of R? (ie. R = CI(U_, Q) ) such that for every m € IN there exist
increasing sequence of real numbers {A"};cpn such that for almost every
T € Qp,

c(x,\) >0 for A€ U()\;”, i) (3)
i=1
e The elements of the matrix b are of the following form,

bij(x,\) = ZO’ x)\aljx)\) ,j=1,..,k, (4)

where o?(z, ) = o?(z, \).
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The latter equation describes transport processes in heterogeneous media in
which the diffusion (which is represented by the second order terms) can be ne-
glected in certain directions [12]. Such equations were firstly considered by Graetz
[7], and Nusselt [16] in their investigations concerning the heat transfer. Besides
the heat transfer, equations of type (1) describe processes in porous media (cf. [21])
such as oil extraction or CO2 sequestration which typically occur in highly hetero-
geneous surroundings. One can also find applications in sedimentation processes,
traffic flow, radar shape-from-shading problems, blood flow, gas flow in a variable
duct and so on.

Before we continue, let us recall the definition of the strong traces.

Definition 1. The strong trace of a solution u to (1) at ¢ = 0 is a function
ug € L=(IR?) such that for any relatively compact K CC IR?,

lim/ lu(t, ) — uo(x)|dz = 0.
t—0 [

The question of existence of traces was firstly raised in the context of limit of
hyperbolic relaxation toward a scalar conservation laws . The notion of traces was
also used to formulate the solution concept for boundary value problems for scalar
conservation laws ([2] and references therein). The traces played an essential role in
proving uniqueness for scalar conservation laws with discontinuous flux, cf. [9, 14].

However, all previous results were given for the scalar conservation laws in ho-
mogeneous media (see e.g. [11, 19] and references therein). Here, we shall extend
the results on the case of ultra-parabolic equations which govern processes in het-
erogeneous media.

The basic tools that we are going to use are the H-measures [5, 22], more precisely
its variant introduced in [1] and generalized in [8, 20]. We combine this technique
with the classical blow up techniques, [6, 18, 24], induction with respect to the
space dimension [18], and the kinetic formulation of (1), [4] (see also the classical
work [13]).

The extension of the mentioned techniques (concretely the ones from [18]) from
the homogeneous scalar conservation laws to (substantially) homogeneous ultra-
parabolic equations does not demand significant changes in the strategy. However,
the situation is much more complicated if we assume that the flux depends on
the space variable. It seems necessary to pass to the kinetic formulation to the
considered problem, not in order to use the averaging lemmas as in [11, 24], but
in order to introduce appropriate change of variables which, locally, reduces the
non-homogeneous equation to the homogeneous one.

Therefore, we shall split the proof in two parts. First, in Section 3, we consider
the function f = (f1,..., fq) with components fii1,..., fo depending only on the
state variable u, i.e. without explicit dependence on the space variable x,

k d k
Opu + Z@xifi(x,u) + Z Oz, fi(u) = Z Oz, (bij(2,1)0,,u). (5)
i=1 i=k—+1 ij=1
Then, in Section 4, we shall reformulate (1) in the kinetic framework, and use
appropriate change of variables to reduce the equation on an equation of type (5)
in a neighborhood of every point where the existence of traces could be lost.
In Section 2 we give notions and auxiliary results, as well as formulation of the
main result.
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In the final section, we discuss the traceability condition and give several exam-
ples of conservation laws satisfying the condition.
2. NOTIONS, NOTATIONS, AND AUXILIARY RESULTS

We shall first introduce the entropy admissibility concept for (1). It comes as an
extension of the Kruzhkov admissibility concept for scalar conservation laws [10],
cf. [3, 4, 20].

Definition 2. Denote by B(z,u) = (Bij(x7u))i,j:(),...,d the matrix such that
Bij(z,u) =0, fori € {0,k+1,....,k+d} or j € {0,k +1,....k +d},
OuBij(z,u) = bj(x,u), fori,j € {1,...,k}.

A function u € L>(IR?) is an entropy solution to (1) if it satisfies the condition
Zah )0pu € LH(IRY), 1=1,..,k, (6)

and the following entropy inequality: for any c € IR,

d d
Dol —c| + 3" 0, (sem(u — ) i) — fi(,))) + sen(u — ) 3 De S,
i=1 i=1
k
- Z 2., (sms — ) (Byy e, w) — Buy(2 ) — snfu — ) D D2, Buy(a0
k
+ sgn(u — ¢) Z ( Bij(@,u) + Dy bij(z, u)us, ))SO7 (7)

in D'(IRL), cf. [3].

In order to prove that an entropy solution to (1) admits strong traces at ¢ = 0,
we shall prove more, that any quasi-solution to (1) admits the strong traces at the
initial hyperspace ¢ = 0. The concept of quasi-solutions was introduced in [18].
Having in mind that

k

d
ZDzifi(xac)f Z Dgi,erij(xﬂC):’}/CéM(]Rd% ce R,

ij=1
we have the following definition of the quasi solutions to (1), cf. [20].

Definition 3. We say that u € L>(IR%) is a quasi-solution to (1) if for every

¢ € R, and almost every (¢,z) € IR%, there exists a Radon measure . € M(IR%),
such that

Ly(t,x) = 3t\u — |+ div[sgn(u — ¢)(f(z,u) — f(z,c))] (8)
Z s (sgn u—c) /“ bij(z,v)dv) = —pc(t, x),

in D/(]Ri). The Radon measures fi., ¢ € IR, are called the defect measure corre-
sponding to u.
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From (8), with ¢ > ||ul|, it follows that there exists p € M(IR%), such that

k
dyu + divy f(z,u) — Z Oz, (bij (z, u>8acJu) =—H (9)

4,J=1

in D’ (ﬂi’i).
To proceed, we need the truncation function. For a,b € IR, a < b, denote

Sap(u)(t, z) = max{a, min{u(t, =), b} }.
A simple consequence of (2) and (6) is the following lemma.

Lemma 4. Let u be an entropy solution to (1). Then for every i € IN and any
a < b such that (a,b) C (A", A\[%,), m € IN,

Op,5ap(u)(t,x) € L*(RT x Q,,), i=1,... k.

Proof: First, notice that

() = 1, a<A<bd .
’ 0, A<aorA>b

From here and (2), we conclude,

k

S U
Z'amsa,b(u)|2 < a,b( ) Z bij(xvu)umiuzj
=1

k k 2
< max (c(z, )Y (Z Jijaxisa,b(u)> e LMR* x Q,,),

j=1 \i=1

where the last relation follows from (6). This concludes the proof. a

The main result of the paper is the following theorem.

Theorem 5. If u is a quasi-solution to (1) then there exists a function ug €

L>(IRY) such that

Llloc(‘Rd) - tlg}(l) U(t, ) = Uo-

Important part in the proof of Theorem 5 plays the notion of nondegeneracy
for equation (1). It is given in [20, Definition 2]. Denote by X C IR the linear
subspace of IRt such that

X = {€=(&,...&0) e R &1 = ... = & = 0}. (10)

We see that for all £ € X, (B(z, A&, €) = 0, which in terms of [20, Definition 2],
means that equation (1) is nondegenerate if for almost all (¢,z) € IR% and for all

nonzero £ = (€0,0,..,0,&r41, ., &4) € X and € = (0,&1,...,&,0,...,0,) € X+, the
mappings

d k
A boA+ Y &fiw ) and A= Y0 Bi(e MGG (11)

i=k-+1 ij=1
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are not simultaneously constant on nondegenerate intervals. From conditions (2)-
(3), we see that the second statement from (11) is fulfilled, which gives us the
following definition.

Definition 6. We say that equation (1) is nondegenerate if for almost all (¢,z) €
Bi and for all £ € X, £ # 0, the mapping

d
A&+ Y &ifila, ) (12)

i=k+1
is not constant on nondegenerate intervals.

We shall also need the following statements whose proofs, with negligible adap-
tations, can be found in [18].

Proposition 7 (Existence of a weak trace). [18, Proposition 1 and Corrolary 1]
If u is a quasi solution to (1), then there exists weak trace in the sense that there
exists ug € L>°(IRY) such that

u(t,) — ug, *-weakly in L®(R%),ast — 0, t € E,
where E := {t > 0| (t,z) is a Lebesque point to u(t,z) for a.e. z € IR?}.

The following proposition concerns sufficient condition for existence of the strong
trace.

Proposition 8. [18, Proposition 3] Let u € L*®(IR%) be a quasi solution to (1)
and there is a sequence t,, € £ such that t,, — 0, m — oo, and u(t,,, ) — ug, as
m — oo in Ll _(IR?). Then u(t,-) — ug, in L (IR?), ast — 0, t € €.

loc loc
2.1. H-measures. We use here the concept of the parabolic H-measures intro-
duced in [1] and generalized in [20]. The parabolic H-measures are modifications of
the H-measures introduced in [5, 22].

Recall that a measure valued function on ]Ri is a weakly measurable mapping
(t,x) — vy, where vy, are Borel probability measures with compact support in
IR. If suppy, , C [—M, M], we say that v; , is bounded and define ||y ;|| 0o = inf M.
If a measure valued function has the form vy 5 (X) = §(A — u(t, z)), where § is the
Dirac measure, then we say that v, , is regular. Regular measure valued function
Ut x(A) = 0(A—u(t, z)) is identified with the function u, so we can embed the space
L>*(IR%) into the space of bounded measure valued function, MV (IR%).

A sequence of bounded measure valued function, v;", € M V(Ri), n € N,

e weakly converges to vy, € MV (IRY), U] — 144, if for every ¢ € C(IR),
/(ﬁ()\)duﬁ()\) - /¢(/\)dut,$()\) weakly—+* in L (IR%), as m — oo;
e strongly converges to v, € MV (IRY), v}, — 144, if for every ¢ € C(IR),

/ SN () — / SN (V). in Lo (R, as m — oo;

e is bounded if sup,, ¢ v [|V47% [0 < 00.
Every bounded sequence v;", € M V(Ri) is weakly precompact, cf. [17, 20].

Let v, — v, as m — co. Denote,

U (B, 2, A) = u{f’x(()\7—|—oo)), uo(t,x,\) = VRI((A,+OO)),
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for (t,z) € R}, A € IR. Recall [20], the distribution functions uy, (¢, z, A), uo(t, z, \)
are measurable in (t,z) € R?, and

Upy (t,2) 1= U (t, 2, A) — ug(t, 2, \) — 0, weakly—* in L>(IRL), as m — oo.

for all A € & := {X\o € R|uo(t,z,\) = uo(t,z,Xo), as A — Ao, in L{ (IR%)}. The
complement R\E is at most countable.

For X given by (10), we define Sx := {¢ € R : G4+&i+.. +Ei+EE,  +.4+8 =
1} and p(€) == (& + & + . + &+ &8 + .. + 5. Notice that for £ € R,

E=¢+¢&eXandfe X1,

3 3
p(€)?*  p(§)

Now, we introduce the ultra-parabolic H-measure, {P?}, sce, associated to the
bounded (sub)sequence of measure valued functions {¥}"; },,, as well as notions con-
necting the equation under consideration with the H-measures.

Tx(§) ==

Proposition 9. [20, Proposition 2] There exists a family of locally finite Borel
measures {41}y qce in RE x Sx and a subsequence Uy, (t,z) = {Up(t,z)}ree
such that for all ¢1,p2 € Co(IRL) and 1 € C(Sx)

m—00

(WP, (1, 2)ba(t, 2)(€)) = lim / FlosU) () FlooU|(€)b(m (€))de.

Definition 10. We say that the bounded sequence of measure valued functions
{v{" }m fulfills the condition (C) if the sequence of distributions

+oo

+oo
o [ - pd +dive [ () = Fla )0

S / (Buj (. \) — Bis(,p))duf™s (V)

i,j=1
is precompact in ngc’_ (Ri)

Here, HIOC1 (Ri) stands for the locally convex Sobolev space H IOC (]Rd)
{u € D’(]Rd)\(qu € C°(RY))ugp € H 1V 2(IRY)}, where H-172(IR%) is the

anisotropic Sobolev space

“1-2(pdy — )y, 1 md w 2 Flul(§) — Flw
13 = (e | G e 12t M = Ao

Recall [20], H-'(R?) c H~V2(RY) c H2(IR%) , and also
Hy H(IRY) C Hye " *(RY) € H2(RY). (13)

loc

The condition (C) is important because of the following proposition. The proof
is the same as the proof of [18, Theorem 5].

Proposition 11. If the H-measure {;i*?},, 4e p associated to the sequence {v}", } o, is
not trivial, and condition (C) is fulfilled, then there exists an interval I = [pg, po+9],
§ >0, and &, & # 0, such that EoN+ &1 fer1(N) + .o+ €afa(N) = const, for N € I,
i.e. the genuine nonlinearity condition is not fulfilled.
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2.2. Scaling. This part represents a more significant modification of the standard

techniques [18, 24]. Namely, in the hyperbolic case, one of the crucial steps in the

proof of traces existence was the change of variables (t,z) + (et,y + ex), y € IR?

is fixed. Since we have the ultra-parabolic terms, we need a different scaling.
Accordingly, denote

= (21,..04,0,..0) € R, & =1(0,..,0,2_1,...,2q) € R}, T+i=u1xc IR
and change the variables in the following way,
(t,x) = (emt, /EmZ + €% +y), y€ R,

where (£,,)mev is a sequence of positive numbers converging to zero.

With the new variables, for the weak trace uy from Remark 7, i.e. for ug, , (z) =
uo(/EmT + €T + y), it is easy to prove, cf. [18, 24], that, up to a subsequence, as
m — 00,

uo,, — uo(y), in LL.(IRY), for a.e. y € R
Moreover, for
u™ = u(emt, /EmT +emT +y) and ull = ug, (Emt, VEmT + T +y), (14)

we obtain

L (emt, VJeEmT + €& +Y) = —mpic(Emt, V/EMT + EmT + Y)

+ (VEm — em)sgn(u™ — ¢ Zl:afz )(VemZ + em + y, u™ )ug, (15)

i=1
+ D:rifi(\/ EmT + Erniﬁ + yﬂ«bm) - Dzifi(\/ EmT + Emj + Y, C) = _Mzna

in D'(IRY). Since according to Lemma 4, for ¢ = 1,..., k it holds 9,,u € L*(IR?) C
M(IR%), we can rely on the proof of [24, Lemma 2] to state:

Lemma 12. If . € M(]Ri) then, up to a subsequence,
LS —0in M(RY),

Um

for almost every y € IR? and almost every c € IR.
The topology in the space of locally bounded Borel measures Moe(IR ) s gener-
ated by the semi-norms ||v||x = Var(uc)(K) for compact subsets K CC IR%.

Applying this property to {pc}ecec, C is a dense countable subset of IR, and
using the standard diagonal extraction, we can choose a subsequence of {¢,,} being
common for all ¢ € C, such that

p — 0 in M(IRL), as m — oo, (16)

for a.e. y € IR?.
From (16), by slightly modifying the proof of [18, Theorem 2], one has the
following theorem.

Theorem 13. Ezistence of the strong trace limy_ou(t,-) = ug in L (IR?) is
equivalent to the condition that, for a.e. y € IR?, the sequence u,, converges, up to
a subsequence, in L] (IR%).
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3. EXISTENCE OF TRACES FOR EQUATION (5)

In this section we consider equation (5). We modify the assumptions from the
previous section in the following manner:

o ;e CY{RIx R),i=1,...,kand f; € C*(R), j =k +1,...,d;
e The function ¢ from (2) and (3) can be simplified as ¢ = ¢(A\) > 0 is such
that there exist points —oo < A\; < A\j4+1 < 400, ¢ € IN such that

C()\) >0 for )€ D()\i,/\i_;,_l). (17)

i=1

In other words, the splitting §2,,,, m € IN, implied in (3) reduces to a single
set which is equal to the space IR? itself. This does not affect the generality
of our consideration since it is of the local nature. Therefore, we can always
split our analysis on several subdomains of IR?.

The proof of existence of traces at ¢t = 0 for (5) will be given via the method of
mathematical induction with respect to the space dimension. Therefore we need
the following theorem whose proof is the same as the proof of [18, Theorem 3].

Theorem 14. Suppose that, in (5), the component fq of the flux vector f is absent,
i.e. equation (5) has form

k

k d—1
Opu + Zaf7fl(xau) + Z aLfZ(U) = Z 8I1(blj(x’u)azju) (18)

i=1 i=k+1 i,j=1

Then, if w = u(t,x) is a quasi-solution to (5), then for a.e. xzq € IR, u(t,2’) :=
u(t,z’,xq) is a quasi-solution to reduced equation (18), where ' = (x1,...,24-1
and xq 1s treated like a parameter.

The following theorem is the main result of this section.

Theorem 15. If u is a quasi-solution to (5) then it admits the strong trace at
t =0, i.e. there exists a function ug € L>(IR?) such that
Llloc(Rd) - thII(l) U(t, ) = Uuo-

Proof: We use the method of mathematical induction with respect to d — k.

Step 1. Assume that d — k = 0. In this case, from Lemma 4, we conclude that
for almost every (a,b) € IR, the function s, ,(u) € L*°(IR*; BV (IR?)). From [25],
it follows that s, (u) admits strong traces at ¢ = 0 which, since a, b belong to the
set of full measure, implies that v admits the strong traces as well.

Step 2. Assume that if u € L°°(Rd+71), u=u(t,z1,...,24-1), is a quasi-solution
to

k

k d—1
Oru + Z@wifi(x, u) + Z Ox, fi(u) = Z Oz, (bij(w,1)0,,u), (19)

i=1 i=k+1 ij=1

then there exists a function ug € L°°(IR?~1) such that L{ (IRY~Y) —limu(t, ) = uo.
Step 3. Let u € L°(IRY) be a quasi-solution to (5). Assume that the genuine
nonlinearity is lost in an interval (a,b). To restrict our considerations on a case

when the quasi-solution u takes values in the interval (a,b), we use the truncation
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function v = v(t,x) = sqp(u(t,x)). The point is that for any continuous function
F = F(x,\), one can verify that

sgn(v — ¢)(F(x,v) — F(z,c)) = sgn(u — ') (F(z,u) — F(z,c))—
— %(sgn(u —a)(F(z,u) — F(z,a)) +sgn(u — b)(F(z,u) — F(x, b)))

+ %(F(m,b) — F(z,a)),

where ¢/ = max{a, min{c,b}}. This enables us to conclude that

. 1
Ly = —pe + §(ua + 1),

which proves that v is a quasi-solution to (5).
Since the genuine nonlinearity is lost in (a,b), there exists nonzero vector (&,
Ektt, - ) € RTTFHL such that

oA+ &1 frer1(N) + ..+ Eafa(X) = const, X € (a,b). (20)

We will use this fact to reduce spatial dimension in the following sense. Introduce
the change of spatial variables (zgi1,...z4) € R¥™* — (2141,...24) € RYF as
Z = ct + A%, where ¢ = (Ckq1,.rca) and A = [ai;)ijeki1,. a € RITFXITK
a;; = aj;. Other spatial variables will remain unchanged, i.e. z; = x1, ..., 2 = Tp.
With this change, for u = u(t, z), equation (5) becomes

k d d k
uy —|—Zazifi(z,u) + Z 0z, (cm—!— Z alifi(u)> = Z 0z, (bij(z,u)0:,u) .

i=1 I=k+1 i=k+1 i,j=1
Denote fl(u) = qu + Z?:k,_H aifi(u), | = k+1,...,d and ﬁ(z,u) = fi(z,u),
i =1,...,k. According to (20), we choose cq := &0, Gq k+1 = k41, -y Cdd = Ea

and obtain fy(u) := cqu+ Z?:k-u aq; fi(u) = const, for u € (a,b). This means that
8zdfd(u(t, z)) = 0, and the equation takes the following form,

k d—1 k
Opu+ Y 0 filzu)+ Y 0, fi(u) = 0. (bij(2,u)0:,u) . (21)
i=1 i=k+1 i,j=1
According to Theorem 14, for a fixed (parameter) z4, the function v = v(t, 2/, z4),
2 € IR%! is a quasi solution to (21). Applying Theorem 14 we conclude that
v(t, 2’, z4) is a quasi-solution to (21), for a.e. z4 € RR.
According to inductive hypothesis, for a.e. z; € IR, there exists vo(-,24) €
L (IR4~1) such that

Lig.(R*™") — limo(t, -, za) = vo(-; za)-
We need a special choice of (¢,24) to obtain the analogical assertion in IR?. Thus,
as in [18], we use the following construction. Let
E :={t > 0| (t,z) is a Lebesque point to u(t, ) for a.e. x € R?}
M :={(t,z) = (t,2,24) | (¢, 2) is a Lebesque point to u and
(t,2') is a Lebesque point to u(-, zq4)}
E; :={t > 0| M, is of full measure}, where M; :={z]|(¢,z) € M}
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From E7, which is of full measure, we choose a sequence {t,},cn such that ¢, —
0, r — oco. Then, we take zg4 from

Z= ﬂZ,., where Z, := {s € R|(2',s) € My, }.

Applying the inductional hypothesis to v(t,,2’,24) we obtain that there exists
vo(+, 2z4) € L (IR?™1) such that

Llloc<Bd_1) — lim U(tr, '7Zd) = Uo(',Zd)~

T—00

With this choice of (¢,z4) we have that vy(-,z4) € L>(IR?) and then apply the
Lebesgue dominated convergence theorem to conclude that

Llloc(ﬂ%d) — lim v(t,, z) = vo(2).

T —00

From here, the same limit relation follows for the original variable x, i.e.

L (R — lim v(t,,z) = vo(x).

T™—00

Then, from Proposition 8, we have that

Llloc(md) - tegI?ﬂOv(t, ) = Yo-

Applying Theorem 13, we have that there is a sequence of positive numbers ¢, — 0,
as m — 00, such that the sequence of functions vy, (t,z) = v(emt, \/EmT +emT + )
converges strongly in L}OC(Ri), for a.e. y € IR%.

The analysis in this proof is done on the interval I = (a,b). Now we want to
collect all intervals where the genuine nonlinearity is lost. To accomplish countable
many intervals we will restrict our attention to the numbers a,b € C, where C
is countable dense subset of IR used in the previous section. Than 7 := {I =
(a,b) : a,b € C} is countable set of intervals. By the diagonal extraction we can
choose &, — 0, such that for all I = (as,b;) € Z, and ae. y € R?, vl =
max{as, min{u,,,bs}} converges strongly in L{, (IR1), as m — oo.

Since, {tm}m is bounded sequence in L®(R%), § (- — um(t,2)) =: v/%(-) €
M V(]Ri) presents a sequence of bounded regular measure-valued functions, weakly
convergent (up to a sequence) to a measure-valued function v, € MV (R%). We
keep the same notation for a subsequence. Furthermore, there is a H-measure
{uP?}p e p associated to the sequence {v]" }m, defied in Proposition 9.

Now, we prove that the sequence 1", (-) := 0 (- — u,(t, 7)) fulfills the condition
(C) from Definition 10. Denote |u — p|* = max{u — p,0} and sgn_ (v —p) =
sgn (Ju — p|*). Since for any continuous function ¢,

sgn (u—p)(p(u) — d(p)) = % (sgn(u — p)(o(u) — ¢(p)) + ¢(u) — ¢(p))



STRONG TRACES FOR HETEROGENEOUS ULTRA-PARABOLIC EQUATIONS 11

< 1
LY o ((sgnmm D)) — (D)) + i) — ﬁ-(p)))

) 2
1=k-+1

k
- 0. ((Sgn(“m —p)(Bij(®,um) — Bij(x,p)) + Bi j(2,um) — Bi,j(x,p)))

where p" and p™ are measures from (8) and (9), associated to wu,,. We see in
(16) that the right hand side tends to zero, as m — oo, in M(léi) From Murat’s
lemma we conclude that £2, — 0 in ngcl, and from (13) we conclude that £2, — 0
in ngcl’_Q as well.

To continue, notice that there exists a constant M > 0 such that

(L = Los &) < Mlp — q|||6]] 2

where ¢ € HM2(IR?) is a test function ¢(t,z) with a compact support such that
Gty apyrs - buy € L2(RL) and ¢y,0, € L2(IRY), for i,j = 1,...,k . The proven
equicontinuity of the function £P with respect to p € IR implies that the condition
(C) is fulfilled for every p € IR, which in turn implies that the H-measure p? = 0.
Thus, for almost every y € IR?

w(Emt, EmT + VEmZ +y) — uo(x), t—0,
in Li

L (IR?). Then, we apply Theorem 13 to conclude about existence of the strong
traces on t = 0 to (5). Details of the procedure can be found in the final steps of
the proof of [18, Theorem 1]. a

4. THE HETEROGENEOUS CASE; PROOF OF THEOREM 5

In this section, we shall prove the main result of the paper — Theorem 5. In
addition to conditions (1)-(4), existence of the strong traces at ¢t = 0 to (1) will be
proved under the following traceability assumptions.

Definition 16. We say that the flux f is traceable if for almost every xy =
(29,...,29) € IR there exists its neighborhood U(xg) C IR? and a partition
{Aéco}lE v of the real line such that for every [ € IN, either of the following two
assumptions hold on (A}, , ALH1)

xo? X0
e there exists a transformation a : R~ — RI* a € C2(IRI~F+1; RITF),
defined by
fk-&-l = ak+1(xk+1, ey Xd, )\)
(22)

&g = aq(Trpt1,. -, Td, N)
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which is regular with respect to & = (Zg+41,...,24) in a neighborhood
U(zg), i-e.

J(\z) = A, @€ U(ao), (23)

To?

Oa !
%‘>0, Ae (A

such that there exist functions p; : IR — IR, i =k +1,...,d, satisfying
d

da;
Yo aohi@N) =), Ae (N N, v e Ulw).  (24)
j=k+1 "7

or

e the flux f is nondegenerate on ()\;0,

almost every = € U(xg) the mapping

ALF) x U(wo) in the sense that for

d
A= od+ Y Gifila,N) (25)

i=k+1

is not constant on nondegenerate subintervals of ()\éo, )\l;gl).

In order to make use of the traceability conditions, we need to rewrite (8) in
the kinetic formulation. The appropriate procedure can be found in [4] in the
homogeneous case, and it can be easily adapted to the situation that we have here.
The following proposition holds.

Proposition 17. The function u represents a quasi-solution to (1) if and only if
the kinetic function

h(t,z,A) =< =1, wu(t,z) <A <0

satisfies the following linear equation.:
Och(t, x, X) + div [Ox f (z, A)h(t, 2, N)]

k
= 3 02, bij( Mh(t, 2, \) = —0rpa(t,z), in D'(IR x RY),

ij=1
where p = px(t,z) € M(IR x R%).

Remark 18. It can be proved that the functional p = uy (¢, z) has more regularity
(see e.g [4]), but since it is not necessary here, we shall not get into that issue.

Proof: As we have already said, the latter proposition is basically proved in [4].
Here, we shall briefly propose another proof.

Accordingly, assume first that (26) is satisfied. Integrating it over [ ¢ a @A, where
M is such that —M < u < M, we immediately reach to (8).

In order to prove the inverse implication, we shall assume that (8) is satisfied for

u—c, u—c>0

the semi-entropies |u — |t = { . It is well known that entropy

0, u—c<0
formulations via entropies and semi-entropies are equivalent. Then, notice that
delu— | = —sgn_ (u—c¢) = h(t,z,c) —sgn, (c), (27)
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and differentiate (8) (with the latter semi-entropies) with respect to c. We get

Oysgn, (u — c) + div [Ox f (@, c)sgn (u — ¢)]

k
- Z agwjbij(x,)\)sgnjL(u —¢) = —0ur(t,x), inD'(Rx RL).
ij=1

Taking (27) into account, we immediately reach to (26).

a

Proof of Theorem 5. Fix o € IR? and its neighborhood U(z¢) so that the
traceability condition is satisfied.

Case 1. If in the neighborhood U(zo) and an interval (A, ,ALF!) nondegener-
acy condition (25) is satisfied, then, according to Proposition 11, the H-measures
corresponding to the sequence v, = 6(- — s,; i+1(Um(t,x))), where u,, is de-

) ER R
fined in (14), is identically equal to zero. Therefore, s\, yit1(um(t, 7)) — vi141
Lo Aeh
in Llloc(lR‘i) along a subsequence. According to Theorem 8, we conclude that the
latter convergence holds for the entire sequence.

Case 2. Assume that the first item of the traceability condition is satisfied, i.e.
that there exists the transformation a from (22) satisfying (24) for the neighborhood
U(zo) and the interval (AL , ALP1). Recall that the function s,;, () == w41

Lo Aeh
also represent a quasi-solution to (1). Therefore, it satisfies the kinetic relation (26)
].7 0 S )\ S ul’l+1(t,x)
for the function h(t,z,\) = ¢ =1, wy+1(t,2) <A <0.
0, else
To proceed, notice that

d

i=k+1
d

Z Z (9% f’ z, /\ )aaj

i=k+1 \j=k+1

d 6]
> o (30 seniEn) < 33 sl

j=k+1 i=k+1 i=k+1i=k+1

d
> 95, (0;(Vh) +A(E @, N),

j=kt1
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where 4 € M(IR"T x U(zp)). Having this in mind, we substitute the change of
variables given by (22) in (26). We obtain:

k d
Och(t,x, ) + Y 0n (Orfi (@, VAt 2, N) + > 05, (0ap;(Mh(t, 2, \))
Jj=1 j=k+1 (28)
- Z 2., bij(x, Mh(t, 2, \) = —0rux(t,2) +4(t,x, ),  in D'(R x R%).
4,j=1
From here and Proposition 17, we conclude that the function v = u(¢, %, ) given
in the new coordinates (z1,..., Tk, Trt1,- .-, Lq) satisfies in U(zo):
k
8t|u - )‘| + Z 89:]' (Sgn(u - A)(fj(x7 u) - f](.’IJ, A))h(ta Zz, )‘))
j=1
d
£ 0ssen(u — N(p;(w) — p; (V) (20)
]’*k+1
U A
Z . (sgn (u— c)/ bij(v)dv> =y\(t,x) —|—/ A(t, x, N )dA.
ij=1 c —-M

From here, we see that in IR x U(xg) the function u represents a quasi-solution to
an equation of type (5) for which we have proved existence of traces in Section 3.
By choosing countably many intervals U(zg) for point zo € IR? in which we have
the traceability assumptions fulfilled, we can cover entire IR? (excluding the set of
measure zero). Since the traces at ¢ = 0 exist in each of the latter neighborhoods,
they exist globally as well. The proof is over. O

5. CONCLUSION AND EXAMPLES

The question that naturally arises is to find conditions on the flux of (1) un-
der which the traceability conditions hold. We guess that it is enough to assume
merely f € C'(IR? x IR;IR?). At the moment, we are not able to provide any
rigorous statement or to provide an equation which does not satisfy the traceability
conditions. However, we find necessary to include several examples.

We start with the simplest one dimensional scalar conservation law:

O + Op(au) = 0.
In this case, we simply take a(x, A) = In(z) on the segments (—oo,0) and (0, c0).
Less trivial example is the two dimensional scalar conservation law which is linear
in the direction of the first space-variable (i.e. it is not non-degenerate).

3t + 611 (Ilu) + 8372 (xluz) =0.
In this case, we can choose a1(z1,22,\) = In(x1) and ag(x1,x2,\) = 29 — 227 +
p2(A)In(zq) for an arbitrary continuous function py on appropriate subdomains of
R? x IR.

In the latter two examples, we could locally reduce the equations on the homo-
geneous ones by introducing appropriate change of variables without passing to the
kinetic formulation (although not quite obvious in the case of the second equation).
This is not so for the following conservation law.
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815 + am (xlu) + 8932(\/35% + u) =0.

In this case, wanted transformations are a1 (21,22, A) = In(z1) and ag(x1, 22, A) =

(3
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