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Abstract

In this paper we study an integro-differential equation that arises in modeling slow
erosion of granular flow. We construct piecewise constant approximate solutions, using a
front tracing technique. Convergence of the approximate solutions is established through
proper a priori estimates, which in turn gives global existence of BV solutions. Fur-
thermore, continuous dependence on initial data and on the erosion function is derived,
achieving well-posedness of the solutions.

1 Introduction and preliminaries

Consider the scalar integro-differential equation

u(t, x)t +

(
f(u(t, x)) exp

{∫ ∞
x

f(u(t, s)) ds

})
x

= 0 , (1.1)

associated with the initial data

u(0, x) = ū(x) , x ∈ R . (1.2)

This equation was first derived in [2] as the slow erosion limit for a granular flow model
proposed in [15], with a specific function f . A more general model is later derived in [20]
and [3] for more general functions f . Here, the unknown variable u describes the slope of the
standing profile of granular matter, where small avalanches are passing over. The function f
is called the erosion function, which denotes the erosion rate per unit length in space covered
by the avalanche. See [20] for a more detailed derivation of the model.

Existence of global BV solutions and continuous dependence on initial data for a initial-
boundary value problem of (1.1) are studied in [3], where we use an iteration technique with
a frozen global term at every time step. In this paper, we propose a different approxima-
tion technique where we trace directly the wave fronts and follow their interactions. In more
details, we construct piecewise constant approximate solutions, and design an algorithm in
the style of front tracing. A somewhat similar algorithm is used in [20] where a Hamiltonian
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type integro-differential equation for the height of the profile is treated, and piecewise affine
approximate solutions that allows discontinuities are constructed. Such front tracing algo-
rithms give better intuition and control over wave interactions, and result in straight a-priori
estimates. Convergence of solutions follows by compactness, yielding global existence of BV
solutions. Furthermore, by directly comparing the L1 distance between two piecewise constant
approximate solutions, we achieve the continuous dependence on both the initial data and the
erosion function f . This paper is self-contained.

To simplify notation, we let F denote the integral term, i.e.,

F (x;u) =̇ exp

{∫ ∞
x

f(u(t, s)) ds

}
, (1.3)

and we write (1.1) as
ut + (fF )x = 0 . (1.4)

The erosion function f ∈ C2{(0,+∞)} satisfies the assumptions (F):

f(1) = 0 , f ′ > 0 , f ′′ < 0 , lim
s→0+

f(s) = −∞ , lim
s→+∞

f(s)

s
= 0 . (1.5)

The physical meanings of these assumptions are as follows. (i) At the critical slope u = 1
there is no erosion or deposition, so f(1) = 0; (ii) When the slope approaches 0, there is
infinite large deposition; (iii) When the slope is very large, the erosion function f grows slower
than any linear functions. Examples of such functions could include the logarithm function,
or f(s) ≈ sa with 0 < a < 1 for large values of s.

We remark that the assumptions in (1.5) are sharp to prevent blowup of u. In [20] it is proved
that the slope u blows up to +∞ if f(s) approaches a linear asymptote as s→ +∞.

Throughout the paper we will use ‖·‖L1 , ‖·‖L∞ and TV{·} to denote the L1 norm, the L∞

norm and the total variation, respectively, all in the space variable. We use sign(·) to denote
the sign function, and C to denote a generic bounded constant that does not depend on the
critical variables.

Solutions of the Cauchy problem will be obtained within the classW consisting of all functions
w : R 7→ R satisfying the property (W):

(W) There exist positive constants κ0, m0, M0 and a bounded interval I = [a, b], such that

w(x) ≥ κ0 , ‖w(·)− 1‖L1 ≤ m0 , TV{w(·)} ≤M0 , supp{w(·)− 1} ∈ I . (1.6)

A definition of weak solutions for (1.1)-(1.2) is now given.

Definition 1.1 A function u : [0, T ] × R 7→ R is called an entropy weak solution for (1.1)
with initial data ū(x) ∈ W if u(0, x) = ū(x), and

• u(t, ·) ∈ W for every t ∈ [0, T ].

• For every test function φ ∈ C∞c (R2), one has the integral identity∫ T

0

∫
R

(uφt + f(u)F (x;u)φx) dx dt =

∫
R

(
u(T, x)φ(T, x)− u(0, x)φ(0, x)

)
dx . (1.7)
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• For any x < y, there exists some constant C (that does not depend on x, y), such that

u(t, x)− u(t, y) ≤ C max {1/t, 1} (y − x) . (1.8)

The existence of entropy weak solutions is stated in next Theorem.

Theorem 1.1 Let T > 0 and an initial data ū ∈ W be given. Then the Cauchy problem
(1.1)-(1.2) admits an entropy weak solution u = u(t, x) defined for all t ∈ [0, T ], that moreover
satisfies infx u(t, x) ≥ infx ū(x).

We also study continuous dependence of the solutions, on both initial data and the erosion
function. Let v = v(t, x) be an entropy weak solution for

vt +

(
g(v) exp

{∫ ∞
x

g(v(t, s)) ds

})
x

= 0 , v(0, x) = v̄(x) ∈ W (1.9)

with a different erosion function g that satisfies the assumptions (F), i.e,

g(1) = 0 , g′ > 0 , g′′ < 0 , lim
s→0

g(s) = −∞ , lim
s→+∞

g(s)

s
= 0 . (1.10)

Note that it is important to have the same critical slope for both erosion functions, otherwise
‖ū− v̄‖L1 would already be unbounded. Existence of weak solutions for (1.9) follows from
Theorem 1.1. Let κ0 and M be the lower and upper bounds (resp.) for both u and v, we
define the norms

‖f − g‖L∞ =̇ max
κ0≤s≤M

|f(s)− g(s)| , ‖f − g‖Lip =̇ max
κ0≤s≤M

∣∣f ′(s)− g′(s)∣∣ . (1.11)

We have the following well-posedness Theorem.

Theorem 1.2 Let u and v be entropy weak solutions for the Cauchy problems (1.1)-(1.2) and
(1.9), respectively. Then, we have

‖u(t, ·)− v(t, ·)‖L1 ≤ ‖ū− v̄‖L1 + C

∫ t

0
‖u(s, ·)− v(s, ·)‖L1 ds

+ Ct
[
‖f − g‖L∞ + ‖f − g‖Lip

]
. (1.12)

where C depends only on the bounds of the initial data.

By Gronwall’s Lemma, (1.12) gives continuous dependence.

Other PDE models for granular flow can be found in [13, 18, 4, 10]. For mathematical proper-
ties of the steady state solutions we refer to [8, 9]. A numerical study can be found in [14]. For
time-dependent solutions, see the recent results [19, 1, 2, 3, 20]. Other well-known examples
of conservation law involving integral terms include the Camassa-Holm equation [7, 5] and a
variational wave equation [6]. For some related results on stability for general scalar balance
law, we refer to [16, 11].

The rest of the paper is structured in the following way. In Section 2 we give the basic
analysis and some formal arguments. In Section 3 we prove Theorem 1.1 by front tracing
approximation. Finally, Theorem 1.2 is proved in Section 4.

3



2 Basic analysis

By the method of characteristics, for smooth solutions one has

ẋ = f ′(u)F , u̇ = ut + ẋux = f2(u)F . (2.1)

Due to the non-linearity of the erosion function f , characteristics will merge, which leads to
discontinuities in solutions. We call them shocks or shock waves. To see how these shocks
form, let z = ux, and consider its evolution along the characteristic,

ż = zt + f ′Fzx = −f ′′Fz2 + 3ff ′Fz − f3F . (2.2)

Assuming u, f, f ′ bounded, the first term (−f ′′Fz2) dominates as |z| is large. Since −f ′′F > 0,
then z blows up to +∞ in finite time, leading to an upward jump in u.

The traveling speed of the shock waves satisfies the Rankine-Hugoniot jump condition. Let u
has a jump at x0, with u(x−0 ) = u− and u(x+0 ) = u+. The Rankine-Hugoniot condition gives

λs = F (x0;u)
f(u−)− f(u+)

u− − u+
. (2.3)

Since f is concave, only upward jumps are admissible. Initial downward jumps will open up
into rarefaction waves. This is confirmed by (2.2), where z blows up only to +∞, i.e.,

z ≥ −C max{1/t, 1} . (2.4)

Therefore, an Oleinik-type one-sided entropy inequality (see [17]) holds: for any t > 0, and
x < y, one has

u(t, x)− u(t, y) ≤ (y − x)C max{1/t, 1} . (2.5)

Wave interactions are determined by the local behavior of the flux, i.e., the erosion function f ,
which is a concave function. The interactions are similar to those of a scalar conservation law.
When two (or more) admissible shocks interact, they will simply merge into a bigger admissible
shock, causing cancellation of waves. No new waves would be formed at interactions.

Next is a technical Lemma connecting properties of u with the global term F .

Lemma 2.1 Let u : R 7→ R satisfy

u(x) ≥ κ0 > 0, ‖u(·)− 1‖L1 ≤ m0 .

Then, the function f(u(x)) is absolutely integrable, i.e.,

‖f(u(·))‖L1 =̇

∫
R
|f(u(x))| dx = C <∞ . (2.6)

Furthermore, the integral function F (x;u) as defined in (1.3) satisfies

e−C ≤ F ≤ eC , TV{F} ≤ CeC . (2.7)

Proof. Since ‖u− 1‖L1 ≤ m0, then the function x 7→ f(u(x)) is absolutely integrable, because
u 7→ f(u) is uniformly Lipschitz on [κ0,∞] and f(1) = 0. This gives (2.6). The upper and
lower bound on F is obvious by its definition and (2.6). Finally, since x 7→ F is Lipschitz
continuous, we have

TV{F} = ‖Fx‖L1 = ‖f(u)F‖L1 ≤ ‖F‖L∞ ‖f(u)‖L1 ≤ CeC . (2.8)
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Below we give some formal arguments, which serves as guideline for the a priori estimates for
the approximate solutions.

(1). Lower bound on u. By (2.1), u is non-decreasing along characteristics, therefore the
lower bound follows.

(2). Bound on total mass. The trivial solution is u ≡ 1. Equation (1.1) can be written as

(u− 1)t + (f(u)F )x = 0 . (2.9)

By the assumptions (1.5) we have sign(u − 1) = sign(f(u)). Since F > 0, we conclude that
the L1 norm of u− 1 is non-increasing in time.

By Lemma 2.1, F is uniformly bounded from below and above, and has bounded variation.

(3). Bounded support for u− 1. By the lower bound on u, the characteristic speed f ′(u)F is
now bounded. Therefore, for t ≤ T , the support for u− 1 is bounded.

(4). Upper bound on u. Integrate the conservation law (2.9) over the region (t, y) with
0 ≤ t ≤ T and y ≤ x(t) where t→ x(t) is a characteristic, we get∣∣∣∣∫ T

0

[
(u− 1)f ′(u)− f(u)

]
F dt

∣∣∣∣ =

∣∣∣∣∣
∫ x(T )

−∞
(u(T, x)− 1)dx−

∫ x(0)

−∞
(u(0, x)− 1) dx

∣∣∣∣∣ ≤ 2m0 ,

(2.10)
thanks to the bound on ‖u− 1‖L1 . Define an auxiliary function

α(u) =̇
u− 1

f(u)
if u 6= 1 , α(1) = 1/f ′(1) . (2.11)

This function is well-defined for all u > 0. At u = 0 we can set α(0) = 0 by continuity. The
function is nonnegative, α(u) > 0 for u > 0, and is increasing in u, i.e.,

α′(u) =
f(u)− (u− 1)f ′(u)

f2(u)
> 0 for u > 0 , u 6= 1 .

By the last assumption on f in (1.5), α(u) grows to +∞ as u→ +∞,

lim
u→+∞

α(u) = +∞ . (2.12)

The evolution of α(u) along a characteristic is

d

dt
α(u(t, x(t)) = α′(u)u̇ =

[
f(u)− (u− 1)f ′(u)

]
F . (2.13)

By (2.10), we have, for all T ,

α(u(T, x(T ))) ≤ α(u(0, x(0))) + 2m0 . (2.14)

By (2.12) we conclude that u(t, x) remains bounded for all t, x.

(5). BV bound on u. Let z = ux. Differentiating (1.1) in x, one gets

zt + (f ′(u)F (x;u)z)x = (f2(u)F (x;u))x .
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Recall κ0 and M as the lower and upper bound for u. We define

‖f‖L∞ =̇ max
κ0≤s≤M

|f(s)| . (2.15)

Formally we have

d

dt
TV{u} ≤ TV{f2(u)F} ≤ ‖f‖2L∞ TV{F}+ 2 ‖f‖L∞ f

′(κ0)TV{u} ‖F‖L∞

≤ C (1 + TV{u}) .

Therefore, TV{u} can grow exponentially, but remains bounded for finite time.

3 Front tracing approximate solutions

In this section we prove Theorem 1.1. The algorithm for the piecewise constant front tracing
approximation is described in Section 3.1. Then we establish a priori estimates in Section 3.2.
All estimates are used in Section 3.3 to achieve convergence, proving Theorem 1.1.

3.1 The algorithm

Let ε be the approximation parameter, and uε be the piecewise constant approximation for u
that we now construct. For a given initial data ū ∈ W, one can construct a piecewise constant
approximation, call it ūε, such that ūε → ū in L1

loc, and ūε ∈ W. The approximation could be
achieved by a suitable sampling in ū. This will be the discrete initial data for the algorithm,
i.e., uε(0, x) = ūε(x). Let xi (i = 0, · · · , N) be the points where uε has jumps, and write

ui+ 1
2
(t) = uε(t, x) for x ∈ [xi, xi+1) .

The algorithm will result in a set of ODEs that govern the evolution of xi and ui+ 1
2

in t.

The approximation to the initial data must satisfy the following requirements.

• The downward jumps should be small because they are not admissible. Introduce the
quantities

ηi(t) =̇ ui− 1
2
(t)− ui+ 1

2
(t) , η(t) =̇ max

i
ηi(t) . (3.1)

Note that η(t) measures the size of the downward jumps at t. We require that

η(0) ≤ ε . (3.2)

This ensures that possible initial (big) downward jumps will open up into a fan of
downward jumps, each one of size ≤ ε.

• Whenever ū crosses 1 with negative gradient, we will make sure that u = 1 is sampled.
This will lead to a clean a priori L1 estimate.

• Denote the discrete version of the global term F ε as

F ε(t, x) =̇ F (x;uε) = exp

{∫ ∞
x

f(uε(t, y)) dy

}
. (3.3)
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For accuracy and convergence of F ε, we define the quantities

ζi+ 1
2
(t) =̇ (xi+1(t)− xi(t)) · |f(ui+ 1

2
(t))| , ζ(t) =̇ max

i
ζi+ 1

2
(t) , (3.4)

and we require
ζ(0) ≤ ε . (3.5)

Then at t = 0, F ε satisfies

e−ε ≤ F ε(0, xi+1)

F ε(0, xi)
≤ eε . (3.6)

Therefore, as ε→ 0+, we have the convergences of F ε at initial time t = 0

F ε → F , F εx → Fx , in L1
loc . (3.7)

Now we describe the algorithm. The jumps, either upward or downward, will all travel with
Rankine-Hugoniot speed

ẋi = F ε(xi)
f(ui+ 1

2
)− f(ui− 1

2
)

ui+ 1
2
− ui− 1

2

, (3.8)

and ui+ 1
2
(t) evolves as

u̇i+ 1
2

= −f(ui+ 1
2
)
F ε(xi+1)− F ε(xi)

xi+1 − xi
. (3.9)

The logistics of the choice of u̇i+ 1
2

in (3.9) is as follows. In order to keep uε constant on

the interval [xi, xi+1), u
ε
t must be piecewise constant. This leads to a piecewise constant

approximation for F εx , by a finite difference of the form

F εx(x) ≈ F ε(xi+1)− F ε(xi)
xi+1 − xi

, x ∈ [xi, xi+1) . (3.10)

Since F ε is smooth on the interval, by the Mean Value Theorem we have

F ε(xi+1)− F ε(xi)
xi+1 − xi

= −f(ui+ 1
2
)F ε(x̃i+ 1

2
) , for some x̃i+ 1

2
∈ (xi, xi+1) . (3.11)

This leads to
u̇i+ 1

2
= f2(ui+ 1

2
)F ε(x̃i+ 1

2
) , x̃i+ 1

2
∈ (xi, xi+1) . (3.12)

In the end, the piecewise constant approximate solution uε satisfies the approximate equation

uεt + (f(uε)F̄ ε)x = 0 , (3.13)

where for every given t, F̄ ε is a linear interpolation of F ε in x through nodal points, i.e.,

F̄ ε(x) =̇ F ε(xi)
xi+1 − x
xi+1 − xi

+ F ε(xi+1)
x− xi
xi+1 − xi

, for x ∈ [xi, xi+1] . (3.14)
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Merging of nodal points. Since the fronts travel with different speeds, nearby fronts
could approach each other as they travel. If this happens, we will let all the approaching
nodal points merge into one, and rearrange the indices. The new front will then travel with
new Rankine-Hugoniot speed defined in (3.8). Total number of fronts will decrease in time.

We observe that two non-admissible (downward) jumps would never approach each other. If
two nearby jumps approach, say xi(t) = xi+1(t), then one of them must be an upward jump,
and we must have

ẋi(t) ≥ ẋi+1(t) , ⇒ ui− 1
2
(t) ≤ ui+1+ 1

2
(t) ,

so the out-coming jump must be admissible. If more than two jumps merge, say xi(t) = · · · =
xj(t) with i < j − 1, then between each two non-admissible jumps there must be at least one
admissible jump. We can pair each non-admissible jump with a neighboring admissible jump,
possibly leaving the last jump at xj unpaired. By the discussion above, each pair must result
in an upward jump, reducing the size of the possible non-admissible jump at xj . As a result,
the maximum size of downward jumps η(t) would not increase at merging time.

3.2 A priori estimates

We define a discrete version of the maximal backward characteristic, in the same spirit as [12].

Definition 3.1 For every point (t̄, x̄), the discrete maximal backward characteristics [0, t̄] 3
t 7→ x(t) is a continuous curve that satisfies x(t̄) = x̄ and the following.

(c1) If uε(t, x) is continuous at (t, x), and x ∈ (xi, xi+1) then ẋ = f ′(ui+ 1
2
)F̄ ε(x), where

F̄ ε(x) is defined as (3.14).

(c2) If x = xi, and uε has an admissible (upward) jump at xi, then ẋ = f ′(ui+ 1
2
)F̄ ε(x).

(c3) If x = xi and uε has a non-admissible (downward) jump at xi, then ẋ = ẋi. This means,
the backward characteristic will follow the nodal point as it goes backward.

(c4) If two or several nodal points merge at (t, x), say (xi−k, · · · , xi) merge, then it depends
only on the jump at xi: If it is admissible, we follow (c2); If it is not admissible, then
we follow (c3).

Remark. Since nodal points can only merge in the algorithm, non-admissible jumps can be
traced back to t = 0. Therefore, such backward characteristic is well defined, and it never
crosses any nodal points (though it can join a non-admissible jump).

All the a priori estimates are summarized in the next Lemma.

Lemma 3.1 Let uε be the piecewise constant function generated by the algorithm with initial
data ūε ∈ W that satisfies (3.2) and (3.5). Then, for any t ∈ [0, T ], we have x→ uε(t, x) ∈ W.
For ε sufficiently small we have

η(t) ≤ Cε , ζ(t) ≤ Cε , (3.15)

for some constant C indenpendent of ε.
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Proof : (1). Lower bound for uε. By (3.12) we clearly have u̇i+ 1
2
≥ 0. The lower bound

follows.

(2). Bound on ‖uε − 1‖L1. This follows from the facts that all jumps travel with Rankine-
Hugoniot speed and u = 1 is always sampled when uε crosses 1 with negative slope. In more
detail, since uε is piecewise constant, we have

‖uε − 1‖L1 =
∑
i

∣∣∣ui+ 1
2
− 1
∣∣∣ (xi+1 − xi) .

A direct computation gives (by using summation-by-parts)

d

dt
‖uε − 1‖L1 =

∑
i

sign(ui+ 1
2
− 1)u̇i+ 1

2
(xi+1 − xi) +

∣∣∣ui+ 1
2
− 1
∣∣∣ (ẋi+1 − ẋi) =

∑
i

F ε(xi)Ii ,

where

Ii =
∣∣∣f(ui+ 1

2
)
∣∣∣− ∣∣∣f(ui− 1

2
)
∣∣∣+

f(ui− 1
2
)− f(ui+ 1

2
)

ui− 1
2
− ui+ 1

2

(
∣∣∣ui− 1

2
− 1
∣∣∣− ∣∣∣ui+ 1

2
− 1
∣∣∣) .

There are several situations.

• If sign(ui− 1
2
− 1) = sign(ui+ 1

2
− 1), then Ii = 0;

• If sign(ui− 1
2
− 1) 6= sign(ui+ 1

2
− 1) and ui− 1

2
≤ 1 ≤ ui+ 1

2
, then by concavity of f we have

∣∣∣f(ui+ 1
2
)
∣∣∣ ≤ f(ui− 1

2
)− f(ui+ 1

2
)

ui− 1
2
− ui+ 1

2

∣∣∣ui+ 1
2
− 1
∣∣∣ , ∣∣∣f(ui− 1

2
)
∣∣∣ ≥ f(ui− 1

2
)− f(ui+ 1

2
)

ui− 1
2
− ui+ 1

2

∣∣∣ui− 1
2
− 1
∣∣∣ .

Therefore Ii ≤ 0.

• If sign(ui− 1
2
− 1) 6= sign(ui+ 1

2
− 1) and ui− 1

2
≥ 1 ≥ ui+ 1

2
, then by construction we must

have either ui+ 1
2

= 1 or ui− 1
2

= 1. In either case we have Ii = 0.

In conclusion, we have for all t ≥ 0,

d

dt
‖uε(t, ·)− 1‖L1 ≤ 0 , ⇒ ‖uε(t, ·)− 1‖L1 ≤ ‖uε(0, ·)− 1‖L1 ≤ m0 . (3.16)

Now, by Lemma 2.1, x→ f(uε) is absolutely integrable, and the global function F ε satisfies

e−C ≤ F ε ≤ eC , TV{F ε} ≤ CeC , where C = ‖f(uε(t, ·))‖L1 . (3.17)

(3). Bound on the support for uε − 1. This is obvious since the nodal speeds for the first and
last points are bounded, thanks to the lower bound on uε.

(4). Upper bound for uε and bounds on η and ζ. These bounds will be established together.
First, we consider the upper bound for uε. Rewrite (3.13) as

(uε − 1)t + (f(uε)F̄ ε)x = 0 . (3.18)
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Consider a point (t, x) and let t → x(t) be the discrete maximal backward characteristic
through it; let i be the index for the interval [xi, xi+1], possibly depending on t, where the
characteristic remains. Integrate the conservation law (3.18) over the region in (t, y) where
0 ≤ t ≤ T , y ≤ x(t) and get the estimate∣∣∣∣∫ T

0
(ui+ 1

2
(t)− 1)ẋ(t)− f(ui+ 1

2
(t))F̄ ε(t, x(t)) dt

∣∣∣∣
=

∣∣∣∣∣
∫ x(T )

−∞
(uε(T, y)− 1) dy −

∫ x(0)

−∞
(uε(0, y)− 1) dy

∣∣∣∣∣ ≤ 2m0 , (3.19)

thanks to the bound on ‖uε − 1‖L1 .

If the characteristic does not join a downward jump on some interval [t1, t2], i.e., if xi < x <
xi+1, then ẋ = f ′(ui+ 1

2
)F̄ ε and by (3.19) we have∣∣∣∣∫ t2

t1

[
(ui+ 1

2
(t)− 1)f ′(ui+ 1

2
(t))− f(ui+ 1

2
(t))
]
F̄ ε(t, x(t)) dt

∣∣∣∣ ≤ 2m0 , (3.20)

uniformly in 0 ≤ t1 ≤ t2 ≤ T . Recalling the auxiliary function α(u) in (2.11), we have

d

dt
α(ui+ 1

2
(t)) = α′(ui+ 1

2
)u̇i+ 1

2
=
[
(ui+ 1

2
− 1)f ′(ui+ 1

2
)− f(ui+ 1

2
)
]
F ε(x̃i+ 1

2
) , (3.21)

where x̃i+ 1
2

is defined in (3.11). Thanks to (3.20) and the upper and lower bounds on F ε,
d
dtα(ui+ 1

2
(t)) is integrable along x(t).

If x(t) joins a non-admissible jump, the situation is slightly different. Consider the case that
x(t) joins xi for t in some [t1, t2] (the case it joins xi+1 is completely similar). By (3.19) we
have∣∣∣∣∣

∫ t2

t1

[
(ui+ 1

2
(t)− 1)

f(ui+ 1
2
(t))− f(ui− 1

2
(t))

ui+ 1
2
(t)− ui− 1

2
(t)

− f(ui+ 1
2
(t))

]
F ε(xi(t)) dt

∣∣∣∣∣ ≤ 2m0 . (3.22)

The evolution of α(ui+ 1
2
) along x(t) is

d

dt
α(ui+ 1

2
(t)) =

[
(ui+ 1

2
− 1)f ′(ui+ 1

2
)− f(ui+ 1

2
)
]
F ε(x̃i+ 1

2
) = I1 + I2

where

I1(t) =

[
(ui+ 1

2
− 1)

f(ui+ 1
2
)− f(ui− 1

2
)

ui+ 1
2
− ui− 1

2

− f(ui+ 1
2
)

]
F ε(x̃i+ 1

2
) , (3.23)

I2(t) =̇ (ui+ 1
2
− 1)

[
f ′(ui+ 1

2
)−

f(ui+ 1
2
)− f(ui− 1

2
)

ui+ 1
2
− ui− 1

2

]
F ε(x̃i+ 1

2
) . (3.24)

The term I1 is integrable along x(t) thanks to (3.22) and the bounds on F ε. For I2, we have

|I2(t)| ≤
∣∣∣ui+ 1

2
− 1
∣∣∣ · ‖F ε‖L∞ η(t) sup

u
i+1

2
≤s≤u

i− 1
2

∣∣f ′′(s)∣∣ . (3.25)
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To control the possible growth in α(ui+ 1
2
) caused by I2, let M1 be the upper bound for uε

where we only consider the growth in α caused by I1 or by (3.21). Notice that M1 depends
only on the initial data and properties of f .

Let t̃ be the first time in [0, T ] that α(ui+ 1
2
) = α(M1 + 1). Hence we have that t̃ belongs to

an interval [t1, t2] where x(t) = xi and ui+ 1
2
< M1 + 1 for t < t̃. Moreover we have

α(M1) ≥ α(ui+ 1
2
(t1)) +

∫ t̃

t1

I1(t) dt . (3.26)

Before we proceed, we need to establish the estimates for η and ζ for t < t̃. We have

η̇i(t) = u̇i− 1
2
(t)− u̇i+ 1

2
(t) = f2(ui− 1

2
)F ε(x̃i− 1

2
)− f2(ui+ 1

2
)F ε(x̃i+ 1

2
)

=
(
f2(ui− 1

2
)− f2(ui+ 1

2
)
)
F ε(x̃i− 1

2
) + f2(ui+ 1

2
)
(
F ε(x̃i− 1

2
)− F ε(x̃i+ 1

2
)
)

≤ C1(M1 + 1)η + C2(M1 + 1)2ζ . (3.27)

For ζ(t), we have

ζ̇i+ 1
2
(t) = (ẋi+1 − ẋi)

∣∣∣f(ui+ 1
2
)
∣∣∣+ (xi+1 − xi)sign(f(ui+ 1

2
))f ′(ui+ 1

2
)u̇i+ 1

2

= (ẋi+1 − ẋi)
∣∣∣f(ui+ 1

2
)
∣∣∣− f ′(ui+ 1

2
)
∣∣∣f(ui+ 1

2
)
∣∣∣ (F ε(t, xi+1)− F ε(t, xi))

=
∣∣∣f(ui+ 1

2
)
∣∣∣ · {[ẋi+1 − f ′(ui+ 1

2
)F ε(t, xi+1)

]
−
[
ẋi − f ′(ui+ 1

2
)F ε(t, xi)

]}
.

These two terms are negative if the jumps at xi, xi+1 are upward (admissible). If one of the
jumps is downward, say ui+ 1

2
≤ ui− 1

2
, then we have

f ′(ui+ 1
2
)F ε(t, xi)− ẋi ≤ ‖F ε‖L∞ sup

1≤s≤M1+1

∣∣f ′′(s)∣∣ (ui− 1
2
− ui+ 1

2
) ≤ C(M1)η .

The case of a downward jump at xi+1 is completely similar. In conclusion, we have

ζ̇i+ 1
2
≤ C(M1)(M1 + 1)η . (3.28)

Taking supreme over all i in (3.27) and (3.28), we get

η̇ ≤ C1(M1 + 1)η + C2(M1 + 1)2ζ, ζ̇ ≤ C(M1)(M1 + 1)η . (3.29)

Notice that ζ is continuous when nodal points merge, while η may be discontinuous but it
does not increase. Hence by standard comparison argument we arrive at

η(t) ≤ C3ε, ζ(t) ≤ C3ε , for all t ∈ [0, t̃ ] (3.30)

for some C3 = C3(M1, T ).

We now go back to the estimate on α. Using (3.26), we have

α(M1 + 1) = α(t1) +

∫ t̃

t1

I1(t) dt+

∫ t̃

t1

I2(t) dt ≤ α(M1) +

∫ t̃

t1

I2(t) dt .

11



By the using (3.30), we have an estimate for the growth for α(ui+ 1
2
) caused by I2:

∫ t̃

t1

I2(τ) dτ ≤ (t̃− t1)M1 ‖F ε‖L∞ sup
1≤s≤M1+1

∣∣f ′′(s)∣∣ η ≤ (t̃− t1) ‖F ε‖L∞ C4 ε

for some C4 = C4(M1, T ). Therefore

α(M1 + 1)− α(M1) ≤ (t̃− t1) ‖F ε‖L∞ C4 ε ,

which gives

t̃− t1 ≥
α(M1 + 1)− α(M1)

C4 ‖F ε‖L∞
· 1

ε
=

C̃

ε
.

By choosing ε small, t̃ can be arbitrarily large, leading to the upper bound for uε for any finite
T . In turn, this gives the uniform bounds in (3.15) on η and ζ.

(5). BV bound for uε. For piecewise constant function uε we have

d

dt
TV{uε} =

d

dt

∑
i

∣∣∣ui+ 1
2
− ui− 1

2

∣∣∣ =
∑
i

sign(ui+ 1
2
− vi+ 1

2
)
[
u̇i+ 1

2
− u̇i− 1

2

]
=

∑
i

sign(ui+ 1
2
− vi+ 1

2
)
[
f2(ui+ 1

2
)F ε(x̃i+ 1

2
)− f2(ui− 1

2
)F ε(x̃i− 1

2
)
]

≤
∑
i

∣∣∣f2(ui+ 1
2
)− f2(ui− 1

2
)
∣∣∣F ε(x̃i+ 1

2
) + f2(ui− 1

2
)
∣∣∣F ε(x̃i+ 1

2
)− F ε(x̃i− 1

2
)
∣∣∣

≤ 2 ‖f‖L∞ f
′(κ0)‖F ε‖L∞TV{uε}+ ‖f‖2L∞TV{F ε}

≤ C · TV{uε}+ C .

Therefore, total variation of uε can grow exponentially in time, but remains bounded for finite
time t ≤ T , completing the proof.

Remark 1. By Lemma 3.1 and the fact that nodal points can only be cancelled, the set of
ODEs for xi(t) in (3.8) and for ui+ 1

2
(t) in (3.9) are well-posed, generating unique approximate

solutions.

Remark 2. The L1 Continuity in time for uε and F ε follows by a standard argument, as a
consequence of the a priori bounds in Lemma 3.1. We omit the details.

In next Lemma we establish the discrete version of the entropy inequality.

Lemma 3.2 A discrete version of a one-sided entropy inequality holds for uε,

uε(t, x)− uε(t, y) ≤ C max{1/t, 1}(y − x) + Cε , (x < y) . (3.31)

Proof. For a given t > 0, consider two points x < y. Let t → x(t) and t → y(t) be the
discrete maximal backward characteristics through them (resp.), and let i and j be the indices
of the interval where the characteristics remain, respectively. If x and y are very close to each
other, say j − i ≤ 10, then by (3.15) we have

uε(t, x)− uε(t, y) ≤ Cε . (3.32)
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Now consider j − i >> 10. Define an auxiliary function

H(t) =̇
u(x(t))− u(y(t))

x(t)− y(t)
=

ui+ 1
2
(t)− uj+ 1

2
(t)

x(t)− y(t)
. (3.33)

The evolution of H as x and y move along the maximal backward characteristics is

H ′(t) =
u̇i+ 1

2
− u̇j+ 1

2

x− y
−H · ẋ− ẏ

x− y
. (3.34)

Let’s estimate each term. By using (3.12) and the a priori bounds in Lemma 3.1 we have

u̇i+ 1
2
− u̇j+ 1

2

x− y
= F ε(x̃i+ 1

2
) ·
f2(ui+ 1

2
)− f2(uj+ 1

2
)

x− y
+ f2(uj+ 1

2
) ·
F ε(x̃i+ 1

2
)− F ε(x̃j+ 1

2
)

x− y
= O(1)H +O(1) .

Here and in the rest of this proof, the notation O(1) denotes some uniformly bounded value
that can be both positive or negative. For the second term we have

ẋ− ẏ
x− y

= F̄ ε(x) ·
f ′(ui+ 1

2
)− f ′(uj+ 1

2
)

x− y
+ f ′(uj+ 1

2
) · F̄

ε(x)− F̄ ε(y)

x− y
+
O(1)ε

x− y
= −c̃H +O(1) , (3.35)

with
c̃ = −F̄ ε(x)f ′′(ũ) > 0, for some bounded ũ .

Note that the term ε/(x− y) is of O(1) for t ≥ ε. Putting these back into (3.34), we get

H ′(t) = c̃H2 +O(1)H +O(1) . (3.36)

For large values of H, the first term dominates, and H can blow up to +∞ in finite time. By
a standard comparison argument, we have

H(t) ≥ −C max{1/t, 1} , ⇒ uε(t, x)− uε(t, y) ≤ C max{1/t, 1}(y − x) . (3.37)

Combining (3.37) with (3.32), we achieve (3.31), completing the proof.

3.3 Convergence of the approximate solutions and existence of entropy
weak solutions

Since all nodal points xi travels with the Rankine-Hugoniot speed, our piecewise constant
function uε provides weak solutions to the modified conservation law (3.13). Rewrite it as

uεt + (f(uε)F ε)x = Eε , where Eε(t, x) =̇
[
f(uε)(F ε − F̄ ε)

]
x
. (3.38)

The following discrete weak formulation holds for all test functions φ ∈ C∞c (R2),∫ T

0

∫
R

(uεφt + f(uε)F εφx) dx dt

=

∫
R

(
uε(T, x)φ(T, x)− uε(0, x)φ(0, x)

)
dx−

∫ T

0

∫
R
Eεφdx dt . (3.39)

To achieve existence of weak solutions, we observe that, thanks to the a priori estimates in
Lemma 3.1, there exist some limit functions u(t, x) and F (t, x) such that, by extracting a
subsequence ε→ 0, one has
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(i) uε(0, ·)→ u(0, ·) and uε(T, ·)→ u(T, ·) in L1
loc(R);

(ii) uε → u and F ε → F in L1
loc([0, T ]× R);

(iii) For any given a < b, one has∫ b

a
|Eε(t, x)| dx ≤ TV{f(uε)}

∥∥F ε − F̄ ε∥∥
L∞

+ ‖f‖L∞ TV{F ε − F̄ ε} .

Since F̄ ε is a linear interpolation of F ε through nodal points, by using the estimates in
Lemma 3.1 one has ∥∥F ε − F̄ ε∥∥

L∞
≤ Cε ,

and

TV{F ε − F̄ ε} =
∥∥(F ε − F̄ ε)x

∥∥
L1 =

∑
i

∫ xi+1

xi

∣∣∣f(ui+ 1
2
)
∣∣∣ ∣∣∣F ε(x)− F ε(x̃i+ 1

2
)
∣∣∣ dx

≤
∑
i

∣∣∣f(ui+ 1
2
)
∣∣∣ (xi+1 − xi)TV{F ε; (xi, xi+1)} ≤ ζ(t)TV{F ε(t, ·)} ≤ Cε .

Therefore
∫ b
a |E

ε(t, x)| dx→ 0 uniformly for t ∈ [0, T ].

(iv) Since uε and f(uε) are uniformly bounded, the identity (3.3) holds in the limit, i.e.,

F (t, x) = exp

{∫ ∞
x

f(u(t, y)) dy

}
a.e. (t, x) ∈ [0, T ]× R .

Furthermore, by taking the limit ε→ 0 in (3.31), the entropy inequality holds. The existence
of entropy weak solutions follows, proving Theorem 1.1.

4 Continuous dependence on initial data and erosion function

In this section we prove Theorem 1.2. Introducing the notation

G(v;x) =̇ exp

{∫ ∞
x

g(v(t, y)) dy

}
, (4.1)

we can write
vt + (gG)x = 0 . (4.2)

Let uε, vε be the piecewise constant approximations to u, v, respectively, generated by our
algorithm. Let xi (i = 0, · · ·N) be the points where either uε or vε has a jump. We have

‖uε(t, ·)− vε(t, ·)‖L1 =
∑∣∣∣ui+ 1

2
(t)− vi+ 1

2
(t)
∣∣∣ (xi+1(t)− xi(t)) . (4.3)

Here and in the rest the summation
∑

is always over i. Differentiating (4.3) in t, we have

d

dt
‖uε(t, ·)− vε(t, ·)‖L1 = A+B (4.4)
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where

A =̇
∑

sign(ui+ 1
2
− vi+ 1

2
)(u̇i+ 1

2
− v̇i+ 1

2
)(xi+1 − xi) , (4.5)

B =̇
∑∣∣∣ui+ 1

2
− vi+ 1

2

∣∣∣ (ẋi+1 − ẋi) . (4.6)

Consider term A. Recalling u̇i+ 1
2

in (3.9), namely

u̇i+ 1
2

= − f(ui+ 1
2
)Φi+ 1

2
, Φi+ 1

2
=̇
F ε(xi+1+m)− F ε(xi−n)

xi+1+m − xi−n
, (4.7)

where xi−n, xi+1+m are the two nearby points where uε has jumps, and for v̇i+ 1
2
,

v̇i+ 1
2

= − g(vi+ 1
2
)Ψi+ 1

2
, Ψi+ 1

2
=̇
Gε(xi+1+l)−Gε(xi−k)

xi+1+l − xi−k
, (4.8)

where xi−k, xi+1+l are the two nearby points where vε has jumps. Then

u̇i+ 1
2
− v̇i+ 1

2
= −(f(ui+ 1

2
)−f(vi+ 1

2
))Φi+ 1

2
− (f(vi+ 1

2
)− g(vi+ 1

2
))Φi+ 1

2
− g(vi+ 1

2
)(Φi+ 1

2
−Ψi+ 1

2
) .

We can write
A = A1 +A2 +A3

where

A1 =̇ −
∑∣∣∣f(ui+ 1

2
)− f(vi+ 1

2
)
∣∣∣Φi+ 1

2
(xi+1 − xi) , (4.9)

A2 =̇ −
∑

sign(ui+ 1
2
− vi+ 1

2
)(f(vi+ 1

2
)− g(vi+ 1

2
))Φi+ 1

2
(xi+1 − xi) , (4.10)

A3 =̇ −
∑

sign(ui+ 1
2
− vi+ 1

2
)g(vi+ 1

2
)(Φi+ 1

2
−Ψi+ 1

2
)(xi+1 − xi) . (4.11)

Note that Φi+ 1
2

and Ψi+ 1
2

are approximations to F εx and Gεx respectively on the interval

[xi, xi+1). By our construction we have∣∣∣F εx(x)− Φi+ 1
2

∣∣∣ ≤ Cε , ∣∣∣Gεx(x)−Ψi+ 1
2

∣∣∣ ≤ Cε , ∀x ∈ [xi, xi+1) . (4.12)

We immediately have

A2 ≤ TV{F ε} · ‖f − g‖L∞ + Cε , (4.13)

A3 ≤ ‖g‖L∞ TV{F ε −Gε}+ Cε . (4.14)

Now, consider the term B. By summation-by-parts, we have

B =
∑(∣∣∣ui− 1

2
− vi− 1

2

∣∣∣− ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣) ẋi . (4.15)

At every xi, we define the artificial speeds si, s̄i as follows. If uε has a jumps at xi, we let
si = s̄i = ẋi. Otherwise, if vε has a jump at xi, we let

si =̇ F ε(xi) ·
f(vi+ 1

2
)− f(vi− 1

2
)

vi+ 1
2
− vi− 1

2

, s̄i =̇ F ε(xi) ·
g(vi+ 1

2
)− g(vi− 1

2
)

vi+ 1
2
− vi− 1

2

. (4.16)
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Note that we use the F ε for the global term in all these speeds. We now have

B = B1 +B2 +B3

where

B1 =̇
∑

si(
∣∣∣ui− 1

2
− vi− 1

2

∣∣∣− ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣) , (4.17)

B2 =̇
∑

(s̄i − si)(
∣∣∣ui− 1

2
− vi− 1

2

∣∣∣− ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣) , (4.18)

B3 =̇
∑

(ẋi − s̄i)(
∣∣∣ui− 1

2
− vi− 1

2

∣∣∣− ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣) . (4.19)

Here in B2, B3 we only need to sum over all jumps in vε.

Now consider B1. At every point xi, we define λ−i and λ+i as

λ−i =̇
f(ui− 1

2
)− f(vi− 1

2
)

ui− 1
2
− vi− 1

2

F ε(xi) , λ+i =̇
f(ui+ 1

2
)− f(vi+ 1

2
)

ui+ 1
2
− vi+ 1

2

F ε(xi) . (4.20)

The term B1 can be written as
B1 = B1,a +B1,b ,

where

B1,a =̇
∑∣∣∣ui+ 1

2
− vi+ 1

2

∣∣∣ (λ+i − si)− ∣∣∣ui− 1
2
− vi− 1

2

∣∣∣ (λ−i − si) , (4.21)

B1,b =̇
∑∣∣∣ui− 1

2
− vi− 1

2

∣∣∣λ−i − ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣λ+i . (4.22)

Consider B1,a and write B1,a =
∑
B1,a,i. There are various situations. Let’s first consider if

uε has a jump at xi so vi− 1
2

= vi+ 1
2
. There are several cases.

• If ui− 1
2
≥ vi− 1

2
, ui+ 1

2
≥ vi+ 1

2
, we have

B1,a,i = (ui+ 1
2
− vi+ 1

2
)λ+i − (ui− 1

2
− vi− 1

2
)λ−i − (ui+ 1

2
− ui− 1

2
)si = 0 .

• If ui− 1
2
≤ vi− 1

2
, ui+ 1

2
≤ vi+ 1

2
, it is completely similar. We have B1,a,i = 0.

• If ui− 1
2
≤ vi− 1

2
= vi+ 1

2
≤ ui+ 1

2
, then the jump is admissible. We have

λ+i ≤ si ≤ λ
−
i , therefore B1,a,i ≤ 0 .

• If ui− 1
2
≥ vi− 1

2
= vi+ 1

2
≥ ui+ 1

2
, the jump is not admissible, therefore it is small. We have

λ+i − si ≤ Cε , si − λ−i ≤ Cε , therefore B1,a,i ≤ C
∣∣∣ui+ 1

2
− ui− 1

2

∣∣∣ ε .
The cases where vε has a jump at xi are completely similar. In summary, we have

B1,a ≤ Cε
∑∣∣∣ui+ 1

2
− ui− 1

2

∣∣∣+
∣∣∣vi+ 1

2
− vi− 1

2

∣∣∣ ≤ Cε [TV{uε}+ TV{vε}] . (4.23)
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For B1,b, summation-by-parts again gives

B1,b =
∑∣∣∣f(ui+ 1

2
)− f(vi+ 1

2
)
∣∣∣ (F ε(xi+1)− F ε(xi)) .

Now, compare this with the term A1 in (4.9). They are very close to each other in values but
with opposite signs. By construction we have (similar to (4.12))∣∣∣∣F ε(xi+1)− F ε(xi)

xi+1 − xi
− Φi+ 1

2

∣∣∣∣ ≤ Cε . (4.24)

This gives us

A1 +B1,b ≤ Cε ·
∑∣∣∣f(ui+ 1

2
)− f(vi+ 1

2
)
∣∣∣ (xi+1 − xi) ≤ Cε [‖f(uε)‖L1 + ‖f(vε)‖L1 ] . (4.25)

Here, ‖f(uε(·))‖L1 and ‖f(vε(·))‖L1 are both bounded. Now, consider the term B2. Since we
sum over all i where vε has a jump at xi, we have ui+ 1

2
= ui− 1

2
, therefore∣∣∣ui− 1

2
− vi− 1

2

∣∣∣− ∣∣∣ui+ 1
2
− vi+ 1

2

∣∣∣ ≤ ∣∣∣vi+ 1
2
− vi− 1

2

∣∣∣ . (4.26)

And,

|s̄i − si| = F ε(xi)

∣∣∣∣∣(f(vi+ 1
2
)− g(vi+ 1

2
))− (f(vi− 1

2
)− g(vi− 1

2
))

vi+ 1
2
− vi− 1

2

∣∣∣∣∣ ≤ ‖F ε‖L∞ ‖f − g‖Lip .
Therefore,

B2 ≤ ‖F ε‖L∞ ‖f − g‖Lip
∑∣∣∣vi+ 1

2
− vi− 1

2

∣∣∣ ≤ ‖F ε‖L∞ ‖f − g‖Lip TV{vε} . (4.27)

Finally, consider the term B3. We have

|ẋi − s̄i| =
g(vi+ 1

2
)− g(vi− 1

2
)

vi+ 1
2
− vi− 1

2

|F ε(xi)−Gε(xi)| .

Combining this with (4.26), we get

B3 ≤
∑∣∣∣g(vi+ 1

2
)− g(vi− 1

2
)
∣∣∣ · |F ε(xi)−Gε(xi)| ≤ ‖F ε −Gε‖L∞ g′(κ0)TV{vε} . (4.28)

Putting the estimates (4.13), (4.14), (4.23), (4.25), (4.27) and (4.28) back into (4.4), we get

d

dt
‖uε − vε‖L1 ≤ ‖F ε‖L∞ ‖f − g‖Lip TV{vε} + ‖F ε −Gε‖L∞ g

′(κ0)TV{vε}

+ TV{F ε} ‖f − g‖L∞ + ‖g‖L∞ TV{F ε −Gε} + Cε . (4.29)

By symmetry we also have

d

dt
‖uε − vε‖L1 ≤ ‖Gε‖L∞ ‖f − g‖Lip TV{uε} + ‖F ε −Gε‖L∞ f

′(κ0)TV{uε}

+ TV{Gε} ‖f − g‖L∞ + ‖f‖L∞ TV{F ε −Gε} + Cε . (4.30)
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Now let’s estimate the terms in (4.29)-(4.30). We have

‖f(vε)− g(vε)‖L1 = ‖[f(vε)− f(1)]− [g(vε)− g(1)]‖L1 = ‖vε − 1‖L1 ‖f − g‖Lip . (4.31)

Note that it is important to have f(1) = g(1) = 0 to obtain (4.31). For ‖F ε −Gε‖L∞ we have

‖F ε −Gε‖L∞ ≤ max{‖F ε‖L∞ , ‖G
ε‖L∞}

∫ ∞
−∞
|f(uε)− g(vε)| dy

≤ max{‖F ε‖L∞ , ‖G
ε‖L∞}

∫ ∞
−∞
|f(uε)− f(vε)|+ |f(vε)− g(vε)| dy

≤ max{‖F ε‖L∞ , ‖G
ε‖L∞}

[
f ′(κ0) ‖uε − vε‖L1 + ‖f(vε)− g(vε)‖L1

]
(4.32)

and for TV{F ε −Gε} we have

TV{F ε −Gε} = ‖F εx −Gεx‖L1 =

∫
|f(uε(t, x))F ε − g(vε(t, x))Gε| dx

≤
∫
|f(uε)− g(vε)|F ε + |g(vε)| |F ε −Gε| dx

≤
∫
|f(uε)− f(vε)|F ε + |f(vε)− g(vε)|F ε + |g(vε)| |F ε −Gε| dx

≤ ‖F ε‖L∞
[
f ′(κ0) ‖uε − vε‖L1 + ‖f(vε)− g(vε)‖L1

]
+ ‖g(vε)‖L1 ‖F ε −Gε‖L∞ .(4.33)

By using (4.31), (4.32) and (4.33), the estimates (4.29) and (4.30) become

d

dt
‖uε(t, ·)− vε(t, ·)‖L1 ≤ C

[
‖uε(t, ·)− vε(t, ·)‖L1 + ‖f − g‖L∞ + ‖f − g‖Lip + ε

]
, (4.34)

for some bounded constant C that does not depend on ε. This gives the integral estimate

‖uε(t, ·)− vε(t, ·)‖L1 ≤ ‖uε(0, ·)− vε(0, ·)‖L1 +

∫ t

0
‖uε(s, ·)− vε(s, ·)‖L1 ds

+ Ct
[
‖f − g‖L∞ + ‖f − g‖Lip + ε

]
. (4.35)

Finally, by taking the limit ε → 0+ in (4.35), and using the fact that uε → u and vε → v in
L1
loc for a.e. t, we get (1.12), proving Theorem 1.2.

Remark. The estimates (4.29) and (4.30) are very similar to the ones in [16], Theorem 1.3,
where the authors study a scalar conservation law with variable coefficients in multi space
dimension

ut +∇ · (k(x)f(u)) = ∆A(u) .

Continuous dependence on initial data, on the coefficient k and on the flux function f is
established with very similar results, by using Kruzkov inequality and a variable doubling
technique. However, their coefficient k(x) is local and does not depend on t.

On the other hand, the front tracing algorithm proposed here can be easily extended to
conservation laws with variable coefficient in one space dimension

ut + (k(t, x)f(u))x = 0 ,

for k under suitable assumptions, such as in [3], Theorem 2. Existence and continuous de-
pendence on initial data, on the coefficient k and on the function f would follow in a similar
way.
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