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Abstract. The aim of this paper is to consider quasi-linear systems
which are not in the form of evolution equations. We propose new
condition of Richness or Semi-Hamiltonicity for such a system and prove
that the blow up analysis along characteristic curves can be performed
for it in an analogous manner. This opens a possibility to use this ansatz
also for geometric problems. We apply the results to the problem of
Polynomial integral for geodesic flows on the 2-torus.

1. Motivation and the result

Consider a quasi-linear system for vector function u(x, y) = (u1, ..., un)
which has the following form

A(u)ux + B(u)uy = 0 (1)

It may happen in practice that one of the matrices A(u) and B(u) can
degenerate somewhere (and even both of them can degenerate somewhere).

Throughout this paper our main assumption on these matrices is that the
homogeneous polynomial P in α, β is not a zero polynomial at any point
(x, y) :

P = det(αB − βA), deg(P ) = n. (P )

This assumption is obviously satisfied if one of the matrices A(u) and B(u)
is non-degenerate, however we shall assume everywhere the weaker version-
(P ). We shall see in the example of the last section that (P ) is in fact the
correct assumption.

Moreover, we shall assume in the following that the system is strictly
hyperbolic that is the polynomial P has n distinct roots [βi : αi]. We define
unite characteristic vector fields on the plane R2(x, y) by

vi = cosφi∂x + sin φi∂y,

where the angles φi, we shall call them characteristic angles, are such that
[sinφi : cosφi] = [βi : αi], φi 6= φj (mod π).

One can use a regular change of variables and multiplication from the
left on a invertible matrix in order to transform system (1) to an equivalent
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one. Namely, if u = Φ(w) is a regular change of variables and C(w) is an
invertible matrix then system (1) takes the form

C(w)A(Φ(w))DΦ(w)wx + C(w)B(Φ(w))DΦ(w)wy = 0,

where D is the differential. Obviously such a transformation preserves the
roots of P .

Notice that if one of the matrices, say A is non-degenerate then the system
is equivalent to one in the evolution form. Recall the notion of the evolution
system to be Rich or Semi-Hamiltonian (see [10],[11] and [12],[5]), we shall
call them Rich for the sake of brevity. Strictly Hyperbolic evolution system
is called Rich if it can be written in Riemann invariants (diagonal form)

(ri)x + λi(r1, ..., rn)(ri)y = 0, i = 1, ..., n,

and moreover the eigenvalues λi = βi/αi of A−1B satisfy the following
identities:

∂rk

(
∂riλj

λi − λj

)
= ∂ri

(
∂rk

λj

λk − λj

)
. (R)

This condition allows one to perform blow-up analysis along characteristics
as it is shown in [10] and applied for a mechanical example in [1]. It was
proved by B. Sevennec [11] and later understood in differential-geometric
terms [7] that strictly Hyperbolic system in evolution form which is written
in Riemann invariants is Rich, if and only if there are local coordinates in
which the system takes the form of conservation laws.

The unsatisfactory thing, however,with the condition (R) for the system
(1) is the fact that characteristic curves can pass from the chart where A is
non-degenerate to the chart where B is non-degenerate or even reach those
points where both matrices degenerate. This does not allow one to use the
analysis of corresponding Riccati equations for all times.

We propose the following generalization of the Richness condition whose
naturality we shall justify below:

Definition 1.1. We call strictly Hyperbolic system (1) Rich if it can be
written in the diagonal form

Lviri = cosφi(ri)x + sin φi(ri)y = 0, i = 1, ..., n, φi 6= φj (mod π) (2)

for a regular change of variables (u1, ..., un) → (r1, ..., rn) and the following
conditions on the characteristic angles φi(r1, ..., rn) holds true

∂rk

(
∂riφj

tan(φi − φj)

)
= ∂ri

(
∂rk

φj

tan(φk − φj)

)
(Φ)

It is important fact that this definition is invariant with respect to rota-
tions of the plane. We shall continue to call ri in (2) by Riemann invariants.
Our first result is the following

Theorem 1.2. If a strictly Hyperbolic system (1) satisfying (P) is Rich
according Definition 1.1, so that the conditions (2),(Φ) hold true, then the
derivatives of i-th Riemann invariant wi = Lv⊥i

ri in the orthogonal direction
to characteristics satisfy the following Riccati equation:

Lvi(exp (−Gi)wi) + exp (Gi)∂ri(φi)(exp(−Gi)wi)2 = 0,



RICHNESS 3

for any i = 1, ..., n, where Gj is a function of Riemann invariants satisfying

∂riGj =
∂riφj

tan(φi − φj)
.

Here v⊥ stands for the vector field rotated from v by 90◦ counterclockwise.

We shall see in lemma below that the conditions (R) and (Φ) are almost
equivalent. This lemma enables us to prove the following theorem which is
a generalization to our case of the result of [11].

Theorem 1.3. Given any strictly Hyperbolic diagonal system

cosφi(ri)x + sinφi(ri)y = 0, i = 1, ..., n.

Then the condition (Φ) is satisfied if and only if the system can be written
in the form of n conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n.

We prove in sections 2,3 the main theorems. The last section contains a
geometric example originated from Classical Mechanics.
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2. Derivation along characteristics. Proof of Theorem 1.2.

Differentiate the j-th equation of (2) with respect to the field v⊥j . We have

0 = Lv⊥j
Lvjrj = LvjLv⊥j

rj − L[vj ,v⊥j ]rj . (3)

Compute now the derivative along the commutator:

L[vj ,v⊥j ]rj = LvjLv⊥j
rj − Lv⊥j

Lvjrj =

= Lvj (− sinφj(rj)x + cosφj(rj)y)− Lv⊥j
(cosφj(rj)x + sin φj(rj)y) =

= (rj)x(− cos2 φj(φj)x − cosφj sinφj(φj)y)+

+(rj)y(− sinφj cosφj(φj)x − sin2 φj(φj)y)+

+(rj)x(− sin2 φj(φj)x + sin φj cosφj(φj)y)+

+(rj)y(sinφj cosφj(φj)x − cos2 φj(φj)y) =
= −(rj)x(φj)x − (rj)y(φj)y (4)

Notice that the derivatives (rj)x, (rj)y can be expressed by the following
two identities:

cosφj(rj)x + sin φj(rj)y = 0,

− sinφj(rj)x + cosφj(rj)y = Lv⊥j
rj .

Therefore
(rj)x = − sinφjLv⊥j

rj ,

(rj)x = cosφjLv⊥j
rj . (5)
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Substituting back to (4) we get

L[vj ,v⊥j ]rj = (Lv⊥j
rj)(sinφj(φj)x − cosφj(φj)y) = −(Lv⊥j

rj)(Lv⊥j
φj) (6)

By the chain rule for Lv⊥j
φj the last equation can be rewritten as follows

L[vj ,v⊥j ]rj = −Lv⊥j
rj

n∑

i=1

(∂riφj)(Lv⊥j
ri) =

−(Lv⊥j
rj)2(∂rjφj)− (Lv⊥j

rj)
∑

i6=j

(∂riφj)(Lv⊥j
ri). (7)

Let me express now the derivative

Lv⊥j
ri = − sinφj(ri)x + cosφj(ri)y, (8)

via Lvjri as follows. Write

cosφi(ri)x + sin φi(ri)y = 0,

cosφj(ri)x + sinφj(ri)y = Lvjri. (9)

From these two identities we have

(ri)x =
sinφi

sin(φi − φj)
Lvjri, (rj)y = − cosφi

sin(φi − φj)
Lvjri. (10)

Substitute expressions (10) into (8) to get:

Lv⊥j
ri = − Lvjri

tan(φi − φj)
. (11)

Denote by
wi := Lv⊥i

ri.

Plug this together with (11) into equation (7) and then to (3):

Lvj (wj) + (∂rjφj)(wj)2 − wj

∑

i6=j

(∂riφj)
1

tan(φi − φj)
Lvjri = 0. (12)

By Richness (Φ) we have that for all j = 1, ..., n there exist functions

Gj(r1, ..., rn) : ∂riGj =
(∂riφj)

tan(φi − φj)
, i 6= j. (13)

By (13) we can rewrite (12) as

Lvj (wj) + (∂rjφj)(wj)2 − wj

∑

i6=j

(∂riGj)Lvjri = 0,

which is the same as

Lvj (wj) + (∂rjφj)(wj)2 − wjLvjGj = 0. (14)

Multiplying (14) by exp(−Gj) we get the Riccati equation of the first theo-
rem for j instead of i. This completes the proof of theorem 1.2.
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3. Conservation laws. Proof of theorem 1.3.

We shall need the following key observation.

Lemma 3.1. Given two sets of functions λi(r1, ..., rn); φi(r1, ...rn), i =
1, ..., n) such that

λi 6= λj , φi 6= π/2 (mod π), λi = tanφi.

Then the conditions (R) and (Φ) are equivalent.

The proof which I know is computational. It would be interesting to find
more conceptual proof.

Proof. Let us prove first that (R) implies (Φ).
Denote by

aij :=
∂riλj

λi − λj
.

Then aij satisfy the following identities ([10]):

∂riakj = ∂rk
aij = akiaij + aikakj − akjaij . (15)

In order to prove them differentiate with respect to rk the identity
∂riλj = aij(λi − λj) then interchange the order of i, k, subtract one from

the other and divide by λi − λk.
Denote by

bij :=
∂riφj

tan(φi − φj)
=

∂riλj

λi − λj

1 + λiλj

1 + λ2
j

= aij
1 + λiλj

1 + λ2
j

. (16)

To prove (Φ) we have to verify that the difference

d = ∂rk
bij − ∂ribkj

vanishes. Let us compute d explicitly:

d = (∂rk
aij)

1 + λiλj

1 + λ2
j

− (∂riakj)
1 + λkλj

1 + λ2
j

+

+aij∂rk

(
1 + λiλj

1 + λ2
j

)
− akj∂ri

(
1 + λkλj

1 + λ2
j

)
.

By the identities (15) and the condition (R) we have

d = (akiaij + aikakj − akjaij)
λj(λi − λk)

1 + λ2
j

+

+aij

∂rk
(λiλj)(1 + λ2

j )− (1 + λiλj)2λj∂rk
(λj)

(1 + λ2
j )2

−

−akj

∂ri(λkλj)(1 + λ2
j )− (1 + λkλj)2λj∂ri(λj)
(1 + λ2

j )2
. (17)

Substitute now into the nominators of (17) the following expressions for
the derivatives of λj from the definition of aij :

∂riλj = aij(λi − λj).
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Then one has

d = (akiaij + aikakj − akjaij)
λj(λi − λk)

1 + λ2
j

+

+aij
(akj(λk − λj)λi + λjaki(λk − λi)

1 + λ2
j

−akj
(aij(λi − λj)λk + λjaik(λi − λk)

1 + λ2
j

−

−2aij
(1 + λiλj)λjakj(λk − λj)

(1 + λ2
j )2

+ 2akj
(1 + λkλj)λjaij(λi − λj)

(1 + λ2
j )2

. (18)

Notice that the identity (18) is a quadratic expression in aijs. Collecting
the coefficients of aijakj , aikakj , akiaij one comes to d = 0. This proves
lemma in one direction.

Proof of the converse statement is very much analogous but with even
harder computations. I shall reproduce them sketchy. So we assume the
identities (Φ) are satisfied. First one can obtain the identity analogous to
(15) for the derivatives ∂rk

bij in the following way. Write

∂riφj = bij tan(φi − φj) = bij
λi − λj

1 + λiλj
, ∂riλj = bij

(1 + λ2
j )(λi − λj)

1 + λiλj
. (19).

Differentiating the first equality of (19) with respect to rk, using the identi-
ties (19) again and taking into account (16) one has

∂rk
∂riφj = ∂rk

(bij)
(λi − λj)
1 + λiλj

+

+bij

(
1 +

(λi − λj)2

(1 + λiλj)2

)(
bki

λk − λi

1 + λkλi
− bkj

λk − λj

1 + λkλj

)
.

Interchanging in this identity the order of indexes i and k and using ∂rk
bij =

∂ribkj one has the identity:

∂rk
(bij)

(λi − λk)(1 + λ2
j )

(1 + λiλj)(1 + λkλj)
=

= bkj

(
1 +

(λk − λj)2

(1 + λkλj)2

)(
bik

λi − λk

1 + λiλk
− bij

λi − λj

1 + λiλj

)
−

−bij

(
1 +

(λi − λj)2

(1 + λiλj)2

)(
bki

λk − λi

1 + λiλk
− bkj

λk − λj

1 + λkλj

)
. (20)

In order to verify (R) one computes

∂rk
aij − ∂riakj = ∂rk

bij

λj(λk − λi)(1 + λ2
j )

(1 + λiλj)(1 + λkλj)
+

+bij∂rk

(
1 + λ2

j

1 + λiλj

)
− bkj∂ri

(
1 + λ2

j

1 + λkλj

)
. (21)

The last step is to plug into (21) the expression (20) and also to differentiate
the last two brackets of (21) using the expression for the derivatives (19).
Then one finally gets a quadratic expression in bijs. Collecting similar terms
one verifies that the right hand side of (21) vanishes. Therefore (R) holds
true. This proves the lemma. ¤

It is easy now to prove Theorem 1.3.
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Proof. Notice first of all that the statement of the second theorem is local.
Given a system which is strictly Hyperbolic and is written in the diagonal
form

cosφi(ri)x + sin φi(ri)y = 0, i = 1, ..., n,

Let us give a proof first in one direction, namely assume that the system
can be written in the form of conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n.

Let me explain that then it must satisfy condition (Φ). If among φi there is
one with cosφi = 0 then one can apply a small rotation of the plane R2(x, y)
and to get a new system which has all angles different from ±π/2, φi 6=
φj (mod π). Notice that the rotated system remains in the form of con-
servation laws and in addition the differential Dg becomes a non singular
matrix, since otherwise α = 1, β = 0 would be the root of (P) but this is
impossible by φi 6= ±π/2. Denote

λi := tanφi.

Use now Sevennec’ theorem saying that the diagonal system

(ri)x + λi(ri)y = 0

which can be written in the form of conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n

with the non-singular Jacobi matrix
(
∂rjgi

)
must satisfy (R). But by lemma

in this case (R) and (Φ) are equivalent. So we get condition (Φ) for rotated
system. But this condition is obviously rotationally invariant. Thus it holds
also for the original system.

The proof in the opposite direction is analogous. First rotate the plane
exactly as above. Condition (Φ) remains valid since it is rotationally invari-
ant. Then by the lemma (R) is valid as well and then by Sevennec’ theorem
the rotated system can written in the form of conservation laws. But then
obviously the original one as well. This completes the proof.

¤

4. Geometric example.

In this section we give a geometric example originated from Classical
Mechanics where the results of the previous sections apply.

Let ρ be a Riemannian metric on the 2-torus T2 = R2/Γ, ρt denotes the
geodesic flow. Assume that ρ is written in conformal way:

ds2 = Λ(x, y)(dx2 + dy2).

Let F : T ∗T2 be a function on the cotangent bundle which is homogeneous
polynomial of degree n with respect to the fibre:

F =
n∑

k=0

ak(x, y)pn−k
1 pk

2.

We are looking for such an F which is an integral of motion for the geodesic
flow ρt, i.e. F ◦ρt = F . We shall also assume that this F is irreducible, i.e of
minimal possible degree. Let us mention that this problem is classical there
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are very well studied examples of the geodesic flows on the 2-torus which
have integrals F of degree one and two. We refer to books [4] and [9] for
the history and discussion of this classical question with references therein.
In our recent papers with A.E.Mironov we used the so called semi-geodesic
coordinates. In these coordinates one arrives to a remarkable Rich quasi-
linear system of equations in evolution form on the coefficients of the integral
F ([2], [3]). However it is very natural to be able to work in conformal
coordinates as well. In this case the quasi-linear system on the coefficients
has no evolution form any more but looks like:

A(U)Ux + B(U)Uy = 0.

Let me write down explicitly the matrices for the case n = 3 (this case is
already very interesting and not trivial see for example [6]).

A(U) =




1 0 3a
0 1 3b
Λ 0 u


 , B(U) =




0 −1 3b
1 0 −3a
0 Λ v


 , U =




u
v
Λ


 . (22)

Here a, b, u, v are related to the coefficients of the integral ai by the following

a0 = a +
u

Λ
, a1 = 3b +

v

Λ
, a2 = −3a +

u

Λ
, a3 = −b +

v

Λ
.

It was noticed in [8] that a, b are in fact constants. Computing polynomial
P = det(αB − βA) one has:

P = α3(v + 3bΛ) + α2β(−u− 9aΛ) + αβ2(v − 9bΛ) + β3(−u + 3aΛ).

Let remark that it may happen at some points that both matrices A,B are
degenerate, however polynomial P for any point can not vanish identically.
This is because otherwise both constants a, b vanish, but then one checks
that in such a case the integral F is a product of the Hamiltonian with an
integral of degree one in momenta, therefore reducible.

Notice that quasi-linear system (22) is written in the form of conservation
laws

(gi)x + (hi)y = 0,

g1 = u + 3aΛ, g2 = v + 3bΛ, g3 = uΛ,

h1 = −v + 3bΛ, h2 = u− 3aλ, h3 = vΛ.

Moreover by a very general argument in the Hyperbolic region this system
can be written in the diagonal form (2). Indeed introduce angular coordinate
φ on the fibres of the energy level

{ 1
Λ

(p2
1 + p2

2) = 1} : p1 =
√

Λcos φ, p2 =
√

Λ sin φ,

then one can verify that the condition on a function F to be an integral of
the flow reads

Fx cosφ + Fy sinφ + Fφ

(
Λy

2Λ
cosφ− Λx

2Λ
sinφ

)
= 0

At the points where Fφ vanishes this equation takes particularly nice form:

Fx cosφ + Fy sinφ = 0.
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Therefore critical values of F on the fibre are Riemann invariants. One can
check also that the polynomial P is proportional in fact to the derivative
of F in the direction of the fibre. Moreover one can check, as we did in
[2], that in the Hyperbolic region Riemann invariants form a regular change
of variables. As a consequence of Theorem 1.3 one concludes that in the
Hyperbolic region the system of this example is Rich in our generalized
sense. And therefore Theorem 1.2 tells us that the Riccati equation along
characteristics applies. This result is in fact general and is not restricted to
the case n = 3. For any n the quasi-linear system (1) on the coefficients
of the polynomial integral of motion is Rich in the generalized sense. The
details will appear elsewhere.

5. Questions

Several questions are very natural:
1. It would be interesting to find more conceptual proof of the lemma in

the framework differential-geometric approach by Dubrovin-Novikov [5].
2. How does generalized Hodograph method by Tsarev [12] work in our

case?
3. How to analyze the behavior of the Riccati equation for the example

of previous section? It seems that genuine non-linearity condition can not
be expected for all eigenvalues.
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