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Abstract

In this paper, a compensated compactness framework is established for sonic-subsonic ap-
proximate solutions to the n-dimensional(n ≥ 2) Euler equations for steady irrotational flow
that may contain stagnation points. This compactness framework holds provided that the ap-
proximate solutions are uniformly bounded and satisfy H−1

loc (Ω) compactness conditions. As
illustration, we show the existence of sonic-subsonic weak solution to n-dimensional(n ≥ 2)
Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle.
This is the first result concerning the sonic-subsonic limit for n-dimension(n ≥ 3).

1 Introduction

The n-dimensional(n ≥ 2) Euler equations for the steady irrotational flow reads




curl u = 0,

div(ρu) = 0,

div(ρu⊗ u + pI) = 0,

(1.1)

where u = (u1, · · · , un) are the flow velocities, and ρ and p represent the density and pressure-
density function, respectively, and (curl u)ij = ∂xjui − ∂xiuj , i, j = 1, · · · , n, is a n× n matrix
and I is a n× n unit matrix. Usually, we require p′(ρ) > 0 for ρ > 0.

The famous Bernoulli’s law can be easily derived from (1.1)1 and (1.1)3:

h(ρ) +
1
2
q2 = const, (1.2)

where q2 = |u|2 =
∑n

i=1 u2
i is the flow speed and h(ρ) =

∫ ρ
1

p′(s)
s ds is the enthalpy.

In this paper, we are interested in the polytropic gas, that is p = p(ρ) = ργ

γ , for γ > 1. Then
(1.2) is converted to the normalized formula

ρ = ρ(q) = (1− γ − 1
2

q2)
1

γ−1 . (1.3)

The local sound speed is defined by

c2 = p′(ρ) = 1− γ − 1
2

q2. (1.4)

At the sonic point q = c, (1.4) implies q2 = 2
γ+1 . The critical speed qcr is defined as

qcr =
√

2
γ + 1

,

1
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and the Bernoulli’s law is rewritten as

q2 − q2
cr =

2
γ + 1

(q2 − c2).

Thus the flow is subsonic when q < qcr, sonic when q = qcr, and supersonic when q > qcr.
For the isothermal flow, p = c̄2ρ, where c̄ > 0 is the constant sound speed, Bernoulli’s law

takes:

ρ = ρ(q) = ρ0 exp
(
− q2

2c̄2

)
(1.5)

for some constant ρ0 > 0.
It is well known that the steady irrotational Euler equations (1.1) is of mixed type of partial

differential equations, which is elliptic if q < qcr, parabolic if q = qcr, hyperbolic if q > qcr. Since
the equations of uniform subsonic flow possess ellipticity, its solutions have extra-smoothness to
those related to transonic flow or supersonic flow. There are a large of literatures on the smooth
uniform subsonic solutions, for instance, see [5],[26],[29],[44],[45] for two dimensional flow and
[21],[22],[23],[27],[41],[48],[49] for three dimensional flow. Among them, Frankl and Keldysh [29]
obtained the first result about the subsonic flow past a two dimensional finite body (or airfoil).
Shiffman in [44], [45] proved there exists a unique subsonic potential flow around a given profile
with finite energy provided that the infinite free stream flow speed q∞ is less than some critical
speed, which was improved by Bers [5]. Finn and Gilbarg [26] proved the uniqueness of the two
dimensional potential subsonic flow past a bounded obstacle with given circulation and velocity
at infinity. The first result for three dimensional subsonic flow past an obstacle was given by Finn
and Gilbarg [27] in which they studied the existence, uniqueness and the asymptotic behavior
with some restriction on Mach number. Dong [21] extended the results of Finn and Gilbarg [27]
to maximum Mach number M < 1 and to arbitrary dimensions. Recently, Du, Xin and Yan
[23] obtained the smooth uniform subsonic for n-dimensional(n ≥ 2) flow in an infinitely long
nozzle. For other related results, we refer to [2, 3, 4, 6, 25, 28, 30, 31, 32] and references therein.

However, few result is known until now for the sonic-subsonic flow and transonic flow, because
the uniform ellipticity is lost and shocks may present. That is, smooth solutions may not
exist, and weak solution is necessarily considered. Morawetz [37, 38] firstly introduced the
compensated compactness method to study steady flow of irrotational Euler equations. Indeed,
Morawetz established a compactness framework under assumption that the stagnation points
and cavitation points are excluded. Morawetz’s result was improved by Chen, Slemrod and Wang
[14] in which the approximate solutions are constructed by a viscous perturbation. On the other
hand, the first compactness framework on sonic-subsonic irrotational flow in two dimension was
recently due to Chen, Dafermos, Slemrod and Wang [13] by combining the mass conservation,
momentum, and irrotational equations. The key point of [13] is based on the fact that the two
dimensional steady flow can be regarded as the one dimensional system of conservation laws,
that is, x is regarded as time t, so that the div-curl lemma can be applied to the two momentum
equations. In fact, the authors [13] first applied the momentum equations to reduce the support
of the corresponding Young measure to two points, then again used the irrotational equation
and the mass equation to deduce the Young measure to a Dirac measure. As application, the
two dimensional sonic-subsonic flow past an airfoil was obtained in [13]. Soon after, Xie and
Xin [49] investigated the sonic-subsonic limit for the three-dimensional axis-symmetric flow(it is
similar to the two dimensional case) through an axis-symmetric nozzle.

However, the compactness framework established in [13] is no longer effective for n-d (n ≥ 3)
steady irrotational Euler equations, which can not be reduced to one dimensional system of
conservation laws, and the famous div-curl lemma is no longer valid for the momentum equations.
In this paper, we find that it is enough, by only using the mass conservation equation and
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irrotational equations, to reduce the Young measure to a Dirac measure for arbitrary dimension.
Thus we establish a compactness framework of approximate solutions for steady irrotational
flow in n-dimension(n ≥ 2). It is worthy to point out that the famous Bernoulli’s law plays a
key role in our proof. As application, we show the sonic-subsonic limit for steady irrotational
flows past obstacles or through an infinitely long nozzle in n-dimension(n ≥ 2).

The rest of this paper is organized as follows. In section 2, we establish the compactness
framework of sonic-subsonic approximate solutions for the system of steady irrotational equa-
tions in n-dimension(n ≥ 2). In section 3, we give two applications of the compactness framework
to show the existence of sonic-subsonic flow over obstacles or through an infinitely long nozzle.

2 Compensated Compactness Framework for Steady Irrotaitional
Flow in n-Dimension

Let a sequence of function uε(x) = (uε
1, · · · , uε

n)(x), defined on open subset Ω ⊂ Rn, satisfy the
following Conditions:

(A.1) qε(x) = |uε(x)| ≤ qcr a.e. in Ω;
(A.2) curl uε, and div(ρ(qε)uε) are confined in a compact set in H−1

loc (Ω).

Based on the above conditions, the famous div-curl lemma [24] and the Young measure
representation theorem for a uniformly bounded sequence of functions imply:

< ρ(q)q2, ν(u) >=
n∑

i=1

< ρ(q)ui, ν(u) >< ui, ν(u) >, (2.1)

where ν = νx(u) is the associated Young measure (a probability measure) for the sequence
uε(x) = (uε

1, · · · , uε
n)(x). Now, the main effort is to establish a compensated compactness

framework, namely, to prove that ν is a Diac measure by using the identity (2.1). This in turn
implies the compactness of the sequence uε(x) = (uε

1, · · · , uε
n)(x) in L1

loc(Ω).

Theorem 2.1 (Compensated compactness framework) Let a sequence of functions uε(x) =
(uε

1, · · · , uε
n)(x) satisfy conditions (A.1) and (A.2). Then the associated Young measure ν is

a Dirac mass and the sequence uε(x) is compact in L1
loc(Ω); that is, there is a subsequence (still

labeled) uε(x) → u(x) = (u1, · · · , un)(x) a.e. as ε → 0 and satisfying q(x) = |u(x)| ≤ qcr, a.e.
x ∈ Ω.

Proof. Let

I(u(1), u(2)) =
n∑

i=1

(u(1)
i − u

(2)
i )(ρ(q(1))u(1)

i − ρ(q(2))u(2)
i ), (2.2)

where u(i) = (u(i)
1 , · · · , u

(i)
n ) and q(i) = |u(i)| for i = 1, 2 be two independent vector variables.

After some basic calculations on I(u(1), u(2)), we have

I(u(1), u(2)) = ρ(q(1))[(q(1))2 −
n∑

i=1

u
(1)
i u

(2)
i ] + ρ(q(2))[(q(2))2 −

n∑

i=1

u
(1)
i u

(2)
i ]. (2.3)

Then the Cauchy inequality implies

I(u(1), u(2)) ≥ ρ(q(1))[(q(1))2 − q(1)q(2)] + ρ(q(2))[(q(2))2 − q(1)q(2)]
= (q(1) − q(2))(ρ(q(1))q(1) − ρ(q(2))q(2))

= (q(1) − q(2))2
d(ρq)
dq

(q̃). (2.4)
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where q̃ lies between q(1) and q(2) due to the mean-value theorem. The famous Bernoulli’s law
(1.3) gives that for γ > 1,

ρ(q) = (1− γ − 1
2

q2)
1

γ−1 ,

which immediately implies

d(ρq)
dq

= (1− γ − 1
2

q2)
1

γ−1
−1(1− γ + 1

2
q2) = (1− γ − 1

2
q2)

1
γ−1

−1(1− q2

q2
cr

). (2.5)

For γ = 1, the Bernoulli’s law is

ρ(q) = ρ0 exp
(
− q2

2q2
cr

)
,

which gives

d(ρq)
dq

= ρ0(1− q2

q2
cr

) exp
(
− q2

2q2
cr

)
. (2.6)

Thus , for sonic-subsonic flows, namely, q(1), q(2) ≤ qcr, (2.4)− (2.6) imply

I(u(1), u(2)) = (q(1) − q(2))2
d(ρq)
dq

(q̃) ≥ 0 (2.7)

and
(q(1) − q(2))2

d(ρq)
dq

(q̃) = 0, if and only if q(1) = q(2). (2.8)

From the identity (2.1), noticing that the Young measure ν is a probability measure, we have

< I(u(1), u(2)), ν(u(1))⊗ ν(u(2)) >= 0, (2.9)

which together with (2.7) and (2.8) implies q(1) = q(2), where ν(u(1))⊗ ν(u(2)) is understood as
a product measure of ν(u(1)) and ν(u(2)). With the property q(1) = q(2) at hand, we have from
(2.2)

0 = < I(u(1), u(2)), ν(u(1))⊗ ν(u(2)) >

= < ρ(q(1))
n∑

i=1

(u(1)
i − u

(2)
i )2, ν(u(1))⊗ ν(u(2)) >, (2.10)

which immediately implies u(1) = u(2), i.e, the Young measure is a Dirac measure. This completes
Theorem 2.1.

Remark 2.2 Theorem 2.1 is valid for any n ≥ 2. Namely, a compactness framework in The-
orem 2.1 is established for sonic-subsonic limit for steady irrotational flow in arbitrary dimen-
sion. From the Bernoulli’s law (1.2), it is straightforward to extend Theorem 2.1 to the general
pressure-density function p satisfying p′(ρ) > 0 for ρ > 0.

We now consider a sequence of approximate solutions uε to the Euler equations (1.1)1,
(1.1)2 and the Bernoulli’s law (1.3) or (1.5). That is, besides Conditions (A.1) and (A.2), the
approximate solutions uε further satisfy

{
curl uε = o1(ε),
div(ρ(qε)uε) = o2(ε),

(2.11)

where o1(ε), o2(ε) → 0 in the sense of distributions as ε → 0. Then, as a corollary of Theorem
2.1, we have
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Theorem 2.3 (Convergence of approximate solutions) Let uε(x) = (uε
1, · · · , uε

n)(x) be a se-
quence of approximate solutions satisfying (2.11) and the Bernoulli’s law (1.3) or (1.5). Then,
there is a subsequence (still labeled) uε(x) that converges a.e. as ε → 0 to a weak solution
u(x) = (u1, · · · , un)(x) to the Euler equations of (1.1)1, (1.1)2 and the Bernoulli’s law (1.3) or
(1.5) satisfying q(x) = |u(x)| ≤ qcr, a.e. x ∈ Ω.

Remark 2.4 For any functions Q(u) = (Q1(u), · · · , Qn(u)) satisfying

div(Q(uε)) = o(ε), (2.12)

where o(ε) → 0 in the sense of distributions as ε → 0, from the strong convergence of uε,
Q(u) = 0 holds in the sense of distributions. So if we have

div(ρ(qε)uε ⊗ uε + pεI) = o(ε) → 0, in the sense of distributions, (2.13)

the weak solution in Theorem 2.3 also satisfies the momentum equations (1.1)3 in the sense of
distributions.

There are various ways to construct approximate solutions by either numerical methods or
analytical methods such as vanishing viscosity methods. In the next section, we will show two
examples to apply the compactness framework built in Theorem 2.1.

3 Sonic Limit of Irrotational Subsonic Flows in n-Dimension

In this section, we wish to apply the compactness framework established in Theorem 2.1 to
obtain the sonic limit of n-dimensional(n ≥ 2) steady irrotational subsonic flows.

Firstly, we give an example of subsonic-sonic limit past obstacles. Let the obstacle Γ be one
or several closed n − 1(n ≥ 2) dimensional hypersurfaces. We shall always assume Γ ∈ C2,τ0 .
Denote by D(Γ) the domain exterior to Γ, see Fig 3.1,

Figure 3.1: General high dimensional case.

Problem P(u∞) : Let n ≥ 2. Find functions u = (u1, · · · , un) satisfy (1.1)1, (1.1)2 with the
Bernoulli’s law (1.3) or (1.5), and the slip boundary condition

u · ~n = 0 on Γ, (3.1)

where ~n denotes the unit inward normal of domain D(Γ), and the limit

u∞ = lim
|x|→∞

u(x), (3.2)
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exists and is finite.

The main result of [21] is described as follows:

Theorem 3.1 (Uniform Subsonic Flows Past An Obstacle for n-D Case [21]) Let
q∞ := |u∞|. There exists a positive number q̂ < qcr, so that P(u∞) has a uniform subsonic
solutions if 0 ≤ q∞ < q̂. Furthermore, let qm(q∞) = sup

x∈D(Γ)
|u(x)|, then the function qm(q∞) ∈

C[0, q̂) and qm(q∞) → qcr as q∞ → q̂.

Theorem 3.2 (Sonic Limit Past An Obstacle) Let uε∞ → û∞ as ε → 0 be a sequence of
speeds at ∞ with qε∞ < q̂ = |û∞|, and uε = (uε

1, · · · , uε
n) be the corresponding solutions to

Problem P(uε∞). Then, as uε∞ → û∞, the solution sequence uε(x) possess a subsequence (still
denoted by) uε(x) that converge a.e. in D(Γ) to a vector function u(x) = (u1, · · · , un)(x) which is
a weak solution of Problem P(u∞) with q∞ = q̂. Furthermore the limit velocity u = (u1, · · · , un)
also satisfies (1.1)3 in the sense of distributions and the boundary conditions (3.1) as the normal
trace of the divergence-measure field (u1, · · · , un) on the boundary (see [11]).

Proof. The strong solutions uε satisfy (1.1), and the Bernoulli’s law and are uniform subsonic
solutions of Problem P(uε∞). Hence Theorem 2.1 immediately implies that the Young measure is
a Dirac mass and the convergence is strong a.e. in D(Γ). The boundary conditions are satisfied
for u in the sense of Chen-Frid [11]. On the other hand, Since (1.1)3 holds for the sequence of
subsonic solutions uε(x), it is straightforward to see that u also satisfies (1.1)3 in the sense of
distributions. This completes the proof of Theorem 3.2.

Now we give another example of subsonic-sonic limit through an infinite long nozzle. As in
[23], denote the multi-dimensional nozzle domain by Ω which satisfies the following regularity
assumption: there exists an invertible C2,α map T : Ω̄ → C̄ : x → y satisfying





T (∂Ω) = ∂C,

For any k ∈ R, T (Ω ∩ {xn = k}) = B(0, 1)× {yn = k},
‖T‖C2,α , ‖T−1‖C2,α ≤ K < ∞,

The nozzle approaches to a cylinder in the far fields, i.e,
Ω ∩ {xn = k} → S± as k → ±∞, respectively,

(3.3)

where K is a uniform constant, C = B(0, 1) × (−∞,+∞) is a unit cylinder in Rn, B(0, 1) is
unit ball in Rn−1 centered at the origin, S± are n− 1 dimensional simply connected C2,α, xn is
the longitudinal coordinate and x′ = (x1, · · · , xn−1) ∈ Rn−1, see Fig 3.2,

Problem P̃(m0) : Let n ≥ 2. Find functions u = (u1, · · · , un) satisfy (1.1)1, (1.1)2 with the
Bernoulli’s law (1.3) or (1.5), and the slip boundary condition

u · ~n = 0 on ∂Ω, (3.4)

where ~n denotes the unit outward normal of domain Ω; and the mass flux condition
∫

S0

ρ(|u|2)u ·~ldS = m0 > 0 (3.5)

The main result of [23] is stated as follows:
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Figure 3.2: n-dimensional nozzle

Theorem 3.3 (Uniform Subsonic Flows in n-D Nozzle) There is a critical mass flux
Mc > 0, which depends only on Ω, such that if 0 < m0 < Mc, then P̃(m0) has a unique uniformly
subsonic flow through the nozzle, i.e, qm(m0) := sup

x∈Ω
|u(x)| < qcr. The velocity (u1, · · · , un) is

Holder continuous. Moreover, qm(m0) → qcr as m0 → Mc.

Similar to Theorem 3.2, we have

Theorem 3.4 (Sonic Limit Through A Nozzle) Let 0 < mε
0 < Mc be a sequence of mass

flux, and let uε(x) be the corresponding solution to P̃(mε
0). Then as mε

0 → Mc, the solution
sequence uε(x) possess a subsequence (still denoted by) uε(x) that converge strongly a.e. in Ω
to a vector function u(x) = (u1, · · · , un)(x) which is a weak solution of P̃(Mc) with Bernoulli’s
law. Furthermore the limit velocity u = (u1, · · · , un) also satisfies (1.1)3 in the sense of distri-
butions and the boundary conditions (3.4) as the normal trace of the divergence-measure field
(u1, · · · , un) on the boundary (see [11] ).

Remark 3.5 In this section we only give two examples as applications of compactness frame-
work established in Theorem 2.1. Certainly it can be used to other cases as long as conditions
(A.1) and (A.2) are satisfied.
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