
AN EXPONENTIAL TIME-DIFFERENCING METHOD FOR
MONOTONIC RELAXATION SYSTEMS

PEDER KRISTIAN AURSANDA, STEINAR EVJEB, TORE FLÅTTENC,
KNUT ERIK TEIGEN GILJARHUSC AND SVEND TOLLAK MUNKEJORDC,D

Abstract. We consider stiff relaxation processes, emphasizing the applica-
tion to hyperbolic conservation laws. We present first and second-order accu-
rate exponential time-differencing methods for systems of monotonic relaxation
ODEs. Some desirable accuracy and robustness properties of these methods
are established.

Through operator splitting, we show how the methods may be applied
to hyperbolic conservation laws with relaxation terms. In particular, global
second-order accuracy for smooth solutions may be achieved through Strang
splitting and MUSCL interpolation. An application to granular-gas flow is
presented.
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1. Introduction

We are interested in numerical methods for hyperbolic relaxation systems in the
form

∂U

∂t
+ ∂F (U)

∂x
= 1
ε
R(U), (1)

to be solved for the unknown M -vector U . Herein, R(U) is a relaxation source
term, the effect of which is to drive the system towards some local equilibrium
value U eq. The parameter ε represents a characteristic relaxation time towards
equilibrium. This relaxation time is typically small, imposing a high degree of
stiffness in the system (1).

Such systems were extensively analysed by Chen et al. [4], with a particular focus
on the stiff limit ε → 0. In this paper, we investigate numerical methods suitable
for systems in the form (1) for nonzero, yet small values of ε. In particular, we will
use fractional-step methods, based on splitting the system (1) into two parts:

(i) The conservation law
∂U

∂t
+ ∂

∂x
F (U) = 0; (2a)
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(ii) The ordinary differential equation

dU
dt = 1

ε
R(U). (2b)

This allows for applying methods that are particularly tailored to such problems
individually. In particular, we here focus on methods particularly suited for relax-
ation models in the form (2b).

Recently, a popular approach towards solving stiff systems in the form (2b) has
been the use of exponential integrators [5, 11, 17]. Such methods are motivated
mainly by computational efficiency considerations [12]; without sacrificing high-
order accuracy, one gets rid of the severe restriction on the time step commonly
associated with explicit methods for stiff problems. The main idea behind such
methods consists of splitting the source term into a linear and a nonlinear part as
follows:

1
ε
R(U) = LU +N(U), (3)

where L is a constant M ×M matrix. One then attempts to associate the stiffness
of the system (2b) with the linear part, which may be solved exactly through
the matrix exponential. Coupled to this, the non-linear part N(U) is solved by
standard Runge–Kutta methods.

In this paper, we wish to emphasize another aspect of exponential time-differencing
methods; the potential for strong robustness in the sense that the numerical solution
is bounded with no restriction on the time step. In particular, one may use such
methods to ensure that the relaxation step does not introduce unphysical solutions
such as vacuum or negative-density states.

To achieve this, we here present what seems to us a slightly original twist to
the idea of exponential integrators. Instead of viewing the exponential integration
step as the exact solution to a linear sub-problem as given by the splitting (3), we
interpret the exponential integration as a numerical approximation to the original
nonlinear problem, and this approximation is nevertheless accurate to a certain
order in the time step. This change of perspective leads to a slightly different
formulation, and allows us to construct consistent methods that by design guarantee
that the equilibrium solution cannot be exceeded.

For consistency, the property that the numerical solution is bounded by the
equilibrium value must be shared by the mathematical solution. Therefore, we will
limit our investigations in this paper to what we denote as monotonic equations in
the relaxation step (2b), as defined more precisely in Section 3. This restricts the
class of systems where our methods are applicable, but in particular includes many
relaxation processes of interest within the context of (1).

Furthermore, as the solution of such hyperbolic relaxation systems tend to re-
main close to the equilibrium state, we are interested in deriving methods that
exhibit a particularly high level of accuracy near equilibrium. In these respects, the
methods investigated in this paper may be particularly well suited for systems in
the form (1).

However, the investigations in this paper are in many ways preliminary. In
particular, our analysis is limited to the relaxation step (2b). We do not formally
address the convergence of our splitting method when applied to the full system
(1). Hence, the purpose of this paper may be summarized as follows.
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• We wish to emphasize the potential robustness properties of exponential
methods. Towards this aim, we explicitly present first and second-order
methods possessing a strong form of stability, which we will denote as
monotonic asymptotic stability.

• We wish to demonstrate the practical feasibility of such methods by apply-
ing them to a benchmark case previously investigated in the literature.

By this, we hope to pave the way for further work.
This paper is organized as follows. In Section 2, we briefly review hyperbolic

relaxation systems in the form (1), and some existing numerical methods to solve
such systems. In Section 3, we present the exponential integration technique which
is the topic of this paper. First and second-order versions are provided. We also
prove the following.

(i) The methods are stable in the strong sense that no numerical overshoots
of the equilibrium value are possible.

(ii) The methods are accurate in the sense that they correspond to the exact
solution to first-order deviations from the equilibrium.

In Section 4, we describe a granular-gas model investigated by Serna and Mar-
quina [27]. In Section 5, we present some numerical examples. Herein, Section 5.2
details our numerical method as applied to the granular-gas model. The simulations
indicate that our proposed method compares satisfactorily to results previously re-
ported in the literature.

Finally, in Section 6 we summarize our results and discuss some directions for
further work.

2. Hyperbolic Relaxation Systems

A hyperbolic relaxation system can be written in general quasilinear form as
follows [21]:

∂U

∂t
+A(U)∂U

∂x
= 1
ε
R(U), (4)

where the matrix A is assumed to be diagonalizable with real eigenvalues in the
domain of interest. In the context of (1), A is given by

A(U) = ∂F

∂U
. (5)

Such systems model many relevant physical problems, such as two-phase flows which
are locally not in thermodynamic equilibrium [7, 8, 26, 31].

The limiting process ε→ 0 in systems in the form (4) was extensively analysed
by Liu [19] and Chen et al. [4], with a particular focus on the relationship between
stability and wave propagation. In this paper, we are interested in numerical meth-
ods for systems in the form (4) when the relaxation source term is stiff; i.e. the
parameter ε is so small that the time scales associated with the homogeneous sys-
tem (2a) are significantly larger than the time scales associated with the relaxation
terms (2b).

Several approaches have been proposed in the literature. These may be roughly
divided into splitting and unsplit methods [23].
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2.1. Fractional-Step Methods. We assume a uniform computational grid, and
let Un

j denote the cell averages of U in the cell [xj−1/2, xj+1/2] at time tn. Let H(t)
be the operator that advances the system (2a) forward in time, and let S(t) be the
corresponding stiff ODE operator for the system (2b). Then we may consider two
main classes of splitting methods [14]:

• Godunov splitting:
Un+1 = S (∆t) ◦ H (∆t)Un, (6)

• Strang splitting [28]:

Un+1 = H
(

1
2∆t

)
◦ S (∆t) ◦ H

(
1
2∆t

)
Un. (7)

Godunov splitting is first-order accurate, whereas Strang splitting is second-order
accurate provided that both H and S are second-order accurate operators. In
particular, Strang splitting applied to (2a)–(2b) is second-order accurate for any
fixed ε. However, as emphasized by Pareschi and Russo [23], and proved by Jin [15],
the method in general degenerates to first order in the limit ε→ 0. Although this
limit may never be fully realized in practical applications, this is nevertheless an
undesirable property. Following the terminology of [23], we will denote schemes that
retain their order of accuracy also in the limit ε→ 0 as asymptotically accurate.

Jin [15] proposed an asymptotically second-order accurate splitting method based
on two-stage Runge–Kutta time integration. This paved the way for a currently
popular class of methods; implicit-explicit (IMEX) Runge–Kutta methods [2, 3, 23]
where an explicit discretization is applied to the flux terms and an implicit one
to the source terms. This provides a general framework for achieving high-order
asymptotic accuracy.

In this paper however, we are interested in exploring robust explicit methods for
the relaxation source terms. For simplicity, we will remain in the framework of the
Godunov and Strang splittings described above. For the hyperbolic operator H, we
will use the MUSTA method of Toro [29], augmented with the MUSCL approach
of van Leer [30]. Our stiff operator S will be described in the following section.

3. Monotonically Asymptotic Exponential Integration

In general, relaxation processes in the form (2b) only affect some of the vari-
ables of the full system. Furthermore, the relaxation processes often represent an
exchange of a conserved property between two variables, for which the relaxation
source term will differ only in sign.

This situation allows us to fully express the solution vector U through the dy-
namics of a reduced variable V (U), with rank N < M . For the purposes of this
paper, we make the following definition.

Definition 1. Consider the equation
dV
dt = 1

ε
S(V ), V ∈ D ⊆ RN (8)

where S(V ) is a smooth function. The system is said to be a relaxation ODE
provided there exists a unique point V eq ∈ D such that S(V eq) = 0, and the solution
satisfies

lim
t→∞

V (t) = V eq. (9)
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Herein, the initial condition U0 of (2b) determines an invertible function V (U),
as well as the function S(V ) and the point V eq. This will be illustrated by an
explicit example in Section 4.2.

3.1. Monotonic Relaxation ODEs. One way of solving relaxation ODEs is by
using exponential integrators, an idea that dates back at least several decades [6, 18].
A common starting point for such methods is a splitting of the source term into a
linear and a nonlinear part as follows [1, 5, 12, 13]:

1
ε
S(V ) = LV +N(V ), (10)

where L is a constant N ×N matrix. The linear part may then be solved exactly
through the matrix exponential of L; this solution is then coupled to the nonlinear
part N(V ) through standard Runge–Kutta methods.

For stiff problems, exponential integrators allow for larger time steps and im-
proved stability compared to straightforward Runge–Kutta methods. Berland et
al. [1] presented a general theory for constructing higher-order versions of such
exponential integrators.

Much of the literature focuses on computational accuracy and efficiency. In
our current paper, we wish to shift the focus more strongly towards numerical
robustness. Towards this end, we first define a subclass of relaxation ODEs.

Definition 2. A relaxation ODE in the form (8) is said to be a monotonic re-
laxation ODE if

V ′i (t) (V eq
i − Vi) > 0 ∀Vi 6= V eq

i (11)
for all i ∈ {1, . . . , N}.

In other words, we denote the system as monotonic if all the components of the
solution vector are monotonic functions of time. From (8) and (11) we immediately
see that a necessary condition for a system in the form (8) to be a monotonic
relaxation ODE is that the source term must satisfy

Si(V ) (V eq
i − Vi) > 0 ∀Vi 6= V eq

i (12)

for all i ∈ {1, . . . , N}.
Within the framework of hyperbolic relaxation systems in the form (1), mono-

tonicity seems to be a rather inclusive restriction. For instance, it is an essential
property of scalar relaxation ODEs.

Proposition 1. All scalar relaxation ODEs are monotonic, and a scalar ODE in
the form (8) is a relaxation ODE if and only if there is a point V eq such that

[min(V0, V
eq),max(V0, V

eq)] ⊆ D (13)

and
S(V ) (V eq − V ) > 0 ∀V 6= V eq,

S(V eq) = 0.
(14)

Proof. Either all scalar relaxation ODEs are monotonic, or some orbit of V exists
where V ′(t) changes sign. However, given that S(V ) is a smooth function, such
a point could only be the equilibrium point V eq which would remain constant in
time. Hence all scalar relaxation ODEs are monotonic, and (14), being a special
case of (12), is a necessary condition for (8) to be a relaxation ODE.
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Now if the initial condition V0 is given as V0 = V eq, then S(V0) = 0 and (9)
holds trivially. Otherwise, for any δ satisfying

0 < δ < |V eq − V0|, (15)
we define

W = [min(V0, V
eq + δ),max(V eq − δ, V0)] , (16)

C = min
V ∈W

|S(V )|. (17)

It follows from (14) that C−1 is a finite number, and that
|V (t > T )− V eq| < δ (18)

where T is given by
T = |V

eq − V0|
C

ε. (19)

Hence (9) holds, and (14) is also a sufficient condition for (8) to be a relaxation
ODE in the scalar case. �

If the relaxation processes are fully independent, this property will carry directly
over to systems. For instance, the relaxation part of the five-equation two-phase
flow model investigated by Munkejord [20], describing simultaneous volume and
momentum transfer, consists of independent relaxation processes and is monotonic
in the sense of Definition 2.

Remark 1. A simple example of a coupled, nonlinear and globally monotonic re-
laxation system can be constructed as follows:

V =
[
v1
v2

]
, S(V ) =

[(
α1 + β1v

2
2
)
v1(

α2 + β2v
2
1
)
v2

]
, (20)

where
V eq =

[
0
0

]
(21)

and
αi, βi < 0 ∀i ∈ {1, 2}. (22)

This is however a theoretical example, and monotonicity may easily be lost for
strongly coupled relaxation systems of practical interest. Consequently, one should
be aware that the methods presented in this paper are fully general only for the
scalar case, yet also applicable to a limited class of coupled systems.

3.2. A Strong Stability Requirement. An essential property of monotonic re-
laxation systems is that the solution vector remains bounded by the equilibrium
value at all times. To avoid unphysical solutions and numerical oscillations, we
want our numerical method to possess an analogous property.

Definition 3. Consider a monotonic relaxation ODE with initial conditions V n

and equilibrium point V eq. Let the numerical solution be given through some oper-
ator S(∆t) as

V n+1 = S(∆t)V n. (23)
The operator S will be denoted as monotonically asymptotically stable if it
satisfies the following properties.
MA1: The operator is consistent with the relaxation system to be solved, i.e. the

local truncation error is of at least second order in ∆t.
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MA2: The solution is unconditionally bounded by the equilibrium value, i.e.
V n+1
i ∈ (V ni , V

eq
i ) for V ni < V eq

i ,

V n+1
i = V ni for V ni = V eq

i ,

V n+1
i ∈ (V eq

i , V ni ) for V ni > V eq
i

(24)

for all i ∈ {1, . . . , N} and for all ∆t.

Common explicit methods typically do not possess this form of stability. For
instance, the forward Euler method satisfies the property MA2 only conditionally,
with a strong restriction on the time step:

∆t
ε
< min

i

(
V eq
i − V ni
Si(V n)

)
. (25)

Implicit methods may however possess such strong stability, as exemplified as fol-
lows.

Proposition 2. The backward Euler method, defined by

V n+1 = V n + ∆t
ε
S(V n+1), (26)

is monotonically asymptotically stable in the sense of Definition 3.

Proof. It is well known and easy to check that the backward Euler method is
consistent; i.e. the property MA1 is satisfied. We now prove the property MA2
by showing that we otherwise get contradictions. First, we note that the backward
Euler method preserves the equilibrium point. We now consider the case V eq

i > V ni .
Assume that the solution V n+1 of (26) satisfies

V n+1
i < V ni . (27)

From (12), we then have Si(V n+1) > 0 which inserted into (26) yields V n+1
i > V ni ,

in contradiction to (27).
Similarly, assume that the solution V n+1 of (26) satisfies

V n+1
i > V ni . (28)

From (12), we then have Si(V n+1) < 0 which inserted into (26) yields V n+1
i < V ni ,

in contradiction to (28).
The same steps will prove the remaining case V eq

i < V ni . �

Implicit methods generally require the solution of a system of nonlinear equa-
tions, which raises its own computational efficiency and robustness issues. This
motivates the explicit monotonically asymptotically stable method presented in the
following.

Definition 4. The numerical method given by

V n+1
i = V ni + (V eq

i − V
n
i )
(

1− exp
(
−∆t
τi

))
, (29)

where
τi = ε

V eq
i − V ni
Si(V n) , (30)

will be denoted as the ASY1 method.



8 AURSAND ET AL.

Proposition 3. The ASY1 method is monotonically asymptotically stable in the
sense of Definition 3.

Proof. Assume first that V eq
i 6= V ni . Taylor-expanding (29) shows that the method

is consistent to first order with (8). Note also that (29) satisfies

lim
V n

i
→V eq

i

V n+1
i = V eq

i , (31)

hence the property MA1 is satisfied. From (12) and (30) it also follows that the
exponential function is bounded by the interval (0, 1]. Hence the property MA2 is
satisfied. �

Note that the ASY1 method (29) inserts a numerical “barrier” at the point
Vi = V eq

i through which the solution can never pass. Hence the method cannot
be consistent unless this barrier is also present in the underlying mathematical
equation, as is the case for monotonic relaxation ODEs.

Otherwise, we will formally lose first-order accuracy at the barrier, as described
in the following.

Proposition 4. When applied to a general ODE

dV
dt = Q(V ), (32)

where Q(V ) is a smooth function, the method (29)–(30) is consistent in the limit
V ni → V eq

i only if
Qi(V ) = 0 for Vi = V eq

i . (33)

Proof. The local truncation error of the method for the component Vi can be written
as

Ti(V n) = 1
2 (∆t)2

Qi(V n)
(
∂Qi
∂Vi

+ Qi(V n)
V eq
i − V ni

)
+
∑
k 6=i

∂Qi
∂Vk

Qk(V n)

+O(∆t3).

(34)
Now if (33) holds, we obtain

lim
V n

i
→V eq

i

∂Qi
∂Vk

= 0 ∀k 6= i, (35)

and also
lim

V n
i
→V eq

i

Ti(V n) = 0. (36)

However, if (33) does not hold, the second-order coefficient diverges and the local
truncation error degenerates to

Ti(V n) ∼ O(∆t). (37)

�

The notion of monotonic asymptotic stability may be interpreted as a dual con-
sistency principle; consistency in the large (MA2) and the small (MA1), or the stiff
and non-stiff limit of the time step.
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3.3. Accuracy Near Equilibrium. The exponential function employed in (29) is
of course only one of many functions that asymptotically approaches a limit value.
However, it becomes the natural choice as it corresponds to the exact solution
for linear monotonic relaxation problems. In this respect, it is worth noting that
solutions to relaxation systems in the form (1) tend to remain close to equilibrium.
We have the following proposition.

Proposition 5. When applied to a monotonic relaxation ODE, the ASY1 method
is exact to first-order perturbations to the equilibrium state. More precisely, if we
write

V n = V eq + δṼ , (38)
then for all ∆t ≥ 0 the numerical solution (29) satisfies

Vi(tn + ∆t)− V n+1
i = O(δ2) ∀i, (39)

where V (t) is the exact solution.

Proof. It follows from monotonicity that
Vi(t)− V eq

i ∼ O(δ) ∀i. (40)
Consequently, we may expand the source term as

Si(V (t)) = Si(V eq) +
N∑
k=1

∂Si
∂Vk

(Vk(t)− V eq
k ) +O(δ2). (41)

By definition a monotonic relaxation ODE satisfies
Si(V ) = 0 for Vi = V eq

i , (42)
hence

∂Si
∂Vk

= 0 for k 6= i (43)

at the point V eq, and (41) reduces to

Si(V (t)) = ∂Si
∂Vi

(Vi(t)− V eq
i ) +O(δ2). (44)

As this holds for all t, we may write

Si(V (t)) = Si(V n)V
eq
i − Vi(t)
V eq
i − V ni

+O(δ2), (45)

and using (8) we obtain

ε
V eq
i − V ni
Si(V n)

dVi(t)
V eq
i − Vi(t)

= (1 +O(δ)) dt, (46)

where we have used that
Si(V n) ∼ O(δ) ∀i. (47)

Integrating (46) we obtain
V eq
i − Vi(t+ ∆t)
V eq
i − V ni

= exp
(
− Si(V n)∆t
ε(V eq

i − V ni )

)
+O(δ), (48)

which can be rewritten as

Vi(t+ ∆t) = V ni + (V eq
i − V

n
i )
(

1− exp
(
− Si(V n)∆t
ε(V eq

i − V ni )

))
+O(δ2). (49)

We now recover (39) by using (29)–(30). �
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3.4. Second-Order Accuracy. A general explicit two-stage Runge–Kutta scheme
for the ODE (8) can be written in the form

V ∗ = V n + a
∆t
ε
S(V n) (50)

V n+1 = V n + ∆t
ε

(b1S(V n) + b2S(V ∗)) , (51)

where for second-order accuracy the parameters a, b1 and b2 must satisfy (see for
instance [16, Ch. 8]):

b1 + b2 = 1, ab2 = 1
2 . (52)

In this section, we make some preliminary investigations into higher-order versions
of the ASY method by devising a similar two-stage application of (29).

Definition 5. The numerical method given by

V ∗i = V ni + (V eq
i − V

n
i )
(

1− exp
(
−a∆t

τi

))
(53)

V n+1
i = V ni + (V eq

i − V
n
i )
(

1− b1 exp
(
−∆t
τi

)
− b2 exp

(
−∆t
τ∗i

))
, (54)

where
τi = ε

V eq
i − V ni
Si(V n) , τ∗i = ε

V eq
i − V ∗i
Si(V ∗)

, (55)

and the parameters a, b1 and b2 satisfy

b1 + b2 = 1, ab2 = 1
2 , (56)

as well as
b2 ∈ (0, 1], (57)

will be denoted as the ASY2 method.

Proposition 6. The ASY2 method is second-order accurate in ∆t when applied to
a monotonic relaxation ODE.

Proof. Expanding τ∗i we obtain

1
τ∗i

= 1
τi

(
1 + a∆t

(
1
τi

+ 1
Si(V n)

N∑
k=1

∂Si
∂Vk

Sk(V n)
ε

))
+O(∆t2), (58)

where have used that

V ∗i = V ni + a
∆t
ε
Si(V n) +O(∆t2), (59)

Si(V ∗) = Si(V n) + a
∆t
ε

N∑
k=1

∂Si
∂Vk

Sk(V n) +O(∆t2). (60)

Substituting (58) into (54) and expanding the exponential function we obtain

V n+1
i = V ni + ∆t

ε
Si(V n) (b1 + b2)

+ 1
2

∆t2

ε2

(
(2ab2 − b1 − b2) Si(V n)2

V eq
i − V ni

+ 2ab2

N∑
k=1

∂Si
∂Vk

Sk(V n)
)

+O(∆t3), (61)
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whereas the exact solution satisfies

Vi(tn + ∆t) = V ni + ∆t
ε
Si(V n) + 1

2
∆t2

ε2

N∑
k=1

∂Si
∂Vk

Sk(V n) +O(∆t3). (62)

Now using (56) we may write

Vi(tn + ∆t)− V n+1
i = O(∆t3) ∀V ni 6= V eq

i . (63)

We finally observe that ASY2 method respects the limit

lim
V n

i
→V eq

i

V n+1
i = V eq

i . (64)

�

Proposition 7. The ASY2 method is monotonically asymptotically stable in the
sense of Definition 3.

Proof. The property MA1 follows immediately from Proposition 6. From (12), it
follows that the exponential functions of (54) are bounded by the interval (0, 1].
The property MA2 then follows from (56)–(57). �

As might be expected, Proposition 5 also naturally extends to the ASY2 method.

Proposition 8. When applied to a monotonic relaxation ODE, the ASY2 method
is exact to first-order perturbations to the equilibrium state. More precisely, if we
write

V n = V eq + δṼ , (65)

then for all ∆t ≥ 0 the numerical solution (53)–(54) satisfies

Vi(tn + ∆t)− V n+1
i = O(δ2) ∀i, (66)

where V (t) is the exact solution.

Proof. We have

Si(V ∗) = ∂Si
∂Vi

(V ∗i − V
eq
i ) +O(δ2), (67)

hence from (55) we obtain
1
τ∗i

= 1
τi

+O(δ2). (68)

Using (56), we may then write (54) as

V n+1
i = V ni + (V eq

i − V
n
i )
(

1− exp
(
−∆t
τi

)(
b1 + b2(1 +O(δ2)

))
= V ni + (V eq

i − V
n
i )
(

1− exp
(
−∆t
τi

))
+O(δ3).

(69)

In other words, ASY1 and ASY2 coincide to second order in perturbations to the
equilibrium state. The result then follows directly from Proposition 5. �
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4. A Granular-Gas Flow Model

Granular gases have lately been the subject of considerable theoretical, numerical
and experimental studies [9, 24, 23, 27, 25]. In this work we consider a continuum
model for granular-gas flow, in which the dynamics are accounted for by a hyperbolic
conservation law with relaxation. In addition to having been previously studied in
the literature, this model is suitable for our current purposes for the following
reasons.

• The relaxation part of the system is a monotonic nonlinear relaxation ODE.
• The equilibrium state corresponds to a granular temperature T = 0 and is
hence easy to calculate.

• Numerically overshooting the equilibrium would be undesirable, as it would
lead to the unphysical state T < 0.

4.1. Fluid-Mechanical Equations. The dynamics of a one-dimensional granular-
gas flow under the influence of gravity, in the form considered by Serna and Mar-
quina [27], can be described by the Euler-like equations

∂ρ

∂t
+ ∂(ρu)

∂x
= 0, (70a)

∂(ρu)
∂t

+ ∂(ρu2 + p)
∂x

= ρg, (70b)

∂E

∂t
+ ∂ u(E + p)

∂x
= Θ + ρgu. (70c)

In the above, ρ is the density, u is the velocity, p is the pressure, g is the gravitational
acceleration, E is the energy density and Θ is the rate of energy loss due to inelastic
collisions. The energy density consists of both kinetic and internal energy and is
given by E = (1/2)ρu2 + (3/2)ρT , where T is the granular temperature.

Following Serna and Marquina [27], we use an energy-loss term based on Haff’s
cooling law [10], given by

Θ(ρ, T ) = − 12√
π

1− e2

σ
ρT 3/2G(ν), (71)

where σ is the particle diameter and e ∈ [0, 1] is the restitution coefficient. For
e = 1 we recover a fully elastic model. The statistical correlation function G(ν) is
given by

G(ν) = ν

(
1−

(
ν

νM

) 3
4νM

)−1

, (72)

where ν = (π/6)ρσ3 is the volume fraction and νM is the maximal volume fraction.
The pressure is determined by a granular equation of state (EOS), introduced

by Goldshtein and Shapiro [9], given by

p(ρ, T ) = Tρ(1 + 2(1 + e)G(ν)). (73)

4.2. The Relaxation ODE. Within the splitting (2a)–(2b), we obtain

U =

 ρρu
E

 and 1
ε
R(U) =

 0
0

Θ(ρ, T )

 . (74)
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For any initial condition

U0 =

 ρ0
ρ0u0
E0

 , (75)

this may be written in the reduced form (8) with

V (U) = E, (76)

1
ε
S(V ) = − 4√

3π
1− e2

σ
ρ0

(
2 V
ρ0
− u2

)3/2
G(ν0). (77)

Furthermore, for any V we can reconstruct the full state vector U as

U(V ) =

 ρ0
ρ0u0
V

 . (78)

5. Numerical Tests

5.1. Verification of the Order of Convergence. The purpose of this section is
to numerically verify the order of convergence of the monotonically asymptotically
stable integrators presented in Section 3. Specifically, we wish to verify that the
ASY1 scheme (29) is first-order accurate and that the ASY2 scheme (53)–(54) is
second-order accurate. The two-stage ASY2 scheme is completely determined by
the parameter a in the order conditions (56). For the calculations of this paper, we
choose the parameter a = 1. By this choice, we only need two evaluations of the
exponential function in (53)–(54).

We consider an initial value problem, based on the scalar relaxation ODE of the
granular-gas model, given by

∂E(t)
∂t

= − 4√
3π

1− e2

σ
ρ0

(
2E(t)
ρ0
− u2

0

)3/2
G(ρ0), E(0) = E0. (79)

For this numerical test we use e = 0.97, σ = 10−3 m, ρ0 = 10.0 kg/m3 and u0 =
18.0 m/s. The initial energy is given by

E0 = 3966.5 J/m3, (80)

and the corresponding equilibrium energy is Eeq = (1/2)ρ0u
2
0 = 1620.0 J/m3.

A reference solution Eref(1.0) was calculated using the second-order modified
Euler scheme with a step size ∆t = 2−20 s. The modified Euler scheme is given
by the two-step explicit Runge–Kutta method (50)–(51) with a = 0.5. In order to
estimate the order of convergence we calculate the error E = |Eref(1.0)− Ê(1.0)| for
numerical solutions Ê, using different step sizes. Let E i be the error using step-size
∆ti = 2−i, for i ∈ N. For sufficiently small ∆t, the order of convergence n is then
given by

n = log2

(
E i−1

E i

)
. (81)

Table 1 shows the error and the estimated order of convergence for the ASY1
scheme. The results are consistent with a first-order solver.

Table 2 shows the error and estimated order of convergence for the ASY2 scheme.
These results agree with this being a second-order accurate scheme.
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Table 1. The error E = |Eref(1.0)− Ê(1.0)| in the numerical solution at t = 1.0 s
using the ASY1 scheme, for different values of the step-size ∆t. The number n
indicates the estimated order of convergence.

∆t E i E i−1/E i n

2−2 4.02869674 - -
2−3 1.99680512 2.0176 1.0126
2−4 0.99408608 2.0087 1.0063
2−5 0.49597241 2.0043 1.0031
2−6 0.24771960 2.0022 1.0016
2−7 0.12379328 2.0011 1.0008
2−8 0.06188003 2.0005 1.0004
2−9 0.03093586 2.0003 1.0002
2−10 0.01546689 2.0001 1.0001

Table 2. The error E = |Eref(1.0)− Ê(1.0)| in the numerical solution at t = 1.0 s
using the ASY2 scheme, for different values of the step-size ∆t. The number n
indicates the estimated order of convergence.

∆t E i E i−1/E i n

2−2 0.01629915 - -
2−3 0.00393750 4.1395 2.0494
2−4 0.00096757 4.0695 2.0248
2−5 0.00023981 4.0347 2.0125
2−6 0.00005969 4.0173 2.0062
2−7 0.00001489 4.0086 2.0031
2−8 0.00000372 4.0041 2.0015
2−9 0.00000093 4.0014 2.0005
2−10 0.00000023 3.9982 1.9993

5.2. Numerical Method. In order to numerically test the ASY methods on the
granular-gas model described in Section 4, we use a fractional-step method as de-
scribed in Section 2.1. This means that we need a numerical solver for the hyperbolic
part (2a) to use in tandem with the exponential integrator.

5.2.1. A Multi-Stage Scheme. We consider a uniform grid in space and time, and
denote tn = t0 + n∆t and xj = x0 + j∆x. For a first-order accurate numerical
scheme, we advance the solution Un

j forward in time by using

Un+1
j = Un

j + Fnj ∆t, (82)

where
Fnj = 1

∆x

(
F nj−1/2 − F

n
j+1/2

)
+ Q(Un

j ). (83)

In the above, F nj+1/2 is the numerical approximation to the inter-cell flux and
Q(Un

j ) are local source terms other than relaxation terms. For the granular-gas
model, Q(U) will be the gravity source terms.
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In the Multi-Stage (MUSTA) approach, the inter-cell flux is calculated by solving
the local Riemann problem at each cell interface on a local grid [29]. The solution
on the local grid is then advanced in several stages giving an approximation to the
inter-cell flux. In our application, we will use four local grid cells and two local
iteration steps. The CFL number of the local grid is kept the same as on the global
grid.

5.2.2. High Resolution. In a high resolution (second order) extension to the MUSTA
scheme, we employ a second-order strong-stability-preserving (SSP) Runge–Kutta
method to advance the solution forward in time. The two-stage scheme is given by

U∗j = Un
j + Fnj ∆t,

Un+1
j = 1

2U
n
j + 1

2U
∗
j + 1

2F
∗
j ∆t.

(84)

In order to obtain second-order accuracy in space, a piecewise linear MUSCL in-
terpolation [22, 30] was used. For the granular-gas model, the variables used in the
interpolation were given by

W =
[
ρ v p

]T
. (85)

We reconstruct these variables to the right and to the left of the cell interface as

WR
j+1/2 = W j+1 −

∆x
2 σj+1 and W L

j+1/2 = W j + ∆x
2 σj , (86)

respectively. The cell slopes σj are calculated using a minmod slope, given by

σj,i = minmod
(
Wj,i −Wj−1,i

∆x ,
Wj+1,i −Wj,i

∆x

)
, (87)

where the minmod function is defined as

minmod(a, b) =


0 if ab ≤ 0
a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0

. (88)

The reconstructed values at the interface are then used for the Riemann problem
on the local MUSTA grid, in order to obtain second-order accuracy in space. We
refer to the high-resolution scheme as MUSCL-MUSTA.

5.3. Case: Granular-Gas Tube. In this section we use the ASY integrators as
a part of a fractional-step method in order to compare with previously reported
results for the granular-gas model.

We consider the case of a granular gas in a vertical tube hitting a solid wall at
the bottom end, as used by Serna and Marquina [27] and also Pareschi and Russo
[23]. The 0.1 m tube is initially filled with a granular gas with volume fraction
ν = 0.018, velocity 0.18 m/s and pressure p = 1589.26 Pa. We use the gravitational
acceleration g = 9.8 m/s, the restitution coefficient e = 0.97, the maximum volume
fraction νM = 0.65 and the particle diameter σ = 10−3 m. The left boundary
condition is given by an incoming flow consistent with the initial condition. At the
right end of the domain we used a reflective boundary condition.

Simulations were carried out using 200 computational cells and a CFL number of
0.4. Figure 1 shows the results for the volume fraction, granular temperature and
velocity at t = 0.23 s, using the MUSTA-ASY1 scheme with Godunov splitting and
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the MUSCL-MUSTA-ASY2 scheme with Strang splitting. The reference solution
was computed using the MUSCL-MUSTA-ASY2 scheme with 10 000 cells.

The results show a shock being formed when the gas hits the solid wall. The
shock propagates backwards and the gas continues to compress against the wall
until the maximum volume fraction is reached at the right boundary. It is also
at the right boundary the difference between the first and second-order schemes is
most prominent, as illustrated in Figure 2. For the second-order MUSCL-MUSTA-
ASY2 scheme some spurious oscillations can be observed near the shock, these are
associated with the MUSCL interpolation in the hyperbolic step.

Our results do not compare unfavourably to those previously reported [23, 27]
in terms of accuracy and numerical robustness.

6. Summary

We have investigated a technique, based on exponential integration, for solv-
ing monotonic relaxation ODEs. First and second-order versions of the method
have been presented. We have proved that the resulting methods possess desirable
accuracy and stability properties. In particular, for first-order corrections to the
equilibrium value, the methods yield the exact solution. Furthermore, the meth-
ods yield numerical solutions that are unconditionally bounded by the equilibrium
state.

Through operator splitting, we have applied the methods to a system of hyper-
bolic conservation laws with relaxation, representing flow of granular gases. The
simulations indicate that the currently selected approach, based on MUSCL inter-
polation in the hyperbolic step, is comparable to previously published results in
terms of accuracy and appearance of numerical oscillations.

In summary, we have analytically demonstrated beneficial properties of the meth-
ods in the stiff and non-stiff limits of the time step. Our numerical experiments
further verify the applicability of the methods for intermediate time steps. Hence
the approach shows promise for solving hyperbolic relaxation processes where ro-
bustness in the relaxation step is essential, for instance to avoid vacuum or negative-
temperature states.

Further work includes deriving higher-order conditions for general multi-stage
versions of the method. In this context, it would also be of interest to derive
unsplit versions of the approach, following for instance the ideas of Jin [15]. An
extension to more general systems, through the matrix exponential, should also be
investigated.
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