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Abstract. We prove that a sequence of quasi-solutions to non-degenerate de-
generate parabolic equations with rough coefficients is strongly L1

loc-precompact.
The result is obtained using the H-measures and a new concept of quasi-
homogeneity. A consequence of the precompactness is existence of a weak
solution to the equation under consideration.

1. Introduction

In the current contribution, we consider the following equation

∂tu + divx f(t, x, u) = D2 ·A(t, x, u) + s(t, x, u), (1)
where

• The convective term f(t, x, λ) is the Caratheodory vector, i.e. continuously
differentiable in λ ∈ R and in (t, x) ∈ R+ × Rd it belongs to Ls(R+ ×
Rd) ∩BV (R+ ×Rd), s > 2.

• The matrix A(t, x, λ) = (aij(t, x, λ))i,j=1,...,d ∈
(
C1(R; BV (R+ ×Rd)))

)d×d,
is strictly increasing with respect to λ ∈ R:

∀(t, x) ∈ R1+d, λ1, λ2 ∈ R, λ1 > λ2, ∀ξ ∈ R1+d,

(A(t, x, λ1)−A(t, x, λ2)) ξ · ξ ≥ 0.
(2)

• For any p ∈ R the distribution

divx f(t, x, p) + D2 ·A(t, x, p) = γp ∈ Mloc(R+ ×Rd). (3)

We assume that γp = ωp + γs
p, where ωp ∈ L1(R+ × Rd) is the regular

part of the measure, while γs
p is a singular measure (supported on the set

of measure zero).
• The function s(t, x, λ) is continuous in λ ∈ R and in (t, x) ∈ R+ ×Rd it

belongs to the space of locally bounded measures, i.e.

s(t, x, λ) ∈ C(R;M(R+ ×Rd)).

We shall prove that a Cauchy problem for equation (1) admits a weak solution
by proving that a sequence of approximate solutions to (1) (e.g. the ones generated
by the vanishing viscosity method) is strongly L1

loc-precompact.
The latter equation is very important and it describes phenomena containing

the combined effects of nonlinear convection, degenerate diffusion, and nonlinear
reaction. Thus, it attracted significant amount of attention recently. It appears in
a broad spectrum of applications, such as flow in porous media and sedimentation-
consolidation processes which very often occur in highly heterogeneous media caus-
ing rather rough coefficients in (1) (e.g. during CO2 sequestration process, the gas
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is disposed around 800m under the earth which is highly stratified surounding).
However, due to obvious technical obstacles, most of the previous literature was
dedicated either to homogeneous degenerate parabolic equations either to equa-
tions where the flux and diffusion are regular functions (e.g. [24, 5, 6, 7]).

Recently, several existence results for (1) in the case when the coefficients are
irregular were obtained. In [19, 18] the authors considered ultra-parabolic equations
satisfying (3) while in [12], a degenerate parabolic equation was considered, but
with homogeneous diffusion matrix (i.e. the matrix A was independent on (t, x) ∈
R+ ×Rd).

We are extending the previous results on the case of fully heterogenous equation
(1) with rough coefficients. The basic tools that we are using is the same as in
[19, 18, 12] – H-measures [21, 11] and the kinetic approach [15, 7].

What makes the difference is the new concept of quasi-homogeneity. We shall
say that the diffusion matrix is quasi-homogeneous if it can be locally estimated by
a homogenous matrix.

For instance, assume that the matrix A = A(x, y, λ) = diag(x2λ, y2λ). The
matrix is clearly non-negative but it reaches zero at Q = {0} × R ∪ R × {0}.
However, in a neighborhood U of any point (x, y) ∈ R2 \Q we can estimate it by

inf
(x,y)∈U

min{|x|, |y|}(ξ2
1 + ξ2

2) ≤ x2ξ2
1 + y2ξ2

2 ,

i.e the matrix A = A(x, y, λ) = diag(x2λ, y2λ) can be locally almost everywhere
estimated by the unit matrix. If this is a case, we can adapt the techniques from
the homogeneous case in order to obtain wanted results.

In general, if the matrix A′λ is non-negative definite in the classical sense, then
we can find a function P (t, x, λ) and a constant c > 0 such that, at least locally in
Rλ ×R+

t ×Rd, it holds

cP (t, x, λ)|ξ|2 ≤ 〈A′λ(t, x, λ)ξ, ξ〉.
Then, if the function P regular enough (and this is the case when P is continuous,
and thus, according to [3], even when it is of bounded variation), we can almost
everywhere estimate it by a function depending only on λ. Thus, we see that the
quasi-homogeneity concept covers wide class of diffusion matrices. Here, we shall
not get into this issue deeper.

The paper is organized as follows.
In Section 2, we introduce the variants of H-measures that we are going to use

and prove number of auxiliary lemmas. Also, we rigorously introduce the quasi-
homogeneity concept. In Section 3, we basically prove that under a genuine nonlin-
earity conditions, a sequence of approximate solutions to (1) is strongly precompact
in L1

loc(R
+×Rd). As a consequence, we prove existence of solutions to the Cauchy

problem corresponding to (1).

2. H-measures, quasi-homogeneity, and auxiliary statements

In this section, we shall recall the notion of the H-measures – the basic tools
that we are going to use. Also, we shall introduce the notion of quasi-homogeneity
which is the new concept providing an improvement with respect to the previous
result on the subject. Finally, we shall prove numerous auxiliary lemmas which will
provide easier exposition of main results.
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We start with the H-measures. The following theorem lies in the basis of the
H-measures. It is given by L.Tartar [21] (and independently by P.Gerard [11] in a
more general framework; see below).

Theorem 1. [21, Theorem 1.1] If (un)=((u1
n, . . . , ur

n)) is a sequence in L2(R1+d;Cr)

such that un
L2

−⇀ 0 (weakly), then there exists a subsequence (un′) and a complex,
positive semi-definite matrix Radon measure µ = {µij}i,j=1,...,d on Rd×Sd−1, such
that for all ϕ1, ϕ2 ∈ Cc(Rd) and ψ ∈ C(Sd−1):

lim
n′

∫

Rd

F(ϕ1u
i
n′)(ξ)F(ϕ2u

j
n′)(ξ)ψ(

ξ

|ξ| )dξ =
∫

Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ)dµij(x, ξ)

= 〈µij , ϕ1ϕ̄2 ⊗ ψ〉, i, j = 1, . . . , d,

(4)

where ⊗ stands for the tensor product of functions in different variables.

The measure µ from the above theorem is called the H-measure associated to (a
sub)sequence (of) (un).

By a complex Radon measure on a locally compact Hausdorff space X we denote
an element from the dual space (C0(X))′. Complex Radon measures form a Banach
space denoted by Mb(X).

The above theorem remains valid if a sequence un is taken from L2
loc, but in that

case the corresponding variant H-measure does not have to be a (complex) Radon
measure, but a distribution of order 0.

By using multiplier operators associated to functions defined on Sd−1, we can
conveniently rewrite (4). More precisely, for a function ψ ∈ C(Pd) we define an
operator Aψ on L2(Rd) by Aψu := ((ψ ◦ πP )û)∨, i.e.

(Aψu)(x) =
∫

Rd

e2πix·ξψ
( ξ

|ξ|
)
û(ξ) dξ . (5)

Clearly, Aψ is a bounded operator, called (the Fourier) multiplier operator, with
norm equal to ‖ψ‖L∞ .

By applying Plancherel’s theorem to (4), we can rewrite it in the form:

lim
n′

∫

Rd

(
Aψ ϕ1u

i
n′

)
(x) ϕ2u

j
n′(x)dx =

∫

Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ)dµij(x, ξ).

The proof of Theorem 1 is based on the following commutation lemma which we
will also need in the sequel.

Lemma 2. [23, Lemma 28.2] Let b ∈ Cc(Rd) and a ∈ L∞(Rd) such that

∀M > 0 ε > 0 ∃κ > 0 such that

|ξ1 − ξ2| ≤ M =⇒ |a(ξ1)− a(ξ2)| ≤ ε.

Let Aa be the multiplier operator with the symbol a, and B the operator of multi-
plication by b. Then the commutator

Aa ◦B −B ◦ Aa

is a compact L2 → L2 mapping.

Notice that Theorem 1 is formulated for sequences of functions taking values in
a finite dimensional Hilbert space, Cr. In [13], for the parabolic variant of the H-
measures [2], we introduced an extension of the object corresponding to sequences
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of functions indexed in an uncountable set. The same result holds for the classical
H-measures given by Theorem 4 (it is simply enough to replace the manifold P
from [13] by Sd−1).

Such type of extensions was given by Gerard [11] (we repeat, simultaneously
and independently of L.Tartar) and Panov [17, 18]. Gerard’s extension is rather
general, but also rather abstract and, from our point of view, therefore hard to use.
On the other hand, Panov’s extension concerns H-measures corresponding to L∞-
sequences of the form (un(x, y))y∈R which are uniformly continuous with respect to
y outside a zero-measure set. In [13], we proposed the extension which is somewhere
in between Panov’s and Gerard’s level of generality, and the representation of our
object (Proposition 5) is relatively simple and thus easy to use.

Here, we shall provide the statement that we need. It is slightly modified with
respect to the published version from [13]. Thus, let (un) and (vn) be arbitrary
bounded sequences of functions in variables x ∈ Rd and y ∈ Rm, weakly converging
to zero in L2(Rd ×Rm). The following theorem holds (see also [21, Corollary 1.5]
and [22, Remark 2, a)]).

Theorem 3. There exists subsequences (un′) and (vn′) of the sequences (un) and
(vn) such that there exists a measure µ ∈ L2

w∗(R
2m;Mb(Rd × §d−1)) such that for

all ρ ∈ L2
c(R

2m), ϕ1 ∈ Ls(Rd), s > 2, ϕ2 ∈ Cc(Rd) and ψ ∈ C(Sd−1):

lim
n′

∫

R2m

∫

R1+d

ρ(p,q)
(
Pψ ϕ1un′(·,p)

)
(t,x)ϕ2(t,x)vn′(t,x,q)dtdxdpdq

=
∫

R2m

ρ(p,q) 〈µ(p,q), ϕ1ϕ̄2 ⊗ ψ〉dpdq.

(6)

Proof: The theorem is proved in [13, Theorem 3] in the case when (un) = (vn),
and the sequence (un) converges weakly to zero in L2 for the test functions ϕ1, ϕ2 ∈
Cc(Rd).

The proof in the case when (un) and (vn) are different sequences weakly con-
verging to zero in L2(Rd) is the same as when (un) = (vn).

In order to prove that we can use ϕ1 ∈ Ls(Rd), s > 2, ϕ2 ∈ Cc(Rd), it is enough
to approximate ϕ1 by a family of Cc(Rd) functions (ϕε

1)ε and to define:∫

R2m

ρ(p,q) 〈µ(p,q), ϕ1ϕ̄2 ⊗ ψ〉dpdq = lim
ε→0

∫

R2m

ρ(p,q) 〈µ(p,q), ϕε
1ϕ̄2 ⊗ ψ〉dpdq

Since (un) and (vn) are bounded sequences, the latter limes is well-defined. Indeed,
for any ε1, ε2, it holds

∣∣∣
∫

R2m

ρ(p,q) 〈µ(p,q), ϕε1
1 ϕ̄2 ⊗ ψ〉dpdq−

∫

R2m

ρ(p,q) 〈µ(p,q), ϕε2
1 ϕ̄2 ⊗ ψ〉dpdq

∣∣∣

≤ C0

∫

q

‖F(ϕε1
1 − ϕε2

1 )(·,q)‖L2(Rd)dq = O(ε1 − ε2),

and conclusion now follows from the Cauchy criterion for convergence. 2

Remark 4. The last theorem remains valid in the case when the test functions ϕ1, ϕ2

depend on the velocity variable (p or q) as well, i.e. when they are taken from the
space C0(R1+d ×Rm). Analogically, we can assume that ψ ∈ Cc(Sd×Rm) as well.
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The theorem also remains valid if instead of the bounded sequence (vn) we put
the sequence (Aψvn) where Aψ is the multiplier operator with the bounded symbol
ψ.

Remark finally that the H-measure defined in the last theorem is absolutely
continuous with respect to the Lebesgue measure (for more detailed explanation
see [22, Remark 2, a)])).

If in Theorem 3, it holds (un) = (vn), we proved in [14], that we can describe the
object µ defined in Theorem 3 more precisely by showing that it can be represented
as µ(p, q, x, ξ) = f(p, q, x, ξ)ν(x, ξ), where ν ∈ M(Rd × Sd−1) is a positive Radon
measure, and f ∈ L1

loc(R
d × Sd−1;L2(R2m) : ν). More precisely, the following

proposition holds.

Proposition 5. The object µ ∈ M+(Rd × Sd−1;L2(R2m) defined in Theorem 3
has the form

µ(p, q, x, ξ) = f(p, q, x, ξ)ν(x, ξ), (7)
where ν ∈M(Rd×P ) is a non-negative Radon measure and f ∈ L1

loc(R
d;L2(R2m×

Sd−1) :ν).

Proof: First, notice that from (6), the Cauchy-Schwartz inequality, and the den-
sity arguments, it follows that for almost every p, q ∈ R:

|µ(p, q, ·, ·)(ϕ)| ≤ C|µ(p, p, ·, ·)(ϕ)|1/2|µ(q, q, ·, ·)(ϕ)|1/2 (8)

for any nonnegative ϕ ∈ C0(Rd × Sd−1) and an appropriate constant C (see also
the proof of [17, Lemma 1]). Note that here positivity of the measures µ(p, p, ·, ·)
should also be taken into account.

Then, for ϕ ∈ C0(Rd × P ), define by

ν(x, ξ)(ϕ) :=
∫

Rm

µ(p, p, x, ξ)ϕdp

the nonnegative Radon measure ν on Rd×P . Clearly, from (8), it follows that the
measures µ(p, q, ·, ·) are absolutely continuous with respect to ν for almost every
p, q ∈ R:

µ(p, q, ·, ·) << ν. (9)
Indeed, if ν(ϕ) = 0 for some nonnegative function ϕ ∈ C0(Rd × P ), then from the
definition of ν(ϕ) and positivity of µ(p, p, ·, ·), it follows that µ(p, p, ·, ·)(ϕ) = 0 for
almost every p ∈ R. From this fact and (8), we immediately obtain (9).

Now, the conclusion (7) follows from the Radon-Nikodym theorem. 2

In the sequel, we shall work in the space Rd
+ = R+ ×Rd, and we shall write

f ′λ(t, x, λ) = F (t, x, λ), A′λ(t, x, λ) = a(t, x, λ), t ∈ R+, x ∈ Rd.

Also, we shall omit the conjugation when applying (6) if it does not affect the final
conclusions.

If not stated otherwise, we shall assume that ϕ ∈ Cc(Rd
+), ψ ∈ C(Sd−1), ρ ∈

Cc(R2).
Let us now rigorously introduce the quasi-homogeneity concept.

Definition 6. We say that the diffusion matrix A ∈ (
C1(R;BV (R+ ×Rd)))

)d×d

is quasi-homogeneous on (a, b) × Ω ⊂ R × Rd+1 if there exists a matrix q ∈(
C1(R)

)d×d and a constant c > 0 such that
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0 ≤ c〈q(λ)ξ, ξ〉 ≤ 〈a(t, x, λ)ξ, ξ〉, λ ∈ (a, b), (t, x) ∈ Ω. (10)

We shall say that the matrix a is quasi-homogeneous if it is quasi-homogeneous
in a neighborhood of almost every point (t, x, λ) ∈ Rd

+ ×R.

In order to make use of the latter concept we need several auxiliary results.

Lemma 7. For every fixed λ ∈ R, the multiplier operators A 1
|ξ|+〈q(λ)ξ,ξ〉

and
(
A 1
|ξ|+〈q(λ)ξ,ξ〉

)′
λ

= A −〈p′(λ)ξ,ξ〉
(|ξ|+〈q(λ)ξ,ξ〉)2

with the symbols 1
|ξ|+〈q(λ)ξ,ξ〉 and −〈q(λ)ξ,ξ〉

(|ξ|+〈q(λ)ξ,ξ〉)2 ,

respectively, are bounded mappings from Ls(Rd
+) → W 1,s(Rd

+), i.e. they are com-
pact operators from Ls(Rd

+) to Ls
loc(R

d
+), s > 1.

Proof: We shall prove the statement for the multiplier operator A 1
|ξ|+〈q(λ)ξ,ξ〉

. The
proof is the same for the multiplier operator A −〈p′(λ)ξ,ξ〉

(|ξ|+〈q(λ)ξ,ξ〉)2
.

Accordingly, take an arbitrary u ∈ L2(Rd) and notice that for a fixed k ∈
{1, . . . , d}, according to the Hörmander-Mikhlin theorem [16]

‖∂xk
A 1
|ξ|+〈q(λ)ξ,ξ〉

u‖Ls(Rd) ≤ K‖u‖Ls(Rd),

for a constant K > 0 (independent on λ). Thus, the multiplier operatorA 1
|ξ|+〈q(λ)ξ,ξ〉

is bounded as a mapping from Ls(Rd
+) → Hs(Rd

+), and thus, according to the
Relich theorem, compact mapping from Ls(Rd

+) to Ls
loc(R

d
+).

The nontrivial moment here is to prove that the symbols −ξk〈p′(λ)ξ,ξ〉
(|ξ|+〈q(λ)ξ,ξ〉)2 and

ξk

|ξ|+〈q(λ)ξ,ξ〉 satisfy the conditions of the Hörmander-Mikhlin theorem. The proof
is cumbersome but standard and we shall omit it. However, we address readers on
the proof of [12, Corollary 23 and Corollary 24] and [20, Sect. 3.2, Example 2].
2

To proceed, assume that we have a sequence (vn) bounded in L∞(Rd
+×R), and

such that vn ⇀ 0 weak-?. Denote by

A0 = {(ξ, λ) ∈ Rd
+ ×R : 〈q(λ)ξ, ξ〉 = 0}

χ0(ξ, λ) =

{
1, (ξ, λ) ∈ A0

0, (ξ, λ) /∈ A0

,

where p is the matrix given by the homogenization conditions (6).
For a fixed λ ∈ R, let Aχ0 and A1−χ0 be multiplier operators with symbols χ0

and 1− χ0, respectively.
Denote

• by µa the H-measure corresponding to the sequences (vn) and (vn);
• by µ0a the H-measure corresponding to the sequences (vn) and (Aχ0vn);
• by µ1a the H-measure corresponding to the sequences (vn) and (A1−χ0vn);
• by µ11 the H-measure corresponding to the sequences (A1−χ0vn) and (A1−χ0vn);
• by µ00 the H-measure corresponding to the sequences (Aχ0vn) and (Aχ0vn).

We shall need the following consequence of Lemma 2. The notations are taken
from Lemma 2.
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Lemma 8. For any k = 1, . . . , d, the symbol ξk

|ξ|+〈q(λ)ξ,ξ〉 satisfies conditions from
Lemma 2, i.e. the commutator

A ξk
|ξ|+〈q(λ)ξ,ξ〉

◦B −B ◦ A ξk
|ξ|+〈q(λ)ξ,ξ〉

is a compact operator from L2(Rd) → L2(Rd).

Proof: Take arbitrary ξ1, ξ2 ∈ Rd+1 (since we have the time variable we are in
(d + 1)-dimensional space) and put ξ2 = ξ1 + ζ(ξ2). If we assume |ξ1 − ξ2| ≤ M ,
we also have |ζ(ξ2)| < M . Having this in mind, we have

∣∣∣ ξ2
k

|ξ2|+ 〈q(λ)ξ2, ξ2〉 −
ξ1
k

|ξ1|+ 〈q(λ)ξ1, ξ1〉
∣∣∣

=
∣∣∣ |ξ1| · O(ζ(ξ2))
(|ξ2|+ 〈q(λ)ξ2, ξ2〉)(|ξ1|+ 〈q(λ)ξ1, ξ1〉)

∣∣∣ ≤ M

|ξ1| .

For |ξ1| large enough, we immediately obtain the conditions of Lemma 2 fulfilled.

2

Before we continue, we shall make a simplifying assumption. Namely, we shall
assume that the sequence (vn) is uniformly compactly supported. This is not any
lost of generality since the H-measures have a local character, i.e. they are defined
via compactly supported test functions. Thus, if (vn) is not compactly supported,
we can partition Rd

+ on the sequence of balls B(0, k) and on each ball define the
H-measure µk through (vn). Since B(0, k), k ∈ N, is the countable number of sets,
we can assume that µi ≡ µj on B(0, i) ⊂ B(0, j), i, j ∈ N which implies that we
can choose an H-measures defined by (vn) on entire Rd

+ as the inductive limit of
the H-measures µk, k ∈ N. Thus, in order to prove certain property of µ it is
enough to prove it for µk, k ∈ N.

Having this in mind, we can prove the following statement.

Lemma 9. The following relation hold for the H-measures defined above:

µa = µ0a + µ1a (11)

µ11 = µ0a and µ00 = µ1a. (12)

Proof: First, notice that if vn ⇀ 0 in L2(Rd) then the sequences (Aχ0vn) and
(A1−χ0vn) converge weakly to zero in L2(Rd) as well. Indeed, it is enough to use
the Plancherel theorem.

Thus, according to Remark 4, all the mentioned H-measures are well defined.
Now, it is enough to notice

vn = Aχ0vn +A1−χ0vn (13)

to prove (11).
As it comes to (12), consider the sets

AC
0 = {(λ, ξ) : 〈q(λ)ξ, ξ〉 > 0} and A0 = {(λ, ξ) : 〈q(λ)ξ, ξ〉 = 0}.

Denote by µ01 the H-measure defined by the sequences (Aχ0vn) and (A1−χ0vn).
The restriction of the H-measure µ01 on the sets ProjSd(AC

0 ) = {(λ, ξ) ∈ R× Sd :
〈q(λ)ξ, ξ〉 > 0}, and ProjSd(A0) = {(λ, ξ) ∈ R × Sd : 〈q(λ)ξ, ξ〉 = 0}, is zero.
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Indeed, take an arbitrary ψ ∈ Cc(ProjSd(AC
0 )), and consider the limit defining the

H-measure:

lim
n→∞

∫

p,λ

∫

t,x

ϕA1−χ0vn(·, λ)Aψ(ξ/|ξ|,λ)(ϕAχ0vn(·, p))

Lemma 8= lim
n→∞

∫

p,λ

∫

t,x

A1−χ0vn(·, λ)Aψ(ξ/|ξ|,λ)(ϕ2Aχ0vn(·, p))

Plancherel= lim
n→∞

∫

p,λ

∫

ξ

(1− χ0)ψ(ξ/|ξ|, λ)F(vn(·, λ))F(ϕ2Aχ0vn(·, p)) = 0,

since (1 − χ0)ψ = 0. The statement for the set A0 is analogical. Since the H-
measure is zero on both AC

0 and on A0 it is zero everywhere. From here and (13),
we immediately conclude that (12) is correct.

2

Lemma 10. It holds for any ϕ ∈ Cc(Rd
+), ρ ∈ C1

c (R2), and every ψ ∈ C(Sd−1)

lim
n→∞

∫

p,λ

∫

t,x

ϕfk(t, x, λ)Aχ0vn · A ξkψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn(·, p)) (14)

=
∫

p,λ

∫

Rd+1×Sd

fk(t, x, λ)ξkdµ0a.

Proof: We have (we use Lemma 8 on the first, the Plancherel theorem on the
second, and 〈q(λ)ξ, ξ〉 = 0 on the third step):

lim
n→∞

∫

p,λ

∫

t,x

ϕfk(t, x, λ)Aχ0vn · A ξkψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn(·, p)) (15)

= lim
n→∞

∫

p,λ

∫

t,x

Aχ0vn · A ξkψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕ2fk(t, x, λ)vn(·, p))

= lim
n→∞

∫

p,λ

∫

ξ

ξkψ(ξ/|ξ|)χ0

|ξ|+ 〈q(λ)ξ, ξ〉F(vn)F(ϕ2fk(t, x, λ)vn(·, p))

= lim
n→∞

∫

p,λ

∫

ξ

ξkψ(ξ/|ξ|)
|ξ| F(Aχ0vn)F(ϕ2fk(t, x, λ)vn(·, p))

=
∫

p,λ

∫

Rd+1×Sd

fk(t, x, λ)ξkϕ2(t, x)ψ(ξ)ρ(p, λ)dµ0adpdλ,

where on the last step we used Theorem 3. This concludes the proof of the lemma.
2

Lemma 11. It holds for any ϕ ∈ Cc(Rd
+), ρ ∈ C1

c (R2), and every ψ ∈ Cc(R ×
Sd−1)

lim
n→∞

∫

p,λ

∫

t,x

ρ(p, λ)ϕfk(t, x, λ)A1−χ0vn · A ξkψ(λ,ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn(·, p)) = 0. (16)

Proof: According to Lemma 8 and the Plancherel theorem, we have:
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lim
n→∞

∫

p,λ

∫

t,x

ρ(p, λ)ϕfk(t, x, λ)A1−χ0vn · A ξkψ(ξ/|ξ|,λ)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn(·, p)) (17)

= lim
n→∞

∫

p,λ

∫

ξ

ρ(p, λ)
ξkψ(ξ/|ξ|, λ)
|ξ|+ 〈q(λ)ξ, ξ〉F(vn)(ϕ2fk(t, x, λ)vn(·, p))

= lim
n→∞

∫

p,λ

∫

AC
0

ρ(p, λ)
ξkψ(ξ/|ξ|, λ)ψ(λ, ξ)
|ξ|+ 〈q(λ)ξ, ξ〉 F(vn)(ϕ2fk(t, x, λ)vn(·, p))

= I(ψ),

where the limit exists (at least) along a subsequence. Then, notice that the mapping

ψ 7→ I(ψ), ψ ∈ C0(ProjSd(AC
0 ))

where ProjSd(AC
0 ) = {(λ, ξ) ∈ R × Sd : 〈q(λ)ξ, ξ〉 > 0}, represents the Radon

measure on the set ProjSd(AC
0 ). We shall prove that the operator I is actually

equal to zero. Indeed, take an arbitrary ψ ∈ C0(ProjSd(AC
0 )). Since it is supported

out of the boundary of ProjSd(AC
0 ), there exists j ∈ N such that

〈q(λ)ξ, ξ〉 ≥ 1
j
, (λ, ξ) ∈ supp(ψ).

Having this in mind, we get from (17)

∣∣∣ lim
n→∞

∫

p,λ

∫

ξ

ρ(p, λ)
ξkψ(ξ/|ξ|, λ)
|ξ|+ 〈q(λ)ξ, ξ〉F(vn)(ϕ2fk(t, x, λ)vn(·, p))

∣∣∣ (18)

≤ lim
n→∞

∫

p,λ

∫

ξ

ρ(p, λ)
jψ(ξ/|ξ|, λ)

j + |ξ| F(vn)(ϕ2fk(t, x, λ)vn(·, p))
∣∣∣ = 0,

since F(vn) → 0 pointwisely (which provides convergence of the integral over any fi-
nite ball B(0,M)), and since jψ(ξ/|ξ|,λ)

j+|ξ| → 0 as |ξ| → ∞ (which provide boundedness
by O(1/M) of the integral over the complement of B(0,M)). Due to arbitrariness
of M , we conclude that (18) is correct. The same reasoning is used e.g. in the proof
of Tartar’s first commutation lemma [21, Lemma 1.7].

From (18) we conclude that the variation of the measure I equals zero |I| = 0
(see e.g. [7, p. 89]). Applying this on (17), we conclude the lemma.

2

Lemma 12. Assume that the matrix A is quasi-homogeneous on (a, b) × Ω ⊂
R × Rd

+, i.e. that (10) holds in the set (a, b) × Ω. Then, for any ϕ ∈ C1
c (Ω),

ρ ∈ C1
0 ((a, b)2),

lim
n→∞

∫

p,λ

∫

t,x

ϕρ(p, λ)
d∑

k,j=1

akj(t, x, λ)Aχ0vnA ξiξjψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn) = 0. (19)
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Proof: The proof of the lemma is relatively simple and it is similar to the proof
of Lemma 10. We use Lemma 8 and Plancherel’s theorem:

lim
n→∞

∫

p,λ

∫

t,x

ϕρ(p, λ)
d∑

k,j=1

akj(t, x, λ)Aχ0vnA ξiξjψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn) (20)

= lim
n→∞

∫

p,λ

∫

t,x

ρ(p, λ)
d∑

k,j=1

Aχ0vnA ξiξjψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕ2akj(·, λ)vn(·, λ))

= lim
n→∞

∫

p,λ

∫

ξ

ρ(p, λ)F(vn)F

χ0

d∑

k,j=1

akj(·, λ)ξiξjψ(ξ/|ξ|)
|ξ|+ 〈q(λ)ξ, ξ〉 (ϕ2vn(·, λ))


 = 0,

according to (10) and properties of the function χ0. 2

The final lemma in this section is the following.

Lemma 13. Assume that the matrix A is quasi-homogeneous on (a, b) × Ω ⊂
R × Rd+1, i.e. that (10) holds in the set (a, b) × Ω. Then, for any ϕ ∈ C1

0 (Ω),
ρ ∈ C1

0 ((a, b)2),

lim
n→∞

∫

p,λ

∫

t,x

ϕ(t, x)ρ(p, λ)
∑

k,j=1d

akj(t, x, λ)A1−χ0vnA ξiξjψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

(ϕvn) (21)

=
∫

p,λ

∫

Rd
+×Sd

ρ(p, λ)
〈a(t, x, λ)ξ, ξ〉
〈q(λ)ξ, ξ〉 ψ(ξ)ϕ2dµ1a(t, x, ξ, p, λ)dλdp.

Proof: Initial steps of the proof are the same as in the proof of the previous
lemma. In order to prove the lemma, similarly as in (20), we need to show:

lim
n→∞

∫

p,λ

∫

ξ

ρ(λ)ρ(p)F(vn)F

(1− χ0(λ, ξ))

∑

k,j=1d

akj(·, λ)ξiξjψ(ξ/|ξ|)
|ξ|+ 〈q(λ)ξ, ξ〉 ϕ2vn(·, λ)




(22)

= lim
n→∞

∫

p,λ

∫

ξ

ρ(λ)ρ(p)F(vn)F
(

(1− χ0)
〈a(·, λ)ξ, ξ〉ψ(ξ/|ξ|)

〈q(λ)ξ, ξ〉 ϕ2vn(·, λ)
)

.

To prove the latter, it is enough to consider the difference between the symbols on
the right and left-hand side of (22) and to notice:

(1− χ0)
∣∣∣ 〈a(·, λ)ξ, ξ〉
|ξ|+ 〈q(λ)ξ, ξ〉 −

〈a(·, λ)ξ, ξ〉
〈q(λ)ξ, ξ〉

∣∣∣ ≤ (1− χ0)
C1|ξ|

|ξ|+ 〈q(λ)ξ, ξ〉 ,

implying that it is enough to prove

lim
n→∞

∫

p,λ

∫

ξ

ρ(λ)ρ(p)F(vn)F
(

ψ(ξ/|ξ|)(1− χ0(λ, ξ))
|ξ|

|ξ|+ 〈q(λ)ξ, ξ〉 (ϕ
2vn(·, λ))

)
= 0

and this is done in the same way as in Lemma 11.

2
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3. Quasi-solutions and kinetic formulation

In this section, we shall introduce the notion of quasi-solution to (1). In a
special situation, the quasi-solution is an entropy admissible solution that singles
out a physically relevant solutions to the equation (1). The notion of quasi-solution
will lead to an appropriate kinetic formulation of the equation under consideration
which will enable us to use the H-measures.

Definition 14. A measurable function u defined on R+ × R is called a quasi-
solution to (1) if fi(t, x, u), Aij(t, x, u), s(t, x, u) ∈ L1

loc(R
+ × Rd), i, j = 1, . . . , d,

and a.e. p ∈ R the Kruzhkov type entropy equality holds

∂t|u− p|± + div
[
sgn±(u− p)(f(t, x, u)− f(t, x, p)]

]
(23)

−D2 · [sgn±(u− p)(A(x, u)−A(x, p))
]

= ζ(t, x, p),

where ζ ∈ C(Rp; w?−M+(R+×Rd)) we coin as the quasi-entropy defect measure.

Remark 15. Remark that the measure ζ(t, x, p) can be rewritten in the form ζ(t, x, p) =
ζ̄(t, x, p) + sgn±(u− p)[ωq(t, x) + s(t, x, u)]− |γp

s |, for a measure ζ̄. If this measure
is positive, then the quasi-solution u is Kruzhkov’s entropy solution to (1).

From the latter entropy conditions, the following kinetic formulation can be
proved.

Theorem 16. The function u is a quasi-solution to (1) if and only if the functions

h±(t, x, λ) = sgn±(u(t, x)− λ) =
(|u(t, x)− λ|±)′

λ
(24)

are solutions to the following linear equations:

∂th± + div (F (t, x, λ)h±)−D2 · [a(x, λ)h±] = ∂λζ(t, x, λ) (25)

Proof: It is enough to find derivative of (23) with respect to p ∈ R to obtain
(25).

Vice versa can be also proven, i.e. that if h± satisfies (25) then the function
u from (24) represents a quasi-solution to (1). It is enough to integrate (25) over
λ ∈ (−M, p), where −M is a lower bound of u. 2

The main theorem of the paper is the following,

Theorem 17. Assume that the functions f and A from (1) are such that for almost
every (t, x) ∈ Rd

+ and every ξ ∈ Sd the mapping

λ 7→
∣∣∣i

(
ξ0 +

d∑

k=1

Fk(t, x, λ)ξk

)
+ 〈a(t, x, λ)ξ, ξ〉

∣∣∣, (26)

where i is the imaginary unit, is not constant on any set of measure greater than
zero.

Assume also that the matrix A is entirely quasi-homogeneous.
Then, a bounded sequence (un) of quasi-solutions to (1) is strongly precompact

in L1
loc(R

+ ×Rd).

Proof: Denote by h ∈ L∞(Rd
+) an L∞ weak-? limit along a subsequence of the

sequence h+(λ−un(t, x)) given by (24). Denote by ζ ∈ C(Rp; w?−M+(R+×Rd))
the weak limit of the sequence (ζn) of quasi-entropy defect measures corresponding
to (vn). Put vn(t, x, λ) = h(t, x, λ) − hn(t, x, λ) and σn = ζ − ζn. The sequence
(vn) satisfies:
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∂tvn + div (F (t, x, λ)vn)−D2 · [a(t, x, λ)h±] = ∂λσn(t, x, λ) (27)

We continue with a special choice of the test function to be applied in (27). We
take for a fixed p and ψ ∈ Cb

d
2 c+1(Sd−1) 1:

θ(t, x, λ, p) = ϕ(t, x)ρ(λ, p)A ψ(ξ/|ξ|)
|ξ|+〈q(λ)ξ,ξ〉

ϕvn(t, x, p)

Now, since Mloc(Rd
+) is compactly embedded in W 1,s

loc (Rd
+), s ∈ [1, d

d−1 ], from the
Plancherel theorem (left-hand side) and Lemma 7 (right-hand side), we obtain after
integrating over p ∈ R (i is the imaginary unit below)

i

∫

ξ,λ

( ξ0ψ(ξ/|ξ|)
|ξ|+ 〈q(λ)ξ, ξ〉ρ(λ, p)F(ϕvn(·, λ)) (28)

+
d∑

k=1

ξkψ(ξ/|ξ|)
|ξ|+ 〈q(λ)ξ, ξ〉ρ(λ, p)F(Fk(·, λ)ϕvn(·, λ))

)
F(ϕvn(·, p))

−
∫

ξ,λ

ρ(λ, p)F
( 〈a(t, x, λ)ξ, ξ〉
|ξ|+ 〈q(λ)ξ, ξ〉ϕ(t, x)vn(t, x, λ)

)
F(ϕ(t, x)vn(t, x, p)) = on(1),

as n →∞. Next, notice that

vn(t, x, λ) = Aχ0vn +A1−χ0vn,

and let n →∞ in (28). We get after taking into account Lemmas 10-13:

i

∫

p,λ

∫

Rd+1
+ ×Sd

(
ξ0 +

d∑

k=1

Fk(x, λ)ξi

)
ρ(λ)ϕ(t, x)dµ0adλdp

−
∫

p,λ

∫

Rd+1
+ ×Sd

〈a(t, x, ξ)ξ, ξ〉
〈q(λ)ξ, ξ〉 ρ(λ)ϕ(t, x)dµ1adλdp = 0.

From here and Lemma 9, we conclude
(

ξ0 +
d∑

k=1

Fk(x, λ)ξi

)
dµ0a =

(
ξ0 +

d∑

k=1

Fk(x, λ)ξi

)
dµ00 = 0 (29)

〈a(t, x, ξ)ξ, ξ〉
〈q(λ)ξ, ξ〉 dµ1a =

〈a(t, x, ξ)ξ, ξ〉
〈q(λ)ξ, ξ〉 dµ11 = 0. (30)

From (30), it follows

0 =
〈a(t, x, ξ)ξ, ξ〉
〈q(λ)ξ, ξ〉 dµ11 ≥ c〈q(λ)ξ, ξ〉

〈q(λ)ξ, ξ〉 dµ11 = cdµ11 (31)

implying that dµ11 ≡ 0.
Next, notice that

〈q(λ)ξ, ξ〉dµ00 ≡ 0,

1Notice that we need ψ of higher regularity in order to apply the Hörmander-Mikhlin theorem.
Eventually, it does not affect the procedure since once we let n → ∞, we are in the realm of
measures and we can replace such ψ by a C(Sd−1)-function
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since µ00 is defined via Aχ0 and χ0〈q(λ)ξ, ξ〉 ≡ 0. Thus, from (29), we conclude

0 = i

(
ξ0 +

d∑

k=1

Fk(x, λ)ξi

)
dµ0a =

(
i

(
ξ0 +

d∑

k=1

Fk(x, λ)ξi

)
− 〈q(λ)ξ, ξ〉

)
dµ00

=⇒ dµ00 = 0,

due to assumption (26). Indeed, according to the representation theorem Proposi-
tion 5, we can rewrite the last formula as

(
i

(
ξ0 +

d∑

k=1

Fk(x, λ)ξi

)
− 〈q(λ)ξ, ξ〉

)
f00(p, λ, t, x, ξ)dν00(t, x, ξ) = 0. (32)

If we denote

Ξ(λ, t, x, ξ) =





1,
∣∣∣i

(
ξ0 +

d∑
k=1

Fk(x, λ)ξi

)
− 〈q(λ)ξ, ξ〉

∣∣∣ 6= 0

0,
∣∣∣i

(
ξ0 +

d∑
k=1

Fk(x, λ)ξi

)
− 〈q(λ)ξ, ξ〉

∣∣∣ = 0
,

then from (32), after integration over R2 × Rd
+ × Sd−1 we conclude that for any

ρ ∈ Cc(a, b), ϕ ∈ Cc(Rd
+ × Sd−1):

∫

t,x,ξ

∫

p,λ

Ξ(λ, t, x, ξ)f00(p, λ, t, x, ξ)dpdλdν00(t, x, ξ) (33)

=
∫

t,x,ξ

∫

p,λ

ρ(p)ρ(λ)ϕ(t, x, ξ)f00(p, λ, t, x, ξ)dpdλdν00(t, x, ξ) = 0,

since for almost every (t, x) ∈ Rd
+ and every ξ ∈ Sd−1, the mapping λ 7→ Ξ(λ, t, x, ξ)

equals one almost everywhere. One should also keep in mind that the H-measure
µ00 is absolutely continuous with respect to the Lebesgue measure (see Remark 4).

Thus, since dµ11 = dµ1a ≡ 0 and dµ00 = dµ0a = 0 (under the assumption (26)),
we conclude (Lemma 9)

dµa = dµ1a + dµ0a ≡ 0,

in a neighborhood of any point where the diffusion matrix is quasi-homogeneous.
Thus, the sequence (

∫
λ

ρ(λ)vn(t, x, λ)) converges strongly in Ω ⊂ Rd
+ (see e.g. [13,

p. 281]).
Now, we simply choose a countable dense subset Q̂ of the set Q ⊂ Rd

+ × R
where the quasi-homogeneity is fulfilled and take the subsequence (vm

n′) of the se-
quence (vn) such that (

∫
λ

ρ(λ)vm
n′(t, x, λ)) converges in a neighborhood Projt,x(Q̂m)

of Projt,x(Q̂) for any ρ supported in Projλ(Q̄)m), where m ∈ N is such that
meas(Rd

+ ×R\Q̄m) < 1
m . By letting m → ∞ we see that we can choose a subse-

quence of (vn) such that
∫

λ
ρ(λ)vn(t, x, λ) strongly converges along the subsequence

on entire Rd
+ ×R.

From here, it is standard to conclude that the sequence (un) strongly converges
in L1

loc(R
d
+) (see e.g. [19, 1]).

2

An obvious consequence of the proof of the last theorem is:
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Corollary 18. Assume that a bounded sequence of functions (un) satisfies for
almost every p ∈ R;

∂t|u− p|± + div
[
sgn±(u− p)(f(t, x, u)− f(t, x, p)]

]

−D2 · [sgn±(u− p)(A(x, u)−A(x, p))
]

is strongly precompact in W−1,s

for some s > 1, where the flux f and the diffusion matrix A satisfy the genuine-
nonlinearity conditions (26), and the matrix A is entirely quasi-homogeneous. Then,
the sequence (un) is strongly L1

loc-precompact.

A direct consequence of Corollary 18 is the following existence statement.

Theorem 19. There exists a weak solution to (1) augmented with the initial con-
ditions

u|t=0 = u0 ∈ L1 ∩ L∞(Rd
+) (34)

providing that the genuine nonlinearity conditions (26) are satisfied, and that there
exist smooth regularization (fn) and (An) with respect to (t, x) ∈ Rd

+ of the flux f
and the diffusion matrix A such that the conditions of [8, Theorem 6.1] are satisfied.

Proof: It is enough to consider the regularization of problem (1), (34):

∂tun + divx fn(t, x, un) = D2 ·An(t, x, un) + s(t, x, un)

un|t=0 = u0(x)
(35)

According to [8, Theorem 6.1] the latter problem generates the sequence (un) of
entropy solutions to (35). It is not difficult to see that the sequence (un) satisfies
conditions of Corollary 18 which in turn implies strong L1

loc(R
d
+) precompactness

of (un) whose limit along a subsequence represents the weak solution to (1), (34).

2
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