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Abstract

We study the Rayleigh-Taylor instability for two incompressible immiscible fluids with or without
surface tension, evolving with a free interface in the presence of a uniform gravitational field in
Eulerian coordinates. To deal with the free surface, instead of using the transform of Lagrangian
coordinates, we transform the perturbed equations in Eulerian coordinates to an integral form and
formulate the two-fluids flow in a single-fluid flow in a fixed domain, thus offering an alternative
approach to deal with the jump conditions at the free interface. First, we analyze the linearized
problem around the steady state which describes a denser immiscible fluid lying above a light one
with an free interface separating the two fluids, and both fluids being in (unstable) equilibrium.
By a general method of studying a family of modes, we construct smooth (when restricted to
each fluid domain) solutions to the linearized problem that grow exponentially fast in time in
Sobolev spaces, thus leading to an global instability result for the linearized problem. Then,
using these pathological solutions, we demonstrate the global instability for the corresponding
nonlinear problem in an appropriate sense.

Keywords: Rayleigh-Taylor instability, viscous incompressible flows, global instability.

1. Introduction

We consider the two-phase free boundary problem for the equations of two incompressible
immiscible fluids within the infinite slab Ω = R2 × (−1, 1) ⊂ R3 and for time t ≥ 0. The
fluids are separated by a moving free interface Σ(t) which is given by the unknown function
η : R+ × R2 → R. Hence we can definite Σ(t) := {x ∈ R3 | x3 = η(t, x′)} for each t ≥ 0, where
x′ = (x1, x2)

T , and the superscript T means matrix transposition.
The interface divides Ω into two time-dependent, disjoint, open subsets Ω±(t), so that Ω =

Ω+(t)∪Ω−(t)∪Σ(t) and Σ(t) = Ω̄+(t)∩ Ω̄−(t). The motion of the fluids is driven by the constant
gravitational field along e3–the x3 direction, G = (0, 0,−g)T with g > 0. The two fluids are
described by their velocity, and pressure functions, which are given for each t ≥ 0 by

(u±, p̄±)(t, ·) : Ω±(t) → (R3,R+),

respectively. We assume that at a given time t ≥ 0, these functions have well-defined traces onto
Σ(t).

The fluids under consideration are incompressible and viscous. Hence, for t > 0, the fluids
satisfy the following motion equations:
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



∂tη = u3 − u1∂1η − u2∂2η, on Σ(t),

∂t(%±u±) + div(%±u± ⊗ u±) + divS± = −g%±e3, in Ω±(t),

divu± = 0, in Ω±(t),

(1.1)

where (1.1)1 describes the motion of the free interface (cf. [7]), ∂i := ∂xi
, the positive constants

%± denote the densities of the respective fluids, and we define the stress tensor by

S± = −µ±(∇u± +∇uT
±) + p̄±I.

with µ± and p̄± being the viscosity coefficient and the pressure of the respective fluids, and I the
3× 3 identity matrix.

For two viscous fluids meeting at a free boundary with surface tension, from the physical
point of view, the velocity is continuous across the interface and the jump in the normal stress
is proportional to the mean curvature of the surface multiplied by the normal to the surface (cf.
[2, 19]). Thus, we impose the jump conditions at the free interface:

[u]|Σ(t) = 0, (1.2)

[Sν]|Σ(t) = κHν, (1.3)

where the interfacial jump is defined by

[f ]|Σ(t) := f+|Σ(t) − f−|Σ(t),

f |Σ(t) is the trace of a quantity f on Σ(t), and

ν =
(−∂1η,−∂2η, 1)T

√
1 + (∂1η)2 + (∂2η)2

denotes the normal vector to the free surface Σ(t). The jump condition of (1.2) implies that there
is no possibility of the fluids slipping past each other along Σ(t). Here we take H to be twice the
mean curvature of the surface Σ(t) and the surface tension to be a constant κ ≥ 0. Since Σ(t) is
parameterized by (x′, η(t, x′)), we may employ the standard formula for the mean curvature of a
parameterized surface to write

H =
∆x′η + (∂1η)2∂2

2η + (∂2η)2∂2
1η − 2∂1η∂2η∂1∂2η

(1 + (∂1η)2 + (∂2η)2)3/2
.

We also enforce the condition that the normal component of the fluid velocity vanishes at the
fixed boundaries, that is,

u+(t, x′,−1) = u−(t, x′, 1) = 0, for all t ≥ 0, x′ ∈ R2.

To complete the statement of the problem, we have to specify initial conditions. We give the
initial interface Σ(0) = Σ0, which yields the open sets Ω±(0) on which we specify the initial data
for the velocity and height of interface

u±(0, ·) : Ω±(0) → R3, η(0, ·) : R2 → (−1, 1).

Thus the initial datum of the pressure can be given by %±, η(0, ·) and u±(0, ·). To simply the
equations, we introduce the indicator functions χΩ± and denote

% = %+χΩ+ + %−χΩ− , u = u+χΩ+ + u−χΩ− , p̄ = p̄+χΩ+ + p̄−χΩ− ,
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to define the modified pressure by
p = p̄ + g%x3.

Thus, for each t > 0, the equations (1.1) can be rewritten as





∂tη = u3 − u1∂1η − u2∂2η, on Σ(t),

%∂tu + %(∇u)u +∇p = µ∆u, in Ω \ Σ(t),

divu = 0, in Ω \ Σ(t)

(1.4)

and the jump condition (1.3) becomes, setting [%] = %+ − %−,

[(pI − µ(∇u +∇uT ))ν]|Σ(t) = (g[%]η + κH)ν.

For convenience in the subsequent analysis, we will use the natation

JfK := f+|x3=0 − f−|x3=0

for the jump of a quantity f across the set {x3 = 0}.
Now, we linearize the equations (1.4) around a steady-state solution η = 0, u = 0 and p =

constant, then the resulting linearized equations read as





∂tη = u3, on R+ × {x3 = 0},
%∂tu +∇p = µ∆u, in R+ × (Ω \ {x3 = 0}),
divu = 0, in R+ × (Ω \ {x3 = 0}).

(1.5)

The corresponding linearized jump conditions are

JuK = 0, JpI − µ(∇u +∇uT )Ke3 = (g[%]η + κ∆x′η)e3, (1.6)

while the boundary conditions are

u(t, x′,−1) = u(t, x′, 1) = 0. (1.7)

Considering two completely plane-parallel layers of immiscible fluid, the heavier on top of the
light one and both subject to the earth’s gravity. In this case, the equilibrium state is unstable to
sustain small perturbations or disturbances, and this unstable disturbance will grow and lead to
a release of potential energy, as the heavier fluid moves down under the (effective) gravitational
field, and the lighter one is displaced upwards. This phenomena was first studied by Rayleigh
[14, 15] and then Taylor [16], and therefore, is called the Rayleigh-Taylor instability. In the
last decades, a lot of works related to this phenomena have been made from both physical and
numerical points of view. In particular, many results concerning linearized problems have been
summarized in monographs, see, for example, [2, 17]. To our best knowledge, however, there
are only few mathematical analysis results on nonlinear problems in the literature, due to the
fact that in general, passage from a linearized instability to a dynamical nonlinear instability for
a conservative nonlinear partial differential system is rather difficult. In 1987, Ebin [4] proved
the ill-posedness of the equations of motion for a perfect fluid with free boundary. Then, he
adapted the approach of [4] to obtain the ill-posedness of both Rayleigh-Taylor and Helmholtz
problems for two-dimensional incompressible, immiscible, inviscid fluids without surface tension
[5]. In 2003, Hwang and Guo [10] showed the nonlinear Rayleigh–Taylor instability for two-
dimensional, incompressible, inviscid fluids with continuous density, and their result was extended
to magnetohydrodynamic (MHD) flows [9] recently. Unfortunately, the approaches in both [5]
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and [10] could not be applied to the viscous flow case, since the viscosity can bring some technical
difficulties in the study of the nonlinear Rayleigh–Taylor instability.

In 2011, for two-compressible immiscible fluids evolving with a free interface (the density is
discontinuous across the free interface), Y. Guo and I. Tice made use of flow maps (Lagrangian
coordinates) to transfer the free boundary into a fixed boundary and established a variational
framework for nonlinear instability in [6], where with the help of the method of Fourier synthesis,
they constructed solutions that grow arbitrarily quickly in time in the Sobolev space, leading to
the ill-posedness of the perturbed problem in Lagrangian coordinates. It should be noted that
they also investigated the stabilized effect of viscosity and surface tension to the linear Rayleigh-
Taylor instability (see [8]), however, the nonlinear instability still remains open.

In this paper, we will study the nonlinear Rayleigh-Taylor instability for two unform viscous
incompressible flows with surface tension and a free interface, across which the density is dis-
continuous. We will prove that in Eulerian coordinates, the corresponding linearized system is
globally unstable in the sense of Hadamard, and moreover, the original nonlinear problem with
or without surface tension is globally unstable. For this purpose, we assume that κ ≥ 0 and that
the upper fluid is heavier than the lower fluid, i.e.

%+ > %− ⇔ [%] > 0.

We mention that the analogue of the Rayleigh-Taylor instability arises when the fluids are
electrically conducting and a magnetic field is present, and the growth of the instability will be
influenced by the magnetic field due to the generated electromagnetic induction and the Lorentz
force [3, 9, 11, 18]. Some authors have extended the partial results concerning the Rayleigh-Taylor
instability of superposed flows to the case of MHD flows by overcoming additional difficulties
induced by presence of the magnetic field.

This paper is organized as follows. In Section 2 we state our results on the linearized system
(1.5) and nonlinear system (1.4), i.e., Theorems 2.1 and 2.2. In Section 3 we construct the
growing solutions to the linearized equations, while in Section 4 we analyze the linear problem
and prove the uniqueness and Theorem 2.1. In Section 5, we prove the global instability of order
k of the nonlinear problem, i.e. Theorem 2.2.

2. Main results

Before stating the main results, we introduce the notation that will be used throughout the
paper. For a function f ∈ L2(Ω), we define the horizontal Fourier transform via

f̂(ξ, x3) =

∫

R2

f(x′, x3)e
−ix′·ξdx′,

where x′, ξ ∈ R2, and “·” denotes scalar product. By the Fubini and Parseval theorems, we have
that ∫

Ω

|f(x)|2dx =
1

4π2

∫

Ω

∣∣∣f̂(ξ, x3)
∣∣∣
2

dξdx3.

We now define a function space suitable for our analysis of two disjoint fluids. For a function
f defined on Ω we write f+ for the restriction to Ω+ = R2 × (0, 1) and f− for the restriction to
Ω− = R2 × (−1, 0). For s ∈ R, we define the piecewise Sobolev space of order s by

Hs(Ω±) = {f | f+ ∈ Hs(Ω+), f− ∈ Hs(Ω−)} (2.1)

endowed with the norm
‖f‖2

Hs(Ω±) = ‖f‖2
Hs(Ω+) + ‖f‖2

Hs(Ω−).
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Similarly to (2.1), for a function f defined on (0,∞) × Ω, for which an interface divides Ω
into two time-dependent, disjoint, open subsets Ω±(t), so that Ω = Ω+(t) ∪ Ω−(t) ∪ Σ(t) and
Σ(t) = Ω̄+(t) ∩ Ω̄−(t), we denote

Hs(Ω±(t)) = {f(t) | f+(t) ∈ Hs(Ω+(t)), f−(t) ∈ Hs(Ω−(t))} (2.2)

for each t ∈ [0,∞).
In addition, for k ∈ N we can take the norms to be given by

‖f‖2
Hk(Ω±) :=

k∑
j=0

∫

R2×I±
(1 + |ξ|2)k−j

∣∣∣∂j
x3

f̂±(ξ, x3)
∣∣∣
2

dξdx3

=
k∑

j=0

∫

R2

(1 + |ξ|2)k−j
∥∥∥∂j

x3
f̂±(ξ, ·)

∥∥∥
2

L2(I±)
dξ,

where I− = (−1, 0) and I+ = (0, 1). The main difference between the piecewise Sobolev space
Hs(Ω) and the usual Sobolev space lies in that we do not require functions in the piecewise
Sobolev space to have weak derivatives across the set {x3 = 0}. If f := (f1, · · · , fn)T ∈
(Hs(Ω±))n, to shorten notation, we define

‖f‖2
Hs(Ω±) =

n∑
i=1

‖fi‖2
Hs(Ω±).

Now, we are in a position to state our first result, i.e. the result of global instability for the
linearized problem (1.5).

Theorem 2.1. The linearized problem (1.5) with the corresponding jump and boundary condi-
tions is globally unstable in the sense of Hadamard in Hk(Ω) for every k. More precisely, there
exists a constant C1 > 0, and for any k, j ∈ N with j ≥ k and for any α > 0, there exist a con-
stant Cj,k depending on j and k, and a sequence of solutions {(ηn, un, pn)}∞n=1 to (1.5) satisfying
the corresponding jump and boundary conditions (1.6), (1.7), so that

‖ηn(0)‖Hj(R2) + ‖un(0)‖Hj(Ω±) + ‖pn(0)‖Hj(Ω±) ≤
1

n
, (2.3)

but
‖un(t)‖Hk(Ω±) ≥ α for all t ≥ tn := Cj,k + C1ln(αn). (2.4)

Moreover,
‖un(t)‖Hk(Ω±) →∞ as t →∞. (2.5)

Theorem 2.1 shows globally discontinuous dependence of solutions upon initial data. The
proof of Theorem 2.1 is inspired by [8] under necessary modifications and its basic idea is the
following. First, we notice that the linearized equations have coefficients that depend only on
the vertical variable x3 ∈ (−1, 1). This allows us to seek “normal mode” solutions by taking the
horizontal Fourier transform of the equations and assuming that the solutions grow exponentially
in time by the factor eλ(|ξ|)t, where ξ ∈ R2 is the horizontal spatial frequency and λ(|ξ|) > 0. This
reduces the equations to a system of ordinary differential equations with λ(|ξ|) > 0 for each ξ.
Then, solving the ODE system by the modified variational method, we show that λ(|ξ|) > 0 is a
continuous function on (0, |ξ|c), the normal modes with spatial frequency grow in time, providing
a mechanism for the Rayleigh-Taylor global instability, where |ξ|c =

√
g[%]/κ if κ > 0, otherwise

|ξ|c = ∞. Indeed, we can restrict ξ in some annulus domain such that λ(|ξ|) has a uniformly
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lower bound, then we form a Fourier synthesis of the normal mode solutions constructed for each
spatial frequency ξ to give solutions of the linearized incompressible equations that grow in time,
when measured in Hk(Ω) for any k ≥ 0. Finally, we exploit the property of boundary trace
theorem to show a uniqueness result of the linearized problem (i.e. Theorem 4.1), with the help
of which we obtain the global instability of the corresponding nonlinear problem (i.e. Theorem
2.2). In spite of the uniqueness, the linearized problem is globally unstable in Hk(Ω) for any k
in the sense of Hadamard.

With the linear global instability established, we can show the global instability of the cor-
responding nonlinear problem in some sense. Recalling that the steady state solution to (1.4) is
given by η = 0, u = 0, p =constant, we now rewrite the nonlinear equations (1.4) in the form of
perturbation around the steady state. Let

η = 0 + η, u = 0 + u, p = constant + σ.

Then, the system (1.4) can be rewritten for (η, u, σ) as





∂tη = u3 − u1∂1η − u2∂2η,

%∂tu + %(∇u)u +∇σ = µ∆u,

divu = 0.

(2.6)

The jump conditions across the interface are

[u]|∑(t) = 0, (2.7)
[(

σI − µ(∇u +∇uT )
)
ν
] |∑(t) = (g[%]η + κH)ν, (2.8)

where
Σ(t) := {x ∈ R3 | x3 = η(t, x′)} ⊂ Ω for each t ≥ 0.

Finally, we require the boundary condition

u−(t, x′,−1) = u+(t, x′, 1) = 0. (2.9)

We collectively refer to the evolution, jump, and boundary equations (2.6)–(2.9) as “the perturbed
problem”.

Definition 2.1. We say that the perturbed problem has global stability of order k for some k ≥ 3
if there exist δ, C2 > 0 and a function F : [0, δ) → R+ satisfying F (z) ≤ C2z for z ∈ [0, δ), so
that the following holds. For any η0, u0 satisfying

‖η0‖Hk(R2) + ‖u0‖Hk(Ω±(0)) < δ,

there exist η(t) ∈ H2(R2) ∩ C0,1
loc (R2), u(t) ∈ (H3(Ω±(t)) ∩ C0(Ω̄) ∩H1

0 (Ω))3 and σ ∈ H1(Ω±(t))
for any t ≥ 0, so that

(1) (η, u)(0) = (η0, u0),

(2) η, u, σ solve the perturbed problem (2.6)–(2.9),

(3) η ∈ C0([0, +∞), L2
loc(R2)), and u ∈ C0([0, +∞), (L2(Ω))3),

(4) it holds that

sup
0≤t<+∞

(‖u‖H3(Ω±(t)) + ‖η‖H2(R2) + ‖σ‖H1(Ω±(t))) ≤ F (‖η0‖Hk(R2) + ‖u0‖Hk(Ω±(0))).

6



We can show that the property of global stability of order k cannot hold for any k ≥ 3, i.e.
the following Theorem 2.1, which will be proved in Section 5.

Theorem 2.2. The perturbed problem does not have property of global stability of order k for
any k ≥ 3.

The basic idea in the proof of Theorem 2.2 is to show, by utilizing the Lipschitz structure of F ,
that the global stability of order k would give rise to certain estimates of solutions to the linearized
equations (1.5) that cannot hold in general because of Theorem 2.1. We will adapt and modify
the arguments in [6] to prove Theorem 2.2. Compared with the perturbed problem in [6, Theorem
5.2] where the Lagrangian coordinates were used, our problem here is coupled to a free interface,
rather than the fixed interface {x3 = 0}. As is well-known, the motion of the free surface Σ(t)
and the domains Ω±(t) present several mathematical difficulties, so the authors [6] switched the
perturbed problem in Eulerian coordinates to a perturbed problem in Lagrangian coordinates,
in which the free interface is switched to the fixed interface {x3 = 0}, while the domains of the
upper and lower fluids stay fixed in time as Ω+ = R2× (0, 1) and Ω− = R2× (−1, 0), respectively.
Thus, the convergence for the jump conditions of the rescaled functions can be easily dealt with
at fixed interface in the proof of [6, Theorem 5.2]. To circumvent such difficulties without the
aid of the transform of Lagrangian coordinates, similarly to Nespoli and Salvi [12], we transform
the perturbed equations (2.6)2 to the integral form. Indeed, multiplying (2.6)2 by φ, integrating
by parts over (0, t0)× Ω, and using (2.7)–(2.9) together with the formula of surface integral, we
obtain ∫ t0

0

∫

Ω

(%∂tu · φ + %(∇u)u · φ)dxdt +

∫ t0

0

∫

Ω

(µ(∇u +∇uT )− σI) : ∇φdxdt

=

∫ t0

0

∫

R2

(g[%]η + κH)φ(t, x′, η(t, x′)) · (−∂1η,−∂2η, 1)dx′dt,

where φ := (φ1, φ2, φ3) ∈ (D′((0, T )× Ω))3, and

(µ(∇u +∇uT )− σI) : ∇φ =
∑

1≤i,j≤3

(µ(∂jui + ∂iuj)− σδij)∂jφi.

In this manner we have transformed the two-fluids flow in a single-fluid flow in a fixed domain,
this offers an alternative approach to deal with the jump condition (2.8) at free interface Σ(t),
instead of using the method of Lagrangian coordinates in [6, 8]. Consequently, we can avoid
the proof of convergence for the jump conditions of the rescaled viscous stress-tensor at the free
boundary. This transform will play an important role in the proof of Theorem 2.2 in Section 5.
Moreover, this idea is also applied to the proof of the uniqueness of solutions to the linearized
equations (1.5) in Section 4.

We mention that Guo and Tice [8] recently proved the linear global instability for compress-
ible viscous fluids in Lagrangian coordinates, while in the current paper the nonlinear global
instability for incompressible viscous fluids in the sense of Definition 2.1 is established in Eule-
rian coodinates. Finally, we point out that Hwang and Guo [9] constructed an unstable solution
to show mathematically the Rayleigh-Taylor instability for two-dimensional, incompressible in-
viscid flows when the density is continuous. It still needs further study whether we can construct
a concrete solution of (2.6)–(2.9) which does not have global stability of order k.

3. Construction of a growing solution to the linearized equations

3.1. Growing mode ansatz

We wish to construct a solution to the linearized equations (1.5) that has a growing Hk-norm
for any k. We will construct such solutions via Fourier synthesis by first constructing a growing
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mode for fixed spatial frequency.
To begin, we make a growing mode ansatz, i.e., let us assume that

η(t, x′) = η̃(x′)eλt, u(t, x) = v(x)eλt, p(t, x) = q(x)eλt, for some λ > 0.

Substituting this ansatz into (1.5), eliminating η̃ by using the first equation, we arrive at the
time-invariant system for v = (v1, v2, v3) and q:

{
λ%v +∇q = µ∆v,

div v = 0
(3.1)

with the corresponding jump conditions

JvK = 0, JqI − µ∇(v + vT )Ke3 = λ−1(g[%]v3 + κ∆x′v3)e3

and boundary conditions
v(t, x′,−1) = v(t, x′, 1) = 0.

3.2. Horizontal Fourier transform

We take the horizontal Fourier transform of (v1, v2, v3) in (3.1), which we denote with either
·̂ or F , and fix a spatial frequency ξ = (ξ1, ξ2) ∈ R2. Define the new unknowns

ϕ(x3) = iv̂1(ξ, x3), θ(x3) = iv̂2(ξ, x3), ψ(x3) = v̂3(ξ, x3), π(x3) = q̂(ξ, x3),

so that
F(divw) = ξ1ϕ + ξ2θ + ψ′,

where ′ = d/dx3. Then, for ϕ, θ, ψ and λ = λ(ξ) we arrive at the following system of ODEs.




λ%ϕ− ξ1π + µ(|ξ|2ϕ− ϕ′′) = 0,
λ%θ − ξ2π + µ(|ξ|2θ − θ′′) = 0,
λ%ψ + π′ + µ(|ξ|2ψ − ψ′′) = 0,
ξ1ϕ + ξ2θ + ψ′ = 0,

(3.2)

along with the jump conditions


JϕK = JθK = JψK = 0,
Jµ(ξ1ψ − ϕ′)K = Jµ(ξ2ψ − θ′)K = 0,
J−2µλψ′ + λπK = (g[%]− κ|ξ|2)ψ,

(3.3)

and the boundary conditions

ϕ(−1) = ϕ(1) = θ(−1) = θ(1) = ψ(−1) = ψ(1) = 0. (3.4)

Eliminating π from the third equation in (3.2) we obtain the following ODE for ψ

−λρ(|ξ|2ψ − ψ′′) = µ(|ξ|4ψ − 2|ξ|2ψ′′ + ψ′′′′) (3.5)

along with the jump conditions

JψK = Jψ′K = 0, (3.6)

Jµ(|ξ|2ψ + ψ′′)K = 0, (3.7)

Jµλ(ψ′′′ − 3|ξ|2ψ′)K = Jλ2%ψ′K+ (g[ρ]− κ|ξ|2)|ξ|2ψ, (3.8)

and the boundary conditions

ψ(−1) = ψ(1) = ψ′(−1) = ψ′(1) = 0. (3.9)

3.3. Construction of a solution to the fourth order ODE

Similarly to [8, 18], we can apply the variational methods to construct a solutions of (3.5)–
(3.9). For reader’s convenience, we sketch the procedure of the construction.
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First, fix a non-zero vector ξ ∈ R2 and s > 0. From (3.5)–(3.9) we get a family of the modified
problems

−λ2ρ(|ξ|2ψ − ψ′′) = sµ(|ξ|4ψ − 2|ξ|2ψ′′ + ψ′′′′), (3.10)

along with the jump conditions

JψK = Jψ′K = 0, (3.11)

Jsµ(|ξ|2ψ + ψ′′)K = 0, (3.12)

Jsµλ(ψ′′′ − 3|ξ|2ψ′)K = Jλ2%ψ′K+ (g[ρ]− κ|ξ|2)|ξ|2ψ, (3.13)

and the boundary conditions

ψ(−1) = ψ(1) = ψ′(−1) = ψ′(1) = 0. (3.14)

We define the energy functional of (3.10) by

E(ψ) =
1

2

∫ 1

−1

sµ(4|ξ|2|ψ′|2 + ||ξ|2ψ + ψ′′|2)dx3 − 1

2
|ξ|2(g[ρ]− κ|ξ|2)|ψ(0)|2 (3.15)

with a associated admissible set

A =

{
ψ ∈ H2

0 (−1, 1)

∣∣∣∣
∫ 1

−1

ρ(|ξ|2|ψ|2 + |ψ′|2)dx3 = 2

}
, (3.16)

where H2
0 (−1, 1) is the subset of H2(−1, 1) satisfying (3.14). Thus we can find a −λ2 by mini-

mizing
−λ2(|ξ|) = α(|ξ|) := inf

ψ∈A
E(ψ). (3.17)

In fact, we can show that a minimizer of (3.17) exists, and that the minimizer satisfies Euler-
Lagrange equations is equivalent to (3.10)–(3.14).

Proposition 3.1. For any fixed ξ 6= 0, E achieves its infinimum on A. In addition, let ψ be
a minimizer and −λ2 := E(ψ), then the pair (ψ, λ2) satisfies (3.10) along with the jump and
boundary conditions (3.11)–(3.14). Moreover, ψ is smooth when restricted to (−1, 0) or (0, 1).

Proof. We can follow the same proof procedure as in [18, Proposition 3.1] to show Proposition
3.1. Hence, we omit the details of the proof here. ¤

Next, we want to prove that there is a fixed point such that λ = s. To this end, we shall give
some properties of α(s) as a function of s > 0.

Proposition 3.2. α(s) ∈ C0,1
loc (0,∞) is strictly increasing. Moreover,

(1) for any a, b ∈ (0, |ξ|c) with a < b, there exist constants c1, c2 > 0 depending on %±, µ±,
g, a and b, such that

α(s) ≤ −c1 + sc2, for all |ξ| ∈ [a, b], (3.18)

where

|ξ|c :=

{√
g[%]/κ, if κ > 0,

+∞, if κ = 0.

(2) there exist constants c3 > 0 depending on %± and g, c4 > 0 depending additionally on µ±
and |ξ|, such that

α(s) ≥ −c3|ξ|+ sc4.
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Proof. We refer to [18, Lemma 3.5] and [8, Propostition 3.6] for a proof. ¤

Given ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), by virtue of (3.18), there exists s0 > 0 depending on the
quantities %±, µ±, g, |ξ|, so that for s ≤ s0 it holds that α(s) < 0. Hence, we can define the open
set

S = α−1(−∞, 0) ⊂ (0,∞).

Note that S is non-empty and this allows us to define λ(s) =
√
−α(s) for s ∈ S. Therefore,

as a result of Proposition 3.1, we have the following existence result for the modified problem
(3.10)–(3.14).

Proposition 3.3. For each ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), and each s ∈ S there is a solution
ψ = ψ(|ξ|, x3) with λ = λ(|ξ|, s) > 0 to the problem (3.10) with the jump and boundary conditions
(3.11)–(3.14). Moreover, ψ is smooth when restricted to (−1, 0) or (0, 1) with ψ(|ξ|, 0) 6= 0.

Finally, we can use Proposition 3.2 to make a fixed-point argument to find s ∈ S such that
s = λ(|ξ|, s) to construct solutions to the original problem (3.5)–(3.9).

Proposition 3.4. Let ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), then there exists a unique s ∈ S so that
λ(|ξ|, s) =

√
−α(s) > 0 and s = λ(|ξ|, s).

Proof. We refer to [18, Lemma 3.7] for a proof. ¤

Consequently, in view of Propositions 3.3 and 3.4, we conclude the following existence result
concerning the problem of (3.5)–(3.9).

Theorem 3.1. For each ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), there exist ψ = ψ(|ξ|, x3) and λ(|ξ|) > 0
satisfying (3.5)–(3.9). Moreover, ψ is smooth when restricted to (−1, 0) or (0, 1) with ψ(|ξ|, 0) 6=
0.

Next, we show some properties of the solutions established in Theorem 3.1 in terms of λ(|ξ|).
The first property is given in the following proposition which shows that λ is a bounded, contin-
uous function of |ξ|.
Proposition 3.5. The function λ : (0, |ξ|c) → (0,∞) is continuous and satisfies

sup
0<|ξ|<∞

λ(|ξ|) ≤ g[%]

4µ−
. (3.19)

Moreover,
lim
|ξ|→0

λ(|ξ|) = 0, (3.20)

and if κ > 0, then also
lim

|ξ|→|ξ|c
λ(|ξ|) = 0. (3.21)

Proof. The continuity and the limits (3.20), (3.21) follow from the same arguments as in [8,
Proposition 3.9] with the help of (3.5), (3.19) and Ehrling–Nirenberg–Gagliardo interpolation
inequality. To complete the proof, it suffices to show (3.19). For each |ξ| ∈ (0, |ξ|c) there exists
a function ψ|ξ| ∈ A satisfying (3.5)–(3.9), so that −λ2(|ξ|) = E(ψ|ξ|). By (3.15), we find that

−λ2(|ξ|) =
λ(|ξ|)

2

∫ 1

−1

µ(4|ξ|2|ψ′|ξ||2 + ||ξ|2ψ|ξ| + ψ′′|ξ||2)dx3 − 1

2
|ξ|2(g[ρ]− κ|ξ|2)|ψ|ξ|(0)|2,
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which yields

2µ−|ξ|2λ(|ξ|)
∫ 1

−1

|ψ′|ξ||2dx3 ≤ 1

2
|ξ|2g[ρ]|ψ|ξ|(0)|2. (3.22)

Using the Hölder inequality, we can bound

|ψ|ξ|(0)|2 =

∣∣∣∣
∫ 1

0

ψ′|ξ|dx3

∣∣∣∣
2

≤
∫ 1

0

(ψ′|ξ|)
2dx3. (3.23)

Substitution of (3.23) into (3.22) gives then

|ξ|2
(

2µ−λ(|ξ|)− 1

2
g[%]

) ∫ 1

−1

|ψ′|ξ||2dx3 ≤ 0. (3.24)

Consequently, (3.24) implies (3.19), since ‖ψ′|ξ|‖L2(−1,1) > 0. ¤

3.4. Construction of a solution to the system (3.2)–(3.4)

A solution to (3.5)–(3.9) gives rise to a solution of the system (3.2)–(3.4) for the growing
mode velocity v, as well.

Theorem 3.2. For each ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), there exists a solution (ϕ̃, θ̃, ψ̃, π̃) =
(ϕ̃(ξ, x3), θ̃(ξ, x3), ψ̃(ξ, x3), π̃(ξ, x3)) with λ = λ(|ξ|) > 0 to (3.2)–(3.4), and the solution is smooth
when restricted to (−1, 0) or (0, 1). Moreover,

‖ϕ̃‖2
L2(−1,1) + ‖θ̃‖2

L2(−1,1) + ‖ψ̃‖2
L2(−1,1) = 1, (3.25)

‖ψ̃′‖L2(−1,1) ≤ |ξ|
√

2%+%−1
− . (3.26)

Proof. By Theorem 3.1, we first construct a solution (ψ, λ) = (ψ(|ξ|, x3), λ(|ξ|)) satisfying
(3.5)–(3.9). Moreover, λ > 0 and ψ ∈ A is smooth when restricted to (−1, 0) or (0, 1). Then,
multiplying (3.2)1 and (3.2)2 by ξ1 and ξ2 respectively, adding the resulting equations, and
utilizing (3.2)4, we find that π can be expressed by ψ, i.e.,

π = π(|ξ|, x3) = [µψ′′′ − (λ% + µ|ξ|2)ψ′]|ξ|−2. (3.27)

Notice that (3.2)1 can be rewritten as

ϕ′′ − (λ% + µ|ξ|2)ϕ/µ = −ξ1π/µ (3.28)

with jump and boundary conditions

JϕK = 0, Jµ(ξ1ψ − ϕ′)K = 0, ϕ(−1) = ϕ(1) = 0. (3.29)

Hence, we can easily construct a unique solution

ϕ = (ξ, x3) =

{
ξ1(c1e

a+x3 + c2e
−a+x3 − f+(x3)), on (0, 1),

ξ1(c3e
a−x3 + c4e

−a−x3 − f−(x3)), on (−1, 0)
(3.30)

to the equation (3.28) with jump and boundary conditions (3.29), where

a± =
√
|ξ|2 + λ%/µ±,

f±(x3) =
1

2a±µ±

∫ x3

0

π(ea±(x3−y) − ea±(y−x3))dy,
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and 


c1

c2

c3

c4


 =




0
(µ+ − µ−)ψ(0)

f(1)
f(−1)







1 1 −1 −1
µ+a+−µ+a+−µ−a−µ−a−
ea+ e−a+ 0 0
0 0 e−a− ea−




−1

.

Similarly to (3.30),

θ := θ(ξ, x3) =

{
ξ2(c1e

a+x3 + c2e
−a+x3 − f+(x3)), on (0, 1),

ξ2(c3e
a−x3 + c4e

−a−x3 − f−(x3)), on (−1, 0)

is a unique solution of (3.2)2 with jump and boundary conditions:

JθK = 0, Jµ(ξ2ψ − θ′)K = 0, θ(−1) = θ(1) = 0.

Consequently, (ϕ, θ, ψ, π) is a solution to the system (3.2)–(3.4). Now, we define

(ϕ̃, θ̃, ψ̃, π̃) :=(ϕ̃(ξ, x3), θ̃(ξ, x3), ψ̃(ξ, x3), π̃(ξ, x3))

:=(ϕ, θ, ψ, π)/(‖ϕ‖2
L2(−1,1) + ‖θ‖2

L2(−1,1) + ‖ψ‖2
L2(−1,1)).

Thus, (ϕ̃, θ̃, ψ̃, π̃) is still a solution to the system (3.2)–(3.4), and moreover, (ϕ̃, θ̃, ψ̃, π̃) satisfies
(3.25).

Finally, making use of (3.2)4 and (3.16), we conclude that

1

%+|ξ|2 =
1

2%+|ξ|2
∫ 1

−1

%(|ξ|2|ψ|2 + |ψ′|2)dx3

≤
∫ 1

−1

(|ϕ|2 + |θ|2 + |ψ|2)dx3

≤‖ϕ‖2
L2(−1,1) + ‖θ‖2

L2(−1,1) + ‖ψ‖2
L2(−1,1)

and ∫ 1

−1

|ψ′|2dx3 ≤ 2/%−.

The above two inequalities imply (3.26) immediately. ¤

Remark 3.1. For each x3, it is easy to see that the solution (ϕ̃(ξ, ·), θ̃(ξ, ·), ψ̃(ξ, ·), π̃(ξ, ·), λ(|ξ|))
constructed in Theorem 3.2 has the following properties:

(1) λ(|ξ|), ψ̃(ξ, ·) and π̃(ξ, ·) are even on ξ1 or ξ2, when the another variable is fixed;

(2) ϕ̃(ξ, ·) is odd on ξ1, but even on ξ2, when the another variable is fixed;

(3) θ̃(ξ, ·) is even on ξ1, but odd on ξ2, when the another variable is fixed.

To directly estimate the Hk norm of the solution ψ from (3.5), without use of (3.15) and the
continuity of λ, we shall apply the following Ehrling–Nirenberg–Gagliardo interpolation inequal-
ity, the proof of which can be found in [1, Chapter 5].

Lemma 3.1. Let Ω be a domain in Rn satisfying the cone condition. For each ε0 > 0 there is a
constant K depending on n, m, p and ε0, such that if 0 < ε ≤ ε0, 0 ≤ j ≤ m, and u ∈ Wm,p(Ω),
then

∑

|α|=j

∫

Ω

|Dαu(x)|pdx ≤ K


ε

∑

|α|=m

∫

Ω

|Dαu(x)|pdx + ε−j/(m−j)

∫

Ω

|u|pdx


 .
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The next lemma provides an estimate for the Hk norm of the solution (ϕ̃, θ̃, ψ̃, π̃) with ξ
varying, which will be useful in the next section when such a solution is integrated in a Fourier
synthesis. To emphasize the dependence on ξ, we write these solutions as (ϕ̃(ξ) = ϕ̃(ξ, x3), θ̃(ξ) =
θ̃(ξ, x3), ψ̃(ξ) = ψ̃(ξ, x3), π̃(ξ) = π̃(ξ, x3)).

Lemma 3.2. Let ξ ∈ R2 with 0 < R1 < |ξ| < |ξ|c, ϕ(ξ) := ϕ̃(ξ), θ(ξ) := θ̃(ξ), ψ(ξ) := ψ̃(ξ),
π(ξ) := π̃(ξ) and λ(|ξ|) be constructed as in Theorem 3.2, then for any k ≥ 0 there exit positive
constants ak, bk and ck depending on R1, %±, µ± and g, so that

‖ϕ(ξ)‖Hk(−1,0) + ‖ϕ(ξ)‖Hk(0,1) + ‖θ(ξ)‖Hk(−1,0) + ‖θ(ξ)‖Hk(0,1) ≤ ak

k+1∑
j=0

|ξ|j, (3.31)

‖ψ(ξ)‖Hk(−1,0) + ‖ψ(ξ)‖Hk(0,1) ≤ bk

k∑
j=0

|ξ|j, (3.32)

‖π(ξ)‖Hk(−1,0) + ‖π(ξ)‖Hk(0,1) ≤ ck

k+1∑
j=0

|ξ|j. (3.33)

Moreover,
‖ϕ‖2

L2(−1,1) + ‖θ‖2
L2(−1,1) + ‖ψ‖2

L2(−1,1) = 1. (3.34)

Proof. Throughout this proof, we denote by c̃1, · · · , c̃9 generic positive constants which may
depend on R1, %±, µ± and g, but not on |ξ|.

(i) First, (3.34) follows from (3.25) immediately. We now write (3.5) as

ψ′′′′(ξ) =
[
(λ% + 2µ|ξ|2)ψ′′(ξ)− (λ%|ξ|2 + µ|ξ|4)ψ(ξ)

]
/µ. (3.35)

If we make use of (3.19), |ξ| > R1 and Lemma 3.1, then we see that there exists a couple
(c̃1, c̃2), such that

‖ψ′′′′(ξ)‖L2(I±) ≤ c̃1

[
(|ξ|2 + |ξ|4)‖ψ(ξ)‖L2(I±) + (1 + |ξ|2)‖ψ′′(ξ)‖L2(I±)

]

≤ (c̃2 + 1)
[
(ε−1/2 + ε−1/2|ξ|4 + |ξ|2 + |ξ|4)‖ψ(ξ)‖L2(I±)

+
√

ε‖ψ′′′′(ξ)‖L2(I±)

]
for any ε ∈ (0, 1),

(3.36)

respectively, where I+ = (0, 1) and I− = (−1, 0). Choosing
√

ε = 1/{2(c̃2 + 1)} in (3.36) and
using (3.34), we arrive at

‖ψ′′′′(ξ)‖L2(I±) ≤ c̃3(1 + |ξ|2 + |ξ|4) for some c̃3 > 0,

whence,
‖ψ′′′′(ξ)‖L2(−1,1) ≤ c̃4(1 + |ξ|2 + |ξ|4). (3.37)

Writing (3.35) as

ψ′′(ξ) =
µψ′′′′(ξ) + (λ%|ξ|2 + µ|ξ|4)ψ(ξ)

(λ% + 2µ|ξ|2) ,

we utilize (3.37) and (3.34) to get

‖ψ′′(ξ)‖L2(−1,1) ≤ c̃5(1 + |ξ|2). (3.38)

Differentiating (3.35) with respect to x3, we see that

ψ(5)(ξ) =
[
(λ% + 2µ|ξ|2)ψ′′′(ξ)− (λ%|ξ|2 + µ|ξ|4)ψ′(ξ)]/µ.
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Similarly to (3.37)–(3.38), we obtain, by Lemma 3.1, (3.19), (3.26) and (3.34), that

‖ψ(5)(ξ)‖L2(−1,1) ≤ c̃6(1 + |ξ|2 + |ξ|4 + |ξ|5). (3.39)

and
‖ψ′′′(ξ)‖L2(−1,1) ≤ c̃7(1 + |ξ|2 + |ξ|3). (3.40)

Summarizing the estimates (3.34), (3.26) and (3.37)–(3.40), we conclude that, for each non-
negative integer k ∈ [0, 5], there exists a constant b̃k > 0 depending on R1, %±, µ± and g, such
that

‖ψ(k)(ξ)‖L2(−1,1) ≤ b̃k

k∑
j=0

|ξ|j. (3.41)

Differentiating (3.35) with respect to x3 and using (3.41), we find, by induction on k, that
(3.41) holds for any k ≥ 0. This gives (3.32).

(ii) Recalling the expression (3.27) of π and the fact that |ξ| > R1, we employ (3.32) to deduce
that for any k ≥ 0,

‖π(k)(ξ)‖L2(−1,1) ≤ µ+

|ξ|2‖ψ
(k+3)(ξ)‖L2(−1,1) +

(
g[%]%+

4µ−|ξ|2 + µ+

)
‖ψ(k+1)(ξ)‖L2(−1,1)

≤max

{
µ+b̃k+3

R2
1

+
µ+b̃k+3

R1

+ µ+b̃k+3 +

(
g[%]%+

4µ−R2
1

+ µ+

)
b̃k+1,

µ+b̃k+3 +

(
g[%]%+

4µ−R2
1

+ µ+

)
b̃k+1

} k+1∑
j=0

|ξ|j,

which implies (3.33).
(iii) From (3.19), (3.28), (3.33) and (3.34) we get

‖ϕ′′(ξ)‖L2(−1,1) ≤ |ξ|
µ−
‖π(ξ)‖L2(−1,1) +

(
g[%]%+

4µ2−
+ |ξ|2

)
‖ϕ(ξ)‖L2(−1,1)

≤c̃8(1 + |ξ|+ |ξ|2).
(3.42)

Applying (3.42), (3.34) and Lemma 3.1, we obtain

‖ϕ′(ξ)‖L2(−1,0) + ‖ϕ′(ξ)‖L2(0,1) ≤c̃9(1 + |ξ|+ |ξ|2). (3.43)

Combining (3.34) with (3.42) and (3.43), we conclude that, for each nonnegative integer k ∈ [0, 2],
there exists a constant ãk > 0 depending on R1, %±, µ± and g, so that

‖ϕ(k)(ξ)‖L2(−1,1) ≤ ãk

k+1∑
j=0

|ξ|j. (3.44)

Thus, by virtue of (3.28), (3.44) and induction on k, (3.44) holds for any k ≥ 0. Following
the same procedure as used in estimating ϕ, we infer that for each k ≥ 0,

‖θ(k)(ξ)‖L2(−1,1) ≤ d̃k

k+1∑
j=0

|ξ|j (3.45)

for some constant d̃k depending on R1, %±, µ± and g. Adding (3.45) to (3.44), we arrive at

‖ϕ(k)(ξ)‖L2(−1,1) + ‖θ(k)(ξ)‖L2(−1,1) ≤ (ãk + d̃k)
k+1∑
j=0

|ξ|j for any k ≥ 0,

which yields (3.31). This completes the proof. ¤
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3.5. Fourier synthesis

In this section we will use the Fourier synthesis to build growing solutions to (1.5) out of the
solutions constructed in the previous section (Theorem 3.2) for fixed spatial frequency ξ ∈ R2

with |ξ| ∈ (0, |ξ|c). The constructed solutions will grow in-time in the piecewise Sobolev space of
order k, Hk(Ω±), defined by (2.1).

Theorem 3.3. Let 0 < R1 < R2 < |ξ|c and f ∈ C∞
0 (R1, R2) be a real-valued function. For

ξ ∈ R2 with |ξ| ∈ (0, |ξ|c), define

v(ξ, x3) = −iϕ(ξ, x3)e1 − iθ(ξ, x3)e2 + ψ(ξ, x3)e3,

where (ϕ, θ, ψ, π)(ξ, x3) := (ϕ̃, θ̃, ψ̃, π̃)(ξ, x3) with λ(|ξ|) > 0 is the solution given by Theorem 3.2.
Denote

η(t, x′) =
1

4π2

∫

R2

f(|ξ|)v3(ξ, 0)eλ(|ξ|)teix′ξdξ, (3.46)

u(t, x) =
1

4π2

∫

R2

λ(ξ)f(|ξ|)v(ξ, x3)e
λ(|ξ|)teix′ξdξ, (3.47)

p(t, x) =
1

4π2

∫

R2

λ(ξ)f(|ξ|)π(ξ, x3)e
λ(|ξ|)teix′ξdξ, (3.48)

Then, (η, u, p) is a real-valued solution to the linearized problem (1.5) along with the corresponding
jump and boundary conditions. For every k ∈ N, we have the estimate

‖η(0)‖Hk(R2) + ‖u(0)‖Hk(Ω±) + ‖p(0)‖Hk(Ω±)

≤ c̃k

(∫

R2

(1 + |ξ|2)k+2|f(|ξ|)|2dξ

)1/2

< ∞,
(3.49)

where c̃k > 0 is a constant depending on the parameters %±, R1 and g. Moreover, for every t > 0
we have η(t) ∈ Hk(R2), u(t), p(t) ∈ Hk(Ω±), and

etλ0(f)‖η(0)‖Hk(R2) ≤ ‖η(t)‖Hk(R2) ≤ etΛ‖η(0)‖Hk(R2), (3.50)

etλ0(f)‖u(0)‖Hk(Ω±) ≤ ‖u(t)‖Hk(Ω±) ≤ etΛ‖u(0)‖Hk(Ω±), (3.51)

etλ0(f)‖p(0)‖Hk(Ω±) ≤ ‖p(t)‖Hk(Ω±) ≤ etΛ‖p(0)‖Hk(Ω±), (3.52)

where
λ0(f) = inf

|ξ|∈supp(f)
λ(|ξ|) > 0 (3.53)

and

Λ = sup
0<|ξ|<|ξ|c

λ(|ξ|) <
g[%]

4µ−
. (3.54)

Proof. By virtue of Proposition 3.5, (3.53) and (3.54) hold. For each fixed ξ ∈ R2,

η(t, x′) = f(|ξ|)v3(ξ, 0)eλ(|ξ|)teix′ξ,

u(t, x) = λ(|ξ|)f(|ξ|)v(ξ, x3)e
λ(|ξ|)teix′ξ

p(t, x) = λ(|ξ|)f(|ξ|)π(ξ, x3)e
λ(|ξ|)teix′ξ

give a solution to (1.5). Since f ∈ C∞
0 (R1, R2), Lemma 3.2 implies that

sup
ξ∈supp(f)

‖∂k
3v(ξ, ·)‖L∞ < ∞ for all k ∈ N.
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Also, λ(ξ) ≤ Λ. These bounds show that the Fourier synthesis of the solution given by (3.46)–
(3.48) is also a solution of (1.5). Because f is real-valued and radial, combined with Remark 3.1,
we can easily verify that the Fourier synthesis is real-valued.

The estimate (3.49) follows from Lemma 3.2 with arbitrary k ≥ 0 and the fact that f is
compactly supported. Finally, we can use (3.53), (3.54) and (3.46)–(3.48) to obtain the estimates
(3.50)–(3.52). ¤

4. Global instability for the linearized problem

4.1. Uniqueness of linearized equations

In this subsection, we will show the uniqueness of solutions to the linearized problem, which
will be applied to prove Theorem 2.2 in Section 5. For this purpose, we need a generalized
formula of integrating by parts (or Gauss–Green’s formula). Let us first recall the boundary
trace theorem (see Theorem 5.36 in [1, Chaperter 5]).

Lemma 4.1. Let U be a domain in Rn satisfying the uniform Cm-regularity condition, and
assume that there exists a simple (m, p)-extension operator E for U . Also assume that mp < n
and p ≤ q ≤ p∗ = (n− 1)p/(n−mp). Then, there exists a bounded linear operator

γU : Wm,p(U) → Lq(∂U),

such that
γU(u) = u on ∂U

for all u ∈ Wm,p(U) ∩ C(Ū).

The function γU(u) ∈ Lq(∂U) is called the trace of the function of u ∈ W 1,p(U) on the
boundary ∂U . By the Stein extension theorem (see Theorem 5.24 in [1, Chaperter 5]) and the
definition of the uniform Cm-regularity condition (see Definition 4.10 in [1, Chaperter 5]), it is
easy to verify that Ω, Ω+ and Ω− have different simple (m, p)-extension operators. Keeping these
facts in mind, we can start to show the following formula of integrating by parts. For convenience
in the subsequent analysis, we will use the natations γ+(f) := γΩ+(f+) and γ−(f) := γΩ+(f−).

Lemma 4.2. For all u ∈ H1
0 (Ω) and w ∈ H1(Ω±), we have

∫

Ω

∂iwudx = −
∫

Ω

w∂iudx +

∫

R2

(γ+(w)− γ−(w))γ+(u)αidx (4.1)

for i = 1, 2, 3, where α1 = α2 = 0 and α3 = −1.

Proof. Temporarily suppose ū ∈ C1
0(Ω), w̄+ ∈ C1(Ω̄+) and w̄− ∈ C1(Ω̄−). By the Gauss-Green

theorem, we have

∫

Ω

∂iw̄ūdx =−
∫

Ω

w̄∂iūdx +

∫

R2

((w̄+ − w̄−)ū)(x′, 0)αidx. (4.2)

Using Lemma 4.1, one has

‖(ū− γ+(u))(x′, 0)‖L2(R2) ≤‖ū− γ+(u)‖L2(∂Ω+)

=‖γ+(ū− u)‖L2(∂Ω+) ≤ c‖ū− u‖H1(Ω+)

≤c‖ū− u‖H1
0 (Ω)
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and
‖(w̄+ − γ+(w+))(x′, 0)‖L2(R2) ≤c‖w̄+ − w+‖H1(Ω+)

for some constant c > 0. By the Hölder inequality, the above two estimates imply that

‖(w̄+ū− γ+(w)γ+(u))(x′, 0)‖L1(R2)

≤ ‖(ū(w̄+ − γ+(w)))(x′, 0)‖L1(R2) + ‖(γ+(w)(ū− γ+(u)))(x′, 0)‖L1(R2)

≤ ‖ū(x′, 0)‖L2(R2)‖(w̄+ − γ+(w))(x′, 0)‖L2(R2)

+ ‖γ+(w)(x′, 0)‖L2(R2)‖(ū− γ+(u))(x′, 0)‖L2(R2)

≤ c2‖ū‖H1
0 (Ω)‖w̄+ − w+‖H1(Ω+) + c2‖w+‖H1(Ω+)‖ū− u‖H1

0 (Ω).

(4.3)

Similarly to (4.3), one gets

‖(w̄−ū− γ−(w)γ+(u))(x′, 0)‖L1(R2)

≤ c2(‖ū‖H1
0 (Ω)‖w̄− − w−‖H1(Ω−) + ‖w−‖H1(Ω−)‖ū− u‖H1

0 (Ω)).
(4.4)

In addition, if ūm → u strongly in H1
0 (Ω), then there exists m0 > 0 such that

‖ūm‖H1
0 (Ω) ≤ ‖u‖H1

0 (Ω) + 1 for any m ≥ m0. (4.5)

Note that since C0(Ω) is dense in H1
0 (Ω), and C0(R3) is dense in H1(Ω+) or H1(Ω−), thus

(4.1) follows from (4.2)–(4.5), using a standard density argument. ¤

Definition 4.1. Given t0 > 0 and the initial data (η0, u0) to the linearized problem (1.5)–(1.7),
a triple (η, u, p) is called a strong solution of (1.5)–(1.7), if

(1) η ∈ C0([0, t0], L
2
loc(R2)), u ∈ C0([0, t0], (L

2(Ω))3), η(0) = η0, u(0) = u0 and

ess sup
0<t<t0

(‖u(t)‖H3(Ω±) + ‖η(t)‖H2(R2) + ‖u(t)‖H1
0 (Ω) + ‖p(t)‖H1(Ω±)) < ∞. (4.6)

(2) the equations

%∂tu +∇p = µ∆u, (4.7)

div u = 0 (4.8)

hold a.e. in (0, t0)× (Ω \ {x3 = 0}).
(3) For a.e. t ∈ (0, t0),

∂tη = u3, (4.9)

((λ+(p)I − µ+(∇u+ +∇uT
+))− (λ−(p)I − µ−(∇u− +∇uT

−))) · e3

= (g[%]η + κ∆x′η)e3 (4.10)

holds a.e. in R2 × {x3 = 0}, where u3 is the third component of u.

Remark 4.1. Since u(t) ∈ H1
0 (Ω) ∩H3(Ω±) for each t ≥ 0, we can make use of the embedding

theorem and (4.8) to obtain

u(t) ∈ C0(Ω̄), u+(t) ∈ C1(Ω̄+), u−(t) ∈ C1(Ω̄−), (4.11)

and

u(t) ≡ 0 on ∂Ω, (4.12)

∇x′u+ ≡ ∇x′u− on R2, (4.13)

divu(t) ≡ 0 in Ω̄ for a.e. t ≥ 0. (4.14)
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Thus, in view of (4.13), we define for the sake of simplicity that

∇x′u := ∇x′u+ = ∇x′u− on R2 × {0}. (4.15)

Moreover, by virtue of Lemma 4.1, there is a constant c such that

‖u(t, x′, 0)‖H1(R2) ≤ c‖u(t)‖H2(Ω±) for a.e. t ≥ 0. (4.16)

Remark 4.2. It is easy to verify that any (η, u, p), which is a solution established in Theorem
3.3, is a strong solution to the linearized system (1.5)–(1.7).

Theorem 4.1. Assume that (η1, v, p1) and (η2, w, p2) are two strong solutions to (1.5)–(1.7),
with v(0) = w(0) = u0, η1(0) = η2(0) = η0. Then, (η1, v, p1) = (η2, w, p2 + c) for some constant
c.

Proof. Let (η, u, p) = (η1− η2, v−w, p1− p2). Recalling Definition 4.1, (η, u, p) is still a strong
solution to the linearized system (1.5)–(1.7) with zero initial data, i.e. η(0) = 0 and u(0) = 0.

Multiplying (4.7) by u, integrating over (0, τ)×Ω for any τ ∈ (0, t0) and using (4.14), we find
that ∫ τ

0

∫

Ω

%∂tu · udxdt +

∫ τ

0

∫

Ω

div(pI − µ(∇u +∇uT )) · udxdt = 0. (4.17)

Thanks to Lemma 4.1, (4.11)–(4.14) and the regularity of p, we obtain

∫ τ

0

∫

Ω

div(pI − µ(∇u +∇uT )) · udxdt

=

∫ τ

0

∫

R2

((λ−(p)I − µ(∇u− +∇uT
−))− (λ+(p)I − µ+(∇u+ +∇uT

+)))e3 · udx′dt

+

∫ τ

0

∫

Ω

µ∇u : (∇u +∇uT )dxdt.

(4.18)

Notice that in view of (4.6), p(t) ∈ (H1(Ω±))3 and u(t) ∈ (H2(Ω±))3 for a.e. t > 0. Thus,
(4.7) implies that

∂tu ∈ (L2((0, t0)× Ω))3,

which, together with u ∈ L∞(0, t0; (H
1(Ω))3) ∩ C0([0, t0], (L

2(Ω))3), yields

∫ τ

0

∫

Ω

%∂tu · udxdt =
1

2

∫

Ω

%u2(τ)dx− 1

2

∫

Ω

%u2(0)dx. (4.19)

In view of (4.10), (4.17)–(4.18), (4.19) and u(0) = 0, we find that

1

2

∫

Ω

%u2(τ)dx +

∫ τ

0

∫

Ω

µ∇u : (∇u +∇uT )dxdt

=

∫ τ

0

∫

R2

(g[%]η + κ∆x′η)u3dx′dt.

(4.20)

Since η ∈ C0([0, t0], L
2
loc(R2)) and η(0) = 0, the equation (4.9) implies that

η(t, x′) =

∫ t

0

u3(s, x
′, 0)ds for any t ≥ 0. (4.21)

Using (4.15), (4.16), (4.21) and the regularity of η, we infer that
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∫ τ

0

∫

R2

∆x′ηu3dx′dt =−
2∑

i=1

∫ τ

0

∫

R2

∂iη∂iu3dx′dt

=−
2∑

i=1

∫ τ

0

∫

R2

∫ t

0

∂iu3(s, x
′, 0)ds∂iu3(t, x

′, 0)dx′dt,

(4.22)

where the formula of integration by parts can be shown in the same manner as in Lemma 4.1.
Consequently, inserting (4.21) and (4.22) into (4.20), we arrive at

1

2

∫

Ω

%u2(τ)dxdt +

∫ τ

0

∫

Ω

µ∇u : (∇u +∇uT )dxdt

= g[%]

∫ τ

0

∫

R2

∫ t

0

u3(s, x
′, 0)dsu3(t, x

′, 0)dx′dt

− κ

2∑
i=1

∫ τ

0

∫

R2

∫ t

0

∂iu3(s, x
′, 0)ds∂iu3(t, x

′, 0)dx′dt.

(4.23)

With the help of the regularity of ∂iu3, the property of absolutely continuous functions and
the Fubini theorem, we conclude that

∫ τ

0

∫

R2

∫ t

0

∂iu3(s, x
′, 0)ds∂iu3(t, x

′, 0)dx′dt =

∫

R2

∫ τ

0

∫ t

0

∂iu3(s, x
′, 0)ds∂iu3(t, x

′, 0)dtdx′

=

∫

R2

∫ τ

0

d

dt

[∫ t

0

∂iu3(s, x
′, 0)ds

]2

dtdx′

=

∫

R2

[∫ τ

0

∂iu3(t, x
′, 0)dt

]2

dx′ ≥ 0.

(4.24)

On the other hand, applying the Cauchy-Schwarz inequality, we get

2
3∑

i=1

∫

Ω

µ(∂iui)
2dxdt ≤

∫

Ω

µ∇u : (∇u +∇uT )dxdt. (4.25)

Hence, by (4.23)–(4.25), we have

∫

Ω

%u2(τ)dx + 4
3∑

i=1

∫

Ω

µ(∂iui)
2dxdt ≤ 2g[%]

∫ τ

0

∫

R2

∫ t

0

u3(s, x
′, 0)dsu3(t, x

′, 0)dx′dt. (4.26)

Similarly to (4.24), the right-hand side of (4.26) can be bounded as follows.

2

∫ τ

0

∫

R2

∫ t

0

u3(s, x
′, 0)u3(t, x

′, 0)dx′dsdt =

∫

R2

(∫ τ

0

u3(t, x
′, 0)dt

)2

dx′

≤ τ

∫ τ

0

∫

R2

|u3(t, x
′, 0)|2dx′dt

= 2τ

∫ τ

0

∫

R2

∫ 0

1

u3(t, x
′, x3)∂3u3(t, x

′, x3)dx3dx′dt

≤ τ

∫ τ

0

∫

R2

(
µ

2τg[%]

∫ 1

0

|∂3u3(t)|2dx3 +
2τg[%]

µ

∫ 1

0

|u3(t)|2dx3

)
dx′dt

≤ 1

2g[%]

∫ τ

0

‖√µ∂3u3(t)‖2
L2(Ω)dt +

2τ 2g[%]

µ−

∫ τ

0

‖u(t)‖2
L2(Ω)dt.

(4.27)
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Substituting (4.27) into (4.26), we deduce

‖√%u(τ)‖2
L2(Ω) + 3µ−

∫ τ

0

‖∇u(t)‖2
L2(Ω)dt ≤ 4τ 2g2[%]2µ−1

−

∫ τ

0

‖u(t)‖2
L2(Ω)dt,

which results in

‖u(τ)‖2
L2(Ω) ≤

4τ 2g2[%]2

µ−%−

∫ τ

0

‖u(t)‖2
L2(Ω)dt. (4.28)

Moreover, if we apply the Beesack inequality to (4.28), we obtain

‖u(τ)‖2
L2(Ω) = 0 for any τ ∈ [0, t0],

which implies u = 0, i.e. v = w. This, combined with (4.7) and (4.9), proves Theorem 4.1. ¤

Remark 4.3. In addition, employing arguments similar to those used for (4.1), the regularity
of u stated in Remark 4.1 and the fact that div u = 0, we can show

∫ τ

0

∫

Ω

µ∇u : ∇uT dxdt ≡ 0.

4.2. Proof of Theorem 2.1

We define

β1 =

{|ξ|c/3, if κ > 0,
1, if κ = 0,

and β2 =

{
2|ξ|c/3, if κ > 0,
2, if κ = 0.

Fix j ≥ k ≥ 0, α > 0 and let c̃j be the constants from Theorem 3.3. For each n ∈ N, let tn be
sufficiently large, so that

exp(2tnλ0)

(1 + β2
2)

j−k+2
= α2n2c̃2

j , (4.29)

i.e.

tn =
ln(c̃j(1 + β2

2)
(j−k+2)/2)

λ0

+
ln(αn)

λ0

:= Cjk + C1ln(αn),

where
λ0 = inf

ξ∈B(0,β2)\B(0,β1)
λ(|ξ|) > 0.

Choose fn ∈ C∞
0 (R2), such that supp(fn) ⊂ B(0, β2)\B(0, β1), fn is real-valued and radial, and

∫

R2

(1 + |ξ|2)j+2|fn(|ξ|)|2dξ =
1

c̃2
jn

2
. (4.30)

Now, we can apply Theorem 3.3 with f = fn, R1 = β1 and R2 = β2 to find that
(
ηn(t), un(t),

pn(t)
) ∈ Hj(Ω) solves the problem (1.5)–(1.7). It follows thus from (3.49) and (4.30) that (2.3)

holds for all n.
Recalling supp(fn) ⊂ B(β1, β2) and λ(|ξ|) ≥ λ0, we have, after a straightforward calculation

and using (4.29) and (3.34), that

‖un(t)‖2
Hk ≥

∫

R2

(1 + |ξ|2)ke2tλ(|ξ|)|fn(|ξ|)|2‖v(ξ, x3)‖2
L2(−1,1)dξ

≥ exp(2tλ0)

(1 + β2
2)

j−k+2

∫

R2

(1 + |ξ|2)j+2|fn(|ξ|)|2‖v(ξ, x3)‖2
L2(−1,1)dξ

=α2n2c̃2
j

∫

R2

(1 + |ξ|2)j+2|fn(|ξ|)|2dξ

=α2 for any t ≥ tn,

which implies (2.4) and (2.5). This completes the proof of Theorem 2.1
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5. Proof of Theorem 2.2

In this section, we will argue by contradiction to show Theorem 2.2. Therefore, we suppose
that the perturbed problem has the global stability of order k for some k ≥ 3.

5.1. Regularity under the assumption of the global stability

Let δ, C2 > 0 and F : [0, δ] → R+ be the constants and function provided by the global
stability of order k, respectively. Letting n ∈ N, and applying Theorem 2.1 with this n, tn = T0/2,
k ≥ 3, and α = 2, we find that (η̃, ũ, σ̃) solves (1.5), such that

‖η̃(0)‖Hk(R2) + ‖ũ(0)‖Hk(Ω±) + ‖σ̃(0)‖Hk(Ω±) < n−1, (5.1)

but
‖ũ(t)‖H3(Ω±) ≥ 2 for t ≥ T0/2. (5.2)

By the Sobolev embedding theorem, η̃(0) ≡ η̃(0, x′) ∈ C0,1
loc (R2). Employing the Stein exten-

sion theorem, there exist two linear operators E+ and E− which map Hk(Ω+) and Hk(Ω−) to
Hk(R3), respectively, such that

E+(ũ+(0)) = ũ+(0) a.e. in Ω+, E−(ũ−(0)) = ũ−(0) a.e. in Ω−,

and

‖E+(ũ+(0))‖Hk(R3) ≤ c(k)‖ũ+(0)‖Hk(Ω+), ‖E−(ũ−(0))‖Hk(R3) ≤ c(k)‖ũ−(0)‖Hk(Ω−)

for some constant c(k) depending on k. Keeping in mind that ‖η̃(0)‖Hk(R2) < n−1, we can apply
the embedding theorem to see that there exists a sufficiently small constant ε0 > 0, such that
‖εη̃(0)‖L∞(R2) < 1 for any ε ∈ (0, ε0). Thus, we define

η̄ε
0 := εη̃(0),

Σε(0) := {(x′, x3) ∈ R3 | x3 = η̄ε
0(x

′)},
Ωε

+(0) := {(x′, x3) ∈ R3 | η̄ε
0(x

′) < x3 < 1},
Ωε
−(0) := {(x′, x3) ∈ R3 | − 1 < x3 < η̄ε

0(x
′)},

vε(0) :=

{
E+(ũ+(0)), if x ∈ Ωε

+(0),

E−(ũ−(0)), if x ∈ Ωε
−(0).

ūε
0 := εvε(0).

Now, we fix n ∈ N so that n > max{1, C2}max{1, c(k)}. By construction, [ūε
0]|Σε(0) = 0.

Moreover, for ε < ε̃0 := min{ε0, δn(max{1, c(k)})−1}, we have

‖η̄ε
0‖Hk(R2) + ‖ūε

0‖Hk(Ωε
±(0))

= ε(‖η̃(0)‖Hk(R2) +
√
‖E+(ũ+(0))‖2

Hk(Ωε
+(0))

+ ‖E−(ũ−(0))‖2
Hk(Ωε

−(0))
)

< ε(‖η̃(0)‖Hk(R2) + c(k)
√
‖ũ+(0)‖2

Hk(Ω+)
+ ‖ũ−(0)‖2

Hk(Ω−)
)

≤ ε max{1, c(k)}(‖η̃(0)‖Hk(R2) + ‖ũ(0)‖Hk(Ω±)) < δ.

Thus, according to the global stability of order k, there exist ηε, uε, σε in the function class
described in Definition 2.1, which solve the perturbed problem:





∂tη
ε = uε

3 − uε
1∂1η

ε − uε
2∂2η

ε,

%∂tu
ε + %(∇uε)uε +∇σε = µ∆uε,

divuε = 0

(5.3)
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with the jump condition

[uε]|Σε(t) = 0, (5.4)

[(σεI − µ(∇uε +∇(uε)T ))νε]|Σε(t) = (g[%]ηε + κHε)νε, (5.5)

Σε(t) := {x ∈ R3 | x3 = ηε(t, x′)},
and the initial data satisfying ‖η̄ε

0‖Hk(R2) + ‖ūε
0‖Hk(Ωε

±(0)) < δ. Furthermore, the solution satisfies

sup
0≤t<∞

(‖uε‖H3(Ωε
±(t)) + ‖ηε‖H2(R2) + ‖σε‖H1(Ωε

±(t))) ≤ F (‖η̄ε
0‖Hk(R2) + ‖ūε

0‖Hk(Ωε
±(0)))

≤ εC2 max{1, c(k)}(‖η̃(0)‖Hk(R2) + ‖ũ(0)‖Hk(Ω±)) < ε.
(5.6)

Now, define the rescaled functions η̄ε = ηε/ε, ūε = uε/ε, σ̄ε = σε/ε. If we rescale (5.6), then
we see that

sup
0≤t<∞

(‖ūε(t)‖H3(Ωε
±(t)) + ‖η̄ε(t)‖H2(R2) + ‖σ̄ε(t)‖H1(Ωε

±(t))) ≤ 1, (5.7)

where

Ωε
+(t) =

{
(x′, x3) | x′ ∈ R2, ηε(t, x′) < x3 < 1

}
,

Ωε
−(t) =

{
(x′, x3) | x′ ∈ R2, −1 < x3 < ηε(t, x′)

}
, t > 0.

Moreover, recalling the definition of H3(Ωε
±(t)) in (2.2), using (5.4) and the regularity of ūε(t) in

(5.7), we can easily verify that
sup

0≤t<∞
‖ūε(t)‖H1

0 (Ω) ≤ 1. (5.8)

The equations (5.3)2, together with (5.7), yield

sup
0≤t<∞

‖∂tū
ε‖L2(Ω)≤

√
5
(
ε‖ūε‖L2(Ωε

±(t))‖∇ūε‖L2(Ωε
±(t)) + %−1

− ‖∇σ̄ε‖L2(Ωε
±(t)) + µ+%−1

− ‖∆ūε‖L2(Ωε
±(t))

)

≤
√

5[δn + (1 + µ+)/%−]. (5.9)

Now, letting j ∈ Z+, and employing (5.3)1, (5.7) and (5.8), we infer that for each square
domain,

Rj := {x′ ∈ R2 | |x1|, |x2| < j},
there exists a constant c1(j) depending on j, such that

sup
0≤t<∞

‖∂tη̄
ε‖L2(Rj) ≤ c1(j). (5.10)

5.2. Taking limits in the rescaled function sequences

First, making use of (5.7)–(5.10), an abstract version of the Arzela-Ascoli theorem (see [13,
Theorem 1.70]), and the Aubin-Lions Theorem (see [13, Theorem 1.71]), we can extract a sub-
sequence (η̄m, ūm) := (η̄εm , ūεm), with {εm} ⊂ {ε | 0 < ε < ε̃0}, such that, for any p ≥ 1 and
j ∈ Z+,

ūm → ū weakly star in L∞(0, T0; H
1
0 (Ω)), (5.11)

and strongly in C0([0, T0], L
2(Ω)), (5.12)

∂tūm → ∂tū weakly star in L∞(0, T0; L
2(Ω)), (5.13)

η̄m → η̄ weakly star in L∞(0, T0; H
2(R2)), (5.14)

and strongly in C0([0, T0], L
2(Rj)) ∩ Lp(0, T0; H

1(Rj)), (5.15)

∂tη̄m → ∂tη̄ weakly star in L∞(0, T0; L
2(Rj)),

σ̄m → σ̄ weakly star in L∞(0, T0; L
2(Ω)). (5.16)
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Hereafter, for simplicity we denote f εm by fm, where f represents ū, η̄, σ̄, Σ, or η, and so on.
Denoting

Ωj
± = {(x′, x3) ∈ Ω± | 1/j < |x3| < 1},

and using the regularity of ηε in (5.6) and the Sobolev embedding theorem, we find that for any
positive integer j, there exists an εmj

> 0 depending on j, such that, for any εm ∈ (0, εmj
) and

t ≥ 0, we have
Ωj
± ⊂

{
(x′, x3) ∈ Ω± | |ηm(t, x′)| < |x3| < 1

} ⊂ Ω. (5.17)

Therefore, for any j, making use of (5.7), (5.9), (5.17), and the Lions-Aubin Lemma, we can
show by induction that there exists {mj

i} ⊂ {mj−1
i } ⊂ {m} such that,

εmj
i
< εmj

, for any i > 0,

ūmj
i
→ ū weakly star in L∞(0, T0; H

3(Ωj
±))

and strongly in Lp(0, T0; H
2(Ωj

±)) for any p ≥ 1,

σ̄mj
i
⇀ σ̄ weakly star in L∞(0, T0; H

1(Ωj
±)), as i →∞,

where we have defined {m0
i } = {m}.

From the lower semicontinuity, one gets

sup
0≤t<T0

(‖ū(t)‖H3(Ωj
±) + ‖η̄(t)‖H2(R2) + ‖σ̄(t)‖H1(Ωj

±)) ≤ 1.

Choosing m′
i = mi

i, one has, for any j ∈ N and i > j, that

ūm′
i
→ ū weakly star in L∞(0, T0; H

3(Ωj
±)),

and strongly in Lp(0, T0; H
2(Ωj

±)), for any p ≥ 1, (5.18)

σ̄m′
i
⇀ σ̄ weakly star in L∞(0, T0; H

1(Ωj
±)), as i →∞. (5.19)

Moreover, by (5.13) and (5.18)–(5.19), we find that
{

%∂tū +∇σ̄ = µ∆ū,

divū = 0
(5.20)

holds a.e. in (0, T0)× (Ω \ {x3 = 0}), and

sup
0≤t<T0

(‖ū(t)‖H3(Ω±) + ‖η̄(t)‖H2(R2) + ‖σ̄(t)‖H1(Ω±)

) ≤ 1. (5.21)

In addition, by construction, we have

η̄ε(0) = η̃(0) := η̃(0, x′) in R2, (5.22)

ūm′
i
(0) = ũ(0) in Ωj

± for any i > j.

The estimates (5.20) and (5.22), combined with (5.12) and (5.15), imply

η̄(0) = η̃(0) and ū(0) = ũ(0). (5.23)

5.3. Convergence of the interface equation

Replacing ε by εm, we rewrite (5.3)1 as

η̄m = (v̄m,3 − εmv̄m,1∂1η̄m − εmv̄m,2∂2η̄m), (5.24)

where
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v̄m := v̄m(t, x′) = ūm(t, x′, ηm(t, x′)), t ∈ (0, T0),

and v̄m,1, v̄m,2 denote the first and second components of the vector function v̄m, respectively.
Multiplying (5.24) with ϕ ∈ D(R2), and integrating over R2, then we arrive at

∫

R2

∂tη̄mϕdx′ =
∫

R2

(v̄m,3 − εmv̄m,1∂1η̄m − εmv̄m,2∂2η̄m)ϕdx′, (5.25)

Recalling η̄m ∈ C0([0, T0], L
2(Rj)), we use (5.22) and (5.25) to deduce that

∫

R2

η̄m(t)ϕdx′ =
∫ t

0

[ ∫

R2

(v̄m,3 − εmv̄m,1∂1η̄m − εmv̄m,2∂2η̄m)ϕdx′ +
∫

R2

η̃(0, x′)ϕdx′
]
ds. (5.26)

Next, we analyze the convergence of each integral in (5.26).
First, there exists a square domain Rj1 satisfying

supp ϕ ⊂ Rj1 ⊂ R2.

Due to (5.15), we get

lim
m→∞

∫

R2

η̄mϕdx′ = lim
m→∞

∫

Rj1

η̄mϕdx′ =
∫

Rj1

η̄ϕdx′ =
∫

R2

η̄ϕdx′. (5.27)

Then, from (5.7) we get
sup

0≤t<∞
‖η̄m(t)‖H2(R2) ≤ 1. (5.28)

Noticing that ūm,i(t) ∈ C0(Ω̄) ∩ H1
0 (Ω) for t > 0, we utilize the Hölder inequality, (5.28) and

(5.8) to obtain

∣∣∣∣
∫ t

0

∫

R2

v̄m,i∂iη̄mϕdx′ds

∣∣∣∣ ≤
√

2‖ϕ‖∞
∫ t

0

(∫

R2

∫ 1

ηm(t,x′)
|∂3ūm,i|2dx3dx′

) 1
2
(∫

R2

|∂iη̄m|2dx′
) 1

2

ds

≤
√

2‖ϕ‖∞‖∂3ūm,i‖L1((0,T0),L2(Ω)) sup
0≤t<∞

‖∂iη̄m(t)‖L2(R2) <
√

2‖ϕ‖∞T0, (5.29)

where i = 1, 2, and
‖ϕ‖∞ := sup

x′∈R2

|ϕ(x′)| > 0.

Hence, from (5.29) it follows that

lim
m→∞

∫ t

0

∫

R2

(εmv̄m,1∂1η̄m − εmv̄m,2∂2η̄m)ϕdx′ds = 0. (5.30)

Finally, keeping in mind that {m′
i} ⊂ {m} and ∂3ū3 ∈ L∞(0, T0; L

2(Ω)), we use (5.8), (5.18)
and the absolute continuity of integrals to deduce that for any δ > 0, there exists a j2 > j1 > 0
depending on j1, T0 and ‖ϕ‖∞, such that for any i > j2,

∫ T0

0

∫

Rj1

∫ j−1
2

−j−1
2

|∂3ū3| dx3dx′ds <
δ

3‖ϕ‖∞ ,

∫ T0

0

∫

Rj1

∫ j−1
2

−j−1
2

∣∣∂3ūm′
i,3
− ∂3ū3

∣∣ dx3dx′ <
δ

3‖ϕ‖∞ ,

∫ T0

0

∫

Rj1

∫ 1

j−1
2

∣∣∂3ūm′
i,3
− ∂3ū3

∣∣ dx3dx′ <
δ

3‖ϕ‖∞ ,

24



which, recalling ‖ηm′
i
(t, x′)‖L∞(R2) < j−1

2 by the construction of {m′
i} and (5.17), imply

∣∣∣∣
∫ t

0

∫

R2

(
v̄m′

i,3
− ū3(s, x

′, 0)
)
ϕdx′ds

∣∣∣∣

=

∣∣∣∣∣
∫ t

0

∫

R2

[∫ 1

ηm′
i
(t,x′)

(∂3ūm′
i,3
− ∂3ū3)dx3 +

∫ 0

ηm′
i
(t,x′)

∂3ū3dx3

]
ϕdx′ds

∣∣∣∣∣

≤ ‖ϕ‖∞
[∫ T0

0

∫

Rj1

∫ 1

ηm′
i
(t,x′)

∣∣∂3ūm′
i,3
− ∂3ū3

∣∣ dx3dx′ds +

∫ T0

0

∫

Rj1

∣∣∣∣∣
∫ 0

ηm′
i
(t,x′)

∂3ū3dx3

∣∣∣∣∣ dx′ds

]

≤ ‖ϕ‖∞
(∫ T0

0

∫

Rj1

∫ 1

j−1
2

∣∣∂3ūm′
i,3
− ∂3ū3

∣∣ dx3dx′ds

+

∫ T0

0

∫

Rj1

∫ j−1
2

−j−1
2

∣∣∂3ūm′
i,3
− ∂3ū3

∣∣ dx3dx′ds +

∫ T0

0

∫

Rj1

∫ j−1
2

−j−1
2

|∂3ū3| dx3dx′ds

)
< δ,

whence,

lim
i→∞

∫ t

0

∫

R2

v̄m′
i,3

ϕdx′ds =

∫ t

0

∫

R2

ū3(t, x
′, 0)ϕdx′ds. (5.31)

Consequently, letting i →∞, then m′
i →∞ in (5.26) (i.e. εm′

i
→ 0 with εm′

i
in place of εm),

we conclude, with the help of (5.27), (5.30) and (5.31), that
∫

R2

η̄ϕdx′ =
∫ t

0

∫

R2

ū3(s, x
′, 0)ϕdx′ds +

∫

R2

η̃(0, x′)ϕdx′,

which implies that for a.e. t ∈ (0, T0),

∂tη̄ = ū3 a.e. in R2.

5.4. Convergence of the momentum equations

Multiplying (5.3)2 by φ = (φ1, φ2, φ3) ∈ (D((0, T0) × Ω))3 with εm in place of ε, integrating
over (0, T0)× Ω, and using the jump conditions (5.5), we deduce

∫ T0

0

∫

Ω

(%∂tūm · φ + εm%(∇ūm)ūm · φ)dxdt +

∫ T0

0

∫

Ω

(µ(∇ūm +∇ūT
m)− σ̄mI) : ∇φdxdt

= g[%]

∫ T0

0

∫

Σm(t)

η̄mϕm · νmdSdt + κ

∫ T0

0

∫

Σm(t)

H̄mϕm · νmdSdt, (5.32)

where

Σm(t) := {(x′, x3) ∈ R3 | x3 = ηm(t, x′)} for each t > 0, (5.33)

ϕm := ϕm(t, x′) = φ(t, x′, ηm(t, x′)), (5.34)

νm =
(−∂1ηm,−∂2ηm, 1)T

√
|∂1ηm|2 + |∂2ηm|2 + 1

, (5.35)

H̄m =
∆x′ η̄m + (∂1ηm)2∂2

2 η̄m + (∂2ηm)2∂2
1 η̄m − 2∂1η̄m∂2ηm∂1∂2ηm

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
. (5.36)

By virtue of (5.11)–(5.13) and (5.16),

lim
m→∞

[∫ T0

0

∫

Ω

(%∂tūm · φ + εm%(∇ūm)ūm · φ)dxdt +

∫ T0

0

∫

Ω

(µ(∇ūm +∇ūT
m)− σ̄mI) : ∇φdxdt

]

=

∫ T0

0

∫

Ω

%∂tū · φ +

∫ T0

0

∫

Ω

(µ(∇ū +∇ūT )− σ̄I) : ∇φdxdt. (5.37)
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Next, we analyze the convergence of the terms on the right-hand side of (5.32).
(i) Recalling dS =

√
|∂1ηm|2 + |∂2ηm|2 + 1dx′, we use the formula of surface integral and

(5.33)–(5.35) to infer that

∫ T0

0

∫

Σm(t)

η̄mϕm · νmdSdt =

∫ T0

0

∫

R2

η̄m(ϕm,3 − ϕm,1∂1ηm − ϕm,2∂2ηm)dx′dt.

From the Hölder inequality and (5.28) it follows that

∫ T0

0

∫

R2

η̄mϕm,i∂iηmdx′dt=εm

∫ T0

0

∫

R2

η̄mϕm,i∂iη̄mdx′dt

≤εmT0‖φ‖∞ sup
0≤t≤T0

(‖η̄m‖L2(R2)‖∂iη̄m‖L2(R2))

≤εmT0‖φ‖∞, i = 1, 2,

whence,

lim
m→∞

∫ T0

0

∫

R2

η̄m(ϕm,1∂1ηm + ϕm,2∂2ηm)dx′dt = 0. (5.38)

Denoting
‖φ‖∞ := sup

(t,x)∈(0,T0)×Ω

|φ(t, x)|

and noticing that

∫ T0

0

∫

R2

|η̄m(ϕm,3 − φ3(t, x
′, 0))|dx′dt

≤ sup
t∈(0,T0)

‖η̄m‖L2(R2)

∫ T0

0




∫

R2

∣∣∣∣∣
∫ ηm(t,x′)

0

∂3φ3dx3

∣∣∣∣∣

2

dx′




1/2

dt

≤ T0 sup
t∈(0,T0)

‖η̄m‖L2(R2)‖∂3φ3‖∞ sup
t∈(0,T0)

‖ηm‖L2(R2)

≤ εmT0‖∂3φ3‖∞ → 0, as m →∞,

(5.39)

we make use of (5.39) and (5.15) to obtain

∣∣∣∣
∫ T0

0

∫

R2

(η̄mϕm,3 − η̄φ3(t, x
′, 0))dx′dt

∣∣∣∣

≤
∫ T0

0

∫

R2

|(η̄m − η̄)ϕm,3|dx′dt +

∫ T0

0

∫

R2

|η̄(ϕm,3 − φ3(t, x
′, 0))|dx′dt

≤ ‖φ3‖∞‖η̄m − η̄‖L1((0,T )×Rj3
) + εmT0‖∂3φ3‖∞ → 0 as m →∞,

which gives

lim
m→∞

∫ T0

0

∫

R2

η̄mϕm,3dx′dt =

∫ T0

0

∫

R2

η̄φ3(t, x
′, 0)dx′dt. (5.40)

Here we have assumed that Rj3 satisfies

3⋃
i=1

⋃

t∈(0,T0)

supp φi(t, x) ⊂ Rj3 .

Combining (5.38) with (5.40), we arrive at
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lim
m→∞

∫ T0

0

∫

Σm(t)

η̄mϕm · νmdSdt =

∫ T0

0

∫

R2

η̄φ3(t, x
′, 0)dx′dt. (5.41)

(ii) For the second term on the right-hand side of (5.32), taking into account that ηm = εη̄m,
we employ (5.33)–(5.36) to deduce that

∫ T0

0

∫

Σm(t)

H̄mϕm · νmdSdt = −
2∑

i=1

∫ T0

0

∫

R2

[
∆x′ η̄m + (∂1ηm)2∂2

2 η̄m + (∂2ηm)2∂2
1 η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2

− 2∂1ηm∂2ηm∂1∂2η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2

]
ϕm,i∂iηmdx′dt

+

∫ T0

0

∫

R2

(∂1ηm)2∂2
2 η̄m + (∂2ηm)2∂2

1 η̄m − 2∂1η̄m∂2ηm∂1∂2ηm

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
ϕm,3dx′dt

+

∫ T0

0

∫

R2

ϕm,3∆x′ η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
dx′dt, (5.42)

where the first two terms on the right-hand side can be estimated as follows, using the Sobolev
imbedding theorem and (5.28), while the third term can be bounded below, following a procedure
similar to that used for (5.39).

∣∣∣∣
∫ T0

0

∫

R2

(∂1ηm)2∂2
2 η̄m + (∂2ηm)2∂2

1 η̄m − 2∂1η̄m∂2ηm∂1∂2ηm

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
ϕm,3dx′dt

∣∣∣∣

≤ ‖φ3‖∞
∫ T0

0

∫

Rj3

∣∣(∂1ηm)2∂2
2 η̄m + (∂2ηm)2∂2

1 η̄m − 2∂1η̄m∂2ηm∂1∂2ηm

∣∣ dx′dt

= ε2
m‖φ3‖∞

∫ T0

0

∫

Rj3

∣∣(∂1η̄m)2∂2
2 η̄m + (∂2η̄m)2∂2

1 η̄m − 2∂1η̄m∂2η̄m∂1∂2η̄m

∣∣ dx′dt

≤ 4ε2
m‖φ3‖∞T0‖∇η̄m‖2

L4(Rj3
)‖∇2η̄m‖L2(Rj3

)

≤ 4ε2
m‖φ3‖∞T0c2(j3), (5.43)

∣∣∣∣
∫ T0

0

∫

R2

[
∆x′ η̄m + (∂1ηm)2∂2

2 η̄m + (∂2ηm)2∂2
1 η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
− 2∂1ηm∂2ηm∂1∂2η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2

]
ϕm,i∂iηmdx′dt

∣∣∣∣

≤ εm‖φ‖∞
∫ T0

0

∫

Rj3

∣∣∣(∆x′ η̄m + (∂1ηm)2∂2
2 η̄m + (∂2ηm)2∂2

1 η̄m − 2∂1ηm∂2ηm∂1∂2η̄m)∂iη̄m

∣∣∣dx′dt

≤ εm‖φ‖∞T0

(
3ε2‖∇η̄m‖3

L6(Rj3
)‖∇2η̄m‖L2(Rj3

) + ‖∇η̄m‖L2(Rj3
)‖∇2η̄m‖L2(Rj3

)

)

≤ εm‖φ3‖∞T0c3(j3), εm < 3−1, i = 1, 2 (5.44)

where c2(j3) and c3(j3) are two constants depending on j3, and
∣∣∣∣
∫ T0

0

∫

R2

(ϕm,3 − φ3(t, x
′, 0))∆x′ η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
dx′dt

∣∣∣∣
≤ T0 sup

t∈(0,T0)

‖∆x′ η̄‖L2(R2)‖∂3φ3‖∞ sup
t∈(0,T0)

‖ηm‖L2(R2) ≤ εmT0‖∂3φ‖∞ → 0.
(5.45)

On the other hand, applying (5.15) and the dominated convergence theorem, we conclude
that

(1 + (∂1ηm)2 + (∂2ηm)2)−3/2 =(1 + ε2
m(∂1η̄m)2 + ε2

m(∂2η̄m)2)−3/2

→1 strongly in L2(0, T0; L
2(Rj3))

(5.46)
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as m →∞, while εm → 0. Thus, from (5.46) and (5.14) we get

lim
m→

∫ T0

0

∫

R2

φ3∆x′ η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
dx′dt=lim

m→

∫ T0

0

∫

Rj3

φ3∆x′ η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
dx′dt

=

∫ T0

0

∫

Rj3

φ3∆x′ η̄

(1 + (∂1η)2 + (∂2η)2)3/2
dx′dt

=

∫ T0

0

∫

R2

φ3∆x′ η̄

(1 + (∂1η)2 + (∂2η)2)3/2
dx′dt. (5.47)

In view of (5.45) and (5.47), we find that

lim
m→∞

∫ T0

0

∫

R2

ϕm,3∆x′ η̄m

(1 + (∂1ηm)2 + (∂2ηm)2)3/2
dx′dt =

∫ T0

0

∫

R2

∆x′ η̄φ3(t, x
′, 0)dx′dt. (5.48)

Combining (5.43) with (5.44) and (5.48), we conclude that

lim
m→∞

∫ T0

0

∫

Σm(t)

H̄mϕm · νmdSdt =

∫ T0

0

∫

R2

∆x′ η̄φ3(t, x
′, 0)dx′dt. (5.49)

Consequently, it follows from (5.32), (5.37), (5.41) and (5.49) that

∫ T0

0

∫

Ω

%∂tū · φ +

∫ T0

0

∫

Ω

(µ(∇ū +∇ūT )− σ̄I) : ∇φdxdt

= g[%]

∫ T0

0

∫

R2

η̄φ3(t, x
′, 0)dx′dt + κ

∫ T0

0

∫

R2

∆x′ η̄φ3(t, x
′, 0)dx′dt.

(5.50)

5.5. Contradiction argument

Similarly to (4.18), we multiply (5.20)1 with φ ∈ (D((0, T0)×Ω))3 and integrate over (0, T0)×Ω
to infer that

∫ T0

0

∫

Ω

%∂tū · φ +

∫ T0

0

∫

Ω

(µ(∇ū +∇ūT )− σ̄I) : ∇φdxdt

=

∫ T0

0

∫

R2

((λ+(σ̄)I − µ+(∇ū+ +∇ūT
+))− (λ−(σ̄)I − µ−(∇ū− +∇ūT

−)))e3 · φdx′dt.

(5.51)

Comparing (5.51) with (5.50), we get

∫ T0

0

∫

R2

((λ+(σ̄)I − µ+(∇ū+ +∇ūT
+))− (λ−(σ̄)I − µ−(∇ū− +∇ūT

−)))e3 · φ(t, x′, 0)dx′dt

=

∫ T0

0

∫

R2

(g[%]η̄ + κ∆x′ η̄)e3 · φ(t, x′, 0))dx′dt. (5.52)

On the other hand, by Lemma 4.1, (5.21), (5.11) and (4.11), we have
(
λ+(σ̄)I − µ+(∇ū+ +∇ūT

+))− (λ−(σ̄)I − µ−(∇ū− +∇ūT
−)

)
e3 ∈ L∞(0, T0; (L

2(R2))3), (5.53)

while by virtue of (5.28),
g[%]η̄ + κ∆x′ η̄ ∈ L∞(0, T0; L

2(R2)). (5.54)

Hence, by a density argument, we get from (5.52), (5.53) and (5.54) that
[(

λ+(σ̄)I − µ+(∇ū+ +∇ūT
+)

)− (
λ−(σ̄)I − µ−(∇ū− +∇ūT

−)
)]

e3 = (g[%]η̄ + κ∆x′ η̄)e3
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holds a.e. in R2 and for a.e. t ∈ (0, T0).
In view of Definition 4.1, we find that (η̄, ū) is just a strong solution of the linearized problem

(1.5)–(1.7). By Remark 4.2, (η̃, ũ) is also a strong solution of (1.5)–(1.7). Moreover, η̃(0) = η̄(0)
and ũ(0) = ū(0) (see (5.23)). Then, according to Theorem 4.1,

ū = ũ on [0, T0)× Ω.

Hence, we may chain together the inequalities (5.21) and (5.2) to get

2 ≤ sup
T0/2≤t<T0

‖ũ(t)‖H3(Ω±) ≤ sup
0≤t<T0

‖ū‖H3(Ω±) ≤ 1,

which is a contraction. Therefore, the perturbed problem does not have the global stability of
order k for any k ≥ 3. This completes the proof of Theorem 2.2.
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