
A NEW MODEL FOR SHALLOW ELASTIC FLUIDS

FRANÇOIS BOUCHUT AND SÉBASTIEN BOYAVAL

Abstract. We propose a new reduced model for gravity-driven free-surface flows of shallow

elastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell model

for elastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of the thin

layer of fluid), but the relaxation time is kept finite. Additionally to the classical layer depth

and velocity in shallow models, our system describes also the evolution of two scalar stresses. It

has an intrinsic energy equation. The mathematical properties of the model are established, an

important feature being the non-convexity of the physically relevant energy with respect to con-

servative variables, but the convexity with respect to the physically relevant pseudo-conservative

variables. Numerical illustrations are given, based on a suitable well-balanced finite-volume

discretization involving an approximate Riemann solver.
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1. Introduction: thin layer approximations of non-Newtonian flows

There are many occurences of free surface non-Newtonian flows over an inclined topography in

nature. Their mathematical prediction is both important (mainly for safety reasons in connection

with land use planning) and still difficult. In this paper, we have in mind mud flows, landslides,

debris avalanches . . . and our purpose is to derive a reduced model (thus hopefully quite easier to

solve numerically than full models) for a thin layer of non-Newtonian fluid essentially driven by

gravity forces over a given topography at the bottom.

We are aware of only a few similar projects in the literature concerning non-Newtonian fluids.

Some authors [22, 16] have focused on viscoplastic fluids using the power-law and Bingham models,

while others [35] do consider elastic fluids like us but use a different model than ours, that is based

on microscopic considerations (see the Section 6.2). The goal of this paper is to derive a new

reduced model for the gravity-driven free-surface flow of a thin layer of elastic fluid governed

by the Upper-Convected Maxwell (UCM) equations. Our methodology follows the now standard

derivation [24] of the Saint Venant model for shallow water flows: the influence of each term in the

equations is compared with the aspect ratio

(1.1) h/L ≈ ǫ≪ 1

between the layer depth h and its longitudinal characteristic length L as a function of a small

parameter ǫ. We also insist on two mathematically important aspects: our model is endowed with

a natural energy law (inherited from the UCM model) but has a non-standard hyperbolic structure

(the physically relevant energy is not convex with respect to the conservative variables). These

features of our model have important consequences on the numerical simulation. Whereas we can

only perform these numerical simulations in a formal way (because the non-standard hyperbolic

structure does not fit in the usual numerical analysis), we can nevertheless confirm that it is

physically meaningful (owing to the natural energy law, satisfied at the discrete level).

Regarding the literature, we would like to make two further comments in order to better situate

our work. On the one hand, older works in the physics literature have already used reduced models

very similar to ours. For instance [20, 21] (see also a sketch of the work [20] in [36]) also derive

a reduced version of the UCM model which is very close to ours. But it has been obtained

in different conditions (without gravity and topography), with another methodology and with a

different perspective (ad-hoc model to investigate the break-up and swell of free jets and thin films

rather than asymptotic analysis of general fluid equations). On the other hand, recent works in the

mathematical literature also studied reduced models for viscoelastic flows. For instance [6, 5] derive

reduced models for the Oldroyd-B (OB) system of equations, where a purely viscous component

div(ηsD(u)) is added to the stress term in the right-hand side of (2.2) in comparison with the

UCM equations. But our project is different in essence from the thin layer models obtained for

those viscoelastic flows without free surface and essentially driven by viscosity instead of gravity.

Recall that here we focus on gravity-driven shallow regimes, that is why we consider the UCM

model rather than the OB model (without viscosity, which plays only a minor role then).
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In Section 2 below, we recall the UCM model for elastic fluids and some of its properties in the

mathematical setting that is adequate to our model reduction. Then our new reduced model is

derived in Section 3 under a given set of clear mathematical hypotheses (which we are unfortunately,

but classically, not able to relate to an existence theory for solutions to the non-reduced UCM

system of equations). Section 4 is devoted to the study of some mathematical properties of our

new reduced model. In Section 5, we provide numerical simulations in benchmark situations where

shallow elastic flows could be advantageously modelled by our new system of equations. Last, a

physical interpretation of situations modelled by our system of equations is given in conclusion 6,

along with threads for next studies.

2. Mathematical setting with the Upper-Convected Maxwell model for elastic

fluids

The evolution over a range of times t ∈ [0, T ) of the flow of a given portion of some elastic fluid

confined in a moving domain Dt ⊂ R
d (d = 2 or 3) with piecewise smooth boundary ∂Dt is governed

by the following set of equations, the so-called Upper-Convected Maxwell (UCM) model [3, 8, 36]:

(2.1) div u = 0 in Dt,

(2.2) ∂tu + (u · ∇)u = −∇p+ div τ + f in Dt,

(2.3) ∂tτ + (u · ∇)τ = (∇u)τ + τ (∇u)T +
1

λ
(ηpD(u) − τ ) in Dt,

where:

• u : (t,x) ∈ [0, T ) ×Dt 7→ u(t,x) ∈ R
d is the velocity of the fluid,

• D(u) : (t,x) ∈ [0, T )×Dt 7→ D(u)(t,x) ∈ R
d×d
S , where R

d×d
S denotes symmetric real d×d

matrices, is the rate-of-strain tensor linked to the fluid velocity u through the relation

(2.4) D(u) =
1

2
(∇u + ∇uT ),

(under infinitesimal strain and displacements assumption),

• p : (t,x) ∈ (0, T )×Dt 7→ p(t,x) ∈ R is the pressure,

• τ : (t,x) ∈ [0, T ) ×Dt 7→ τ (t,x) ∈ R
d×d
S is the symmetric extra-stress tensor,

• ηp, λ > 0 are physical parameters, respectively a viscosity only due to the presence of

elastically deformable particles in the fluid, and a relaxation time corresponding to the

intrinsic dynamics of the deformable particles,

• f : (t,x) ∈ [0, T )× Dt 7→ f(t,x) ∈ R
d is a body force.

Notice that we have assumed the fluid homogeneous (with constant mass density, hence normalized

to one). From now on, we assume translation symmetry (d = 2), we endow R
2 with a cartesian

frame (ex, ez) such that f ≡ −gez corresponds to gravity and we assume that Dt has the following

geometry (in particular, surface folding like in the case of breaking waves is not possible):

(2.5) ∀t ∈ [0, T ) , x = (x, z) ∈ Dt ⇔ x ∈ (0, L), 0 < z − b(x) < h(t, x),
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where b(x) is the topography elevation and b(x) + h(t, x) is the free surface elevation of our thin

layer of fluid. Note that the width h(t, x) is an unknown of the problem (it is a free boundary

problem). We shall denote as ax (respectively az) the component in direction ex (resp. ez) of any

vector (that is a rank-1 tensor) variable a, and similarly the components of higher-rank tensors :

axx, axz, . . . We denote by n : x ∈ (0, L) → n(x) the unit vector of the direction normal to the

bottom and inward the fluid:

(2.6) nx =
−∂xb√

1 + (∂xb)2
nz =

1√
1 + (∂xb)2

.

We supply the UCM model with boundary conditions for all t ∈ (0, T ): pure slip at bottom,

(2.7) u · n = 0, for z = b(x), x ∈ (0, L),

(2.8) τn = ((τn) · n)n, for z = b(x), x ∈ (0, L),

kinematic condition at the free surface Nt +N ·u = 0 where (Nt,N) is the time-space normal, i.e.

(2.9) ∂th+ ux∂x(b + h) = uz, for z = b(x) + h(t, x), x ∈ (0, L),

no tension at the free surface,

(2.10) (pI − τ ) · (−∂x(b+ h), 1) = 0, for z = b(x) + h(t, x), x ∈ (0, L),

plus (for example) inflow/outflow boundary conditions or periodicity in x. Finally, the Cauchy

problem is supplied with initial conditions

(2.11) u(0,x) = u0(x), τ (0,x) = τ 0(x), h(0, x) = h0(x),

assumed sufficiently smooth for a solution to exist. Note indeed that the existence theory for

solutions to the UCM system (2.1–2.2–2.3) is still very limited (see e.g. [26, 27]), like for non-

Newtonian flows with a free surface (see e.g. [28, 29] for the so-called Oldroyd-B model with a

viscous term in (2.2)).

Last, we recall some essential features of the UCM model (2.1–2.11). Let σ : (t,x) ∈ [0, T ) ×
Dt 7→ σ(t,x) ∈ R

d×d
S be the symmetric conformation tensor linked to the symmetric extra-stress

tensor τ through the relation

(2.12) σ = I +
2λ

ηp
τ ,

where I denotes the d-dimensional identity tensor. The UCM model can be written using the

variable σ instead of τ . Indeed,
ηp

2λ div σ replaces div τ in (2.2), and (2.3) should be replaced with

(2.13) ∂tσ + (u · ∇)σ = (∇u)σ + σ(∇u)T +
1

λ
(I − σ) in Dt .

In addition, the following properties are easily derived following the same steps as in [15] for the

Oldroyd-B model (except for the absence of the dissipative viscous term ηs|D(u)|2).
First, for physical reasons, σ should take only positive definite values (alternatively, this is

easily deduced if σ is interpreted as the Grammian matrix of stochastic processes, see [31] e.g.

and Section 6.2). The initial condition (2.11) should thus be chosen so that σ(t = 0) is positive
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definite. Then, provided that the system (2.1–2.11) has sufficiently smooth initial conditions and

the velocity field u remains sufficiently smooth, σ will indeed remain positive definite (see [15] e.g.;

where the viscosity ηs plays no role in the proof).

Second, the system (2.1–2.11) is endowed with an energy (the physical free energy)

(2.14) F (u, τ ) =

∫

Dt

(
1

2
|u|2 +

ηp

4λ
tr(σ − lnσ − I) − f · x

)
dx

which, following Reynolds transport formula and [15], is easily shown to decay as

(2.15)
d

dt
F (u, τ ) = − ηp

4λ2

∫

Dt

tr(σ + σ−1 + 2I)dx .

3. Formal derivation of a thin layer approximation

Our goal is to derive a reduced model approximating (2.1–2.11) in the thin layer regime h≪ L.

We follow the approach of [11, 14]. Our main assumption is thus

(H1) h ≈ ǫ as ǫ→ 0,

with L ≈ 1. This corresponds to an adimensionalization of the space variables with an aspect ratio

ǫ between the vertical and horizontal dimensions ; but for the sake of simplicity we shall not rescale

the system and rather evaluate the orders of magnitude directly in the original system. Then, our

task can be formulated as: find a set of non-negative integers

I = (Iux , Iuz , Ip, Iτxx , Iτxz , Iτzz)

such that a closed system of equations for variables (ũ, p̃, τ̃ ) approximating (u, p, τ ) holds and

(u − ũ, p− p̃, τ − τ̃ ) = O(ǫI)

is a uniform approximation on Dt (where the powers are applied componentwise). We proceed

heuristically, increasing little by little the degree of our assumptions on I. Hopefully, the reduced

model found that way corresponds to a physically meaningful regime.

We recall that another viewpoint is to find a closed system of equations for depth-averages of the

main variables of the system (2.1–2.11). The link with our approach is as follows. The conservation

of mass for an incompressible, inviscid fluid governed by (2.1) within a control volume governed by

the evolution of the free-surface height as given by the kinematic boundary condition (2.9) and the

boundary condition (2.7) at the bottom reads as an evolution equation for the free-surface height

h (using the Leibniz rule) where the depth-averaged velocity profile ũx := 1
h

∫ b+h

b
uxdz enters,

(3.1) ∀t, x ∈ [0, T )×(0, L) 0 =

∫ b+h

b

(∂xux+∂zuz)dz = ∂th+∂x

(∫ b+h

b

uxdz

)
= ∂th+∂x(hũx) .

The challenge in the derivation of a reduced model for thin layers is then to find a closure for the

evolution of ũx in terms of the variables (ũ, p̃, τ̃ ). In particular, depth-averaging the equation for
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ux with the boundary conditions (2.9–2.8–2.10) gives, using again the Leibniz rule,

(3.2) ∂t

(∫ b+h

b

ux dz

)
+ ∂x

(∫ b+h

b

(
u2

x + p− τxx

)
dz

)
= [(τxx − p)∂xb− τxz] |b,

showing that a typical problem is to write an approximation for
∫ b+h

b
u2

x and for the source term

in the right-hand-side of (3.2) in terms of (ũ, p̃, τ̃ ).

We now give the detailed system of equations (2.1–2.11) in the 2-d geometry of interest:

∂xux + ∂zuz = 0,(3.3a)

∂tux + ux∂xux + uz∂zux = −∂xp+ ∂xτxx + ∂zτxz,(3.3b)

∂tuz + ux∂xuz + uz∂zuz = −∂zp+ ∂xτxz + ∂zτzz − g,(3.3c)

∂tτxx + ux∂xτxx + uz∂zτxx = (2∂xux)τxx + (2∂zux)τxz +
ηp

λ
∂xux − 1

λ
τxx,(3.3d)

∂tτzz + ux∂xτzz + uz∂zτzz = (2∂xuz)τxz + (2∂zuz)τzz +
ηp

λ
∂zuz −

1

λ
τzz,(3.3e)

∂tτxz + ux∂xτxz + uz∂zτxz = (∂xuz)τxx + (∂zux)τzz +
ηp

2λ
(∂zux + ∂xuz) −

1

λ
τxz,(3.3f)

where we have used (3.3a) to simplify (3.3f). The boundary conditions (2.7), (2.8) and (2.10) write:

uz = (∂xb)ux at z = b ,(3.4a)

− (∂xb)τxx + τxz = −∂xb
(
−(∂xb)τxz + τzz

)
at z = b ,(3.4b)

− ∂x(b+ h)(p− τxx) − τxz = 0 at z = b + h ,(3.4c)

∂x(b + h)τxz + (p− τzz) = 0 at z = b + h,(3.4d)

while the kinematic condition (2.9), following (3.1), writes

(3.5) ∂th+ ∂x

(∫ b+h

b

ux dz

)
= 0.

We first simplify the derivation of a thin layer regime by assuming that the tangent of the angle

between n and ez is uniformly small

(H2) ∂xb = O(ǫ) as ǫ→ 0 ,

hence only smooth topographies with small slopes are treated here. This restriction could prob-

ably be alleviated following the ideas exposed in [14], though at the price of complications that

seem unnecessary for a first presentation of our reduced model. On the contrary, the following

assumptions are essential:

(H3) ηp ≈ ǫ, λ ≈ 1.

As usual in Saint Venant models for avalanche flows, we are looking for solutions without small

scale in t and x, but with scale of order ǫ in z, which can be written formally as

(3.6) ∂t = O(1), ∂x = O(1), ∂z = O(1/ǫ).
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We are looking for solutions with bounded velocity u with bounded gradient ∇u. Thus according

to (3.6) and to (3.4a), we are led to the following assumptions on the orders of magnitude

(H4) ux = O(1), uz = O(ǫ), ∂zux = O(1), as ǫ→ 0.

According to (2.3), a typical value for τ is ηpD(u). Thus we assume accordingly that

(H5) τ = O(ǫ) as ǫ→ 0.

We deduce from above that there exists some function u0
x(t, x) depending only on (t, x) such that

(3.7) ux(t, x, z) = u0
x(t, x) +O(ǫ).

Then, following the classical procedure [24, 11, 14, 33], we find the following successive implications.

i) From the equation (3.3c) on the vertical velocity uz, we get by neglecting terms in O(ǫ)

(3.8) ∂zp = ∂zτzz − g +O(ǫ) .

Hence ∂zp = O(1), and the boundary condition (3.4d) gives that p = O(ǫ), indeed

(3.9) p = τzz + g(b+ h− z) +O(ǫ2) .

ii) Next, from the equation (3.3b) on the horizontal velocity ux we get

(3.10) ∂tu
0
x + u0

x∂xu
0
x = ∂zτxz +O(ǫ) .

The boundary condition (3.4b) gives τxz |z=b = O(ǫ2), thus with (3.10) it yields

(3.11) τxz = (∂tu
0
x + u0

x∂xu
0
x)(z − b) +O(ǫ2) .

In addition the boundary condition (3.4c) implies that τxz|z=b+h = O(ǫ2). We conclude

therefore that

(3.12) ∂tu
0
x + u0

x∂xu
0
x = O(ǫ), τxz = O(ǫ2).

iii) The previous result combined with the equation (3.3f) on τxz implies ∂zux = O(ǫ), hence

(3.13) ux(t, x, z) = u0
x(t, x) +O(ǫ2) .

This “motion by slices” property is stronger than the original one (3.7).

iv) Using (3.13) and (3.9) in (3.3b) improves (3.10) to

(3.14) ∂tu
0
x + u0

x∂xu
0
x = ∂x(τxx − τzz − g(b+ h)) + ∂zτxz +O(ǫ2) ,

which gives, with the boundary condition (3.4b) [τxz − ∂xb(τxx − τzz)] |z=b = O(ǫ3),

(3.15)
τxz = [∂xb(τxx − τzz)] |z=b −

∫ z

b

∂x(τxx − τzz) dz

+
(
∂tu

0
x + u0

x∂xu
0
x + g∂x(b + h)

)
(z − b) +O(ǫ3).
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But according to (3.4c) combined with (3.9), one has [τxz − ∂x(b + h)(τxx − τzz)] |z=b+h =

O(ǫ3), thus with (3.14)

(3.16)
τxz = [∂x(b + h)(τxx − τzz)] |z=b+h −

∫ z

b+h

∂x(τxx − τzz) dz

+
(
∂tu

0
x + u0

x∂xu
0
x + g∂x(b + h)

)
(z − b− h) +O(ǫ3).

Therefore, the difference of (3.15) and (3.16) yields

(3.17)
(
∂tu

0
x + u0

x∂xu
0
x + g∂x(b + h)

)
h = ∂x

(∫ b+h

b

(τxx − τzz) dz

)
+O(ǫ3) .

We note that τxz is then given by (3.15) or (3.16) as a function of u0
x and (τxx − τzz), and

the evolution equation (3.17) for u0
x is exactly the one that one would have obtained after

integrating (3.14) in the ez direction and using the boundary conditions (3.4b) and (3.4c)

combined with (3.9). It can also be obtained from (3.2).

v) The result (3.13) with the incompressibility condition (3.3a) and the impermeability condi-

tion (3.4a) at the bottom also allows to compute the vertical component of the velocity

(3.18) uz = (∂xb)ux|z=b −
∫ z

b

∂xux dz = (∂xb)u
0
x − (z − b)∂xu

0
x +O(ǫ3) ,

which is of course consistent with our hypotheses about uz = O(ǫ).

vi) Collecting all the previous results, (3.3d) and (3.3e) up to O(ǫ2) give

(3.19)




∂tτxx + u0
x∂xτxx +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτxx = 2(∂xu

0
x)τxx +

ηp∂xu
0
x − τxx

λ
+O(ǫ2),

∂tτzz + u0
x∂xτzz +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτzz = −2(∂xu

0
x)τzz − ηp∂xu

0
x + τzz

λ
+ O(ǫ2),

which closes the system of equations for the reduced model.

vii) The previous results which give τxz at order O(ǫ3), that is (3.15) or (3.16), are consistent with

the equation (3.3f) for τxz at order O(ǫ3), from which one could next obtain an approximation

for ∂zux up to O(ǫ2), that is

(3.20) ∂tτxz + u0
x∂xτxz + ((∂xb)u

0
x + (z − b)∂xu

0
x)∂zτxz +

1

λ
τxz

= ∂x

(
(∂xb)u

0
x(z − b) + ∂xu

0
x

) (
τxx +

ηp

2λ

)
+ ∂zux

(
τzz +

ηp

2λ

)

with τxx and τzz given up to order O(ǫ2) by (3.19). This procedure fixes the next term in

the expansion (3.13). Note in particular that we do not have ux(t, x, z) = u0
x(t, x) + O(ǫ3)

(dependence on the vertical coordinate subsists at order ǫ2).
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To sum up, dropping ǫ, we have obtained a closed system of equations

(3.21)





∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + g
h2

2
+

∫ b+h

b

(τzz − τxx) dz

)
= −g(∂xb)h,

∂tτxx + u0
x∂xτxx +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτxx = 2(∂xu

0
x)τxx +

ηp

λ
∂xu

0
x − 1

λ
τxx,

∂tτzz + u0
x∂xτzz +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτzz = −2(∂xu

0
x)τzz − ηp

λ
∂xu

0
x − 1

λ
τzz,

which allows to compute consistently uniform asymptotic approximations of (ux, uz, p, τxx, τzz, τxz)

as variables of order O(ǫ(0,1,1,1,1,2)), up to errors in O(ǫ(2,3,2,2,2,3)). These correspond to approxi-

mations of (3.3a)-(3.5) up to O(ǫ(2,2,1,2,2,3,3,3,3,2,3)).

In (3.21), b depends only on x, h and u0
x depend on (t, x), while τxx and τzz depend on (t, x, z).

However, we can observe that a particular case is to take solutions to (3.21) such that τxx and

τzz are independent of z (see the resulting simplified model below in Section 4, the mathematical

properties of which are easier to study).

4. The new reduced model and its mathematical properties

The reduced model (3.21) is endowed with an energy equation similar to the one for the full

UCM model. Obviously, the whole system of equations for τ in the reduced model rewrite with

the entries of the conformation tensor σ = I + 2λ
ηp

τ . However, since it is diagonal at leading order,

we consider only the diagonal part

(4.1) σ0 =

(
σxx = 1 + 2λ

ηp
τxx 0

0 σzz = 1 + 2λ
ηp
τzz

)
.

The two last equations of (3.21) yield

(4.2)






∂tσxx + u0
x∂xσxx +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zσxx = 2(∂xu

0
x)σxx − 1

λ
(σxx − 1),

∂tσzz + u0
x∂xσzz +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zσzz = −2(∂xu

0
x)σzz − 1

λ
(σzz − 1).

These equations imply that σxx and σzz remain positive if they are initially. Then, we compute

(4.3)
(
∂t + u0

x∂x +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)(1
2
τxx − ηp

4λ
ln
(
1 +

2λ

ηp
τxx

))
= (∂xu

0
x)τxx − 1

ηp

τ2
xx

σxx
,

(
∂t + u0

x∂x +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)(1
2
τzz − ηp

4λ
ln
(
1 +

2λ

ηp
τzz

))
= −(∂xu

0
x)τzz − 1

ηp

τ2
zz

σzz
.

In order to compute the integral of (4.3) with respect to z, we notice the following formula for

any function ϕ(t, x, z) (a combination of the Leibniz rule with boundary conditions at z = b and
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z = b+ h),

(4.4)

∫ b+h

b

(
∂t + u0

x∂x +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)
ϕdz

=

∫ b+h

b

(
∂tϕ+ ∂x(u0

xϕ) + ∂z

((
(∂xb)u

0
x − (z − b)∂xu

0
x

)
ϕ
))

dz

= ∂t

∫ b+h

b

ϕdz − ϕb+h∂th+ ∂x

∫ b+h

b

u0
xϕdz − (u0

xϕ)b+h∂x(b + h) + (u0
xϕ)b∂xb

+
(
(∂xb)u

0
x − h∂xu

0
x

)
ϕb+h − (∂xb)u

0
xϕb

= ∂t

∫ b+h

b

ϕdz + ∂x

(
u0

x

∫ b+h

b

ϕdz

)
.

Therefore, summing up the two equations of (4.3) and integrating in z gives

(4.5)
∂t

∫ b+h

b

ηp

4λ
tr(σ0 − lnσ0 − I) dz + ∂x

(
u0

x

∫ b+h

b

ηp

4λ
tr(σ0 − lnσ0 − I) dz

)

= (∂xu
0
x)

∫ b+h

b

(
τxx − τzz

)
dz − 1

ηp

∫ b+h

b

(
τ2
xx

σxx
+
τ2
zz

σzz

)
dz.

Moreover, the classical computation of energy for the Saint Venant model gives

(4.6) ∂t

(
h

(u0
x)2

2
+ g

h2

2
+ gbh

)
+ ∂x

((
h

(u0
x)2

2
+ gh2 + gbh

)
u0

x

)
+ u0

x ∂x

∫ b+h

b

(τzz − τxx) dz = 0.

Adding up (4.6) and (4.5) yields

(4.7)

∂t

(
h

(u0
x)2

2
+ g

h2

2
+ gbh+

ηp

4λ

∫ b+h

b

tr(σ0 − lnσ0 − I) dz

)

+∂x

((
h

(u0
x)2

2
+ gh2 + gbh+

ηp

4λ

∫ b+h

b

tr(σ0 − lnσ0 − I) dz +
ηp

2λ

∫ b+h

b

(σzz − σxx) dz

)
u0

x

)

= − ηp

4λ2

∫ b+h

b

tr(σ0 + [σ0]−1 − 2I) dz.

Therefore, we get an exact energy identity for solutions to the reduced model (3.21). Note that to

discriminate between possibly many discontinuous solutions (generalized solutions in a sense to be

defined, see below the discussion on the conservative formulation), we would naturally require an

inequality in (4.7) instead of an equality.

In the case of τxx and τzz independent of z, everything becomes more explicit. Using the

variables σxx = 1 + 2λ
ηp
τxx and σzz = 1 + 2λ

ηp
τzz (also clearly independent of z), the simplified

10



reduced model then writes

(4.8)






∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + g
h2

2
+
ηp

2λ
h(σzz − σxx)

)
= −gh∂xb,

∂tσxx + u0
x∂xσxx − 2σxx∂xu

0
x =

1 − σxx

λ
,

∂tσzz + u0
x∂xσzz + 2σzz∂xu

0
x =

1 − σzz

λ
,

while the energy inequality becomes (σ0 is defined in (4.1))

(4.9)

∂t

(
h

(u0
x)2

2
+ g

h2

2
+ gbh+

ηp

4λ
h tr(σ0 − lnσ0 − I)

)

+∂x

((
h

(u0
x)2

2
+ gh2 + gbh+

ηp

4λ
h tr(σ0 − lnσ0 − I) +

ηp

2λ
h(σzz − σxx)

)
u0

x

)

≤ − ηp

4λ2
h tr(σ0 + [σ0]−1 − 2I).

In (4.8) and (4.9), b is a function of x and h, u0
x, σxx, σzz depend on (t, x), with h ≥ 0, σxx ≥ 0,

σzz ≥ 0. From now on, we shall only deal with the simplified reduced model (4.8).

The inequality (4.9) (instead of equality) for possibly discontinuous solutions rules out general-

ized solutions for which the dissipation – already present in our model ! – is physically not enough

(see also [15] where a similar numerical “entropy” condition is used to build stable finite-element

schemes for the viscous UCM model, namely the so-called Oldroyd-B model).

Remark 1 (Limit cases). For the system (4.8), two interesting regimes are important to mention.

The first is the standard Saint Venant regime, for which one takes ηp/λ = 0. The second regime

is obtained in the limit λ → 0, for fixed ηp. Assuming that (1 − σxx)/λ and (1 − σzz)/λ remain

bounded, this kind of “High-Weissenberg limit” [36] gives the viscous Saint Venant system

(4.10)





∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + g
h2

2
− 2ηph ∂xu

0
x

)
= −gh∂xb,

with the energy inequality

(4.11)

∂t

(
h

(u0
x)2

2
+ g

h2

2
+ gbh

)
+ ∂x

((
h

(u0
x)2

2
+ gh2 + gbh− 2ηph ∂xu

0
x

)
u0

x

)
≤ −2ηph(∂xu

0
x)2 .

Remark 2 (Steady states). The source terms (1−σxx)/λ and (1−σzz)/λ in (4.8) are responsible

for the right-hand side that dissipates energy in (4.9). This dissipation has the consequence that

steady states are possible only if

(4.12) tr(σ0 + [σ0]−1 − 2I) = 0, i.e. τ = 0 ,

which implies that steady solutions to (4.8) identify with the steady solutions at rest to the standard

Saint Venant model: u0
x = 0, h+ b = cst, σxx = σzz = 1.
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Remark 3 (Conservativity). The reduced model (4.8) is a first-order quasilinear system with

source, but not written in conservative form because of the stress equations on σxx and σzz. Indeed,

one can put them in conservative form as follows,

(4.13)





∂t

(
(σxx)−1/2

)
+ ∂x

(
(σxx)−1/2u0

x

)
= −σ−3/2

xx

1 − σxx

2λ
,

∂t

(
(σzz)

1/2
)

+ ∂x

(
(σzz)

1/2u0
x

)
= σ−1/2

zz

1 − σzz

2λ
.

However, these conservative equations do not help since they are physically irrelevant. Moreover,

the physical energy of (4.9) is not convex with respect to these conservative variables σ
−1/2
xx and

σ
1/2
zz . As a matter of fact, one can show that the energy, that is

Ẽ = h
(u0

x)2

2
+ g

h2

2
+ gbh+

ηp

4λ
h (σxx + σzz − ln(σxxσzz) − 2) ,(4.14)

cannot be convex with respect to any set of conservative variables of the form

(4.15)

(
h, hu0

x, h̟
−1

(
σ
−1/2
xx

h

)
, hς−1

(
σ

1/2
zz

h

))
,

where ̟, ς are smooth functions standing for general changes of variables, see Appendix A.

Nevertheless, the system (4.8) can be written in the following canonical form, strongly reminis-

cent of the gas dynamics system,

(4.16)






∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + P (h, s)
)

= −gh∂xb,

∂ts + u0
x∂xs =

1

λ
S(h, s),

with

(4.17) s =
(
sxx, szz

)
=

(
σ
−1/2
xx

h
,
σ

1/2
zz

h

)
,

(4.18) S(h, s) =

(
−σ

−3/2
xx

2h
(1 − σxx),

σ
−1/2
zz

2h
(1 − σzz)

)
,

(4.19) P (h, s) = g
h2

2
+
ηp

2λ
h(σzz − σxx).

One can compute

(4.20)

(
∂P

∂h

)

|s

= gh+
ηp

2λ
(σzz − σxx + h

2σzz

h
+ h

2σxx

h
) = gh+

ηp

2λ
(3σzz + σxx) > 0,

from which we conclude that for smooth b, the system (4.16) is hyperbolic with eigenvalues

(4.21) λ1 = u0
x −

√
gh+

ηp

2λ
(3σzz + σxx), λ2 = u0

x, λ3 = u0
x +

√
gh+

ηp

2λ
(3σzz + σxx),
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the second having double multiplicity. One can check that λ2 is linearly degenerate, while λ1 and

λ3 are genuinely nonlinear (this follows from computations similar to [25, Example 2.4 p.45] and

the first line of (5.33)).

From the particular formulation (4.16), one sees that the jump conditions for a 2−contact

discontinuity are that u0
x and P do not jump (as weak 2-Riemann invariants). However, jump

conditions across 1− and 3−shocks need to be chosen in order to determine weak discontinuous

solutions in a unique way.

A possible choice of jump conditions is, as explained in Remark 3, to take the conservative for-

mulation (4.13) (or equivalently a conservative formulation related to the variables (4.15), leading

to the condition that s does not jump through 1− and 3−shocks). This formulation gives unphys-

ical conservations and nonconvex energy (which could produce numerical under/overshoots), and

we shall not make this choice.

Our choice of jump conditions will be rather imposed indirectly by numerical considerations,

via the choice of a set of pseudo-conservative variables, i.e. variables for which we shall write

discrete flux difference equations. Solving nonconservative systems leads in general to convergence

to unexpected solutions, as explained in [17]. With a pragmatical point of view, we nevertheless

choose the pseudo-conservative variables as

(4.22) q ≡ (q1, q2, q3, q4)
T :=

(
h, hu0

x, hσxx, hσzz

)T
.

In other words, we consider the formal system

(4.23)





∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + g
h2

2
+
ηp

2λ
h(σzz − σxx)

)
= −gh∂xb,

∂t(hσxx) + ∂x(hσxxu
0
x) − 2hσxx∂xu

0
x =

h− hσxx

λ
,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x =

h− hσzz

λ
.

The choice of these pseudo-conservative variables is good for at least two reasons:

• these variables are physically relevant,

• the energy Ẽ in (4.14) is convex with respect to them (see Appendix A).

The second point will make it easier to build a discrete scheme that is energy satisfying (in the

sense of the energy inequality (4.9)), while preserving the convex (in the variable q) set

(4.24) U = {h ≥ 0, σxx ≥ 0, σzz ≥ 0} ,

which is here the physical invariant domain where the energy inequality (4.9) makes sense. Note

that our system is of the form considered in [7] (see also Remark 4).

Let us mention that for the viscous UCM model, namely the Oldroyd-B model, various numer-

ical techniques are proposed in [32, 30, 15, 4] for the preservation of the positive-definiteness of a

non-necessarily diagonal tensor σ in the context of finite-element discretizations.
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5. Finite volume method and numerical results

In this section we describe a finite volume approximation of (4.23). The approximation of the

full system is achieved by a fractional step approach, discretizing successively the system (4.23)

without the relaxation source terms in 1/λ on the right-hand side of the two stress equations,

and these relaxation terms alone. The topographic source term h∂xb is treated by the hydrostatic

reconstruction method of [2] in Subsection 5.4. This approach ensures that the whole scheme is

well-balanced with respect to the steady states of Remark 2, because the relaxation terms vanish

for these solutions.

The integration of relaxation source terms is performed by a time-implicit cell-centered formula.

Note that then the scheme is not asymptotic preserving with respect to the viscous Saint Venant

asymptotic regime λ→ 0 of Remark 1, for this one would need a more complex treatment of these

relaxation terms.

Let us now concentrate on the resolution of the system (4.23) without any source, i.e.

(5.1)






∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + P
)

= 0,

∂t(hσxx) + ∂x(hσxxu
0
x) − 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0,

with

(5.2) P = g
h2

2
+
ηp

2λ
h(σzz − σxx),

and the energy inequality

(5.3)
∂t

(
h

(u0
x)2

2
+ g

h2

2
+
ηp

4λ
h
(
σxx + σzz − ln(σxxσzz) − 2

))

+∂x

((
h

(u0
x)2

2
+ g

h2

2
+
ηp

4λ
h
(
σxx + σzz − ln(σxxσzz) − 2

)
+ P

)
u0

x

)
≤ 0.

A finite volume scheme for the quasilinear system (5.1)-(5.2) can be classically built following

Godunov’s approach, considering piecewise constant approximations of q = (h, hu0
x, hσxx, hσzz),

and invoking an approximate Riemann solver at the interface between two cells.

5.1. Approximate Riemann solver. In order to get an approximate Riemann solver for (5.1),

we use the standard relaxation approach, as described in [12]. It naturally handles the energy

inequality (5.3), and also preserves the invariant domain (4.24).

Because of the canonical form of (5.1), which is (4.16) without source, i.e.

(5.4)





∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + P
)

= 0,

∂ts + u0
x∂xs = 0,
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with

(5.5) s =
(
sxx, szz

)
=

(
σ
−1/2
xx

h
,
σ

1/2
zz

h

)
,

we have a formal analogy with the system of full gas dynamics equations. Therefore, we follow

the usual Suliciu relaxation approach that is described in [12]. We introduce a new variable π,

the relaxed pressure, and a variable c > 0 intended to parametrize the speeds. Then we solve the

system

(5.6)






∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x(h(u0

x)2 + π) = 0,

∂t(hπ/c
2) + ∂x(hπu0

x/c
2 + u0

x) = 0,

∂tc+ u0
x∂xc = 0,

∂ts + u0
x∂xs = 0.

This quasilinear system has the property of having a quasi diagonal form

(5.7)






∂t(π + cu0
x) + (u0

x + c/h)∂x(π + cu0
x) − u0

x

h
c∂xc = 0 ,

∂t(π − cu0
x) + (u0

x − c/h)∂x(π − cu0
x) − u0

x

h
c∂xc = 0 ,

∂t

(
1/h+ π/c2

)
+ u0

x∂x

(
1/h+ π/c2

)
= 0 ,

∂tc+ u0
x∂xc = 0 ,

∂ts + u0
x∂xs = 0 .

One deduces its eigenvalues, which are u0
x − c/h, u0

x + c/h, and u0
x with multiplicity 4. One checks

easily that the system is hyperbolic, with all eigenvalues linearly degenerate. As a consequence,

Rankine-Hugoniot conditions are well-defined (the weak Riemann invariants do not jump through

the associated discontinuity), and are equivalent to any conservative formulation. We notice that

with the relation (5.5) the equation on s in (5.6) can be transformed back to

(5.8)
∂t(hσxx) + ∂x(hσxxu

0
x) − 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0.

The approximate Riemann solver can be defined as follows, starting from left and right values of

h, hu0
x, hσxx, hσzz at an interface :

• Solve the Riemann problem for (5.6) with initial data completed by the relations

(5.9) πl = P (hl, (σxx)l, (σzz)l), πr = P (hr, (σxx)r, (σzz)r),

and with suitable values of cl and cr that will be discussed below.

• Retain in the solution only the variables h, hu0
x, hσxx, hσzz . The result is a vector called

R(x/t, ql, qr).
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Note that this approximate Riemann solver R(x/t, ql, qr) has the property to give the exact solution

for an isolated contact discontinuity (i.e. when the initial data is such that u0
x and P are constant),

because in this case the solution to (5.6) is the solution to (5.1) completed with π = P (h, s).

Then, the numerical scheme is defined as follows. We consider a mesh of cells (xi−1/2, xi+1/2),

i ∈ Z, of length ∆xi = xi+1/2 − xi−1/2, discrete times tn with tn+1 − tn = ∆t, and cell values

qn
i approximating the average of q over the cell i at time tn. We can then define an approximate

solution qappr(t, x) for tn ≤ t < tn+1 and x ∈ R by

(5.10) qappr(t, x) = R

(
x− xi+1/2

t− tn
, qn

i , q
n
i+1

)
for xi < x < xi+1,

where xi = (xi−1/2 +xi+1/2)/2. This definition is coherent under a half CFL condition, formulated

as

(5.11)
x/t < −∆xi

2∆t
⇒ R(x/t, qi, qi+1) = qi,

x/t >
∆xi+1

2∆t
⇒ R(x/t, qi, qi+1) = qi+1.

The new values at time tn+1 are finally defined by

(5.12) qn+1
i =

1

∆xi

∫ xi+1/2

xi−1/2

qappr(tn+1 − 0, x) dx.

Notice that this is only in this averaging procedure that the choice of the pseudo-conservative

variable q is involved. We can follow the computations of Section 2.3 in [12], the only difference

being that here the system is nonconservative. We deduce that

(5.13) qn+1
i = qn

i − ∆t

∆xi

(
Fl(q

n
i , q

n
i+1) −Fr(q

n
i−1, q

n
i )
)
,

where

(5.14)
Fl(ql, qr) = F (ql) −

∫ 0

−∞

(
R(ξ, ql, qr) − ql

)
dξ,

Fr(ql, qr) = F (qr) +

∫ ∞

0

(
R(ξ, ql, qr) − qr

)
dξ,

and the pseudo-conservative flux is

(5.15) F (q) = (hu0
x, h(u

0
x)2 + P, hσxxu

0
x, hσzzu

0
x).

In (5.15), the two last components are chosen arbitrarily, since anyway the contributions of F in

(5.13) cancel out.

Since the two first components of the system (5.6) are conservative, the classical computations

in this context give that for these two components, the left and right numerical fluxes of (5.14) are

equal and indeed take the value of the flux of (5.6), i.e. hu0
x and h(u0

x)2 + π, at x/t = 0.

We can notice that while solving the relaxation system (5.6), the variables h, sxx and szz remain

positive if they are initially (indeed this is subordinate to the existence of a solution with positive

h, which is seen below via explicit formulas and under suitable choice for cl, cr). By the relation
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(5.5) this is also the case for σxx and σzz . Therefore, the invariant domain U in (4.24) is preserved

by the numerical scheme (5.13), this follows from the average formula (5.12) and the fact that U
is convex (in the variable q).

Remark 4. The above scheme satisfies the maximum principle on the variable sxx, and the mini-

mum principle on the variable szz. This means that if initially one has sxx ≤ k for some constant

k > 0 (respectively szz ≥ k), then it remains true for all times.

This can be seen by observing that the set where sxx ≤ k (respectively szz ≥ k) is convex in

the variable q, because according to (5.5), (4.22), it can be written as q1q3 ≥ k−2 (respectively

k2q31 − q4 ≤ 0). Then, s is just transported during the resolution of (5.6), while the averaging

procedure (5.12) preserves the convex sets. Another proof is to write a discrete entropy inequality

for an entropy hφ(sxx), which is convex if 0 ≤ φ′ ≤ sxxφ
′′, take for example φ(sxx) = max(0, sxx−

k)2/2 (respectively for an entropy hφ(szz), which is convex if 0 ≤ −φ′ ≤ 3szzφ
′′, take for example

φ(szz) = k−1/3szz − 3
2s

2/3
zz + 1

2k
2/3 for szz ≤ k, φ(szz) = 0 for szz ≥ k). We shall not write down

the details of this alternative proof.

5.2. Energy inequality. We define in a similar way the left and right numerical energy fluxes

(5.16)
Gl(ql, qr) = G(ql) −

∫ 0

−∞

(
E
(
R(ξ, ql, qr)

)
− E

(
ql
))
dξ,

Gr(ql, qr) = G(qr) +

∫ ∞

0

(
E
(
R(ξ, ql, qr)

)
− E

(
qr
))
dξ,

where E is the energy of (4.14) without the topographic term gbh, and

(5.17) G = (E + P )u0
x

is the energy flux. We have from [12] that a sufficient condition for the scheme to be energy

satisfying is that

(5.18) Gr(ql, qr) − Gl(ql, qr) ≤ 0.

When this is satisfied, because of the convexity of E with respect to q one has the discrete energy

inequality

(5.19) E(qn+1
i ) − E(qn

i ) +
∆t

∆xi

(
G(qn

i , q
n
i+1) − G(qn

i−1, q
n
i )
)
≤ 0,

where the numerical energy flux G(ql, qr) is any function satisfying Gr(ql, qr) ≤ G(ql, qr) ≤ Gl(ql, qr).

In order to analyze the condition (5.18), let us introduce the internal energy e(q) ≥ 0 by

(5.20) e = g
h

2
+
ηp

4λ

(
σxx + σzz − ln(σxxσzz) − 2

)
,

so that

(5.21) E = h(u0
x)2/2 + he,
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and (∂he)|s = P/h2. Then, while solving the relaxation system (5.6), we solve simultaneously the

equation for a new variable ê,

(5.22) ∂t(ê− π2/2c2) + u0
x∂x(ê− π2/2c2) = 0,

where ê has left and right initial data e(ql) and e(qr). The reason for writing (5.22) is that

combining it with (5.6) yields

(5.23) ∂t

(
h(u0

x)2/2 + hê
)

+ ∂x

((
h(u0

x)2/2 + hê+ π
)
u0

x

)
= 0.

Define now

(5.24) G(ql, qr) =
((
h(u0

x)2/2 + hê+ π
)
u0

x

)

x/t=0
.

Lemma 1. If for all values of x/t the solution to (5.6), (5.22) satisfies

(5.25) ê ≥ e(q),

where here q = R(x/t, ql, qr), then Gr(ql, qr) ≤ G(ql, qr) ≤ Gl(ql, qr) and the discrete energy in-

equality (5.19) holds.

Proof. Since (5.23) is a conservative equation, one has

(5.26)
G(ql, qr) = G(ql) −

∫ 0

−∞

((
h(u0

x)2/2 + hê
)
(ξ) − E(ql)

)
dξ

= G(qr) +

∫ ∞

0

((
h(u0

x)2/2 + hê
)
(ξ) − E(qr)

)
dξ.

Therefore, comparing to (5.16), we see that in order to get the result it is enough that for all ξ

(5.27) E(R(ξ, ql, qr)) ≤
(
h(u0

x)2/2 + hê
)
(ξ),

which is (5.25). �

In order to go further, we fix the following notation: in the solution to the Riemann problem

for (5.6), there are three waves and two intermediate states, denoted respectively by indices l, ∗
and r, ∗. Then we have the following sufficient subcharacteristic condition (recall that ∂hP |s is

given by (4.20)).

Lemma 2. If cl, cr are chosen such that the heights h⋆
l , h

⋆
r are positive and satisfy

∀h ∈ [hl, h
⋆
l ] h2∂hP |s(h, sl) ≤ c2l ,

∀h ∈ [hr, h
⋆
r ] h2∂hP |s(h, sr) ≤ c2r,

(5.28)

then (5.25) holds and thus the discrete energy inequality (5.19) is valid.

Proof. The arguments of decomposition in elementary dissipation terms along the waves used in

Lemma 2.20 in [12] can be checked to apply without modification. �
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Lemma 3. Denote

(5.29) Pl = P (hl, sl), Pr = P (hr, sr), al =
√
∂hP |s(hl, sl), ar =

√
∂hP |s(hr, sr),

and define the relaxation speeds cl, cr by

(5.30)

cl
hl

= al + 2



max
(
0, u0

x,l − u0
x,r

)
+

max
(
0, Pr − Pl

)

hlal + hrar



 ,

cr
hr

= ar + 2


max

(
0, u0

x,l − u0
x,r

)
+

max
(
0, Pl − Pr

)

hlal + hrar


 .

Then the positivity and subcharacteristic conditions of Lemma 2 are satisfied, and the discrete

energy inequality (5.19) holds.

Proof. From (4.20) and (5.5) we have

(5.31) ∂hP |s = gh+
ηp

2λ

(
3(hszz)

2 +
1

(hsxx)2

)
.

Denoting ϕ(h, s) = h
√
∂hP |s, we compute

(5.32)

∂hϕ|s =
√
∂hP |s +

h

2
√
∂hP |s

(
g +

ηp

2λ

(
6hs2zz −

2

h3s2xx

))

=
1

2
√
∂hP |s

(
2gh+

ηp

λ

(
3(hszz)

2 +
1

(hsxx)2

)
+ gh+

ηp

2λ

(
6(hszz)

2 − 2

(hsxx)2

))

=
1

2
√
∂hP |s

(
3gh+ 6

ηp

λ
(hszz)

2
)
.

Therefore, we deduce that ϕ satisfies

(5.33)

∂hϕ|s > 0,

ϕ(h, s) → ∞ as h→ ∞,

∂hϕ|s ≤ 2
√
∂hP |s.

Following [Proposition 3.2] [10] with α = 2, we get the result. �

Remark 5 (Bounds on the propagation speeds). Lemma 3 is also valid with the formulas of

[Proposition 2.18] [12] instead of (5.30). Here we prefer (5.30) because in the context of possibly

negative pressure P these formulas ensure the following estimate on the propagation speeds:

(5.34) max

(
cl
hl
,
cr
hr

)
≤ C

(
|u0

x,l| + |u0
x,r| + al + ar

)
,

with C an absolute constant. This follows from the property that |P | ≤ h∂hP |s, which is seen on

(4.19)-(4.20).
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5.3. Numerical fluxes and CFL condition. The Riemann problem for the relaxation system

(5.6), (5.22) has to be solved with initial data ql, qr completed with (5.9), the relation (5.5),

êl = e(ql) ≡ el, êr = e(qr) ≡ er, and (5.29), (5.30). The explicit solution is given, according to

[12], by the following formulae. It has three waves speeds Σ1 < Σ2 < Σ3,

(5.35) Σ1 = u0
x,l − cl/hl, Σ2 = u0

x,∗, Σ3 = u0
x,r + cr/hr,

and the variables take the value "l" for x/t < Σ1, "l*" for Σ1 < x/t < Σ2, "r*" for Σ2 < x/t < Σ3,

"r" for Σ3 < x/t. The "l*" and "r*" values are given by

(5.36)

(u0
x)∗l = (u0

x)∗r = u0
x,∗ =

clu
0
x,l + cru

0
x,r + πl − πr

cl + cr
, π∗

l = π∗
r =

crπl + clπr − clcr(u
0
x,r − u0

x,l)

cl + cr
,

1

h∗l
=

1

hl
+
cr(u

0
x,r − u0

x,l) + πl − πr

cl(cl + cr)
,

1

h∗r
=

1

hr
+
cl(u

0
x,r − u0

x,l) + πr − πl

cr(cl + cr)
,

(5.37) c∗l = cl, c∗r = cr, s∗
l = sl, s∗

r = sr,

(5.38) σ∗
xx,l = σxx,l

(
hl

h∗l

)2

, σ∗
xx,r = σxx,r

(
hr

h∗r

)2

, σ∗
zz,l = σzz,l

(
h∗l
hl

)2

, σ∗
zz,r = σzz,r

(
h∗r
hr

)2

,

(5.39) ê∗l = el −
(πl)

2

2c2l
+

(π∗
l )2

2c2l
, ê∗r = er −

(πr)
2

2c2r
+

(π∗
r )2

2c2r
.

Then we need to compute the left/right numerical fluxes (5.14) that are involved in the update

formula (5.13). Since the h and hu0
x components in (5.6) are conservative, classical computations

give the associated numerical fluxes, and we have

(5.40) Fl =
(
Fh,Fhu0

x ,Fhσxx

l ,Fhσzz

l

)
, Fr =

(
Fh,Fhu0

x ,Fhσxx
r ,Fhσzz

r

)
,

where the conservative part involves the Riemann solution evaluated at x/t = 0,

(5.41) Fh = (hu0
x)x/t=0, Fhu0

x = (h(u0
x)2 + π)x/t=0.

More explicitly, (5.41) yields that the quantities between parenthese are evaluated at "l" if Σ1 ≥ 0,

at "l*" if Σ1 ≤ 0 ≤ Σ2, at "r*" if Σ2 ≤ 0 ≤ Σ3, and at "r" if Σ3 ≤ 0. As usual there is no ambiguity

in the resulting value when equality occurs in these conditions. The numerical energy flux (5.24)

involved in (5.19) can be computed in the same way.

We complete these formulas by computing the left/right numerical fluxes for the variables hσxx,

hσzz from (5.14),

(5.42)
Fhσxx

l = (hσxxu
0
x)l + min(0,Σ1)

(
(hσxx)∗l − (hσxx)l

)

+ min(0,Σ2)
(
(hσxx)∗r − (hσxx)∗l

)
+ min(0,Σ3)

(
(hσxx)r − (hσxx)∗r

)
,

(5.43)

Fhσxx
r = (hσxxu

0
x)r − max(0,Σ1)

(
(hσxx)∗l − (hσxx)l

)

−max(0,Σ2)
(
(hσxx)∗r − (hσxx)∗l

)
− max(0,Σ3)

(
(hσxx)r − (hσxx)∗r

)
,
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the hσzz fluxes being computed with the same formulas, replacing "xx" by "zz".

The maximal propagation speed is then

(5.44) A(ql, qr) = max(|Σ1|, |Σ2|, |Σ3|),

and the CFL condition (5.11) becomes

(5.45) ∆tA(qi, qi+1) ≤
1

2
min(∆xi,∆xi+1).

Not that with (5.34) and (5.35) we get

(5.46) A(ql, qr) ≤ C
(
|u0

x,l| + |u0
x,r| + al + ar

)

with C an absolute constant, bounding the propagation speeds of the approximate Riemann solver

whenever the left and right true speeds remain bounded. This property is more general than the

possibility of treating data with vacuum considered in [12].

We have obtained finally the following theorem.

Theorem 1. Consider the system (5.1) with the pressure law (5.2), and denote the pseudo-

conservative variable by q = (h, hu0
x, hσxx, hσzz). Under the CFL condition (5.45), the scheme

(5.13) with the numerical fluxes Fl(ql, qr), Fr(ql, qr) defined above via (5.40), and with the choice

of the speeds (5.29), (5.30), satisfies the following properties.

(i) It is consistent with (5.1)-(5.2) for smooth solutions,

(ii) It keeps the positivity of h, σxx, σzz,

(iii) It is conservative in the variables h and hu0
x,

(iv) It satisfies the discrete energy inequality (5.19),

(v) It satisfies the maximum principle on the variable sxx, and the minimum principle on the

variable szz,

(vi) Steady contact discontinuities where u0
x = 0, P = cst are exactly resolved,

(vii) Data with bounded propagation speeds give finite numerical propagation speed.

(viii) The numerical viscosity is sharp, in the sense that the propagation speeds Σi of the approxi-

mate Riemann solver tend to the exact propagation speeds when the left and right states ql, qr tend

to a common value.

5.4. Topography treatment. Consider now our system (4.23) with topography, but without the

relaxation source terms, i.e.

(5.47)






∂th+ ∂x(hu0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0

x)2 + g
h2

2
+
ηp

2λ
h(σzz − σxx)

)
= −gh∂xb,

∂t(hσxx) + ∂x(hσxxu
0
x) − 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0.

With respect to the previous sections, the term −gh∂xb has been put back, where the topography

is a given function b(x). For (5.47), the energy inequality (4.9) is modified only by the fact that
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there is no right-hand side. Thus it can be written

(5.48) ∂tẼ + ∂xG̃ ≤ 0,

with

(5.49) Ẽ(q, b) = E(q) + ghb, G̃(q, b) = G(q) + ghbu0
x,

where E and G are given by (5.21), (5.20), (5.17). Recall that the steady states at rest of Remark

2 are defined by

(5.50) u0
x = 0, h+ b = cst, σxx = σzz = 1.

Our scheme for (5.47) is written as

(5.51) qn+1
i = qn

i − ∆t

∆xi

(
Fl(q

n
i , q

n
i+1,∆bi+1/2) − Fr(q

n
i−1, q

n
i ,∆bi−1/2)

)
,

where as before q = (h, hu0
x, hσxx, hσzz), and ∆bi+1/2 = bi+1 − bi. Thus we need to define the left

and right numerical fluxes Fl(ql, qr,∆b), Fr(ql, qr,∆b), for all left and right values ql, qr, bl, br,

with ∆b = br − bl. We use the hydrostatic reconstruction method of [2] (see also [13]), and define

(5.52) h♯
l =

(
hl − (∆b)+

)
+
, h♯

r =
(
hr − (−∆b)+

)
+
,

(5.53) q♯
l =

(
h♯

l , h
♯
lu

0
x,l, h

♯
lσxx,l, h

♯
lσzz,l

)
, q♯

r =
(
h♯

r, h
♯
ru

0
x,r, h

♯
rσxx,r, h

♯
rσzz,r

)
,

with the notation x+ ≡ max(0, x). Note that we use the notation ♯ instead of ∗ in order to avoid

confusions with the intermediate states of the Riemann solver of the previous sections. Then the

numerical fuxes are defined by

(5.54)
Fl(ql, qr,∆b) = Fl(q

♯
l , q

♯
r) +

(
0, g

h2
l

2
− g

h♯2
l

2
, 0, 0

)
,

Fr(ql, qr,∆b) = Fr(q
♯
l , q

♯
r) +

(
0, g

h2
r

2
− g

h♯2
r

2
, 0, 0

)
,

where Fl and Fr are the numerical fluxes (5.40) of the problem without topography.

Theorem 2. The scheme (5.51) with the numerical fluxes Fl, Fr defined by (5.54), (5.52), (5.53)

satisfies the following properties.

(i) It is consistent with (5.47) for smooth solutions,

(ii) It keeps the positivity of h, σxx, σzz under the CFL condition ∆tA(q♯
l , q

♯
r) ≤ 1

2 min(∆xl,∆xr)

with A defined by (5.44),

(iii) It is conservative in the variable h,

(iv) It satisfies a semi-discrete energy inequality associated to (5.48),

(v) It is well-balanced, i.e. preserves the steady states at rest (5.50).

Proof. We ommit the proof of the points (i) to (iii), which follow the proof of Proposition 4.14 in

[12].

For the proof of (v), consider data ql, qr, bl, br at rest, i.e. satisfying u0
x,l = u0

x,r = 0, hl+bl = hr+br,

σxx,l = σxx,r = σzz,l = σzz,r = 1. Then from (5.52), (5.53) we get q♯
l = q♯

r, the common value
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q♯ being qr if ∆b ≥ 0, or ql if ∆b ≤ 0. We observe that then Fl(q
♯
l , q

♯
r) = Fr(q

♯
l , q

♯
r) = F (q♯)

with F given in (5.15), and that indeed F (q♯) = (0, gh♯2/2, 0, 0). The formulas (5.54) yield Fl =

(0, gh2
l /2, 0, 0) = F (ql), Fr = (0, gh2

r/2, 0, 0) = F (qr). If this is true at all interfaces, (5.51) gives

qn+1
i = qn

i , which proves the claim.

Let us finally prove (iv). At first, the scheme without topography satisfies the discrete energy

inequality (5.19). According to [12] section 2.2.2, it implies the semi-discrete energy inequality,

characterized by

(5.55)
G(qr) + E′(qr)(Fr(ql, qr) − F (qr)) ≤ G(ql, qr),

G(ql, qr) ≤ G(ql) + E′(ql)(Fl(ql, qr) − F (ql)),

for all values of ql, qr, and where E′ is the derivative of E with respect to q. Then, for the scheme

with topography, the characterization of the semi-discrete energy inequality writes

(5.56)
G̃(qr, br) + Ẽ′(qr, br)(Fr − F (qr)) ≤ G̃(ql, qr, bl, br),

G̃(ql, qr, bl, br) ≤ G̃(ql, bl) + Ẽ′(ql, bl)(Fl − F (ql)),

where Ẽ and G̃ are defined by (5.49), Ẽ′ denotes the derivative of Ẽ with respect to q, and G̃ is

an unknown consistent numerical entropy flux. Let us choose

(5.57) G̃(ql, qr, bl, br) = G(q♯
l , q

♯
r) + Fh(q♯

l , q
♯
r)gb

♯,

where Fh is the common h−component of Fl and Fr, and for some b♯ that is defined below. Then,

noticing that Ẽ′(q, b) = E′(q) + gb(1, 0, 0, 0), we can write the desired inequalities (5.56) as

(5.58)
G(qr) + E′(qr)(Fr − F (qr)) + Fh(q♯

l , q
♯
r)gbr ≤ G(q♯

l , q
♯
r) + Fh(q♯

l , q
♯
r)gb

♯,

G(q♯
l , q

♯
r) + Fh(q♯

l , q
♯
r)gb

♯ ≤ G(ql) + E′(ql)(Fl − F (ql)) + Fh(q♯
l , q

♯
r)gbl.

But using (5.55) evaluated at q♯
l , q

♯
r and comparing the result with (5.58), we get the sufficient

conditions

(5.59)

G(qr) + E′(qr)(Fr − F (qr)) + Fh(q♯
l , q

♯
r)gbr ≤ G(q♯

r) + E′(q♯
r)(Fr(q

♯
l , q

♯
r) − F (q♯

r)) + Fh(q♯
l , q

♯
r)gb

♯,

G(q♯
l ) + E′(q♯

l )(Fl(q
♯
l , q

♯
r) − F (q♯

l )) + Fh(q♯
l , q

♯
r)gb

♯ ≤ G(ql) + E′(ql)(Fl − F (ql)) + Fh(q♯
l , q

♯
r)gbl.

We compute now

(5.60) E′(q) =

(
− (u0

x)2

2
+ gh− ηp

4λ
ln(σxxσzz), u

0
x,
ηp

4λ
(1 − 1/σxx),

ηp

4λ
(1 − 1/σzz)

)
,

and writing

(5.61)
F (q) =

(
hu0

x, h(u
0
x)2 + g

h2

2
+
ηp

2λ
h(σzz − σxx), hσxxu

0
x, hσzzu

0
x

)
,

G(q) =

(
h

(u0
x)2

2
+ gh2 +

ηp

4λ
h(σxx + σzz − ln(σxxσzz) − 2) +

ηp

2λ
h(σzz − σxx)

)
u0

x,

we deduce the identity

(5.62) G(q) − E′(q)F (q) = −g h
2

2
u0

x.
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Thus the inequality (5.59) simplifies to

(5.63)
−g h

2
r

2
u0

x,r + E′(qr)Fr + Fh(q♯
l , q

♯
r)gbr ≤ −g h

♯2
r

2
u0

x,r + E′(q♯
r)Fr(q

♯
l , q

♯
r) + Fh(q♯

l , q
♯
r)gb

♯,

−g h
♯2
l

2
u0

x,l + E′(q♯
l )Fl(q

♯
l , q

♯
r) + Fh(q♯

l , q
♯
r)gb

♯ ≤ −g h
2
l

2
u0

x,l + E′(ql)Fl + Fh(q♯
l , q

♯
r)gbl.

Now, using (5.54) and the fact that E′(qr) − E′(q♯
r) =

(
g(hr − h♯

r), 0, 0, 0
)
, E′(ql) − E′(q♯

l ) =(
g(hl − h♯

l ), 0, 0, 0
)
, the desired inequalities (5.63) rewrite

(5.64)
g
(
hr − h♯

r + br − b♯
)
Fh(q♯

l , q
♯
r) ≤ 0,

g
(
hl − h♯

l − b♯ + bl
)
Fh(q♯

l , q
♯
r) ≥ 0.

We choose now b♯ = max(bl, br), so that (5.64) can be put in the form

(5.65)

(
hr − h♯

r − (−∆b)+
)
Fh(q♯

l , q
♯
r) ≤ 0,(

hl − h♯
l − (∆b)+

)
Fh(q♯

l , q
♯
r) ≥ 0.

Finally, taking into account (5.52), we observe that if hl− (∆b)+ ≥ 0 then the second line of (5.65)

is an identity, otherwise h♯
l = 0 and the the second inequality of (5.65) holds because Fh(0, q♯

r) ≤ 0

by the h−nonnegativity of the numerical flux. The same argument is valid for the first inequality

of (5.65), which concludes the proof. �

Remark 6. The maximum principle property on sxx and minimum principle property on szz, that

hold for the solver without topography, are not valid for the above solver with topography, even if

it should hold at the continuous level.

5.5. Numerical results. We now illustrate our models by numerical simulations performed with

the scheme described above. We denote by H(x) the Heaviside function with jump +1 at x = 0.

For all numerical simulations, we chose Neumann conditions at boundary interfaces.

Test case 1. It is a Riemann problem with initial condition (h, hu0
x, hσxx, hσzz)(t = 0) =

(3− 2H(x))(1, 0, 1, 1), without source term (b ≡ 0), that can be interpreted as a “dam” break on a

wet floor, with polymeric fluid initially at rest everywhere. We first fix ηp = λ = 1 and study the

convergence of our scheme with respect to the spatial discretization parameter for 50, 100, 200 and

400 points and a constant CFL = 1/2. The results at final time T = .2 are shown in Fig. 1.

Then, using 400 points and a constant CFL = 1/2, we let ηp vary as λ = 1 is fixed. Notice that

the limit case ηp → 0 in fact coincides with the usual shallow-water model, since then the pressure

assumes the same values as in a relaxation scheme for the Saint-Venant equations (independent of

hσxx and hσzz) while sxx, szz become passive tracers and their evolution is only one-way coupled

– in fact enslaved – to the autonomous dynamics of the Saint-Venant system of equations. The

results are shown in Fig. 2 and 3.

As expected from the formulae (4.21) for the eigenvalues of the Jacobian matrix, the left-going

rarefaction wave and the right-going shock wave are all the faster as the viscosity ηp increases, so

that we do not even see them anymore at T = .2 for ηp = 10+3. On the contrary, the intermediate

wave (a right-going contact discontinuity) is all the slower as ηp increases, and the jump of h across
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Figure 1. Convergence of the discretized variables hσxx in Test case 1

it is all the larger. This was not obvious to us at first, but could be explained for instance by the fact

that cl + cr becomes very larger when ηp increases in the formulae (5.36) for the two intermediate

states. Notice that the jump for σxx and σzz is directly related to that for h through (5.38).

We also let λ vary as η = 1 is fixed. The results are shown in Fig. 4 and 5. One clearly sees

at a given time T = .2 here that the effect of the elastic energy dissipation (which is stored in

the new variables) is all the stronger as λ is small. Indeed, the elastic energy is dissipated all the

more rapidly as the relaxation time λ is small, so the waves are all the more smoothed as the

source terms are all the more important (they act as diffusive terms). On the other hand, the

jump across the contact discontinuity is also all the smaller for σxx and σzz as λ is small, and all

the larger for h, which is coherent with the reasoning above when only ηp was varied: a smaller λ

also means faster rarefaction and shock waves because of (4.21), hence a larger coefficient cl + cr

in the formulae (5.36) for the two intermediate states.

Test case 2. It is a Riemann problem again without source term b ≡ 0 but with vacuum in

the initial condition (h, hu0
x, hσxx, hσzz)(t = 0) = (3 − 3H(x))(1, 0, 1, 1), which can be interpreted
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Figure 2. Variations of the variables h, u0
x with ηp in Test case 1
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Figure 3. Variations of the variables σxx, σzz with ηp in Test case 1
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Figure 4. Variations of the variables h, u0
x with λ in Test case 1
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as a “dam” break on a dry floor. The results in Fig. 6 and Fig. 7 at T = .5 show again that small

λ and large ηp imply a fast right-going rarefaction wave and a slow contact discontinuity, with a

large jump for h and small jumps for σxx, σzz at contact discontinuity. On the contrary, large λ

and small ηp imply a slow right-going rarefaction wave and a fast contact discontinuity, with a

small jump for h and large jumps for σxx, σzz at contact discontinuity.

Notice also that while σzz remains bounded as λ → +∞, σxx seems unbounded: this is in

agreement with our Remark 4 and the comments below on the vacuum in Test 3, except that here

initially k = ∞, but k becomes hopefully finite after some time.

Test case 3. It is a benchmark used in [23], see also [12]. For x ∈ (0, 25), we compute until

T = .25 the evolution from an initial condition (h, hu0
x, hσxx, hσzz)(t = 0, x) = ((10 − b)+,−350 +

700H(x− 50/3), (10− b)+, (10− b)+) over a topography b(x) = H(x− 25/3)−H(x− 25/2). Two

rarefaction waves propagate on the left and right sides of the initial velocity singularity at x = 50/3

so that a vacuum is created in between (in the usual Saint-Venant case). In addition, a couple of

rarefaction/shock waves is created at each singular point x = 25/3, 25/2 of the topography, but

have much smaller amplitudes than the rarefaction waves at x = 50/3.

The results in Fig. 8 and 9 are obtained for various ηp, λ at a constant ηp/λ = 10−4. This

particular choice was made because then the system is sufficiently close to the Saint-Venant limit

ηp/λ→ 0 so that the (discrete) pressure is hardly modified compared with the usual Saint-Venant

case and thus allows one to reach the same final time T = .25 as in [12]. For larger ηp/λ, we indeed

observed that our CFL constraint requires too small time steps, at least for the large values of

λ. We also noted that the various behaviours described here depend more on the variations of λ

alone than on the variations of ηp/λ (the effect of the dissipative source terms in particular is very

important).

Compared with the usual Saint-Venant case, the double rarefaction wave centered at x = 50/3

cannot create vacuum but at the single point x = 50/3 where the initial velocity is singular. This

can be explained as follows. Assuming that the source terms in the stress equations do not influence

much the bounds on σxx, σzz, in agreement with our Remark 4, the maximum (resp. minimum)

principle holds for sxx (resp. szz), and there exists a constant k (depending only on the initial

conditions since initially h > 0) such that σxx ≥ (kh)−2, σzz ≥ (kh)+2. But according to the

energy bound, one has that (ηp/λ)
∫
hσxxdx remains bounded. We deduce that (ηp/λ)

∫
h−1dx

remains bounded, and therefore h cannot tend to 0 on a whole interval, but can vanish on a single

point. We have then σxx → +∞ at the singular point, here x = 50/3.

On the contrary, another vacuum is created at x = 25/2 (of course still at a single-point because

of the previous reasoning), not because of the propagation of the left-going wave among the couple

of rarefaction waves like in the Saint-Venant case, but because of the new contact discontinuity

waves. Notice that the latter also induce a singularity for h as well as for σxx, σzz in between the

two vacuum points, and an additional sign change for u0
x. The location of this singularity very

much depends on λ (not on ηp), as well as that of the point where the velocity bears one additional

sign change (compared with the usual Saint-Venant case). Note also that because of that new
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phenomenon, the velocity assumes much greater value (on the left part in particular) than in the

usual Saint-Venant case.

Test case 4. In our last test case, we woud like to assess the treament of another type of

topography source terms, with creation of dry/wet fronts, by the hydrostatic reconstruction.

Usual test cases like Thacker’s ones [38] which have analytical solutions in the usual Saint-

Venant case, see also [34] e.g., are not easy here because we observed that the CFL constraint

required the time step to go to 0 very quickly (on short time ranges). This is indeed exactly

because of the creation of dry fronts where h → 0 and σxx → +∞. Note that this does not

necessarily mean that this problem does not have global solutions with finite-energy. A time-

implicit scheme (probably hard to build) might be able to compute finite-energy approximations

with a non-vanishing time-step.

Fortunately, the test case proposed by Synolakis [37] to model the runup of solitary waves

could easily be used until interesting final times T = 32.5 after the incidental wave has re-

flected against the shore and created a dry front, see also [34]. We use (h, hu0
x, hσxx, hσzz)(t =

0, x) = ((1.+ h0(x) − b(x))+ (1,
√
gh0(x), 1, 1) as initial condition over a topography b(x) = ((x −

40.)/19.85)+, x ∈ (0, 100). The pertubation h0(x) = α(cosh(
√
.75α(x−acosh(

√
1/.05)/(.75α))))−2

models a solitary wave as a function of the parameter with α = .019/.1 according to Synolakis

semi-analytical theory.

The results in Fig. 10 and 11 show that it is essentially the variations of ηp/λ that influence the

water height and velocity among all possible variations of ηp, λ. And although the first effect of the

variations of ηp/λ is on the waves celerity, there is no direct match between variations in ηp/λ and

a time shift as shown in Fig. 10. On the contrary, the variables σxx, σzz depend more on λ alone,

at least for such small values of ηp/λ as those tested here (sufficiently close to the Saint-Venant

regime for the time step not to vanish, even at high values of λ). The smaller λ is, the stronger

the dissipation is and thus balances the large stress values that were induced close to the dry front

where h→ 0 by the (supposedly approximatively true) minimum principle.

6. Conclusion

We have proposed a new reduced model for the motion of thin layers of elastic fluids (shallow

elastic flows) that are described by the upper-convected Maxwell model and driven by the gravity,

under a free surface and above a given topography with small slope (like in the standard Saint

Venant model for shallow water). More precisely, we have shown formally that for given boundary

conditions and under scaling assumptions (H1-5), the solution to the incompressible Euler-UCM

system of equations can be approximated by the solutions to the reduced model (3.21) in some

asymptotic regime. Hopefully, this asymptotic regime is physically meaningful and our new model

makes sense.

Observe that our assumptions require asymptotically the dynamics of the flow to be function of

the first normal stress difference only, while the shear part of the stress is negligible and computed

as an output of the flow evolution. More specifically, the boundary conditions (2.10–2.8) and the
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flat velocity profile (consequence of the assumed motion by slices) require compatibility conditions

on the bulk behaviour of τxz inside a thin layer. Before looking in future works for other asymptotic

regimes, possibly compatible (under different assumptions) with more general kinematics, we would

like to conclude here with a better insight of the physical implications of our reduced model.

6.1. Physical interpretation from the macroscopic mechanical viewpoint. We note that

the main differences between our model for shallow (Maxwell) elastic flows and the standard Saint

Venant model for shallow water is i) a “generalized” hydrostatic pressure (3.9), which takes into

account (elastic) internal stresses τzz , thus ii) a “generalized” hydrodynamic force in the horizontal

direction ex (in addition to the external gravity force), which is proportional to the normal stress

difference τxx − τzz , and iii) variable internal stresses τxx and τzz , which have their own dynamics

corresponding to an elastic mechanical behaviour (with a finite relaxation time λ = O(1) ; such

that one recovers the standard viscous mechanical behaviour only in the limit λ → 0). But in

the asymptotic regime where our non-Newtonian model was derived, the strain and stress tensors

with small viscosity parameter ηp = O(ǫ) have the same scaling than in the usual hydrostatic

approximations of Newtonian models like the (viscous) Saint Venant system

(6.1) ∇u =

(
O(1) O(ǫ)

O(ǫ) O(1)

)
, τ =

(
O(ǫ) O(ǫ2)

O(ǫ2) O(ǫ)

)
.

Thus, our model only describes extensional flows with small elongational viscosity of the same

small order as the shear component of the strain. This is one essential rheological feature of our

reduced model: the ratio ǫ between the shear and elongational components of the stress tensor

τ . Of course, this is a strong limitation to the applicability of our model in real situations. One

should look for another reduced model (in other asymptotic regimes) to describe flows that are not

essentially elongational.

But on the one hand, there are situations where physicists arrive at similar conclusions [20,

21] and obtain a very similar one-dimensional model with purely elongational stresses for the

description of free axisymmetric jets. Notice that a description of free axisymmetric jets is also

achieved by our model since the pure slip boundary conditions (2.7)-(2.8) is equivalent to assuming

a cylindrical symmetry around the symmetry line of the jet, and surface tension effects (neglected

in our model) can be included using standard modifications of our no-tension boundary condition

(2.10). And on the other hand, it still seems possible to include non-negligible shear effects in

our model through a parabolic correction of the vertical profile like in [24, 33], as well as surface

tension and friction effects of order one at the boundaries.

6.2. Physical interpretation at the microscopic molecular level. A microscopic interpre-

tation of our asymptotic regime can also be achieved using a molecular model of the elastic effects

(that is, a model at the molecular level from which the UCM is a coarse-grained version at the

macroscopic mechanical level). Following [9], a typical molecular model that accounts for the elas-

ticity of a fluid invokes the transport of elastically deformable particles diluted in the fluid (which

can often be thought of as large massive molecules like polymers). The simplest model of this kind
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couples a kinetic theory for “dumbbells” (two point-masses connected by an elastic force idealized

as a “spring”) with the internal stresses of the fluid.

Let us denote by Xt(x) the connector vector between the two point-masses of a dumbbell

modelling a polymer molecule at position x and time t in the fluid. A standard kinetic theory

allows one to statistically predict the time evolution of a random vector Xt(x) with probability

distribution ψ(t,x,X). The collection of vector stochastic processes (Xt(x))t∈(0,T ) parametrized

by x ∈ Dt is solution to Langevin equations (in Itô sense)

(6.2) dXt + (u · ∇)Xtdt =

(
(∇u)Xt −

1

2λ
F(Xt)

)
dt+

1√
λ
dBt

for a given field (Bt(x))t∈(0,T ) of standard Brownian motions. Here, by λ we have denoted a

relaxation time specific to the polymer molecules whose macroscopic interpretation is usually taken

equal to the relaxation time introduced previously for the UCM model. And the probability density

ψ(t,x,X) satisfies a Fokker-Planck equation. For Hookean dumbbells such that F(Xt) = Xt, the

Fokker-Planck equation is defined on the unbounded domain X ∈ R
2 and reads:

(6.3)
∂ψ

∂t
+ u · ∇ψ = − divX

(
[(∇u)X − 1

2λ
X]ψ

)
+

1

2λ
∆Xψ .

In addition, with the specific choice F(Xt) = Xt, the UCM equation can be exactly recovered.

The extra-stress τ and the conformation tensor σ (a macroscopic parameter for the microscopic

polymer molecules configurations) are indeed given by Kramers relation

(6.4) τ =
ηp

2λ
(σ − I), σ = E [Xt ⊗ F(Xt)] =

∫
[X ⊗ F(X)]ψt(X)dX .

Then the Itô formula allows one to exactly recover the UCM system of equations (2.3), when the

solvent is assumed inviscid with a velocity field u(t,x) solution to the Euler equations. The previous

coarse-graining procedure also gives a molecular interpretation of the polymer viscosity as ηp =

2λnkBT where kB is the Boltzmann constant, T is the absolute thermodynamical temperature,

and n(t,x) ≡ n0 is the number density of polymer chains by unit volume, assumed constant as

usual for dilute polymer solutions (equivalently, n(t,x) is solution to the pure transport equation

∂tn+ (u · ∇)n = 0 with a uniform initial condition n(t = 0,x) ≡ n0).

In [35] a shallow reduced model for viscoelastic fluids quite similar to ours is derived starting

from a coupled micro-macro system like (6.3–6.4–2.2) rather than a coarse-grained system at the

macroscopic level like the UCM model. The only difference between the Hookean micro-macro

system above and the micro-macro system used in [35] is the spring force, which corresponds to

FENE dumbbells: F(Xt) = Xt/(1−|Xt|2/b) in [35]. The FENE force is more physical because it

accounts for a finite extension |Xt| < b, but contrary to the Hookean dumbbells, it does not have

an exact coarse-grained macroscopic equivalent like the UCM model. Thus if we follow the same

procedure as in [35] but for Hookean dumbbells, we can hope to derive a reduced micro-macro

model whose coarse-grained version is comparable to our new reduced UCM model. Moreover, if

the scaling regimes are the same as in [35], then our model should also compare to that in [35] for

an inviscid solvent in the infinite extensibility limit b→ ∞.
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Now, observe that the scaling of our new model implies (6.1) ∇u = γ0 +O(ǫ) where γ0 = O(1)

is a traceless diagonal matrix with entries ∂xu
0
x,−∂xu

0
x. Thus (6.3) rewrites at order O(ǫ) as

(6.5)
∂ψ

∂t
+ u · ∇ψ =

1

2λ
divX

(
M∇X

(
ψ

M

))
+O(ǫ) ,

where M(X) is a weight function proportional to the Maxwellian e−XT (2λγ0−I)X . Then, this

approximation of (6.3) is consistent with our new reduced model provided it yields a consistent

approximation for the stress in (6.4): that is, it suffices to show σxx, σzz = O(1) and σzz = O(ǫ)

as ǫ→ 0. To this aim, let us define an order-one approximation ψ0 = ψ +O(ǫ) solution to

(6.6)
∂ψ0

∂t
+ u0 · ∇ψ0 =

1

2λ
divX

(
M∇X

(
ψ0

M

))
,

and estimate the terms

(6.7) τ 0 =
ηp

2λ
(σ0 − I), σ0 =

∫
[X ⊗ X]ψ0(X)dX .

Unfortunately, this is not an easy task because of the nonlinear coupling with u0
x. Yet it is

reasonable to assume that ψ0 remains close to the equilibrium solution M/
∫
M for all times

(indeed, the Hookean force is derived from an α-convex potential [1]), which then implies the

expected scaling (6.1) for τ .

A physical interpretation of our close-to-equilibrium assumption, such that the distribution of

the dumbbells orientations is mainly ellipsoidal with principal axes ex and ez at first order, is that

everywhere in the physical space, there is direct balance of internal elastic energy between the

directions ex and ez. Then our new reduced UCM model mainly coincides with a reduced kinetic

interpretation obtained by a similar scaling at the molecular level in those cases where, everywhere

in the physical space, the dumbbells are either mainly compressed or stretched in the direction ez

or ex. For instance, these are elongational flows with a free surface and no recirculation (recall

that one assumes a velocity profile of the form (3.13)), like in an axisymmetric free jet of elastic

liquid. Recall indeed that one-dimensional simple models similar to our model have already been

derived in the past to model such jets [20, 21] with a view to explaining the die swell at the end of

an extrusion pipe 1 !

Finally, we would like to comment on the results obtained in [35] with FENE dumbbells. The

main differences with our reduced model (which has the micro-macro interpretation explicited

above) are: (i) the relaxation time is assumed small λ = O(ǫ), because then it is possible to

compute approximate solutions to the Fokker-Planck equation following the Chapman-Enskog

procedure of [19] ; and (ii) a radial polymer distribution ψ0 at first order is assumed, rather than

a flat profile ux = u0
x + O(ǫ), which next implies σxz = O(ǫ) and a flat profile for the horizontal

1The elastic energy stored before the die in the direction ex (∂xu0
x

increases at the end of an extrusion pipe) is

released after the die. The dumbbells, mainly compressed in the radial direction ez before the die, stretch along

the axial direction ex just after the die. This may be responsible for an increase of the jet radius (the free-surface

of the jet flow equilibrates with the atmospheric pressure) after a characteristic relaxation time linked to λ, hence

the so-called delayed die swell.
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velocity like in our model. Therefore, the scaling regimes are not the same, and we cannot directly

compare our results though they have a similar flavour.

6.3. Open questions and perspectives. First, regarding the interpretation of our model, one

might ask whether the present scaling corresponds to a physical situation actually observed for

elastic fluids in nature. In particular, the main questionable assumption is of course the pure-slip

and no-friction boundary conditions (2.7–2.8) at the bottom (already unrealistic for Newtonian

flows, maybe even more unrealistic for non-Newtonian ones). Second, future works on this topic

might consider the following directions:

• derive thin-layer reduced models with other equations modelling non-Newtonian flows,

which are believed to better model the rheological properties of real materials (constitutive

models like Giesekus, PTT, FENE-P, or other molecular models than the FENE dumbbell

model used in [18, 35]), and in two-dimensional settings (see [14, 33] for the standard

shallow water model);

• derive a reduced model closer to real physical situations, possibly in different regimes, or

for instance by using a z-dependent velocity profile ux (possibly a multi-layer model) and

different boundary conditions than (2.10) and (2.8) (with surface tension and friction at

the bottom), which may lead to find physical regimes where τxz is not negligible;

• give a rigorous mathematical meaning and enhance numerical simulations (well-balanced

second-order reconstructions) for non-standard systems of equations like the new one pre-

sented here.

We note that multi-layer models are also a path to the modelling of some important physical

situations, like a thin layer of polymeric fluids on water to forecast the efficiency of oil slick

protection plans.

Appendix A. Convexity of the energy

In order to check the convexity of Ẽ in (4.14) with respect to general variables, we use a

Lagrange transformation, see for example Lemma 1.4 in [12]. Thus Ẽ is a convex function of
(
h, hu0

x, h̟
−1

(
σ
−1/2
xx

h

)
, hς−1

(
σ

1/2
zz

h

))

for given smooth invertible functions ̟, ς, if and only if Ẽ/h is a convex function of the Lagrangian

variables

V =

(
1

h
, u0

x, ̟
−1

(
σ
−1/2
xx

h

)
, ς−1

(
σ

1/2
zz

h

))
.

Let us denote by Vi, i = 1, . . . , 4 the entries of the vector V , then the Lagrangian energy writes

Ẽ

h
=

1

2
V 2

2 +
g

2

1

V1
+ gb+

ηp

4λ

(
V 2

1

̟ (V3)
2 +

ς (V4)
2

V 2
1

− ln

(
ς (V4)

2

̟ (V3)
2

)
− 2

)
.
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Introduce now the notation

Ω(V3) = 2 ln̟(V3), ζ(V4) = −2 ln ς(V4).

Clearly we only need to look at the convexity with respect to (V1, V3, V4), and the Hessian matrix

H of Ẽ/h with respect to these variables (at fixed b) is given by

4λ

ηp
H =




4λg
ηp

1
V 3
1

+ 2e−Ω + 6e−ζ

V 4
1

−2V1e
−ΩΩ′ 2 e−ζζ′

V 3
1

−2V1e
−ΩΩ′ V 2

1 e
−Ω
(
Ω′2 − Ω′′

)
+ Ω′′ 0

2 e−ζζ′

V 3
1

0 e−ζ

V 2
1

(
ζ′2 − ζ′′

)
+ ζ′′


 ,

where prime denotes the derivative with respect to the involved Vi. Since V1 can take any positive

value at fixed V3 or V4, the positivity of the diagonal terms give the necessary conditions

0 < Ω′′(V3) < Ω′(V3)
2, 0 < ζ′′(V4) < ζ′(V4)

2.

Then, writing the positivity of the determinant of the 2×2 upper left submatrix of H, and looking

at the dominant term when V1 → ∞ yields the necessary condition

2e−2Ω(Ω′2 − Ω′′) − 4e−2ΩΩ′2 > 0.

Obviously there is no function Ω(V3) satisfying these conditions, and Ẽ is never convex with respect

to the considered variables.

On the contrary, if we choose the physically natural, but non-conservative, variables q =

(h, hu0
x, hσxx, hσzz), then using the Lagrangian variables

W =

(
1

h
, u0

x, σxx, σzz

)
,

one can write
Ẽ

h
=

(u0
x)2

2
+
gh

2
+ gb+

ηp

4λ
(σxx + σzz − ln (σxxσzz) − 2) ,

which is obviously convex with respect to W (at fixed b). We conclude that Ẽ is convex with

respect to q.
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