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Abstract

We present a WENO-TVD scheme for the simulation of atmosphmrenomena. The scheme
considers a spatial discretization via a second-order Tulhsed upon a flux-centered limiter
approach, which makes use of high-order accurate extregabimlues arising from a WENO
reconstruction procedure. Time discretization is perguawith a third order RK-TVD scheme,
and splitting is used for the inclusion of source terms. Wsspnt a comprehensive performance
study of the method in atmospheric applications involvidgextive and convective motion. We
present a set of tests for space-dependent linear adveutimre we assess convergence and
robustness with respect to the parameters of the schemeppliethe method to approximate
the 2D Euler equations in a series of tests for atmosphenization.

Keywords: WENO reconstruction, TVD schemes, Runge-Kutta methoditisg, limiter,
centered schemes, swirling flow, frontogenesis, Eulertapus convection

1. Introduction

Advection and convection, understood as the class of phenamelated to fluid flow motion
or transport is a concept coveringfgrent relevant situations in atmospheric modelling. The
convention in the literature is to use the teaaivectiorwhen a quantity experiences motion due
to the presence of an acting velocity field, which is mostrofedated to horizontal motion, while
convectiorrefers to motion caused by thermodynamic consideratiomagpily occurring in the
vertical direction. In this article we are concerned witk ttevelopment of an accurate scheme
able to handle both types of motion. Models which descrilwd faehavior are, in a first step,
linear scalar advection models, including space-depdandsocity fields and, in a more elabo-
rated formulation, the set of Euler equations for gas dynanparameterized in scales that are
typical of atmospheric phenomena. Achieving an accuradepagsically meaningful numerical
approximation of such models is undoubtedly, a challeng@sy. During the last decades, a
method which has gained popularity among the atmospheriteitiog community is the finite
volume (FV) framework [1, 2]. In a computationallyfieient way, it preserves many aspects
of the underlying physics (as conservation for instancéijijerallowing formulations that are
able to achieve a high level of accuracy, which is fundamdotaumerical weather prediction.
In the FV context there is a considerable amount of availatdéhods oriented to the solution
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of hyperbolic system of conservation laws. We are concewmidda particular class of those
methods, the so-called WENO (weighted essentially noiitatary methods), which is a class
of methods allowing the generation of high-resolution agpnations in space via a polyno-
mial reconstruction procedure from cell averages [3, 4$; tichnique is combined with suitable
fluxes and time marching procedures in order to generatelaotief global high-order of accu-
racy. Moreover, at every step, by adequately enforcing éimeept of total variation diminishing
(TVD), the method avoids the production of spurious ostiitas and preserves monotonicity.
This article addresses every step in the construction oblme described scheme. Once the
WENO reconstruction of the variables is performed, higtieorextrapolated values are avail-
able for calculation of numerical fluxes across the cellrfaimes. Based upon [5], we make use
of a second-order TVD flux based on a centered limiter (FLIG)raach [6]; we highlight the
use of the centered approach instead of classical upwirtdingiderations [7]. After the spatial
discretization routine is completed, the scheme movesdahin time via a Runge-Kutta TVD
method [8] with ensures stability, preservation of the isppaiccuracy and avoids the generation
of new extremal values. An important part of this work is dedbto the numerical validation
of the proposed scheme. We first address 2D models of spaesdent advection where sev-
eral features of the scheme are tested, to then study carespbenomena based upon the Euler
equations, with a set of well-known tests for atmospheridefilng. The performance of the
scheme is assessed in terms of accuracy, its ability to weseonotonicity in the presence of
sharp solutions, its robustness with respect to flux pammmetorrect front locations and energy
conservation. The article is structured as follows. Inisec2 we present the full numerical
WENO-TVD scheme. In section 3 we develop a comprehensidysifithe method for advec-
tive models, while section 4 is devoted to the analysis offeotive phenomena. Final remarks
are discussed in section 5.

2. A numerical scheme for the system of balance laws

In this section we present a finite volume scheme for a twoedsional system of balance
laws of the form

9 Q+ dx F(Q + 0. H(Q) = S(Q), (1)

whereQ is a vector of conserved variableg, and H are physical fluxes, an® is a source
term. We first indicate that our strategy will be based in &tsp scheme, as it is suggested in
[9] given the flux choice that we will make. Thus, we will firsttablish a numerical scheme for
the system of conservation laws

0 Q+ dx F(Q+ 9, H(Q) =0, (2)
to be combined with a procedure for the resolution of the a®term dynamics

Q) = S(Q. (3)

In order to approximate eq. (2) we begin by meshing the dgidiaainQy ; into uniform control
volumesQ;j = [Xi—12, Xi+1/2] X [Zj-1/2, Zj+1/2] Of size AXAz inside every control volume we
average with respect toandzleading to the semi-discrete scheme

dQ,j(t)

1 1
gt = axtFevzi ~ Ficvag) - iz - Hij-a2) = Li(Q), 4)
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where

11 Xi+1/2 Zj+1/2
Q=5 . QU2 1) dzdx (5)
v AX Az Xi-1/2 Zj_1/2
1 Zj+1/2
Fivy2j = Az F (Q(Xi+1/2, 2 1)) dz, (6)
Zj-1/2
1 l><i+1/2
Hij+12 = Ax : H (Q(X, Zj+1/2, 1)) dx (7
i-1/2

We approximate the expressions in eqns. (6)-(7) by commeatiGaussian quadrature formulas

1
Fit12j = > Z Wye, F (Q(Xi+1/2, Zop, 1)) dz, (8)
Zep
1
Hijsz~ 5 D W, H (. Zj11/2.1)) dz 9)
XGp

wherexgp andzp, are prescribed Gauss points with corresponding weights andw; re-
spectively. The computation of eqns. (8)-(9) is performe&darhigh-resolution approach that
makes use of a WENO reconstruction procedure; after thisisteompleted, a polynomial of
prescribed order is obtained at every cell, and therefdreyery cell interface, accurate flux
calculations can be performed by taking extrapolated bagnealues.

We briefly describe the WENO reconstruction procedure thased in this article; we opted
for the technique described in [10, 11] in its third orderddratic reconstruction) version. This
technigue makes extensive use of the structure of the reaation procedure in one dimension,
adding some additional mixed terms (“cross terms”) thatefiieiently computed by reduced
stencils. It is an optimal and easy way to implement the &@gor for achieving high-order
reconstructions in 2 and 3 dimensions; it also defines arugmglynomial in every cell, which
is particularly useful when space dependent source terits a&si viscosity are considered. At
a given timet (the subscript indicating time is omitted throughout thésidgation), given the
set of averaged valug®) ;} for the whole domain, at every cell, the reconstruction pchre
seeks a quadratic expansion upon a linear combination oérigrg polynomials rescaled in
local coordinatesx; 2) = [-1/2, 1/2] x [-1/2, 1/2] expressed in the form

Q(X,2) = Qo + QxP1(X) + QuxP2(X) + Q;P1(2) + Q;P2(2) + QxP1(X)P1(2), (10)

P1(X) = X Py(X) = X% — %2 (11)

Exceptforthe last term in (10), every dteient can be computed by performing a dimension-by-
dimension reconstruction, which we now illustrate. Weg@sshe subscript "0” to the cell where
we are computing the cficients, other values indicating location and directiorhwigspect

to Qo (note that the notation is coherent with the fact that the fiosfficient in the expansion
Qo, holdsQp = Qjj, i.e., the centered value). Next, for this particular pesbiwe define three
stencils

S'={Q2,Q1,Qy, S*={Q.1,Q0,Q}, S®=1{Qo, Q. Q}, (12)

and in every stencil we compute a polynomial of the form

Q) = QY + QUP1(x) + QUP(x)  i1=1,2,3. (13)
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The codficients are given by

St 1 QP =-2Q1+Q2/2+3Qy/2. Q) =(Q2-2Q1+Qu)/2, (14)
$° 0 QP =(@-Qu)/2 QY =(Q1-2Q+Q)/2, (15)
S* 1 QP =-3Q/2+2Q1-Q/2. QY =(Qo-2Q1+Q)/2 (16)
For every polynomial we calculate a smoothness indicatfinelé as
i 2 13/
s = (Qg()) 3 (Q()) , (17)

leading to the following WENO weights:

N0 0 0

(i): =
CTTE L0 T erisoy

(18)

wheree is a parameter introduced in order to avoid division by zeisyallye = 10712 The
scheme is rather insensitive to the parametevhich we set = 5. The parametet is usually
computed in an optimal way to increase the accuracy of thenstouction at certain points; we
opt for a centered approach instead, tht¥s= A® = 1, whileA® = 100. The 1D reconstructed
polynomial is given by

Q¥ = wPQV(x) + wPQA(x) + I (X). (19)

Next, a 1D reconstruction in thedirection is performed in a totally analogous way. Finalig
address the computation of the mixed te@y, which is calculated in a 2D fashion. Keeping the
same convention regarding location subscripts as in 10,dd@siders 4 formulas for the cross
term upon taking all the moments around the cell. The exfmes$or the cross term are:

QY = Qui-Quo-xu-Q - Q- Qs (20)
Q2 = —Qi_1+Qoo+ Q- Qs+ Qut Quz (21)
QY = —Qui1+Qoo— Qu+Qr+ Qut Qe (22)
Q§<41) = Qo1-1- Qoo+ Qx+ Qz— Qux— Qzz (23)

and the corresponding smoothness indicators are given by

150 = ()" + 4(Q0)" + ()" (24)

Note that in the first part of the reconstruction, when theghts were computed, a larger subop-
timal weight was assigned to the central stencil, which isg te ensure stability and robustness
of the algorithm by sacrificing additional order in the appnoation (for more detalils, see [12]).
However, for this term, the numerators assigned to the spotdinga’s remains the same for
every expression. The computation of this term concludesgbonstruction procedure, and now
we have at our disposal one polynomial per cell that can be tasealculate values at the bound-
aries or inside the cell. The next step in our numerical seheomsists of the calculation of the
numerical fluxes (8)-(9), which will use extrapolated boarndvalues of the reconstructed poly-
nomials. Rather than the use of the classical WENO schemia {(@For [4]), which performs
this calculation via a first order flux, we opt for the WENO-T\dpproach described in [5]. We
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make use of the 2D extension of the flux-limiter-centred seh¢FLIC) approach presented in
[6, 1], which is a second-order, centered and non-oscilfdlax. In our case, it consists of a
flux-limited version of a generalized Lax Wendiéiux, using as a low-order flux the GFORCE
(generalized first order centred) flux [13], which can benpteted as a convex combination of
Lax-Friedrichs and Lax-Wendfidtype of fluxes:

FIAS) = P o (P2, ~ FELECY. @)
where
Fﬁi?z‘,?jCE = FSE/%TECE(QiLﬂ/z,j’ QiR+1/2,j) = wFiLJrVil/z,j +(1- w)FiL+F1/2,j ’ (26)
1 1Ax
Fher= 3 (7 (@) + 7 (Faa) - 55 Qs Ghae)) . @)
FiI:—V:}.I/Z,j =5 (Qi*+l/2,j) ’ (28)
. 1 At
Qa2 = 5 Qs + Q) = 55 (7 (Qajag) - 7 (Qhaay)- (29)

The parametew varies between 0 and 1, and is chosen in a compatible manttethei CFL
number in order to ensure monotonicity. We have omitted tmélas for the remaining cell
boundaries, but they can be derived in a straightforwardmaarhlso note that even though the
formulas are written along the boundaiy'1/2, j’, the use of the Gaussian quadrature formula
will replace the axeg’ by Gauss points and therefore this subscript must be uta®tsn that
sense. It is important to notice that so far we are derivingressions for the semi-discrete
approximation of the system of conservation laws, howeter fluxes include the parameter
At which arises from the averaging operators that origina¢sdtfluxes. Thus, in the spatial
discretization of the system, the time stepping entersgasa parameter. At the end of the
derivation of the scheme, when we present the time disatatizof eq. (4) At will be considered
as “marching parameter” in the sense that its inclusionénféhmulas will generate an updated
state in time.

The functionyi.1/2j = wiﬂ/g,j(rhl/z’j, riRﬂ/z,j) is a flux limiter; a slight variation of the usual
limiters has to be considered in this context since we usengea flux instead of an upwind
approach (the reader can refer to [1, Ch 13.] for more dgtafisour case we mainly use the
SUPERBEE limiter, which on its centered version reads:

0 ifr <0,
2r ifo<r<3i, 1-|c
r) = 2 = , 30
v () 1 ifi<r<i1 % 1+]c| (30)

min{Z, dg+(1- q)g)r} r>1,

wherec corresponds to the Courant number which depends on thegpnofilhe limiter depends
on the flow parameter, which will be defined upon a physical quantéyf the system. Once
has been obtained from the discretized variables, left ighd flow parameters are given by

L
L B eEl/Z,j — €12 R e|R+3/2,j - e|L+3/2,j (31)
i+1/2i = R 12 = R A
eﬁl/Z,j - e|L+1/2,j e|R+1/2,j - e|L+1/2,j

and finally,
Yiryy2j = min(‘/’(rilzrl/z,j)"/’(ri'il/z,j))- (32)
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The above described procedure starts with a set of averaggeisvand ends with a numerical
approximation of the space operators involved in eq. (2 rBsulting scheme is still continuous
in time, and we conclude this section by discretizing thisrapor in a manner that is consistent
with the choices that we have made in the generation of theespiacretization operator. At a
given starting time", we begin by considering the semi-discrete scheme

dQ;;(t)
dt

= Li,j(Q) (33)

bringing the system to a final stat&! with a time stepping\t. In order to preserve high-
order and non-oscillatory properties in time, we consitlenvell-known family of explicit TVD
Runge-Kutta schemes [8], in particular its third order igrs

n+d

Qi,j o= _n_ + At Li ](Qn) (34)
n+2 1
Q;* = —Q. i Q 4At L ’(QI j 3) (35)

Q= Qe %At L@, (36)
(37)

We end this section with the inclusion of the source term. 3tw@ce term appearing in eq.
(3), in the simplest case will not depend on space nor spatdeatiees, and therefore it can be
averaged in space and solved in the same manner as the alesesmted time discretization,
by replacingLi,j(Q{jj) by S(Qi’jj). If we denote by thel(At) the fully discrete operator that
brings the system of conservation laws A&2)units ahead in time, and [&/(At) the fully discrete
operator that updates the source te?®) (n At units, we preserve, at least, second order accuracy
in time by implementing a Strang splitting [14] in the form

Mt = S(At/2)L(ANS(AY/2)Q,. (38)

If the source term does depends either on space or spacattesy such a viscosity for instance,
the averaging procedure will require the evaluation of thé&se term integral

Xi+1/2 Zj+1/2
Su= s, ), SQxzoazd (39)

Proceeding in the same way as we did for the fluxes, we appadgithis integral by a suitable
double Gaussian quadrature,

1
Sij ~ 2 % %} Wy, Wae, S (Q(XGp: Zop, 1)), (40)

where we make use of the same reconstruction procedurepsdyidescribed in order to obtain
values ofQ inside every cell.



3. Advectivetests: Linear advection with space-dependent coefficients

In this section we implement threefiirent test cases based on the equation

9 Q+ dx(a(x. 2Q) + 92 (b(x, Q) = 0, (41)

which describes the evolution of a scalar quan@tyhrough a 2D domai, holding suitable
initial and boundary conditions. The tests for this equations to recover the theoretically ex-
pected second-order for the convergence rate of the scheistedy variations on the weighting
parametet in the flux and &ects of the limiter choice for sharp initial conditions. Testtings
varies from one test to the other; though, one common aspédbeicomputation of the time
steppingAt, which once mesh parametesss andAz, and the background flova(b) have been
specified, is computed via

Az
maxq |al’ max, b/’

At =CFL min( (42)
with CFL the classical Courant number which by default is se€toL = 0.45, consistently
chosen for a value ab = 0.5 (there is a direct relation between the weighting paransate the
CFL number in order to preserve monotonicity of the scherae;[$3] for precise details). A
last common aspect the choice of flow parametevhich is computed by taking = Q in egs.
(31).

3.1. 2D Linear advection with constant gbeients

The first case that we consider is a 2D linear advection eguatith constant caécients.
We seta=1,b=1,Q = [0, 1]?, and an initial profile given by

Q(%, z 0) = sin(2rx) sin(2r2), (43)

together with periodic boundary conditions. We advect tfigail profile for 10 periods, i.e.,
final time of the simulation i$ = 10 [s]. Results for the convergence rates are shown in table 1
expected second-order for smooth solutions is achievéd endL., discrete norms, while an
additional order is obtained for thg norm, which is given by the fact that we are using a third
order reconstruction in space.

Table 1: Convergence rates for the 2D linear advection prohtith constant cdicients aftet = 10[s] (10 periods).

N L. error L. order L, error L, order

50 1.2637e-002 2.005e-002

100 2.4316e-003 2.4 2.5911e-003 3.0
200 6.1038e-004 2.0 3.5190e-004 2.9
400 1.4790e-004 2.0 4.9012e-005 2.9




3.2. Swirling flow

The second test that we present is a more stringent casegga@in [15]. We make use of
the setting proposed in [16]: the velocity field is given by

a = sir?(nx) sin(2r2)g(t), b = — sir?(n2) sin(2rx)g(t), (44)

g(t) = coqxnt/T). (45)
Again,Q is set to be the unit square, and the initial condition is heke

Q(x,20) = %(1 + cosfr), r = min(L 4+/(x - 0.25@ + (z— 0.25)). (46)

Note that the velocity field vanishes at the boundary of theala. Setting final timd =5, we
expect a maximal flow deformation &y2 while, ideally,Q(x,z T) = Q(X, z 0). Figure 1 shows
both exact initial (final) profile and maximal flow deformatiatT /2 with AX = Az = 0.005; the
scheme preserves positivity of the initial profile at anydiduring simulation. Again, table 2
shows that second order of accuracy is reached as expelthedigh the convergence requires a
larger number of elements; this is most likely due to the lyigleformational nature of the flow.

Table 2: Convergence rates for the swirling flow problerh-ai [s].

N L. error L. order L, error L, order

50 7.1093e-001 1.0719e-000

100 5.2363e-001 0.4 6.5837e-001 0.7
200 2.4912e-001 11 2.2685e-001 15
400 4.5618e-002 2.4 3.5510e-002 2.7




Figure 1: Swirling flow test problem. Initial condition (¢faind maximal flow deformation &t= 2.5 [s] with 200x 200
elements (right).
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In this test we also include a study with low and high resolutsimulations £x = 0.01
andAx = 0.005 respectively), where we tryftgrent values for the weighting parameter in the
GFORCE flux,w. Although the GFORCE flux used as low-order term in the FLI@rapch
is a first-order flux, (excepting for the case= 1 which corresponds to a Lax-Wendlr@iux),
increasingw yields to a flux that has a behavior similar to a second-order this is observed
in figures 2 and 3, where noticeable increase on the accufahg final state is detected when
switching to larger values @b . Note that in every case the monotonicity of the solutionres p
served. There is an additional cost related with the inerefisiccuracy and preserving mono-
tonicity at the same time, which is a decrease on the timgstgp For instance, according to
[13], if w is between 0.5 and 1,

Atmaxg |a] At maxg |b| < '—1+a)‘
dx ’ dz | 2w |

which implies that, for instance, whem= 0.75, thenCFL < 0.17.

(47)



Figure 2: Swirling flow test problem. Low-resolution expeents with 100< 100 elements &t= 5 [s]. Varying values
of w in the GFORCE flux: From left to right, from top to bottoma:= 0.25, 0.5, 0.75, 0.9.
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Figure 3: Swirling flow test problem. High-resolution exipeents with 200x 200 elements dt= 5 [s]. Varying values
of w in the GFORCE flux: From left to right, from top to bottoma:= 0.25, 0.5, 0.75, 0.9.
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3.3. Doswell frontogenesis

We conclude the advection tests with a kinematic frontogismeroblem, originally presented
in [17]. Itis a standard test in atmospheric modelling, alalAgs us to assess the performance
of the scheme in the treatment of sharp fronts; numericatiéxents with this test case in the
context of this article can be found in [18, 19]. For this test set the domaif = [-5, 5], and
the flow is given by

a=-zf(r), b=xf(r), f(r)= %v(r), v(r) = v secR(r) tanh(r), (48)
r=+x2+2, v=259807 (49)

Initial condition for this test is given by

Q% 20) = tanh(g), (50)

generating the following exact solution

(51)

Qx.zt) = tanh(zcosw . XSin(vt))'

o

The parametef is related with the thickness of the front zone. We first pnésemerical exper-
iments with a value o = 1, in order to generate a smooth solution and verify the cgarece
rates; table 3 shows that consistent convergence ratebtieed with the proposed scheme in
bothL., andL; norms. For this case, final state profiles can be observedurefig A second
is study is performed with sharp fronts, takifig- 10°°. Figure 5 illustrates the capapcity of the
scheme in tracking sharp fronts; it can be observed that noays oscillations are generated,
despite the sharpness of the solution. Moreover, the schemnes to be very robust with respect
to the choice of the limiter, which is interesting as a comraibmation in the choice of limiters
is that it highly depends on the problem.

Table 3: Convergence rates for the Doswell frontogenesislem att = 4 [s], withé = 1.

N L. error L. order L, error L, order

50 3.4786e-001 1.2719e-002

100 1.1140e-001 1.6 3.5136e-003 1.9
200 3.3302e-002 1.8 7.3045e-004 2.3
400 5.47780e-003 2.6 1.0541e-004 2.8
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Figure 4: Doswell frontogenesis problem. Results at 4[s] for smooth initial condition withs = 1 and 200x 200
elements. In the right bottom, a cutxat 0.
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Figure 5: Doswell frontogenesis problem. Results at4[s] for sharp initial condition withs = 10-% and 200x 200
elements. In the right bottom, a cutxat 0 with different limiters.
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4. Convectivetests: the Euler equations

Throughout this section we consider a single model in omlstudy convective phenomena.
Our starting point corresponds to the set of equations ib#sgrthe evolution in time of a 2D
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dry air atmosphere [20, 16, 1]. Imposing conservation of snasomentum and energy, and
considering &ects of gravity, together with neglecting friction and ttaia effects, leads to a set
of 2D inviscid primitive equations for the atmosphere veritin conservative form

hQ+ O F +0;,H =S, (52)
where
e pu oW 0
| pu | 2+ P | pwu | o
Q= oW ,F = oUW ,H = WP + P ,S = g | (53)
p0 pue PWO 0

In this system of equationsis the density of the fluidy is the velocity in the x-directiony is
the velocity in the z-directionf is the pressure arlis the potential temperature, which relates
to the usual thermodynamic temperatéreia

P \ Rl
The system is closed by the equation of state for an ideal gas
RV
P =Co(pd)”,  Co= PRZ’/CV. (55)
0

Model parameters are: the gravitational acceleragien9.81[ms 2], the atmospheric pressure
at sea levetP o = 10°[Pal, the gas constant for dry aRy = 287[JKkg1], the specific heat
of dry air at constant pressure and volu@ge= 1004[JK-1kg™], the specific heat of dry air at
constant volum€, = 717[JK*kg™!] and its ratioy = C,/C, = 1.4. Additionally, by defining

the Exner pressure
P \R/G
=|— 56
w=(7) (56)
the expression for the total energy of the system (intetkiaktic+potential) is given by

1
e = Eint + Exin + Epot = G/ + E(u2 +W) + 9z (57)

which will be used as flow parameter in the limiter computatibor all the simulations in this
section, the parameteris set to 0.5, and oncex andAz (although alway@\x = Az) have been
specified, the time stepping is selected according to

At = CFL min

AX Az ] ’ (58)

maxs,’ maxs,
Q Q

with CFL = 0.4 and wheres, ands, are maximum characteristic speeds in xendz direction
respectively,
Sy = max(U+cs,U—Cs), S, = max{v+ Cs,W—Cs), (59)

wherecs = /0, P is the speed of sound in the fluid. In this section we study fest cases
for the above presented set of equations. They all consibiydfostatically balanced initial
15



conditions plus a potential temperature perturbation. flilsé three cases are initialized with
reference states for a neutral atmosphere, i.e.,

0=0+6¢,  6=300K], (60)

and the density is initialized via the hydrostatic balance equation

dr
= —_ 1
Co gy = 9 (61)
together with the ideal gas law
Po S
= —nRd 2
p=gon, (62)

both evaluated at the reference state 6. The potential temperature perturbation, together with
the initial velocity field and boundary conditions are sfiedifor each problem.

4.1. Convective bubble in a neutral atmosphere

This first test case, that has been previously addressed,i2$2 23] (among others), studies
the behavior of a hot temperature bubble placed in a hydicslig balanced neutral atmosphere
at rest. As the perturbation is warmer than the backgrouatd,sa buoyancy force will push it
upwards and, as it starts rising, because of the same bupegfiact, it will start experiencing a
deformation that will eventually develop into a mushrogrpé of cloud. We use the scale and
settings used in [24]. The domains= [-1000Q 10000]x [0, 10000], withAx = Az = 125|m|
and the potential temperature perturbation is given by

2cod %) L<1, 1
g’:{ 5(2) ST L VX2 + (z— 2000%. (63)

0 i.oc. ~ 2000
Simulation time has been set to 1000 [s], allowing the buldbldése without hitting the top

boundary; reflecting solid wall boundary conditions haverbeonsidered around the whole
domain.
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Figure 6: Convective bubble in a neutral atmosphere test gagential temperature colormaps. From left to right, top
to bottom: initial state and Resultstat 300, 600 and 1000 [s], withx = Az = 125[m], 160x 80 elements.
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It can be seen in figure 6 that the proposed scheme manag@sdduee the correct physical
solution of the test; the bubbles rises from its initial stekperiencing deformation that finally
generates a mushroom cloud. Note that symmetry is presdwedy the simulation, no spurious
oscillations are detected and the final front location ige8ally the same as shown in [24], also
matching in the vertical velocity, as shown in figure 7. It hade remarked that most of the
numerical models used to approximate such experiment reatthude a dampingfeect in
order to obtain a grid converged solution, which is not oweca\Ve also assess the performance
of the scheme in this test by the energy plot in figure 8; itsiitates the quantities present in
eg. (57) (we consider the the quantity rather thare), and it can be seen the rise of the kinetic
energy of the system initially at rest together with a deseeaf the internal and potential energy
contributions to the system, all this with a constant totargy, as it is expected for a closed
system without physical dissipation mechanisms.
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Figure 7: Convective bubble in a neutral atmosphere test eaocity field colormaps dt= 600 andt = 1000 [s], with
Ax = Az = 125[m], 160x 80 elements. Left: horizontal velocity Right: vertical velocityw.
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Figure 8: Normalized energy (with respect to the initiabtatalue) of the system for the convective bubble in a neutral
atmosphere test case.
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4.2. Interaction between hot and cold bubbles in a neutralagphere

We turn our attention to a variation of the previously préeditase. Similar tests have being
previously performed in [21]; we have modified it in order tonsider the same scales as in
our first case, but also to include some kineti®ets to test symmetry. The perturbation in the
potential temperature contains a hot but also a cold bubiideexpressions are given by

6 = 6+6,+6, (64)
71'L1 7TL2
o - 10 cos(T) .Ll <1, - -15 cos(T) .|_2 <1, ’ (65)
0 i.0.C. 0 i.0.C.
1
Li = ——+*2+(z-2000%, L, VX2 + (z- 8000% (66)

2000 ~ 2000
(67)

We also expect in this case that the hot bubble will rise, louthe@ other hand the cold bubble
should fall, and as they are placed along the same vertiéa| tizey will collide and interact
creating eddy patterns. We consider solid wall boundarnditmms at the bottom and the top
of the domain, and periodic boundary conditions at the ddtextremes, as we also include an
initial horizontal velocityu = 20[ms™] to test the capacity of the scheme to preserve symmetries
in the presence of horizontal translation. Figure 9 illatgts the initial setting, figures 11 and
12 exhibiting the evolution of the system with a resolutidma = Az = 125|m] up to 1000F].
The results reflect the proper physical solution, the risthefhot bubble together with the fall
of the cold bubble until the collision is produced, and thesaguent eddy generation due to
the interaction of the perturbations. The rotational bévazan be also noticed in the velocity
plots, where eddies are also formed. The final state at HD30§ymmetric with respect to the
axis x = 0, which is coherent with the initial horizontal velocity.oNspurious oscillations are
observed. The energy plot in figure 10 shows an incremengikithetic energy of the system,
interaction between internal and potential energy, buivsredmost no artificial dfusion for the
total energy of the system.

Figure 9: Colormap of the initial potential temperature tfoe hot and cold bubbles test case.
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Figure 10: Normalized energy (with respect to the initightoalue) of the system for the hot and cold bubbles test case
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Figure 11: Hot and cold bubbles test case.Results=af.l80 and 250[s], witlAx = Az = 125[m], 160x 80 elements.
Left: colormap of the potential temperature. Right: vegilot of the velocity field.

310 e e e LT
9000 ] 900012771 TS
8000 1 305 8000(.._ "
7000 70001.°7
6000 300 6000127~
N 5000 N 5000 ..
4000 295 40007, 1Pt man]
- r///)..\\‘~ ,,,,,
3000 3000(. PN
290 ,///1~“ ......
2000 ] 2000 7t ]
1000 ] 1000 RSN
285
-5000 0 5000 -5000 0 5000
X X
9000 ] 90001271 T
8000 { 305 8000 RN
- \\\\\\‘ e,
7000 1 70007, SN
300 . e
6000 ] 6000-_" TN
N 5000 ] N 5000( 27000 ORORDRAARINE
4000 1] 1295 40002227777 RPN
....... sttt l7a, =
3000 1 3000700070 et 1172 ]
......... IR0 X RN
2000 { B290 200017777700 R
1000 ] 10001227770 I
-5000 0 5000 -5000 0 5000
X X

20



Figure 12: Hot and cold bubbles test case.Results=a600 and 1000[s], witihAx = Az = 125[m], 160x 80 elements.
Left: colormap of the potential temperature. Right: vegtimt of the velocity field.
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4.3. Density current

The third case is a popular test case in atmospheric moddBiee [25, 23, 26, 27]); in the
domainQ = [0, 20000]x [0, 6000], with a system initially at rest, a cold bubble peratitn is
added to the reference state,

. [-75(os(al)+1) L<1, | x \2 (z-2000
"o ioc. T (z000) * (2000 ) (68)

With solid boundary conditions, the cold bubble drops ubtiits the boundary, generating hor-
izontal shear displacement, end eventually developingrkelelmholtz rotors. Final simulation
time ist = 900[g]. It has been previously reported in [25, 23] that most nucaémethods
require to take into account viscositffects in order to generate a grid-convergent solution; nev-
ertheless, there exists methods that manage to accurateliate this test case with a inviscid
set of equations [28]. When a viscous stress term is includétt scheme, a reconstruction step
has to be included in the source term approximation and sespattial derivatives are computed
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from the reconstructed polynomials. In our case, we inchidwrilations for the inviscid model,
but we also add a viscous source tef¥nto the r.h.s. of the system (52), with

0
pK (02U + 02u)
pK(02w + 02w) |’
pK (020 + 526)

V= K = 75[m?s™]. (69)

We first study the fect of resolution in both inviscid and viscous simulatioms.figures
13 and 14 it can be seen final time results for variable reisoiutn both cases, there is a clear
convergent behavior of the solution, and increasing résoiprovides a better insight into the
development of Kevin-Helmhotlz rotors; at the highestadsesolution, witlAx = Az = 50[m],
it can be clearly appreciated the generation of three rptdrieh is similar to the results obtained
in the aforementioned references for this test case fooussimulations (including thefliused
aspect of the eddy nearest to the front). Table 4 shows thheregtvalues obtained for both
simulations at high-resolution, which are in accordandbéaange of values previously obtained
by other authors; in particular, the front location, whishai relevant quantity in this test case,
coincides the results published in [23, 25, 27]. The enefgisshown in figure 15 and 16 are
qualitatively comparable to the one presented in [26] (¢liengh is not exactly the same density
current test case), exhibiting a sustained increment ikitiegic energy of the system, while both
internal and potential energy decrease throughout thelation. There are some fiierences
though, when it comes to analyze the conservation of thé éokxrgy: the inviscid system is
completely conservative, while the inclusion offdsion alters this property and decreases in
time.

Table 4: Extreme values for the density current test cageAmit= Az = 50[m] att = 900][s].

Model [

min Omax Umin Umax Wmin Wmax Front location

Inviscid -11.7296 0.8950 -18.6235 32.2655 -18.9703 22645 1.49810*
Viscous -13.1851 1.0209 -17.2731 30.5931 -15.5440 15.7718.503<10*
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Figure 13: Density current test case. Results after 15 miomRop to bottom: potential temperature colormap with
Ax = Az =200, 100 and 50[m]. Left: experiments without viscosityglRi results with Fickian viscosity with parameter
v=75[m s 1.
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Figure 14: Density current test case. Results after 15 miman= Az = 50[m], 400x 120 elements. Top: horizontal
velocity. Bottom: vertical velocity. Left: experiments twdut viscosity. Right: results with Fickian viscosity it
parametew = 75[m? s71].
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Figure 15: Normalized energy (with respect to the initigtovalue) of the system for the density current test case
without viscosity.
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Figure 16: Normalized energy (with respect to the initidhtowalue) of the system for the density current test casle wit
viscosity.
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4.4. Convective bubble in a stable atmosphere

We conclude our study with a test that has been previouskepted in [29]. In the domain
Q = [0, 40000]x [0, 15000], we consider a stable atmosphere with an initialqg@ktemper-
ature vertical gradient of &/ knT1] with a mean ground level value of 30Q[. After vertical
integration of the gradient, a positively stratified refeze state for the potential temperature is
obtained, and density is initialized via hydrostatic bakarnNe add a warm potential temperature
perturbation bubble of the form

= —_— 2 —
0 oc. L 500 X2 + (z- 2750%. (70)

. {6.6 cod(%) L<1,
Simulation time is set td = 600[s], we use solid wall boundary conditions at the top and the
bottom of the domain, and open boundary conditions for ttexdhextremes. We execute model
runs withAx = Az = 500[m] andAx = Az = 250]m]. Figure 18 shows high and low-resolution
results at final time of simulation. Low-resolution resudte in accordance to what is presented
in [29]; since the temperature increases with altitude, tgation of the buoyancy is expected
while horizontal spreading of the perturbation occurs. HHigsolution experiments exhibits the
same behavior, although there is a variation in the extrealaks as it can be seen in table 5. In
both cases symmetry with respectde 0O is preserved. Regarding energy conservation, figure
17 shows that total energy is preserved while potentiadyiratl and kinetic energy oscillate with
respect the initial state.

Table 5: Extreme values for the convective bubble in a statol®sphere test casetat 600[s].

Resolution 0 in Omax Umin Umax Wnin Wmax

Ax=500[m] 0.0748 10.3438 -1.9717 1.9717 -1.6539 1.4501
Ax=250[m] -0.0251 10.3890 -3.0724 3.0685 -2.3212 2.1149
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Figure 17: Normalized energy (with respect to the initiahtosalue) of the system for convective bubble in a stable
atmopshere.
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5. Summary and outlook

We have presented a second-order, non-oscillatory schamntleef resolution of relevant ad-
vective and convective atmospheric phenomena. The metlad@smuse of a WENO recon-
struction procedure for accurate extrapolation of boupdad inner cell values, together with
a centered-limited approach for the flux calculation. Evesugh, for this class of problems,
schemes based on upwinding considerations are usuallgrpedfover centered approaches, the
proposed scheme performs well in an extensive set of tebtgors. The theoretically expected
second order was reached whenever an analytic solution wvedlaldle, and in its absence the
scheme proved to be grid-convergent with a performancéagsimai the currently available algo-
rithms. The accuracy of the method can be numerically irsg@dy switching the flux parameter
w, With a cost associated to the time stepping in order to presaonotonicity. The scheme also
showed robustness with respect to the limiter choice in godinant, which also illustrates the ro-
bustness of the reconstruction procedure. In the conweekperiments, the scheme managed to
reproduce the correct physical behavior, while trackiogfs in the correct position and without
generating spurious oscillations. It has also showed takgs with respect of the inclusion of
viscosity: unless it is physically relevant, the currerilemce seems to indicate that the method
is able to perform in a consistent way without the need ofos#ty, which is a consequence of
the continuous enforcement of the non-oscillatory charaaftthe scheme, present in both time
and spatial discretizations.

We point some open issues to address. The removal of thérgplgpproach, by trying
to incorporate source termsfects into the flux calculation could make the method far more
efficient. In the splitting, context, other alternatives fasagsity calculation should be explored,
as in the current scheme additional reconstruction staps gbthe most expensive parts of the
code) are required. Nevertheless, we conclude that théestsdheme possess a great level of
applicability in the atmospheric modelling framework;ther enhancements on its formulation
and performance could increase its potential as a robugt;fgisolution method.
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Figure 18: Convective bubble in a stable atmosphere. Reafiir 10 min. From top to bottom: potential temperature,
horizontal velocity and vertical velocity. Left: low resmion results withAx = Az = 500[m]. Right: high resolution

results
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