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Abstract

We establish a necessary and sufficient condition for decay of pe-
riodic entropy solutions to a multidimensional conservation law with
merely continuous flux vector.

Introduction

In a half-space Π = R+ × Rn, R+ = (0, +∞), we consider a first order
multidimensional conservation law

ut + divxϕ(u) = 0, u = u(t, x), (1)

where ϕ(u) = (ϕ1(u), . . . , ϕn(u)) ∈ C(R,Rn). Recall the notion of entropy
solution of (1) in the sense of S.N. Kruzhkov [4].

Definition 1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called
an entropy solution (e.s. for short) of (1) if for all k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))] ≤ 0 (2)

in the sense of distributions on Π (in D′(Π)).

Condition (2) means that for all non-negative test functions f = f(t, x) ∈
C1

0(Π)
∫

Π

[|u− k|ft + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xf ]dtdx ≥ 0

(here and below “·” denotes the scalar product in Rn).
As was shown in [13] (see also [14]), an e.s. u(t, x) always admits a strong

trace u0 = u0(x) ∈ L∞(Rn) on the initial hyperspace t = 0 in the sense of
relation

ess lim
t→0

u(t, ·) = u0 in L1
loc(Rn), (3)

1This research was carried out with the financial support of the Russian Foundation
for Basic Research (grant no. 09-01-00490-a)
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that is, u(t, x) is an e.s. to the Cauchy problem for equation (1) with initial
data

u(0, x) = u0(x). (4)

Remark 1. It was also established in [13, Corollary 7.1] that, after possible
correction on a set of null measure, an e.s. u(t, x) is continuous on R+ as a
map t 7→ u(t, ·) of R+ into L1

loc(Rn).

When the flux vector is Lipschitz continuous, the existence and unique-
ness of e.s. to the problem (1), (4) are well-known (see [4]). In the case
under consideration when the flux functions are merely continuous, the ef-
fect of infinite speed of propagation for initial perturbations appears, which
leads even to the nonuniqueness of e.s. to problem (1), (4) if n > 1 (see
examples in [5, 6]).

But, if initial function is periodic (at least in n−1 independent directions),
the uniqueness holds: an e.s. of (1), (4) is unique and space-periodic, see
the proof in [11, 12]. In the present paper we assume that the requirement
of space-periodicity holds: u(t, x + ei) = u(t, x) for almost all (t, x) ∈ Π and
all i = 1, . . . , n, where {ei}n

i=1 is a basis of periods in Rn. We assume that
this basis is fixed. Then, without loss of generality, we may suppose that
{ei}n

i=1 is the canonical basis. We denote by P = [0, 1)n the corresponding
fundamental parallelepiped (cube) (which can be identified with the torus).

As was established by G.-Q. Chen and H. Frid [1], under the conditions
ϕ(u) ∈ C2(R,Rn) and

∀(τ, ξ) ∈ Rn+1, (τ, ξ) 6= 0, meas { u ∈ R | τ + ϕ′(u) · ξ = 0 } = 0, (5)

the following decay result holds for space-periodic e.s. u(t, x) of (1), (4):

ess lim
t→∞

u(t, ·) = const =
1

|P |
∫

P

u0(x)dx in L1(P ). (6)

Here |P | denotes the Lebesgue measure of P (in the case under consideration
P is a unite cube and, therefore, |P | = 1).

We will say that equation (1) satisfies the decay property if (6) holds for
every periodic e.s.

In the present paper we propose the following necessary and sufficient
condition for the decay property (by Z we denote the set of integers)

∀(τ, ξ) ∈ R× Zn, (τ, ξ) 6= 0, the function u 7→ τu + ϕ(u) · ξ
is not constant on non-empty intervals, (7)
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in general case of only continuous flux vector-function ϕ(u). Obviously, this
condition is equivalent to the requirement that ∀ξ ∈ Zn, ξ 6= 0, the functions
u 7→ ϕ(u) · ξ are not affine on non-empty intervals.

Thus, our main result is the following theorem.

Theorem 1. Equation (1) satisfies the decay property if and only if condition
(7) holds.

Remark that if the basis of periods is not fixed and may depend on a
solution, Theorem 1 remains valid after replacement of condition (7) by the
following stronger one:

∀(τ, ξ) ∈ R× Rn, (τ, ξ) 6= 0, the function u 7→ τu + ϕ(u) · ξ
is not constant on non-empty intervals. (8)

1 Preliminaries

To prove Theorem 1 we use, as in [1], the strong pre-compactness property
for the self-similar scaling sequence u(kt, kx), k ∈ N. This pre-compactness
property will be obtained under condition (7) with the help of localization
principles for H-measures with “continuous indexes”, introduced in [8]. The
strong pre-compactness property for arbitrary sequences of e.s. of (1) under
exact non-degeneracy condition (8) was derived in [9] (for the case of general
flux vector ϕ = ϕ(t, x, u) see also [10, 15] ). In the present paper we take
into account the periodicity condition, which allow to refine the localization
principle.

First, we recall the original concept of H-measure introduced by L. Tartar
[17] and P. Gerard [3]. Let F (u)(ξ), ξ ∈ Rn, be the Fourier transform of a
function u(x) ∈ L2(RN), S = SN−1 = { ξ ∈ RN | |ξ| = 1 } be the unit
sphere in RN . Denote by u → u, u ∈ C the complex conjugation.

Let Ω be an open domain in RN , l ∈ N, and let Uk(x) =
(
U1

k (x), . . . , U l
k(x)

) ∈
L2

loc(Ω,Rl) be a sequence of vector-functions weakly convergent to the zero
vector.

Proposition 1 (see [17], Theorem 1.1). There exists a family of complex

Borel measures µ = {µij}l
i,j=1 in Ω × S and a subsequence Ur(x) = Uk(x),

k = kr, such that

〈µij, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (U i
rΦ1)(ξ)F (U j

r Φ2)(ξ)ψ

(
ξ

|ξ|
)

dξ (9)
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for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family µ = {µij}l
i,j=1 is called the H-measure corresponding to Ur(x).

Remark 2. In the case when the sequence Uk(x) is bounded in L∞(Ω) it
follows from (9) and the Plancherel identity that prx|µpq| ≤ C meas, and that
(9) remains valid for all Φ1(x), Φ2(x) ∈ L2(Ω), cf. [15, Remark 2(a)]. Here
we denote by |µ| the variation of measure µ (it is a nonnegative measure),
and by meas the Lebesgue measure on Ω.

We need also the concept of measure valued functions (Young measures).
Let Ω ⊂ RN be an open domain. Recall (see [2, 16]) that a measure-valued
function on Ω is a weakly measurable map x 7→ νx of Ω into the space
Prob0(R) of probability Borel measures with compact support in R.

The weak measurability of νx means that for each continuous function
g(λ) the function x → 〈νx, g(λ)〉 =

∫
g(λ)dνx(λ) is measurable on Ω.

Measure-valued functions of the kind νx(λ) = δ(λ− u(x)), where u(x) ∈
L∞(Ω) and δ(λ − u∗) is the Dirac measure at u∗ ∈ R, are called regular.
We identify these measure-valued functions and the corresponding functions
u(x), so that there is a natural embedding of L∞(Ω) into the set MV(Ω) of
measure-valued functions on Ω.

Measure-valued functions naturally arise as weak limits of bounded se-
quences in L∞(Π) in the sense of the following theorem by L. Tartar (see [16]).

Theorem 2. Let um(x) ∈ L∞(Ω), m ∈ N, be a bounded sequence. Then
there exist a subsequence (we keep the notation um(x) for this subsequence)
and a measure valued function νx ∈ MV(Ω) such that

∀g(λ) ∈ C(R) g(um) →
m→∞

〈νx, g(λ)〉 weakly-∗ in L∞(Ω). (10)

Besides, νx is regular, i.e., νx(λ) = δ(λ−u(x)) if and only if um(x) →
m→∞

u(x)

in L1
loc(Ω) (strongly).

In [8] the new concept of H-measures with “continuous indexes” was
introduced, corresponding to sequences of measure valued functions. We
describe this concept in the particular case of “usual” sequences in L∞(Ω).
Let um(x) be a bounded sequence in L∞(Ω). Passing to a subsequence if
necessary, we can suppose that this sequence converges to a measure valued
function νx ∈ MV(Ω) in the sense of relation (10). We introduce the measures
γm

x (λ) = δ(λ− um(x))− νx(λ) and the corresponding distribution functions
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Um(x, p) = γm
x ((p, +∞)), u0(x, p) = νx((p, +∞)) on Ω × R. Observe that

Um(x, p), u0(x, p) ∈ L∞(Ω) for all p ∈ R, see [8, Lemma 2]. We define the set

E = E(νx) =

{
p0 ∈ R | u0(x, p) →

p→p0

u0(x, p0) in L1
loc(Ω)

}
.

As was demonstrated in [8, Lemma 4], the complement Ē = R\E is at most
countable and if p ∈ E then Um(x, p) ⇀

m→∞
0 weakly-∗ in L∞(Ω).

The next result, similar to Proposition 1, has been established in [8,
Theorem 3], [10, Proposition 2, Lemma 2].

Proposition 2. 1) There exists a family of locally finite complex Borel mea-
sures {µpq}p,q∈E in Ω × S and a subsequence Ur(x, p) = Umr(x, p) such that
for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S)

〈µpq, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

Rn

F (Φ1Ur(·, p)(ξ)F (Φ2Ur(·, q)(ξ)ψ
(

ξ

|ξ|
)

dξ;

2) The correspondence (p, q) → µpq is a continuous map from E×E into
the space Mloc(Ω × S) of locally finite Borel measures on Ω × S (with the
standard locally convex topology);

3) For any p1, . . . , pl ∈ E the matrix {µpipj}l
i,j=1 is Hermitian and positive

semidefinite, that is, for all ζ1, . . . , ζl ∈ C the measure

l∑
i,j=1

µpipjζiζj ≥ 0.

We call the family of measures {µpq}p,q∈E the H-measure corresponding
to the subsequence ur(x) = umr(x).

As was demonstrated in [8] the H-measure µpq = 0 for all p, q ∈ E if
and only if the subsequence ur(x) converges as r →∞ strongly (in L1

loc(Ω)).
Observe also that assertion 3) in Proposition 2 implies that measures µpp ≥ 0
for all p ∈ E, and that

|µpq(A)| ≤
√

µpp(A)µqq(A) (11)

for any Borel set A ⊂ Ω × S and all p, q ∈ E. Indeed, this directly follows

from the fact that the matrix

(
µpp(A) µpq(A)
µqp(A) µqq(A)

)
is Hermitian and positive

semidefinite.
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2 Main results

We fix a periodic e.s. u = u(t, x) of (1). Without loss of generality, we may
assume that u(t, ·) ∈ C(R+, L1(P )) ( see Remark 1 above ).

Lemma 1. Let s(u) be a Lipschitz function, v(t, x) = s(u(t, x)), and

v(t, x) =
∑

κ∈Zn

aκ(t)e
2πiκ·x

be the Fourier series of v(t, ·) in L2(Rn), so that aκ(t) =

∫

P

e−2πiκ·xu(t, x)dx.

Then this series converges to v(t, ·) in L2(P ) uniformly with respect to t, that
is, for each ε > 0 there exists a value N ∈ N such that

∑

|κ|>N

|aκ(t)|2 < ε2 ∀t > 0. (12)

Proof. Let u0(x) ∈ L∞(Rn) be a strong trace of u(t, x) on the initial hyper-
plane t = 0 (its existence follows from the results of [13, 14]). Obviously,
u0(x) is a periodic function. Since for each h ∈ Rn u(t, x + h) is a periodic
e.s. of the Cauchy problem for (1) with initial data u0(x + h) then for all
t > 0
∫

P

|v(t, x + h)− v(t, x)|2dx ≤ 2L2‖u‖∞
∫

P

|u(t, x + h)− u(t, x)|dx ≤

2L2‖u‖∞
∫

P

|u0(x + h)− u0(x)|dx (13)

by the L1-contraction property, see for example [7, Corolary 3.3]. Here L
is a Lipschitz constant of s(u), i.e., |s(u2) − s(u1)| ≤ L|u2 − u1| for every
u1, u2 ∈ R.

In view of (13), the set of functions F = { v(t, ·), t > 0 } is precompact
in L2(P ). By Hausdorff’s compactness criterion there exists a finite ε/2-net
{gk(x)}m

k=1 for F in L2(P ). Let bκ,k =
∫

P
gk(x)e−2πiκ·xdx, κ ∈ Zn be Fourier

coefficients of gk(x). Observe that

∑

κ∈Zn

|bκ,k|2 = ‖gk‖2
L2(P ) < +∞.
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Therefore, there exists an integer N such that

∑

|κ|>N

|bκ,k|2 < ε2/4 (14)

for all k = 1, . . . , m. Since {gk(x)}m
k=1 is a ε/2-net for F then for each t > 0

one can find such k ∈ {1, . . . , m} that

∑

κ∈Zn

|aκ(t)− bκ,k|2 = ‖v(t, ·)− gk‖2
L2(P ) < ε2/4. (15)

In view of (14), (15) and Minkowski inequality we find


 ∑

|κ|>N

|aκ(t)|2



1/2

≤

 ∑

|κ|>N

|aκ(t)− bκ,k|2



1/2

+


 ∑

|κ|>N

|bκ,k|2



1/2

< ε,

and (12) follows.

Let v = v(t, x) ∈ L∞(Π) be the function introduced in Lemma 1. We
consider the sequence vk = v(kt, kx), k ∈ N, and the Tartar’s H-measure
µ̄ corresponding to the scalar sequence vr − v∗, where vr = vkr(t, x) is a
subsequence of vk, and v∗ = v∗(t, x) is a weak-∗ limit of vr as r → ∞ in
L∞(Π).

Lemma 2. (i) The function v∗(t, x) = v∗(t) does not depend on x;
(ii) supp µ̄ ⊂ Π× S0, where

S0 =
{

ξ̄/|ξ̄| ∈ S | ξ̄ = (τ, ξ), τ ∈ R, ξ ∈ Zn
}

.

Proof. For m ∈ N we introduce the sets

Sm =
{

ξ̄/|ξ̄| ∈ S | ξ̄ = (τ, ξ), τ ∈ R, ξ ∈ Zn, |ξ| ≤ m
}

.

It is clear that Sm are closed subset of the sphere S (it is the union of the
finite set of circles { (p, qξ/|ξ|) | p2 + q2 = 1 }, where ξ ∈ Zn, 0 < |ξ| ≤ m),
and S0 = ∪∞m=1Sm. Let

v(t, x) = s(u(t, x)) =
∑

κ∈Zn

aκ(t)e
2πiκ·x

7



be the Fourier series for v(t, ·) in L2(P ). Then

vr(t, x) = v(krt, krx) =
∑

κ∈Zn

aκ(krt)e
2πikrκ·x. (16)

It follows from (16) that the function v∗(t, x) does not actually depend on x:
v∗(t, x) = v∗(t), and v∗(t) is the weak-∗ limit of the sequence a0(krt), r ∈ N,
in L∞(R+). Thus, statement (i) is proved.

We denote b0,r = a0(krt) − v∗(t); bκ,r = aκ(krt), where κ ∈ Zn, κ 6= 0.
Let α(t) ∈ C0(R+), and β(x) ∈ L2(Rn) ∩ C∞(Rn) be such that its Fourier
transform is a continuous compactly supported function:

β̃(ξ) =

∫

Rn

e−2πiξ·xβ(x)dx ∈ C0(Rn). (17)

We take R = max
ξ∈supp β̃

|ξ|. Let Φ(t, x) = α(t)β(x). By (16) we find that

(vr(t, x)− v∗(t))Φ(t, x) =
∑

κ∈Zn

bκ,r(t)α(t)e2πikrκ·xβ(x). (18)

Observe that the Fourier transform of e2πikrκ·xβ(x) in Rn coincides with
β̃(ξ − krκ). Since for kr > 2R supports of these functions do not intersect,
then for such r the series

∑

κ∈Zn

bκ,r(t)α(t)β̃(ξ − krκ) (19)

is orthogonal in L2(Rn) for each t > 0. Besides, by the Plancherel equality
‖β̃(ξ − krκ)‖L2(Rn) = ‖β̃‖2 = ‖β‖2, and

∑

κ∈Zn

|bκ,r(t)α(t)|2‖β̃(ξ − krκ)‖2
L2(Rn) =

|α(t)|2‖β‖2
2

∑

κ∈Zn

|bκ,r(t)|2 = |α(t)|2‖β‖2
2 · ‖v(krt, ·)− v∗(t)‖2

L2(P ) < +∞.

Therefore, orthogonal series (19) converges in L2(Rn) for each t > 0. More-
over, by Lemma 1

∑

κ∈Zn,|κ|>N

|bκ,r(t)|2 =
∑

κ∈Zn,|κ|>N

|aκ(krt)|2 →
N→∞

0
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uniformly with respect to t > 0. Hence, series (19) converges in L2(Rn) uni-
formly with respect to t. Since the Fourier transformation is an isomorphism
on L2(Rn), we conclude that series (18) also converges in L2(Rn) (not only
in L2(P )) uniformly with respect to t. Since α(t) ∈ C0(R), this implies that
(18) converges in L2(Π), and

F ((vr − v)Φ)(ξ̄) =
∑

κ∈Zn

F t(αbκ,r)(τ)β̃(ξ − krκ), ξ̄ = (τ, ξ), (20)

where F t(h)(τ) =
∫
R e−2πiτth(t)dt denotes the Fourier transform over the

time variable (we extend functions h(t) ∈ L2(R+) on the whole line R, setting
h(t) = 0 for t < 0). It follows from (20) that for kr > 2R

∫

Rn+1

|F (Φ(vr − v∗))(ξ̄)|2ψ(ξ̄/|ξ̄|)dξ̄ =

∑

κ∈Zn

∫

Rn+1

|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2ψ(ξ̄/|ξ̄|)dξ̄, (21)

where ψ(ξ̄) ∈ C(S). Now we fix ε > 0. Recall that bκ,r = aκ(krt) for κ 6= 0,
and by Lemma 1 there exists m ∈ N such that

∑

κ∈Zn,|κ|>m

∫

Rn+1

|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2dξ̄ =

∑

κ∈Zn,|κ|>m

∫

Π

|α(t)aκ(krt)|2|β(x)|2dtdx ≤

‖Φ‖2
2 · sup

t>0

∑

κ∈Zn,|κ|>m

|aκ(t)|2 < ε. (22)

Now we suppose that ‖ψ‖∞ ≤ 1 and ψ(ξ̄) = 0 on the set Sm. By (22)

∑

κ∈Zn,|κ|>m

∫

Rn+1

|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤ ε. (23)

Since continuous function ψ(ξ̄) is uniformly continuous on the compact S
then we can find such δ > 0 that |ψ(ξ̄1) − ψ(ξ̄2)| < ε whenever ξ̄1, ξ̄2 ∈ S,
|ξ̄1 − ξ̄2| < δ. Suppose that κ 6= 0, β̃(ξ − krκ) 6= 0. Then |ξ − krκ| ≤ R. For
a fixed τ ∈ R we denote ξ̄ = (τ, ξ), η̄ = (τ, krκ). As is easy to compute,

∣∣∣∣
ξ̄

|ξ̄| −
η̄

|η̄|

∣∣∣∣ ≤
2|ξ̄ − η̄|
|η̄| =

2|ξ − krκ|
|η̄| ≤ 2R/|η̄|. (24)
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Observe that for each nonzero κ ∈ Zn |η̄| ≥ kr. Then, by (24) we see that
for all r ∈ N such that kr > 2R/δ

|ψ(ξ̄/|ξ̄|)| = |ψ(ξ̄/|ξ̄|)− ψ(η̄/|η̄|)| < ε. (25)

We use here that η̄/|η̄| ∈ Sm and, therefore, ψ(η̄/|η̄|) = 0. In view of (25),

∑

κ∈Zn,0<|κ|≤m

∫

Rn+1

|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤

ε
∑

κ∈Zn,0<|κ|≤m

∫

Rn+1

|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2dξ̄ ≤

ε‖β‖2
2

∑

κ∈Zn

∫

R
|α(t)bκ,r(t)|2dt = ε‖Φ‖2

2 sup
t>0

∑

κ∈Zn

|bκ,r(t)|2 =

ε‖Φ‖2
2

∑

κ∈Zn

sup
t>0

‖u(krt, ·)− v∗(t)‖2
L2(P ) ≤ Cε‖Φ‖2

2, (26)

where C = 4‖u‖2
∞. Further, it follows from (24) with η̄ = (τ, 0) that for

|ξ| ≤ R and |τ | > R1 = 2R/δ

|ψ(ξ̄/|ξ̄|)| = |ψ(ξ̄/|ξ̄|)− ψ(τ/|τ |, 0)| < ε.

Therefore,
∫

Rn+1

θ(|τ | −R1)|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤ Cε‖Φ‖2
2. (27)

Here θ(r) =

{
1 , r > 0,
0 , r ≤ 0

is the Heaviside function.

For |τ | ≤ R1 we are reasoning in the following way. Since α(t)b0,r(t) =
α(t)(a0,r(t) − v∗(t)) ⇀ 0 as r → ∞, and ‖αb0,r‖1 ≤ C1 = 2‖u‖∞‖α‖1, the
Fourier transform F t(αb0,r)(τ) →

r→∞
0 for all τ ∈ R and uniformly bounded:

|F t(αb0,r)(τ)| ≤ C1. By Lebesgue dominated convergence theorem
∫

R
θ(R1 − |τ |)|F t(αb0,r)(τ)|2dτ →

r→∞
0.

Therefore (recall that ‖ψ‖∞ ≤ 1),
∫

Rn+1

θ(R1 − |τ |)|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤

‖β‖2

∫

R
θ(R1 − |τ |)|F t(αb0,r)(τ)|2dτ →

r→∞
0. (28)
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In view of (27), (28) we find

lim
r→∞

∫

Rn+1

|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤ Cε‖Φ‖2
2. (29)

Using relations (21), (23), (26) and (29), we arrive at the relation

lim
r→∞

∫

Rn+1

|F (Φ(vr − v∗))(ξ̄)|2|ψ(ξ̄/|ξ̄|)|dξ̄ ≤ C2ε, (30)

where C2 is a constant independent on ψ and m. By the definition of H-
measure and Remark 2

lim
r→∞

∫

Rn+1

|F (Φ(vr − v∗))(ξ̄)|2|ψ(ξ̄/|ξ̄|)|dξ̄ =

〈µ̄, |Φ(t, x)|2|ψ(ξ̄)|〉 =

∫

Π×(S\Sm)

|Φ(t, x)|2|ψ(ξ̄)|dµ̄(t, x, ξ̄),

and (30) implies that

∫

Π×(S\Sm)

|Φ(t, x)|2ψ(ξ̄)dµ̄(t, x, ξ̄) ≤ C2ε

for all ψ(ξ̄) ∈ C0((S \ Sm)) such that 0 ≤ ψ(ξ̄) ≤ 1. Therefore, we can claim
that ∫

Π×(S\Sm)

|Φ(t, x)|2dµ̄(t, x, ξ̄) ≤ C2ε,

and since S \ S0 ⊂ S \ Sm, we obtain the relation

∫

Π×(S\S0)

|Φ(t, x)|2dµ̄(t, x, ξ̄) ≤ C2ε,

which holds for arbitrary positive ε. Therefore,
∫

Π×(S\S0)

|Φ(t, x)|2dµ̄(t, x, ξ̄) = 0. (31)

Since for every point (t0, x0) ∈ Π one can find functions α(t), β(x) with the
prescribed above properties in such a way that Φ(t, x) = α(t)β(x) 6= 0 in a
neighborhood of (t0, x0), we derive from (31) the desired inclusion supp µ̄ ⊂
Π× S0.
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We consider the H-measure {µpq}p,q∈E corresponding to a subsequence
ur = ukr(t, x) of the sequence uk(t, x) = u(kt, kx), k ∈ N, defined in accor-
dance with Proposition 2.

Theorem 3. For every p, q ∈ E supp µpq ⊂ Π× S0.

Proof. Let νt,x be a weak measure valued limit of the sequence ur. We
introduce measures

γr
t,x(λ) = δ(λ− ur(t, x))− νt,x(λ),

and set Ur(t, x, p) = γt,x((p, +∞)). Let s(u) ∈ C1(R) be such that its deriva-
tive s′(u) is compactly supported, and vr(t, x) = s(ur(t, x)), r ∈ N. Then
vr ⇀ v∗(t) =

∫
s(λ)dνt,x(λ) as r → ∞ weakly-∗ in L∞(Π) (by Lemma 2(i),

the limit function v∗(t) does not depend on x). Integrating by parts, we find
that

vr(t, x)− v∗(t) =

∫
s(λ)dγr

t,x(λ) =

∫
s′(λ)Ur(t, x, λ)dλ. (32)

Let Φ(t, x) ∈ C0(Π), ψ(ξ̄) ∈ C(S). Then, in view of (32), we find
∫

Rn+1

|F (Φ(vr − v∗))(ξ̄)|2ψ(ξ̄/|ξ̄|)dξ̄ =

∫ ∫
s′(p)s′(q)

(∫

Rn+1

F (ΦUr(·, p))(ξ̄)F (ΦUr(·, q))(ξ̄)ψ(ξ̄/|ξ̄|)dξ̄

)
dpdq. (33)

By the definition of H-measure, for each p, q ∈ E

lim
r→∞

∫

Rn+1

F (ΦUr(·, p))(ξ̄)F (ΦUr(·, q))(ξ̄)ψ(ξ̄/|ξ̄|)dξ̄ = 〈µpq, |Φ(t, x)|2ψ(ξ̄)〉,

Using Lebesgue dominated convergence theorem, we can pass to the limit as
r →∞ in equality (33) and arrive at

〈µ̄, |Φ(t, x)|2ψ(ξ̄)〉 = lim
r→∞

∫

Rn+1

|F (Φ(vr − v))(ξ̄)|2ψ(ξ̄/|ξ̄|)dξ̄ =
∫ ∫

s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̄)〉dpdq, (34)

where µ̄ = µ̄(t, x, ξ̄) is the Tartar’s H-measure, corresponding to the scalar
sequence vr − v∗. Clearly, the equality

〈µ̄, |Φ(t, x)|2ψ(ξ̄)〉 =

∫ ∫
s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̄)〉dpdq
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remains valid for every Borel function ψ(ξ̄). Taking ψ(ξ̄) being the indicator
function of the set S \ S0 and using Lemma 2, we obtain the relation

∫ ∫
s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̄)〉dpdq = 0 (35)

Now we take in (35) s′(p) = lω(l(p − p0)), where p0 ∈ E, l ∈ N, and
ω(y) ∈ C0((0, 1)) be a non-negative function such that

∫
ω(y)dy = 1. Since

the H-measure µpq is strongly continuous with respect to (p, q) at point
(p0, p0), we derive from (35) in the limit as l →∞ that

〈µp0p0 , |Φ(t, x)|2ψ(ξ̄)〉 =

lim
l→∞

l2
∫ ∫

ω(l(p− p0))ω(l(q − p0))〈µpq, |Φ(t, x)|2ψ(ξ̄)〉dpdq = 0.

Since Φ(t, x) ∈ C0(Π) is arbitrary, we conclude that µp0p0(Π× (S \ S0)) = 0
( remark that µp0p0 ≥ 0 ). Hence, for every p = p0 ∈ E supp µpp ⊂ Π × S0.
Finally, as directly follows from (11) for p, q ∈ E supp µpq ⊂ supp µpp ⊂
Π× S0. The proof is complete.

Let us define the minimal linear subspace L = L(p) ⊂ Rn+1 such that
supp µpp ⊂ Π×L. Since ur(t, x) is a bounded sequence of e.s. of equation (1)
from the results of [9] (see Lemma 2 with q = p0 and the proof of Theorem 4)
it follows the localization principles:

Theorem 4. There exists δ > 0 such that the function u 7→ τu + ξ · ϕ(u) is
constant on the interval (p− δ, p + δ) for all ξ̄ = (τ, ξ) ∈ L.

Now we are ready to prove our main Theorem 1.

Proof of Theorem 1. We fix p ∈ E and assume that µpp 6= 0. Then the
space L = L(p) is not trivial: dim L > 0. By Theorem 3 there exists a
nonzero vector ξ̄ = (τ, ξ) ∈ (R× Zn) ∩ L. Then, by Theorem 4 the function
u 7→ τu+ξ ·ϕ(u) is constant on some interval (p−δ, p+δ), which contradicts
to condition (7). Hence µpp = 0 for all p ∈ E. In view of (11) this implies
that the H-measure µpq ≡ 0. Therefore the sequence ur(t, x) converges as
r → ∞ to a function u∗(t, x) ∈ L∞(Π) strongly, in L1

loc(Π). By Lemma 2(i)
the limit function does not depend on x: u∗(t, x) = u∗(t). Passing to the
limit as r →∞ in equalities (ur)t+divxϕ(ur) = 0 in D′(Π) we derive, in view
of the strong convergence ur → u∗, ϕ(ur) → ϕ(u∗) as r → ∞, the relation
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(u∗)t +divxϕ(u∗) = 0 in D′(Π). Since u∗ = u∗(t) we find (u∗)′ = 0 in D′(R+),
which yields u∗ = const. The relation ur(t, x) →

r→∞
u∗ in L1

loc(Π) implies that

for a.e. t > 0 ur(t, x) →
r→∞

u∗ in L1
loc(Rn). By the periodicity, this reads

∫

P

|u(krt, krx)− u∗|dx →
r→∞

0.

Making the change of variables y = krx, we find that for a.e. t > 0
∫

P

|u(krt, y)− u∗|dy =

∫

P

|u(krt, krx)− u∗|dx →
r→∞

0. (36)

We fix such t = t0 > 0. Then for a.e. t > krt0
∫

P

|u(t, y)− u∗|dy ≤
∫

P

|u(krt0, y)− u∗|dy, (37)

by the L1(P )-contraction property. In view of (36) it follows from (37) that
ess lim

t→∞
u(t, x) = u∗ in L1(P ). Finally, by the conservation of “mass” (see

[11]), for a.e. t > 0 ∫

P

u(t, x)dx =

∫

P

u0(x)dx,

where u0(x) is a strong trace of u(t, x) on the initial hyper-space t = 0.
Passing in this relation to the limit as t →∞, we obtain that

u∗ =
1

|P |
∫

P

u0(x)dx =

∫

P

u0(x)dx.

Hence,

ess lim
t→∞

u(t, x) =

∫

P

u0(x)dx in L1(P ),

and decay property (6) holds.
Conversely, assume that equation (1) satisfies the decay property. Let us

demonstrate that it satisfies condition (7). Assuming the contrary, we can
find the segment [a, b], a < b, and a nonzero point (τ, ξ) ∈ R× Zn such that
the function u 7→ τu + ξ · ϕ(u) is constant on the segment [a, b]. Then, as is
easy to verify, the function

u(t, x) =
a + b

2
+

b− a

2
sin(τt + ξ · x)
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is a periodic e.s. of (1), which does not satisfy the decay property. The
obtained contradiction shows that equation (1) satisfies condition (7). We
conclude that this condition is necessary and sufficient for the decay property.
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