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Abstract

A classi�cation in terms of accuracy of �ux limited high resolution schemes in

steep gradient region is done based on two di�erent total variation (TV) stability

region. The dependence of TV stability region on the smoothness parameter is

discussed which relates these two TV stability regions. A common unifying TV

stability region is proposed for both class of schemes. Moreover new �ux limiters,

satisfying the unifying TV stability region are also proposed which are robust and

work e�ciently for both backward (left) and forward (right) moving solution pro�le.

Main signi�cant feature of this work is that it can improve accuracy of all existing

�ux limiters based schemes. Numerical results on linear test problems are given to

support the theoretical discussion.

Keywords High resolution schemes; Flux limiters, TVD region; Smoothness parameter;
Hyperbolic equations.

1 Introduction

It has been around three decade since CFD community is celebrating the class of high
resolution schemes (HRS). The term high resolution scheme coined by Harten represents
a class of conservative schemes which crisply resolve discontinuities like contact, shocks
without exhibiting spurious oscillations and give at least second order of accuracy for
smooth solution [4]. Various approaches and methods have been proposed to design such
schemes e.g. essentially non-oscillatory (ENO) [18], weighted essential non-oscillatory
schemes [5] and high resolution TVD scheme using �ux limiters [20, 7]. A good detail on
these methods can be found in [12, 22, 11]. The high resolution total variation dimin-
ishing (HRTVD) schemes have been used extensively for excellent results and theoretical
support. In this work, focus is on the HRTVD schemes using �ux limiters.

Among all, the approach proposed by Sweby can be considered as a representative
framework for designing Lax-Wendro� type HRTVD schemes using �ux limiters [20, 2,
26, 21]. More importantly a TV stability region is given for �ux limiters to yield total
variation diminishing schemes in [20]. Later a variety of high resolution schemes as well
new �ux limiters [16, 17, 9, 13, 8] are proposed to improve numerical results in one way or
other. Recently a comparative study of various �ux limiters is done for solid gas reaction
problem in [6]. In fact a detailed study on desirable properties of these �ux limiters to
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yield high resolution TVD schemes are given in [1, 14, 24]. The most unique feature for
all these limiters is that they satisfy either completely or for up to a �nite positive value
of smoothness parameter, the TVD stability region proposed in [20]. Despite of such
tremendous development in the area of TVD schemes, it seems that attempts are not
made to �nd alternate TVD region except in [10, 21]. Using di�usive centered di�erence
�rst order �ux, centered high resolution TVD schemes and �ux limiters are proposed in
[21]. Also a Courant number dependent TV stability region is given for centered limiters
which reduces to Courant number independent TV stability region given in [20]. In [10],
a general framework for constructing second order upwind high resolution TVD schemes
using �ux limiters. Also an entirely new TV stability region and a class of new limiters
for proposed schemes are designed which satis�es the proposed TVD region. As far the
classi�cation of such high resolution schemes as well for �ux limiters are concern few
attempts are made. Such classi�cations, (to the best of knowledge of author) are mostly
based on central and upwind nature of discretization [26, 21].

The �ow of the paper goes as follows: In section 2, we give a compact detail on
construction of �ux limiter based high resolution schemes. In section 3, we characterize
high resolution TVD schemes based on TV stability region for �ux limiters in to two
class. This classi�cation make sense as schemes of one class approximate the solution
in the region of steep gradient in opposite way to the scheme of another class. An
investigation on the relation between the TVD region of high resolution schemes using
�ux limiters and its dependence on the smoothness parameter is done in section 4 which
give an unifying relation for the known TVD region for �ux limiter proposed in [20] and
[10]. This uni�cation enable the chance to use any �ux limiters with both class of high
resolution schemes by treating smoothness parameter accordingly. An unifying universal
TV stability region is proposed along with new universal �ux limiters which are shown to
works e�ciently and are independent of choice of measure of smoothness for both class
of schemes.

2 High resolution TVD schemes using �ux limiters

In this section, we give a brief idea on the construction of high resolution schemes using
�ux limiters for the completeness and clarity on the classi�cation of these schemes. For
present work we discuss the idea for linear hyperbolic problem though it holds for non-
linear case also.

∂u

∂t
+
∂f(u)

∂x
= 0, f(u) = au, 0 6= a ∈ R, (x, t) ∈ R× R+. (1)

where u denotes convection variable and characteristics speed associated with (1) a is
constant. Divide the spatial and temporal space into N equal length cells [xi− 1

2
, xi+ 1

2
], i =

0, 1, . . . N and M intervals [tn, tn+1], n = 0, 1, . . . ,M respectively, where xi± 1
2
is called

cell interface and tn denotes the nth time level. We know that conservative numerical
approximation for above equation is obtained by

ūn+1
i = ūni − λ

(
Fi+ 1

2
−Fi− 1

2

)
(2)

where ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn and λ = ∆t

∆x
. Fi+ 1

2
is time-integral average
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of �ux function at cell interface and ūni is spatial cell-integral average de�ned as,

ūni ≈
1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx, Fi+ 1
2
≈ 1

∆t

∫ tn+1

tn
f(u(xi+ 1

2
, t))dt. (3)

The choice of numerical �ux function Fi± 1
2
govern the spatial performance like accuracy,

dissipation, numerical oscillations or shock capturing feature of resulting conservative
scheme.

De�nition 2.1. A conservative scheme (2) is said to be TVD if TV (ūn+1) ≤ TV (ūn), ∀n,

where total variation of grid function ū at time level n is de�ned as TV (ūn) =
+∞∑
i=−∞

∣∣ūni+1 − ūni
∣∣.

The general idea of constructing high resolution scheme is to de�ne its numerical �ux
Fhrs
i+ 1

2

as a combination of a dissipative non-oscillatory low order numerical �ux F l
i+ 1

2

and

non-dissipative oscillatory high order �ux Fh
i+ 1

2

using �ux limiter function φ as follows,

Fhrs
i+ 1

2
(ri) = F l

i+ 1
2

+ φ(ri)
(
Fh
i+ 1

2
−F l

i+ 1
2

)
. (4)

The main characteristic of φ is that it measures the smoothness of the solution pro�le.
In general limiter φ is taken as function of smoothness parameter r which is again a
function of ratio of consecutive gradients of the solution of (1).

The �ux limiter φ is de�ned in such a way that it diminish to zero in the solution region
with extreme points or discontinuities, hence scheme results into �rst order dissipative
approximation for such solution region. Limiter φ takes a value close to one to give high
accurate approximation scheme for smooth region of solution.

3 Classi�cation

Few attempts are made to classify high resolution TVD scheme and �ux limiters but
mostly are based on di�erencing. They are classi�ed into symmetric schemes based on
central di�erence in [26]. Similarly upwind schemes can be classi�ed based on up-winding
[23, 7, 10]. In [25], �ux limiters are also classi�ed as symmetric and upwind type and few
symmetric �ux limiters are proposed. A qualitative and quantitative comparison is done
on some TVD Lax-Wendro� methods using centered and upwind biased �ux limiters
in [15]. In [21], a classi�cation of HR scheme is done in to centered and upwind TVD
schemes which is based on the choice of di�usive �rst order accurate �ux F l

i+ 1
2

in the

construction (4). In case F l
i+ 1

2

is chosen to be a �rst order upwind �ux then the resulting

HR scheme is classi�ed as upwind TVD scheme using upwind limiter φu whilst called
centered TVD scheme using centered limiter φc if F l

i+ 1
2

is taken as numerical �ux of any

�rst order centered monotone scheme such as Lax-Friedrichs, FORCE [3] and Godunov's
�rst order centered scheme [19]. Moreover Courant number dependent TVD stability
region for these centered HR schemes is also derived. The key of construction of centered
�ux limiter φc is the following explicit relation of it with upwind �ux limiter φu

φc = φ̂g + (1− φ̂g)φu, (5)
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with

φ̂g =

{
0, r ≤ 1,
φg, r > 1.

where φg is de�ned as Godunov point which depends on Courant number and varies
with the choice of �rst order monotone centered �ux F l [21]. Note that in [21], it is
shown that the TVD stability region for proposed centered TVD schemes can be reduce
to Courant number independent TVD region given by Sweby. Hence one can consider the
TV stability region in [20] a generic TV stability region for most centered Lax-Wendro�
type TVD schemes. Recently a new TV stability region is given for proposed upwind
based HR schemes with a class of �ux limiters in [7]. This TVD region is entirely di�erent
from the one in [20] for same smoothness parameter. In the following we discuss both
di�erent stability region and formulation.

3.1 Classi�cation based on two TV stability regions

We can classify the HRTVD schemes based on their TV stability region. This classi�ca-
tion quanti�es the schemes in terms of order of accuracy as scheme of one class approx-
imates the steep gradients solution region in opposite way compared to the scheme of
other class. For discussion we take combination of numerical �ux function of �rst order
upwind and three representative second order accurate schemes viz Lax-Wendro�, second
order upwind and Beam-Warming schemes respectively to construct �ux limited schemes
for linear problem (1)

The numerical �ux function Lax-Wendro� �ux limited high resolution scheme can be
constructed as in [20]

FLxWflm

i+ 1
2

(ri) = aūi +
1

2
a(1− aλ)φ(ri) (ūi+1 − ūi) , a > 0, (6)

Numerical �ux function of second order upwind �ux limited method in [7] can be written
as

F IIupflm
i+ 1

2

(ri) = aūi +
1

2
aλψ(ri) (ūi − ūi−1) , a > 0. (7)

Similar to second order upwind �ux limited method one can obtain Beam-Warming �ux
limited method

FBWflm

i+ 1
2

(ri) = aūi +
1

2
a(1− aλ)ψ(ri) (ūi − ūi−1) , a > 0. (8)

where φ, ψ are �ux limiters and ri is the smoothness parameter which measure the
smoothness of solution and de�ned as function of consecutive gradients. On Uniform grid
it is,

ri =
ūi − ūi−1

ūi+1 − ūi
. (9)

In order to ensure the TV stability of resulting HR schemes following conditions are given
on �ux limiters φ and ψ respectively in [20, 7] as follows.

Theorem 3.1. The resulting conservative scheme using numerical �ux function FLxWflm

i+ 1
2

(ri)

is TV stable under the CFL condition 0 ≤ aλ ≤ 1, a ≥ 0 if the �ux limiter φ(r) satisfy,

0 ≤ φ(r)

r
≤ 2 and 0 ≤ φ(r) ≤ 2. (10)
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Theorem 3.2. The resulting conservative scheme using numerical �ux function F IIupflm
i+ 1

2

(ri)

is TV stable under the CFL condition 0 ≤ aλ ≤ 1
2
, a ≥ 0 if the �ux limiter ψ(r) satisfy,

0 ≤ rψ(r) ≤ 2 and 0 ≤ ψ(r) ≤ 2. (11)

Remark 1. It can be shown that the Beam-Warming �ux limited scheme using numerical
�ux function FBWflm

i+ 1
2

(ri) is TV stable under the CFL condition 0 ≤ aλ ≤ 1, a ≥ 0 if the

�ux limiter ψ(r) satisfy,

0 ≤ rψ(r) ≤ 2 and 0 ≤ ψ(r) ≤ 2. (12)

The distinct TV stability region for the �ux limiter φ and ψ can rewritten as,

R1 = {(r, φ) ∈ R×R : 0 ≤ φ(r) ≤ 2 max(r, 0) and 0 ≤ φ(r) ≤ 2} . (13)

R2 :

{
(r, ψ) ∈ R×R : 0 ≤ ψ(r) ≤ 2

max(r, 0)
and 0 ≤ ψ(r) ≤ 2

}
. (14)

Note that for same measure of smoothness parameter r, TV stability regions in (13) and
(14) (shown in Figure 1) are di�erent. Let class of high resolution total variation stable
schemes with R1 and R2 stability region be denoted by CR1 and CR2 respectively. This
classi�cation make sense as in rapidly monotone increasing solution region i.e. 1 >> r →
0+, limiters for CR1 schemes must tend to 0 and give �rst order approximation whereas
limiters for CR2 schemes can give at least second order accurate approximation. On the
other hand rapidly monotone decreasing solution region i.e. 1 << r → +∞, limiters for
CR2 class tend to 0 and result into �rst order approximation whilst limiters for CR1 can
give higher accuracy (See Figure 3 for numerical illustration). A class of �ux limiters
(δ−limiters, say) which ensure second order of accuracy in smooth region and satisfy TV
stable region R2 is also given in [7] as follows,

ψδ(r) =

{
0, r ≤ 0,
min

[
2, 2

r
, 1+δ
δ+r

]
, r > 0, for any �xed δ ∈ [0,∞).

(15)

Also analogous to classical Minmod limiter i.e,

φmmb (r) = max (min (1, br) , 0) , 1 ≤ b ≤ 2 (16)

one can de�ne a di�usive limiter say, Rk −minmod, which satisfy (14),

ψmmb (r) = max

(
min

(
1,
b

r

)
, 0

)
, 1 ≤ b ≤ 2 (17)

Geometrically TV stability region (13) along with some of the �ux limiters is drawn in
Figure 1(a). The region (14) with limiters (15) for δ = 1, 9 and limiter (17) is shown in
Figure 1 (b).

4 TV stable region: Dependence on smoothness pa-

rameter

The smoothness parameter r taken in the formulation of HR scheme in [20] and [7] is
de�ned exactly same way as in (9) and despite of same r both schemes have di�erent TV
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Figure 1: TVD regions and some limiter passing through them: R1 (left) and R2 (right)

stability region. In fact one can also take the measure of smoothness as si =
1

ri
i.e.,

si =
ūi+1 − ūi
ūi − ūi−1

. (18)

This smoothness measure s is indeed taken in literature but to preserve TV stability
region R1 or R2 for CR1 or CR2 schemes to construct variant of these respective HR
schemes for convection equation with negative characteristic speed. In the following, TV
stability region for resulting HR schemes is investigated while s is used instead of r as
measure of smoothness in (6) and (7) in case of positive characteristic speed.

Theorem 4.1. The resulting conservative scheme using numerical �ux function FLxWflm

i+ 1
2

(si)

is TV stable under the CFL condition 0 ≤ aλ ≤ 1, a > 0 if the �ux limiter φ(s) satisfy,

0 ≤ sφ(s) ≤ 2 and 0 ≤ φ(s) ≤ 2. (19)

Proof. The resulting scheme can be written in following conservative I-form,

ūn+1
i = ūni + αi+ 1

2
∆+ū

n
i − αi− 1

2
∆−ū

n
i , (20)

where ∆+ū
n
i = ∆−ū

n
i+1 = ūni+1−ūni , αi+ 1

2
= 0 and βi− 1

2
= λ a

(
1− 1

2
(1− λ a)(φi−1 − φisi)

)
.

A su�cient condition for any scheme of the form (20) to be TVD is given in [4] as follows,

αi+ 1
2
≥ 0, βi− 1

2
≥ 0, 0 ≤ αi+ 1

2
+ βi− 1

2
≤ 1. (21)

Under the linear stability condition 0 ≤ λa ≤ 1, inequalities (21) satisfy if,

−2 ≤ −φi−1 + φisi ≤ 2, ∀i.

which satis�es (after dropping out index i) if,

0 ≤ sφ(s) ≤ 2 and 0 ≤ φ(s) ≤ 2.

which completes the proof.

Similarly following theorem can be proved
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Theorem 4.2. The resulting conservative scheme using numerical �ux function F IIupflm
i+ 1

2

(si)

is TV stable under the CFL condition 0 ≤ aλ ≤ 1
2
, a > 0 if the �ux limiter ψ(s) satisfy,

0 ≤ ψ(s)

s
≤ 2 and 0 ≤ ψ(s) ≤ 2. (22)

In case of negative characteristic speed i.e., a ≤ 0 in (1) we have following analogous
results to ensure the TV stability of schemes.

Corollary 4.3. The resulting conservative scheme using numerical �ux function FLxWflm

i+ 1
2

(ri+1)

is TV stable under the CFL condition −1 ≤ aλ ≤ 0, a < 0, if the �ux limiter φ(r) satisfy,

0 ≤ rφ(r) ≤ 2 and 0 ≤ φ(r) ≤ 2. (23)

Corollary 4.4. The resulting conservative scheme using numerical �ux function FLxWflm

i+ 1
2

(si+1)

is TV stable under the CFL condition −1 ≤ aλ ≤ 0, a < 0, if the �ux limiter φ(s) satisfy,

0 ≤ φ(s)

s
≤ 2 and 0 ≤ φ(s) ≤ 2. (24)

Corollary 4.5. The resulting conservative scheme using numerical �ux function F IIupflm
i+ 1

2

(ri+1)

is TV stable under the CFL condition −1
2
≤ aλ ≤ 0, a < 0 if the �ux limiter ψ(r) satisfy,

0 ≤ ψ(r)

r
≤ 2 and 0 ≤ ψ(r) ≤ 2. (25)

Corollary 4.6. The resulting conservative scheme using numerical �ux function F IIupflm
i+ 1

2

(si+1)

is TV stable under the CFL condition −1
2
≤ aλ ≤ 0, a < 0 if the �ux limiter ψ(r) satisfy,

0 ≤ sψ(s) ≤ 2 and 0 ≤ ψ(s) ≤ 2. (26)

Remark 2. All the above results for second order upwind �ux limited method hold true
for Beam-Warming �ux limited method under the CFL condition |aλ| ≤ 1.

Remark 3. Based on above theorems and analogous corollaries, dependence of TV sta-
bility region for �ux limiter on the measure of smoothness parameter is evident. It can be
observed that if a �x measure of smoothness i.e, r (or s) is taken for convection equation
irrespective of sign of characteristics speed then HR schemes which belong to class CR1

(or CR2) for positive characteristic speed will fall in to class CR2(or CR1) respectively for
negative characteristic speed.

4.1 Unifying TV stability region

It can be easily observed that all the �ux limiters developed so far for TV stability region
R1 to yield TV stable CR1 schemes fail to preserve TV stability when applied on the
schemes of class CR2 . Similarly limiters (15) and (17) developed for TV region R2 to
yield TV stable CR2 schemes fail to give TV stability for schemes of class CR1 . A unifying
TV stable region can be deduce for both class of HR schemes as follows,

Rc =

{
(θ, ξ) ∈ R×R : 0 ≤ θ ξ(θ) ≤ 2 and 0 ≤ ξ(θ)

θ
≤ 2

}
, (27)
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Figure 2: Unifying TVD region along with �ux limiters

where θ = r, s and ξ = φ, ψ. Note that, the above unifying common TV stability region
Rc shown in Figure 2 is more restrictive compared to R1 or R2 but fortunately give
enough freedom to design �ux limiters which satisfy this common TV stable region and
guarantee second order of accuracy for smooth solution pro�le i.e near r ≈ 1. We propose
�ux limiters as follows,

ξ(θ) = ξn(θ) =
θ + |θ|
θn + 1

, n ≥ 2, lim
θ→+∞

ξ → 0. (28)

Note that for n = 1, we obtain Vanleer �ux limiter while for r > 0, n = 2 we obtain
van-Albada2 type limiter (ξ2(θ)) [8]. A more compressive limiter (ξcl(θ)) can be de�ned
as

ξ(θ) = ξcl(θ) = max

[
min

{
2θ,

2

θ
, 1

}
, 0

]
. (29)

In Figure 2 �ux limiter (28) for n = 2 and limiter (29) are also shown.

Remark 4. It can be easily observed that the proposed unifying stability region Rc is
invariant under any transformation i.e. with respect to change in de�nition of measure
of smoothness or change in the sign of characteristic speed, hence can be considered as
universal TV stability region for high resolution total variation diminishing schemes using
�ux limiters.

5 Numerical results

Our aim by giving numerical results is to show the behavior of both class of scheme in
near discontinuities or steep gradient region as discussed in section 3.1. We consider the
linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0, (30)

where a is characteristic speed. In the following test cases we take equation (30) with
di�erent initial conditions and characteristic speed to show the numerical result which
justify the above discussion. In all the presented Figures following name convention is
used: Results by centered TVD high resolution scheme for three choice of F l as centered
�rst order monotone �ux viz: Lax-Friedrichs, FORCE and Godunov [19] are shown by
c-lxf, c-force and c-god respectively. Results obtained by upwind �ux limited method (6),
(7) and (8) are shown by LxW�m, IIup�m, BW�m.
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5.1 Test for accuracy in steep gradient or discontinuous region

Consider (30) with following initial condition u(x, 0) =

{
1, if |x| ≤ 1

3
,

0, else.
and periodic

boundary conditions. This test case has two propagating contact discontinuities espe-
cially taken to depict the accuracy of both class of schemes on capturing the left and
right discontinuities in the solution pro�le. Numerical results obtained with LxW�m and
BW�m using Minmod type limiters (16) and (17) respectively are shown in Figure 3. Pa-
rameter b = 2 is taken in these limiters as it ensures second order accuracy for maximum
range of r ≥ 0.

It can be easily observe from Figure 3(a) and 3(b) that scheme LxW�m of class CR1

give di�usive low order approximation for top of left jump and bottom of right jump
whilst bottom of left jump and top of right jump is approximated with higher accuracy.
On the other hand scheme BW�m of class CR2 show opposite behavior on left and right
jumps.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

 

 
exact
lxwflm

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

 

 
exact
bwflm

(a) (b) (c)

Figure 3: Numerical result of LxW and BW �ux limited method with minmod limiters
φmm2 (r) and ψmm2 (r) respectively with a λ = 0.8, N = 50, T = 10.0, N = 100.

Remark 5. Numerical results in Figure 3 show that near discontinuities or steep gradient
region both class of schemes give opposite approximation in terms of accuracy which
supports the discussion in section 3.

5.2 Results obtained by universal limiters

5.2.1 Smooth solution case: Separating peaks

In this test case we take the characteristic speed given by a =

{
−1, x < 0,

1, x ≥ 0.
. Consider

the following smooth initial condition with steep pro�le, u(x, 0) =

{
|sin(10π x)|, 0.1 ≤ |x| ≤ 0.2,

0, else.
.

Note that the initial solution has two upward peaks which convect in opposite direction
and separate due to positive and negative characteristic speed a = ± 1 on right and left
side of the point x = 0. For the computation of results given in Figure 4 and Figure 5,

same measure of smoothness i.e., r =
∆−ūi
∆+ūi

for positive as well negative characteristic

speed is used. In Figure 4, numerical results obtained by centered and upwind �ux limited
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methods are given for CFL aλ = 0.45 at time T = 1.0. Note that upto time T = 1.0 non-
zero initial pro�le does not touch the computational boundary which make it well-posed.
In the computation compressive limiter ξcl is used. Note that since centered �rst order
�ux FORCE is di�usive compared to the GODUNOV and �rst order upwind �ux hence
the numerical results c-force is more dissipative compared to the results of upwind TVD
schemes in Figure 4(b). Note that the high order Lax-Wendro� numerical �ux is taken
for all these schemes except in IIup�m which takes second order upwind �ux. Figure 5(a)
and 5(b) show the results obtained by scheme LxWflm and IIupflm using Rk-minmod
(ψmm1 (r)) in (17) and classical minmod (φmm1 (r)) limiter (17) and (16) for smoothness
parameter r de�ned in (9). Solution is computed for T = 1.0, CFL = 0.25, N = 400. It
can be seen that both the schemes captures the right moving peak with a TVD approxi-
mation whereas give oscillatory approximation for left moving peak. These results show
that the �ux limiter designed for TVD region (13) or (14) fails for schemes of class CR1

or CR2 for a �xed de�nition of measure of smoothness for both direction of characteristic
speed. In Figure 6, we give zoom view of the numerical results obtained by upwind high
resolution schemes [7] and [20]. In order to compare the unifying limiters with minmod
limiters (ψmm1 (θ) and φmm1 (θ)) with respective schemes the measure of smoothness is taken
depending on direction of �ow i.e.,

θ =

{
r, if a ≥ 0,
s, if a < 0,

(31)

where r and s are de�ned as (9) and (18) respectively. These results show that the limiter
ξ2(θ) give comparable results with minmod type limiters whilst ξcl(θ) give less dissipation
and better approximation for the solution.
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(a) (b)

Figure 4: Numerical result of centered and upwind high resolution scheme using com-
pressive limiter (ξcl(r)) with a λ = 0.45, T = 1.0, N = 400.

5.2.2 Linear convection: Contact Discontinuity case

In order to show the performance of proposed limiter (ξcl) for discontinuous solution
pro�le, we consider the equation (30) with a = 1.0 and the following discontinuous initial
condition,

u(x, 0) =

{
0, if 0 ≤ x ≤ 0.4,
1, else.

(32)
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Figure 5: Numerical result of upwind high resolution scheme using minmod type limiter
for data a λ = 0.45, T = 1.0, N = 400
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Figure 6: Solution by upwind high resolution schemes IIup�m and LxW�m using limiter
ξ2(θ) (28) for n = 2, limiter ξcl(θ) in (29) and minmod type limiters.

In Figure 7(a), zoom in solution obtained by some high resolution schemes using com-
pressive limiter φcl in (29) at time T = 2.0 is given. The computational domain in space
[0, 3] is divided into N = 90 intervals for CFL = 0.8. Result shows that even for limiter
φcl scheme LxW�m of class CR1 capture the foot of the left discontinuity much crisply
compared BW�m of class CR2 but for foot of right discontinuity is captured in opposite
way. This observation is more prominent in Figure 7(b) as scheme IIup�m of class CR2

capture the top most corner of left discontinuity crisply but little dissipation is observed
on top of right discontinuity. For the bottom of discontinuities IIup�m shows opposite
nature. Similar observation can be deduced for result obtained by LxW�m. In Figure
7(b), for data N = 150, a λ = 0.45, we show the result obtained by upwind TVD schemes
IIup�m-r (LxW�m-r) and IIup�m-s (LxW�m-s) using universal limiters ξ2(θ) for both
choice of smoothness parameter θ = r and θ = s respectively. Result shows that the
universal limiter ξ2 is independent of choice of smoothness parameter. Note that the
change in choice of measure r or s interchange the TV stability region for one class (e.g.,
CR1) to another class (e.g., CR2).

Remark 6. Using these universal limiters ξ2(θ) and ξcl(θ), we obtained exactly same
results by centered TVD schemes for both choice of smoothness measure (r or s) .
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Figure 7: Numerical result at T = 2.0 obtained by �ux limited schemes using limiter (a)
ξcl(r) aλ = 0.8 and N = 90, (b) ξ2(θ), aλ = 0.45 and N = 150.

6 Conclusion

In this work, �ux limiter based high resolution schemes are investigated and classi�ed
based on two distinct TV stability regions. It is shown that both class of schemes give crisp
resolution for discontinuities in opposite way. Universal TV stability region is proposed
along with limiters which are some what di�usive but give better accuracy compared to
classical minmod limiter.
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