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Abstract

This article compares three popular notions of admissibility for
weak solutions of the compressible isentropic Euler equations of gas
dynamics: (i) the viscosity criterion, (ii) the entropy inequality (the
thermodynamically admissible isentropic solutions),(iii) the viscosity-
capillarity criterion. An exact summation of the Chapman-Enskog
expansion for Grad’s moment system suggests that it is the third cri-
terion that is representing the kinetic theory of gases. This in turn
may suggest that the cause of non-uniqueness for the weak solutions
satisfying the second criterion is that the entropy inequality is not fully
capturing information from kinetic theory.
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Introduction

In a recent and noteworthy paper [1] C. de Lellis and L. Szekelyhidi, Jr.
have produced an infinite number of weak solutions to the initial value
problem for the isentropic Euler equations of gas dynamics in dimension
n ≥ 2. Furthermore these solutions satisfy an “entropy” inequality (termed
“the thermodynamically admissible” inequality in the monograph of C. M.
Dafermos [2]). Since physical reality would suggest uniqueness we can logi-
cally suppose (at least) the following possibilities:

(a) There are no isentropic gases and non-uniqueness is due to an error in
this basic (but unrealistic) model in continuum mechanics.
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(b) The admissibility criteria used in [1] is inadequate and does not reflect
physical reality.

Since the mathematical community would be hard put to abandon one
of its favorite sets of equations (compressible Euler or p-system) it seems to
me useful in this article to review three popular admissibility criteria: (i) the
viscosity criterion, (ii) the above mentioned ”thermodynamically admissible
”solutions satisfying an ”entropy” (in fact energy) inequality, and (iii) a gen-
eralization of (i) obtained by including Korteweg’s theory of capillarity [3].
In particular since (i) and (ii) are built upon the compressible Navier Strokes
equations which itself is claimed to have derived from the Chapman-Enskog
expansion of Boltzmann’s kinetic theory, it seems a valuable exercise to re-
view the basis of the Chapman-Enskog expansion. Specifically I note that
the Chapman-Enskog expansion for the linearized Grad moment approxima-
tion to the Botlzmann equation when exactly summed (following A. Gorban
and I. Karlin [4]-[6]) does not yield the compressible Navier Stokes equations
but Kosteweg theory. It is my conjecture that the non-uniqueness of C. de
Lellis and L. Szekelymdi, Jr. stems from their choice of admissibility crite-
ria. In fact Korteweg theory by definition would require a bounded initial
capillarity energy, i.e. gradient estimates on the density for any approxi-
mating sequence of initial data. Hence highly oscillatory initial data will be
physically excluded on this basis.

The paper is divided into nine sections after this introduction:

1. Balance Laws

2. Admissibility criteria for the compressible isentropic Euler equations,
n ≥ 2

3. A comparison of admissibility criteria

4. The Chapman-Enskog expansion for the Boltzmann equation

5. Grad’s 13 moments

6. The Chapman-Enskog expansion for Grad’s 10 moment system

7. The dispersion relation, hydrodynamics and the entropy equality

8. Conclusion

9. References
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1 Balance Laws

In this section we recall the balance laws of compressible gas dynamics. We
denote by

ρ: fluid density, ρ ∈ R,
u: fluid velocity, u ∈ R3,

T : Cauchy stress tensor, T ∈ {symmetric 3 × 3 matrices}.

For the fluid, position in space is given by x ∈ R3 and time t > 0. We
consider for simplicity only mechanical theory since the balance laws of
primary interest are the isentropic Euler equations. In this case the relevant
balance laws are conservation of mass and linear momentum which in the
absence of body forces are

∂tρ + ∂i(ρui) = 0 (1.1)

∂t(ρui) + ∂j(ρuiuj) = ∂jTij (1.2)

where the summation convention is used.
A classical elastic fluid is given by the constitutive relation

TE
ij = −ρψ′(ρ)δij

when δij is the Kronecker delta and ρ2ψ′(ρ) = p(ρ) is the pressure. This of
course includes the special case of isentropic and isothermal gas dynamics
where p(ρ) = ργ , γ > 1, γ = 1, respectively. The viscous stress tensor of
Cauchy and Poisson is given by

T v
ij = λ(trD)δij + 2µDij ,

where

Dij =
1

2
(∂jui + ∂iuj)

and λ, µ are viscosity coefficients. for simplicity we make the usual choice

λ =
−2

3
µ, µ > 0.

The Dutch physicist Korteweg [3] proposed modeling capillarity effects via
the capillarity stress tensor for which we take the special form

T k
ij = αρ∂i(ρ∂jρ) − αρ∂iρ∂jρ
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(see the paper by J.E. Dunn and J. Serrin[7] for a discussion of the general
form of Korteweg’s theory), where the quantity αρ is the surface tension
coefficient and α > 0 is a constant.

We then call the cases
T = TE , an elastic fluid ;
T = TE + T v , a viscous elastic fluid;
T = TE + T k , a capillarity elastic fluid;
T = TE + T v + T k , a Korteweg fluid.

In each of the above cases the balance laws of mass and momentum imply
an additional balance law of mechanical energy (an ”entropy” equality).
Since the Korteweg fluid’s ”entropy” equality includes the others as special
cases we record only its balance of mechanical energy:

∂t

(
1

2
ρ|u|2 + ρψ(ρ) +

α

2
ρ∂iρ∂jρ

)

+∂j

[
uj

(
1

2
ρ|u|2 + ρψ(ρ) − T k

ij − T v
ij − TE

ij −
α

2
ρ∂iρ∂iρ

)

+αρ(∂tρ∂jρ + ui∂iρ∂jρ) + µ∂i(uiuj)
]

= −(λ + µ)(∂iui)
2 − µ(∂jui)(∂jui), (1.3)

where we recall the choice λ = −2
3µ yields λ + µ = 1

3µ > 0.

2 Admissibility criteria for the compressible isen-

tropic Euler equations, n ≥ 2

The balance laws (1.1), (1.2) with T = TE are the Euler equations of
compressible gas dynamics. Local (in time) smooth solutions for the case
p′(ρ) > 0 are known to exist and be unique (see for example C.M. Dafermos
[2]). For the case n ≥ 2 little is known about weak solutions to the initial
value problem. One approach to admissibility of weak solutions is to use
our hierarchy of continuum models and make the following definitions.

The viscosity( respectively viscosity-capillarity) admissibility crite-
rion admits those weak solutions which are limits of smooth solutions of the
viscous elastic (respectively Korteweg) fluid which are obtained when µ → 0
(respectively µ, α → 0).

An immediate consequence of the viscosity admissibility criterion is that
weak solutions satisfying the viscosity admissibility criterion must satisfy
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the inequality.

∂t

(
1

2
ρ|u|2 + ρψ(ρ)

)
+ ∂j

((
1

2
ρ|u|2 + ρψ(ρ) + p(ρ)

)
uj

)
≤ 0 (2.1)

in the sense of distributions (again we see C.M. Dafermos [2] section 3.3).
The“entropy” inequality, more exactly an energy dissipation inequality, can
itself be used as admissibility criterion which again following C.M. Dafermos
we will call a thermodynamically admissible solution.

The viscosity-capillarity criterion unlike the viscosity criterion will not
yield the inequality (2.1) since any weak limiting process will generally pro-
vide defect measures from the weak limits of the terms






α ρ ∂iρ ∂iρ,

α ρ ∂tρ ∂jρ

α ρ ui ∂iρ ∂jρ

α ρ uj ∂iρ ∂iρ

(2.2)

as α → 0. Furthermore even to make sense of initial data for an approx-
imating sequence of solutions required by the viscosity-capillarity criterion
the initial data would have to satisfy

∫ (
1

2
ρ|u|2 + ρψ(ρ) +

α

2
ρ∂iρ∂iρ

)
dx < ∞. (2.3)

This would clearly penalize high oscillatory initial data. Hence any ap-
proximation scheme based on initial data for which (2.3) does not hold would
clearly be inadmissible according to the viscosity-capillarity criterion. In fact
the only way that solutions of a Korteweg fluid will satisfy the ”entropy”
inequality (2.1) is if all the terms in (2.2) will approach zero in the sense of
distributions.

3 A comparison of admissibility criteria

In section 2 three admissibility criteria for the higher dimensional Euler
equations have been presented. Two of them, the viscosity and viscosity-
capillarity criteria, require the relevant weak solution to be constructed by
very restrictive approximation schemes. On the other hand the thermody-
namic admissibility criteria of inequality (2.1) (in the spirit of P.D. Lax [8])
has the distinct advantage of being defined independently of the method of
construction of the weak solution. Unfortunately this generality is also its
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main disadvantage. Specifically the beautiful result of C. de Lellis and L.
Szekelyhidi, Jr. [1] tells us:

Theorem. In n ≥ 2 space dimensions and for any given p(ρ), p′(ρ) > 0,
there exists bounded initial data (ρ0, u0) with ρ0 > c > 0 for which there
are infinitely many bounded thermodynamically admissible solutions (ρ, u)
of the compressible isentropic Euler equations with ρ > c > 0.

The above mentioned theorem seems to reject (at least in its present
form) the ”thermodynamic admissibility criterion” given by inequality (2.1).
What can be said for the other two? We know in one space dimension they
have been remarkably successful in ruling out unphysical solutions to gas
dynamics and even providing existence of solutions as well (see G.-Q. Chen
and M. Perepelitsa [9] for a recent contribution). Furthermore the viscosity-
capillarity criterion allowed for a consideration of the case when p′(ρ) may
change signs as in the materials exhibiting change of phases (see[10] for
a survey and an extensive list of references). One standard argument for
preferring the viscosity criterion is based on the Chapman-Enskog expansion
for the Boltzmann equation (see for example the book of L. St. Raymond
[11], section 2.2.2). Hence it seems reasonable to re-examine the argument
based on the Chapman-Enskog expansion and consider the implications.

4 The Chapman-Enskog expansion for the Boltz-

mann equation

The starting point for the discussion is of course the Boltzmann equation

∂f

∂t
+ ξ ·∇f =

Q(f, f)

ε
· (4.1)

Here f(x, t, ξ) denotes the probability of finding a particle of gas at point
x ∈ R3, at time t , moving with velocity ξ ∈ R3 · Q(f, f) is the collision
operator and ε > 0 denotes the Knudson number. As t → ∞ we expect
fast decay to a slow invariant manifold which will be governed by the five
macroscopic hydrodynamic variables M : ρ (density)∈ R, u (velocity)∈ R3,
and Θ (temperature)∈ R. The Chapman-Enskog expansion is a formal
method for computing f on the invariant manifold as a power series in ε,
i.e.

fCE(M) = f (0)(M) + εf (1)(M) + ε2f (2)(M) + . . . (4.2)

From (4.1) we see
Q(f (0), f (0)) = 0 (4.3)
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so that f (0)(M) is the equilibrium Maxwellian distribution. Historically
truncating the Chapman- Enskog expansion at order 1, ε, ε2, ε3 are called the
Euler, Navier-Stokes-Fourier, Burnett, and super-Burnett approximations,
respectively. The apparent ability to derive the Navier-Stokes-Fourier theory
from the kinetic theory of gases was of course a strong motivation to continue
the expansion to higher orders of ε . However as noted by Bobylev[12],[13]
truncation at Burnett order yields instability of fluid equilibrium, a decidedly
unphysical result.(See Bobylev’s article [13] and book of Struchtrup [15]
for recent discussions). As had been noted by P. Rosenau [15]-[17] and
more recently by Bobylev in [13], [14] the problem with Chapman-Enskog
expansion is not the expansion itself but its truncation. Hence the expansion
must be exactly or approximately summed to get an accurate description
of the desired invariant hydrodynamic manifold. To validate the Fourier-
Navier-Stokes theory based on truncation at the order ε is questionable
mathematics at best.(The Latin phrase vaticinium ex eventu readily comes
to mind, meaning a pseudo-prophecy that was written after the event (see
J. Kugel [19], p.145)).

The Chapman-Enskog procedure becomes more and more computation-
ally tedious as we proceed to higher and higher order terms in ε. Hence to
get a quantitative picture of the process A. Gorban and I. Karlin [4], [5],
[6] applied the technique to the linearized (about the rest state) Grad 13
moment approximation to the Boltzmann equation. It is the remarkable
observation of Gorban and Karlin that in this special case the Chapman-
Enskog expansion can be exactly summed.

5 Grad’s 13 moments

The linearized Grad 13 moment equations are obtained by

(a) computing the first 13 moment equations from the Botzmann equation,

(b) invoking Grad’s closure rule for the distribution function f ,

(c) linearizing about the rest state of constant density ρo > 0 , constant
temperature Θ0 > 0, and velocity u = 0.

In appropriate non-dimensional form the linearized Grad 13 moment equa-
tions are

∂tρ = −∇ · u, (5.1)

∂tu = −∇ρ −∇Θ −∇ · σ, (5.2)
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∂tΘ = −
2

3
(∇ · u + ∇ · q), (5.3)

∂tσ = −
(

(∇u) + (∇u)T −
2

3
I∇ · u

)
−

2

3

(
(∇q) + (∇q)T −

2

3
I∇ · q

)
,

(5.4)

∂tq = −
5

3
∇Θ −∇ · σ −

2

3
q, (5.5)

where the pressure p = ρ + Θ in linear theory, σ is the extra stress, q ∈ R3

is the heat flux.
An even simpler set of equations is obtained by using only the first 10 mo-

ments in one space dimension. This formally amounts to using (5.1)(5.4)with
q = 0, i.e.

∂tρ = −∂xu (5.6)

∂tu = −∂xp − ∂xσ (5.7)

∂tΘ = −
2

3
∂xu, (5.8)

∂tΘ = −
4

5
∂xu − σ. (5.9)

By addition of (5.6), (5.8) (recall p = ρ+Θ) we obtain the system of the
three balance laws

∂tρ = −
5

3
∂xu, (5.10)

∂tu = −∂xp − ∂xσ, (5.11)

∂tσ = −
4

5
∂xu − σ. (5.12)

If we rescale space and time, x = x′

ε , t = t′

ε , and drop the primes, we
introduce the Knudsen number ε into the the system, i.e.

∂tp = −
5

3
∂xu, (5.13)

∂tu = −∂xp − ∂xσ, (5.14)
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∂tσ = −
4

5
∂xu −

σ

ε
(5.15)

Of course we could solve for σ in (5.15) and obtain ”visco-elastic dy-
namics” of Maxwell type (see for example D.D. Joseph [20]). This again
will reflect the rapid decay to the invariant hydrodynamic manifold but not
provide a computation of the invariant manifold.

6 The Chapman-Enskog expansion for the Grad

10 moment system

In this section we recall the results of Gorban and Karlin [4],[5],[6] for the ex-
act summation of the Chapman-Enskog expansion for the Grad 10 moment
system in one space dimension. In fact Gorban and Karlin presented an
exact summation for the full 13 moments in three space dimensions but for
simplicity only their more restricted theory is presented here. More details
may be found in their original articles and my review [21].

For the Grad 10 moment system write the expansion

σCE = εσ(0) + ε2σ(1) + ε3σ(2) + · · · , (6.1)

where σ(n) depend on the current values of p, u and their space derivatives.
Substitute (6.1) into (5.13), (5.14), balance orders of ε, and use the equations
themselves to eliminate time derivatives ∂tu, ∂tp in favor of space derivatives.
This yields the form of σCE :

σCE = −
4

3
(ε∂xu + ε2∂2

xp +
ε3

3
∂3

xu + · · · ). (6.2)

If we truncate at order ε, ε2, ε3 and compute the spectrum of (5.13)-(5.15)
in the Fourier frequency domain we recover the dispersion relations:

Navier-Stokes

w± = −
2

3
k2 ± i|k|

√
4k2 − 15;

Burnett

w± = −
2

3
k2 ± i|k|

√
8k2 − 15;

Super-Burnett

w± =
2

9
k2(k2 − 3) ±

i

9
|k|

√
4k6 − 24k4 − 72k2 − 135.
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Hence Rew±(k) ≤ 0 for the Navier-Stokes and Burnett truncations but
for wave number |k| >

√
3 the Super-Burnett truncation yields a Bobylev

instability.
In fact Gorban and Karlin have shown that (6.2) is indeed representative

of the entire expansion, i.e.

σCE =
∞∑

n=0

ε2n+1an ∂2n+1
x p +

∞∑

n=0

ε2n+2 bn ∂2(n+1)
x u. (6.3)

These expansions are in primed variables (x, t) and if we rescale back to the
unprimed variables we have

σCE =
∞∑

n=0

an ∂2n+1
x p +

∞∑

n=0

bn ∂2(n+1)
x u. (6.4)

The coefficients an, bn satisfy the recursion relations

an+1 =
5

3
bn +

n∑

m=0

aman−m,

bn+1 = an+1 +
n∑

m=0

an−mbm. (6.5)

Fortunately the relations (6.5) are in convolution form which just as in
continuous Fourier theory makes their (discrete) transform elementary. First
let us agree on the definition of the Fourier transform

f̂(k) =
1√
2π

∫
∞

−∞

f(x)e−ikxdx

with inverse transform

f(x) =
1√
2π

∫
∞

−∞

f̂(k)eikxdk.

Then from (6.4) we see

σ̂CE =
∞∑

n=0

−ik an(−k2)n û +
∞∑

n=0

−k2 bn(−k2)np̂ (6.6)

and if we define

A(k2) =
∞∑

n=0

an(−k2)n, (6.7)
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B(k2) =
∞∑

n=0

bn(−k2)n, (6.8)

we can write
σ̂CE = −ik A(−k2)û − k2 B(k2)np̂ (6.9)

Hence if we know A(k2), B(k2) we know σ̂CE and the Chapman-Enskog
expansion has been summed.

As noted above the key to the computation of A and B is the convolution
form of (6.5). Multiply both equations in (6.5) by (−k2)n+1 :

an+1(−k2)n+1 =
5

3
bn(−k2)n(−k2) − k2

n∑

m=0

an(−k2)man−m(−k2)n−m,

bn+1(−k2)n+1 = an+2(−k2)n+1 − k2
n∑

m=0

an−m(−k2)n−mbn(−k2)m,

then sum from n = 0 to ∞ changing the order of summation in the terms
on the right hand sides. This yields:

A − a0 = −k2

{
5

3
B + A2

}
, (6.10)

B − b0 = A − a0 − k2AB (6.11)

where a0 = b0 = −4
3 so as to agree with the known first two terms in the

σCE . Solve for A in (6.11) to get

A =
B

1 − k2B
(6.12)

and substitute in (6.10) to obtain a cubic equation for B. If we set C = k2B
this cubic equation is

−
5

3
(1 − C)2

(
C +

4

5

)
−

C

k2
= 0 (6.13)

and an elementary analysis will yield that (6.13) possesses one real non-
positive real root C(k2), monotone decreasing in k2, C(0) = 0, C(k2) → −4

5
as |k| → ∞. We can now recover the exact sum of the Chapman-Enskog
expansion σCE via inverse Fourier transform:

σCE =
1√
2π

∫
∞

−∞

(
−ikA(k2)û − k2B(k2)p̂

)
eikxdk, (6.14)

where

A =

(
C

1 − C

)
1

k2
, B =

C

k2

Thus the extra stress has been represented as a Fourier integral operator.
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7 The dispersion relation, hydrodynamics, and the

entropy equality

In Fourier space the hydrodynamic equations (5.13), (5.14) with σ = σCE

become

∂tp̂ =
5

3
ikû,

∂tû = ikp̂ + ik(−ikA(k2)û(t, k) − k2B(k2)p̂(t, k)) (7.1)

Set p̂(t, k) = e#P (k), û(t, k) = e#U(k) so that

[
−, 5

3 ik
ik − ik3B k2A − ,

] [
P
U

]
=

[
0
0

]
, (7.2)

and then set the determinant of the coefficient matrix to zero. This yields
the dispersion relation

, =
1

2

(
C

C − 1

)
± i|k|

(
5C2 − 16C + 20

3

) 1

2

(7.3)

where we have used the fact the C satisfies the cubic (6.13). Again the fact
that C < 0 and C satisfies (6.13) implies 5C2 − 16C + 20 > 0 and hence
Re, < 0 for k *= 0, Re, → −2

9 as |k| → ∞. Hence the rest state is stable.
Furthermore multiplication of (7.1a) by 3

5 p̂, (7.1b) by û (where the over-
bar denotes complex conjugation) yields

1

2
∂t

(
3

5
|p̂|2 + |û|2

)
− ik(p̂û + p̂û)

= k2A(k2)|û| + ikû(−k2B(k2)p̂).

Now use the relation 3
5∂tp̂ = −ikû to write the above equality as

1

2
∂t

(
3

5
|p̂|2 + |û|2

)
−

3

5
k2B(k2)|p̂|2 − ik(p̂û + p̂û) = k2A(k2)|û|2. (7.4)

This is the entropy equality in Fourier space. Note the ”entropy”

1

2

(
3

5
|p̂|2 + |û|2 −

3

5
k2B(k2)|p̂|2

)

and the ”dissipation” k2A(k2)|û|2 are respectively positive and negative,k *=
0, since A,B are both negative for k *= 0. Integration of (7.4) in k, −∞ <
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k < ∞, and application of Parseval’s identity yields

1

2
∂t

∫
∞

−∞

3

5
|p̂|2 + |u|2dx +

1

2
∂t

∫
∞

−∞

−3

5
k2B(k2)|p̂|2dk =

∫
∞

−∞

k2A(k2)|û|2dk

(7.5)
The term

∫
∞

−∞

−3
5 k2B(k2)|p̂|2dk represents a non-local version of the capil-

larity energy, where as ∫
∞

−∞

k2A(k2)|û|2dk

is a non-local version of the viscous dissipation. Thus the exact sum of
the Chapman-Enskog expansion for the linearized Grad 10 moment equa-
tions yields a non-local version of Korteweg’s theory and not Navier-Stokes
theory. Furthermore the viscosity and capillarity coefficients A and B are
inseparable since they are linked by equation (6.12).

8 Conclusion

The moral of the story, I believe, is as follows. If the Grad truncation
is reflecting the qualitative features of the Boltzmann equation then the
Chapman-Enskog expansion for the Grad system should be reflecting quali-
tative feature of the Chapman- Enskog for the Boltzmann equation. In this
scenario we see that it is Korteweg theory and not Navier-Stokes theory that
should be basis for admissibility criteria. Moreover since Korteweg theory
predicts a capillarity energy term of the form αρ|∇ρ|2 in the energy balance
equation it seems that any hydrodynamic limit theory for the Boltzmann
equation that attempts to provide the classical Euler equations will have to
force this capillarity term to vanish. Indeed this is precisely the state of
the art for the incompressible Euler limit as given in the paper and book
of L.St. Raymond [11], [22], where assumptions must be made on the both
data and the desired limit. Otherwise the weak limit will yield an additional
and unavoidable defect measure.
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