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Abstract. The paper is concerned with Nash equilibrium solutions for the Lighthill-

Whitham model of traffic flow, where each driver chooses his own departure time in order

to minimize the sum of a departure cost and an arrival cost. Estimates are provided, on

how much the Nash solution may change, depending on the cost functions and on the

flux function of the conservation law. It is shown that this equilibrium solution can also

be determined as a global minimizer for a functional Φ, measuring the maximum total

cost among all drivers, in a given traffic pattern. The last section of the paper introduces

two evolution models, describing how the traffic pattern can change, day after day. It

is assumed that each driver adjusts his departure time based on previous experience, in

order to lower his own cost. Numerical simulations are reported, indicating a possible

instability of the Nash equilibrium.

1. Introduction. In this paper we study properties of Nash equilibrium solutions

for a model of traffic flow introduced in [1]. Car drivers starting from a location A (a

residential neighborhood) need to reach a destination B (a working place) all at a given

time T0. There is a cost ϕ for starting early and a cost ψ for arriving late. Denoting
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by τd and τa respectively the departure and the arrival time of an individual driver, his

total cost is thus measured by

Ψ
.
= ϕ(τd) + ψ(τa) . (1.1)

We assume that each driver can choose his departure time in order to minimize this

total cost. A distribution of departure times is called a Nash equilibrium if no driver can

reduce his total cost by choosing a different departure time. Of course, in this case all

drivers will bear the same total cost.

It is assumed that all cars travel along the same highway. Calling ρ = ρ(t, x) the

density of cars at time t at the point x along the road, the Lighthill-Witham model [9]

describes the evolution of ρ in terms of the conservation law

ρt + [ρ v(ρ)]x = 0 . (1.2)

Here v = v(ρ) is a decreasing function, determining how the velocity of cars varies with

the density. In a typical setting (Fig. 1, left), the flux function ρ 7→ ρv(ρ) is concave

down and attains a maximum M = ρ∗v(ρ∗) at some value ρ∗ of the density.

As remarked in [1], it is convenient to write (1.2) as a conservation law for the traffic

flux u = ρ v(ρ), namely

ux + f(u)t = 0 . (1.3)

Here we define f(u) = ρ as a partial inverse of the original flux function (Fig 1, center).

More precisely, for u ∈ [0,M ] we set

f(u) = ρ iff u = ρv(ρ) , ρ ∈ [0, ρ∗] . (1.4)

Then we extend f outside the interval [0,M ] by setting

f(u)
.
= +∞ if u < 0 or u > M . (1.5)

The Legendre transform of this extended flux function (Fig. 1, right) will be denoted by

f∗(p)
.
= max

u
{pu− f(u)} . (1.6)

u

f (0)’ p

f (p)*

0

M ρ v(  )ρ
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u
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0 0

ρ

Fig. 1. Left: the function ρ 7→ ρ v(ρ) describing the flux of cars.
Middle: the function f , implicitly defined by f(ρv(ρ)) = ρ and
extended according to (1.5). Right: the Legendre transform

f∗.
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Throughout the following, for notational convenience we shall invert the role of the

independent variables t, x, and write (1.3) in the form

ut + f(u)x = 0 . (1.7)

Introducing the integral function

U(t, x)
.
=

∫ x

−∞

u(t, s) ds ,

the conservation law (1.7) can be equivalently written as a Hamilton-Jacobi equation

Ut + f(Ux) = 0 . (1.8)

For our model of traffic flow, one should keep in mind that now the x variable denotes

time, while t ∈ [0, T ] denotes a specific point on a highway of total length T . Hence U(t, x)

measures the total number of cars that have crossed the point t along the highway during

the time interval ]−∞, x].

As initial data for (1.8) we consider any bounded non-decreasing function Q : R 7→ R
+,

with

Q(−∞) = 0 , Q(+∞) = κ . (1.9)

Here Q(x) denotes the total number of cars that have entered the queue at the entrance of

the highway up to time x, while κ is the total number of departing cars. Being monotone,

the function Q is continuous with the possible exception of countably many times x. To

fix the ideas, we shall consider the left-continuous version where Q(x) = Q(x−) coincides

with its left limit at every x. When needed, we shall denote by Q(x+) = limy→x+Q(y)

the right limit of Q at x.

For t > 0, the entropy-admissible solution to the Cauchy problem (1.8) is provided by

the Lax formula:

U(t, x) = min

{
t f∗

(
x− y

t

)
+Q(y) ; y ∈ R

}
. (1.10)

Notice that, since Q(·) is non-decreasing and left continuous, the minimum in (1.10) is

well defined. As shown in [1], one has

U(0+, x) = U(x)
.
= min

{
Q(y) +M(x− y) ; y ≤ x

}
≤ Q(x) . (1.11)

Indeed, there is a maximum flux M of cars that can enter the highway. If Q is discontin-

uous, or simply if Qx > M , then a queue is formed at the entrance of the highway. The

quantity Q(x) − U(x) measures the length of this queue at time x, while U(x) denotes

the total number of drivers that have actually departed (after clearing the queue) up to

time x. With the above notations, the map x 7→ U(T, x) describes how many cars have

arrived at destination, i.e. at the end of the highway, within time x.

Given a nondecreasing, left continuous initial data Q(·) as in (1.9), for β ∈ [0, κ[ we

define the times xq(β), xd(β), and xa(β) by setting




xq(β) = max{x ∈ R ; Q(x) ≤ β} ,

xd(β) = max{x ∈ R ; U(0+, x) ≤ β} ,

xa(β) = max{x ∈ R ; U(T, x) ≤ β} .

(1.12)
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Here β is a Lagrangian variable labeling a particular driver, xq(β) accounts for the time

where this driver joins the queue, xd(β) is the actual departure time (after clearing the

queue), and xa(β) is the arrival time. Observe that, for all except countably many β,

the above times are uniquely determined by the relations

Q(xq(β)) ≤ β ≤ Q(xq(β)+), U(xd(β)) = β, U(T, xa(β)) = β . (1.13)

More generally, if a driver starts at time x, to determine his arrival time we consider

two possibilities.

• If there is no traffic at all, then the total time needed for the trip is

µ
.
= T f ′(0) =

[length of the highway]

[maximum speed]
. (1.14)

• On the other hand, if the driver starting at time x encounters traffic, his arrival

time will simply be the supremum among the arrival times of all cars departed

earlier.

Combining the above cases, the arrival time of a driver who starts at time x is thus

defined as

A(x)
.
= max

{
x+ µ , sup

β<Q(x)

xa(β)
}
. (1.15)

As in [1], a Nash equilibrium solution can be defined as follows.

Definition. We say that a bounded, nondecreasing initial data Q(·) satisfying (1.9)

yields a Nash solution of the Cauchy problem (1.8)-(1.11) with initial and terminal

cost functions ϕ, ψ if there exists a constant c such that:

(i) For almost every β ∈ [0, κ] one has

ϕ(xq(β)) + ψ(xa(β)) = c . (1.16)

(ii) For all x ∈ R, there holds

ϕ(x) + ψ(A(x)) ≥ c . (1.17)

According to (i) all drivers bear the same cost c, while (ii) implies that no one can

achieve a cost < c.

For a given total number κ of drivers, the main result in [1] established the existence

and uniqueness of a Nash equilibrium solution. Aim of this paper is to analyze properties

of this solution.

• In Section 2 we prove that the Nash equilibrium depends continuously on the

cost functions ϕ, ψ and on the speed of cars v = v(ρ). Assuming (without loss

of generality) that the total cost to each driver is zero, our main results can be

summarized as follows. Given a total number of drivers κ and cost functions

ϕi, ψi, vi, i = 1, 2, the departure distributions Q1, Q2 of the corresponding Nash

equilibria satisfy an estimate of the form

‖Q1 −Q2‖L1 ≤ C ·
(
‖ϕ1 − ϕ2‖C0 + ‖ψ1 − ψ2‖C0 + ‖v1 − v2‖

1/2
C0

)
.
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• Section 3 provides a minimax property of the Nash solution. Given any depar-

ture distribution Q(·), let Ψ(Q) be the maximum cost among all drivers. For a

fixed number of drivers, we show that the Nash equilibrium solution is a global

minimizer of the functional Ψ.

• In Section 4 we introduce two evolution equations, modeling how the departure

distribution changes from one day to the next. In both cases, the Nash equi-

librium corresponds to the unique steady state. The stability of this invariant

configuration is a difficult issue, because the evolution equation contains nonlo-

cal terms. Our numerical simulations suggest that the equilibrium configuration

may be unstable, while the orbits approach a chaotic attractor.

For future reference, we state the basic assumptions that will be used, on the flux

function f in (1.4)-(1.5) and on the cost functions ϕ, ψ in (1.1).

(A1) Restricted to the open interval ]0,M [ , the flux function f is twice continuously

differentiable and satisfies

f ′(u) > 0 , f ′′(u) ≥ γ > 0 for all u ∈ ]0,M [ . (1.18)

Moreover, the following limits exist:

lim
u→0+

f(u) = 0 , lim
u→0+

f ′(u) > 0 , lim
u→M−

f ′(u) = +∞ , lim
u→0+

f ′′(u) < +∞ .

(1.19)

(A2) The cost functions ϕ, ψ are continuously differentiable and satisfy

ϕ′ < 0 , ψ, ψ′ ≥ 0 , lim
x→−∞

ϕ(x) = +∞ , lim
x→+∞

(
ϕ(x) + ψ(x)

)
= +∞ .

(1.20)

For a review of the extensive literature on mathematical models of traffic flow we refer

to [4]. See also [2, 3, 5, 6] for related optimization problems.

2. Continuous dependence. In this section we study how the Nash equilibrium

changes, depending on the cost functions ϕ, ψ and on the flux f . We always assume that

(A1)-(A2) are satisfied.

Given a common cost c, for each x ∈ R, let Λ(x) be the point such that

ϕ(Λ(x)) + ψ(x) = c , (2.1)

with the provision that Λ(x) = +∞ if ψ(x) ≥ c− inf
y∈R

ϕ(y). Since ϕ is strictly decreasing,

Λ(x) is uniquely defined.

Remark 1. Recalling the definition of arrival time in (1.15), a Nash equilibrium

solution U of (1.8) with common cost c to all drivers can be equivalently characterized

by the two requirements:

(N1) Q(Λ(x)) ≤ U(T, x) ≤ Q(Λ(x)+) for a.e. x such that Ux(T, x) > 0,

(N2) x ≤ A(Λ(x)) for all x ∈ R.

By this characterization, the Nash solution is entirely determined by the flux function f

and by the map Λ. We also observe that, by replacing ϕ with ϕ− c, it is not restrictive

to consider the special case where the common cost to all drivers is zero.
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For a given flux function f , it will be convenient to introduce the function

h(s)
.
= −Tf∗

(
−s

T

)
, (2.2)

see Fig. 2, left. Given an initial data Q(·), by (1.10) the terminal profile U(T, ·) is

computed by (see Fig. 2, right)

U(T, x) = min
y∈R

{
Q(y)− h(y − x)

}
. (2.3)

We now review some identities satisfied by the Legendre transform. For each p ∈

]f ′(0), +∞[ , let u(p) the point where the maximum in (1.6) is attained. Then one has

f ′(u(p)) = p , f∗(p) = pu(p)− f(u(p)) . (2.4)

Differentiating the two identities in (2.4) w.r.t. p, one obtains

f ′′(u(p))u′(p) = 1 , (f∗)′(p) = u(p) , (f∗)′′(p) = u′(p) =
1

f ′′(u(p))
. (2.5)

As in (1.14), let µ
.
= T f ′(0). We now write a second order Taylor expansion of the

function h at the point −µ, observing that f∗(f ′(0)) = (f∗)′(f ′(0)) = 0 (Fig. 1, right).

By the assumptions (1.18)-(1.19), since f ′′(u) ≥ γ > 0, for every s < −µ one obtains

h(s) =
(s+ µ)2

2
h′′(s1) = −

(s+ µ)2

2T
(f∗)′′

(
−s1
T

)
≥ −

(s+ µ)2

2γT
, (2.6)

where s1 ∈ [s,−µ] is a suitable point. Using (2.3) and (2.6), for every ε ≥ 0 we deduce

U(T, x) ≤ Q(x− µ− ε) +
ε2

2γT
. (2.7)

Given departure and arrival costs ϕ, ψ, as proved in [1], the departure distribution

Q∗(·) for the Nash equilibrium solution where all drivers bear the common cost c = 0

can be obtained as

Q∗(x) = sup
{
Q(x) ; Q ∈ Q0

}
. (2.8)

Here Q0 is the family of all starting distributions where each driver pays a cost ≤ 0, i.e.

Q0
.
=
{
Q(·) ; ϕ(xq(β)) + ψ(xa(β)) ≤ 0 for a.e. β ∈ [0, Q(+∞)]

}

=
{
Q(·) ; xq(β) ≥ Λ(xa(β)) for a.e. β ∈ [0, Q(+∞)]

}
.

(2.9)

We recall that the starting time xq and the arrival time xa of the β-driver are defined

as in (1.12). Of course, these depend on the overall traffic pattern, hence on the flux

function f as well as on Q(·).

Theorem 1 (comparison). Let Q∗(·) be the initial data for the Nash equilibrium

solution (with zero total cost to each driver), corresponding to the departure and arrival

costs ϕ, ψ and to the flux function f . Similarly, let Q̃(·) be the initial data for the Nash

solution given the costs ϕ̃, ψ̃ and the flux function f̃ . As in (2.1), let Λ, Λ̃ be implicitly

defined by

ϕ(Λ(x)) + ψ(x) = 0 , ϕ̃(Λ̃(x)) + ψ̃(x) = 0 . (2.10)
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If

Λ(x) ≤ Λ̃(x) for all x ∈ R , (2.11)

f(u) ≤ f̃(u) for all u ≥ 0 , (2.12)

then

Q̃(x) ≤ Q∗(x) for all x ∈ R . (2.13)

Proof. Thanks to (2.8), it suffices to show that Q̃(·) ∈ Q0 . Let h(s) and h̃(s) be

the functions defined at (2.2), corresponding to f and f̃ respectively. For the initial data

Q̃(x), the terminal profile Ũ(T, x) with the flux f̃ is computed by

Ũ(T, x) = min
y∈R

{
Q̃(y)− h̃(y − x)

}
.

As in (1.12), we shall denote by x̃q(β) and x̃a(β) the starting time and the arrival time

of the driver labelled by β ∈ [0, Q̃(+∞)].

On the other hand, the terminal profile Û(T, x) for the same initial data Q̃(x) but

with flux f is computed by

Û(T, x) = min
y∈R

{
Q̃(y)− h(y − x)

}
.

In this case, the starting time and the arrival time for the driver β ∈ [0, Q̃(+∞)], will be

denoted by x̂q(β), x̂a(β), respectively.

Using (1.6), (2.2), and (2.12), we obtain h(s) ≤ h̃(s). Hence Ũ(T, x) ≤ Û(T, x) for all

x ∈ R. From (1.12) it thus follows

x̂q(β) = x̃q(β), x̂a(β) ≤ x̃a(β) for a.e. β ∈ [0, Q̃(+∞)].

Since Q̃(·) is the Nash equilibrium solution given the costs ϕ̃, ψ̃ and the flux function

f̃ , for almost every β one has the identity x̃q(β) = Λ̃(x̃a(β)). Using (2.11) and the

monotonicity of the map x 7→ Λ̃(x), for the initial data Q̃ we obtain

x̂q(β) = x̃q(β) = Λ̃(x̃a(β)) ≥ Λ̃(x̂a(β)) ≥ Λ(x̂a(β)) for a.e. β ∈ [0, Q̃(+∞)] .

Therefore Q̃(·) ∈ Q0 and Q̃(x) ≤ Q∗(x) for all x ∈ R .

Remark 2. Since ϕ, ϕ̃ are strictly decreasing, the inequality (2.11) trivially holds

if ϕ ≤ ϕ̃ and ψ ≤ ψ̃. Moreover, (2.12) holds in the case where f, f̃ are defined as in

(1.4), for speeds ṽ(ρ) ≤ v(ρ). In this case, Theorem 1 yields an intuitively obvious fact:

by increasing the departure and arrival costs and decreasing the speed of cars, the total

number of cars in a Nash equilibrium solution (where every driver still pays zero cost)

will decrease.

2.1. Continuous dependence on the cost functions. Next, we wish to relate two Nash

equilibrium solutions with different cost and flux functions, without the assumptions

(2.11)-(2.12). The first result describes how the Nash equilibrium changes when the cost

functions ϕ, ψ are changed.
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y

h(y−x)

y(x)
U(T,x)

Q

U

x

µ0

−µ

h(s)

Fig. 2. Left: the graph of the function h(·) introduced at (2.2).
Right: by the Lax formula, U(T, x) is the amount by which one
can push up the graph of h(· − x) until it touches the graph of
Q(·). Clearly, U(T, x) ≤ Q(x− µ).

Theorem 2. Let the flux function f and the cost functions ϕi, ψi, i = 1, 2 satisfy

the assumptions (A1)-(A2). Let Q1, Q2 be the starting distributions of the corresponding

Nash equilibria. Assume that all drivers in both cases start and arrive within a time

interval I = [a, b]. Then there exists a constant C not depending on Q1, Q2 such that

‖Q1 −Q2‖L1([a,b]) ≤ C · ‖Λ1 − Λ2‖L∞([a,b]) . (2.14)

Proof. Let

ε
.
= sup

x∈[a,b]

|Λ1(x)− Λ2(x)| . (2.15)

It is clearly not restrictive to assume 0 < ε ≤ 1.

1. Let any x̄ ∈ [a, b] be given. Our goal is to prove an estimate of the form

Q2(Λ1(x̄)− ε)−Q1(Λ1(x̄)) ≤ C0ε (2.16)

for some constant C0. For this purpose, we construct two decreasing sequences

x̄ = x0 > x1 > · · · > xn , yk = Λ1(xk) ,

according to the following inductive rule. Given xk, consider two cases:

CASE 1: yk ≤ xk − µ − ε. In this case, we choose yk+1 to be the smallest point

where the minimum defining U1(T, xk) is attained. More precisely:

yk+1
.
= min

{
ỹ ; Q1(ỹ)− h(ỹ − xk) = min

y≤xk

{
Q1(y)− h(y − xk)

}}
. (2.17)

We then set

xk+1
.
= min {x ; Λ1(x) = yk+1}. (2.18)

CASE 2: yk > xk − µ− ε. In this case we set yk+1
.
= yk − ε and define xk+1 as in

(2.18).
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The construction terminates when yn ≤ a for some n ≥ 1. Observe that, for some

constant c0 > 0 suitably small, one has

either Q1(yk+1) ≤ Q1(yk)+h(−µ− ε) ≤ Q1(yk)− c0ε
2 or yk+1 ≤ yk − ε .

Therefore the induction must terminate after a finite number of steps.

1kx

y
k

y
k+1

k+1x

x

T

µ
1

x
x

k
y

ky
k+1

Q

Fig. 3. Construction of the points xk, yk in Case 1. Here the
thick solid lines denote car trajectories, while the dotted lines
denote characteristics. The point xk is the arrival time of the
driver who starts at time yk = Λ1(xk). Moreover, yk+1 is the
initial point of the characteristic through the point (T, xk). If
several characteristics reach the same point xk (this can happen
if xk is the location of a shock), then we choose yk+1 on the
minimal backward characteristic.

2. In CASE 1, since yk+1 = Λ1(xk+1) and h
′′ ≤ 0, our construction yields

Q2(Λ1(xk)− ε)−Q1(Λ1(xk))

≤
[
Q2(yk+1 − ε)− h(yk+1 − ε− xk)

]
−
[
Q1(yk+1)− h(yk+1 − xk)

]

≤
[
Q2(Λ1(xk+1)− ε)−Q1(Λ1(xk+1))

]
+ h′(yk+1 − ε− xk) · ε .

(2.19)

In CASE 2, by (2.6) our construction yields

Q2(y)− h(y − xk) ≥ U2(T, xk) = Q2(Λ2(xk)) ≥ Q2(Λ1(xk)− ε)

for all y ≤ xk. Since yk − xk > −µ− ε, taking y = yk+1 − ε = yk − 2ε we obtain

Q2(yk − ε) ≤ Q2(yk+1 − ε)− h(yk+1 − ε− xk)

≤ Q2(yk+1 − ε)− h(−µ− 2ε) ≤ Q2(yk+1 − ε) +
4ε2

2γT
,

Q2(yk − ε)−Q1(yk) ≤ Q2(yk+1 − ε) +
2ε2

γT
−Q1(yk+1) . (2.20)
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Since yn ≤ a, we have Q2(yn − ε) = Q1(yn) = 0. Splitting the set of indices I =

{1, . . . , n} = I1 ∪ I2 according to whether CASE 1 or CASE 2 applies, we obtain

Q2(Λ1(x̄)− ε)−Q1(Λ1(x̄)) = Q2(y0 − ε)−Q1(y0)

≤ ε ·
∑

k∈I1

h′(yk+1 − ε− xk) +
∑

k∈I2

2ε2

γT

.
= J1 + J2 .

(2.21)

3. Since the total number of steps where CASE 2 can occur is ≤ (b−a)/ε, the second

summation in (2.21) is estimated by

J2 ≤
2ε2

γT
·
b− a

ε
=

2(b− a)

γT
ε . (2.22)

We now work toward an estimate of J1. By the properties of the function h in (2.2),

there exists a constant C1 such that

h′(s) ≤ C1(−µ− s) for all s ∈ [a− b , −µ] . (2.23)

Define the constant

M1
.
= inf

a−b<s<−µ

−h(s)

(s+ µ)2
> 0 (2.24)

and choose a suitably small constant 0 < c2 < M1/3C1.

Two possibilities need to be considered. If

yk − yk+1 ≥ c2(xk − µ− yk+1), (2.25)

observing that in CASE 1 we have

ε ≤ xk − µ− yk ≤ xk − µ− yk+1 ,

we conclude

h′(yk+1 − ε− xk) ≤ C1(−µ− yk+1 + ε+ xk) ≤
2C1

c2
(yk − yk+1) . (2.26)

On the other hand, if (2.25) fails, then we claim that either k = 0 or else

h′(yk+1 − ε− xk) ≤ C3(xk−1 − xk) . (2.27)

Indeed, if k ≥ 1, at the previous iteration one has (see fig. 4)

Q1(yk−1) = Q1(yk)− h(yk − xk−1) = min
y

{
Q1(y)− h(y − xk−1)

}

≤ Q1(yk+1)− h(yk+1 − xk−1),

Q1(yk)−Q1(yk+1) = −h(yk+1 − xk) ≤ h(yk − xk−1)− h(yk+1 − xk−1)

≤ h′(yk+1 − xk−1)(yk − yk+1)

≤ C1(xk−1 − µ− yk+1) · c2(xk − µ− yk+1) .

Using (2.24) and recalling that c2 ≤M1/3C1, we obtain

xk−1 − µ− yk+1 ≥
−h(yk+1 − xk)

C1c2(xk − µ− yk+1)
≥
M1(xk − µ− yk+1)

2

C1c2(xk − µ− yk+1)
≥ 3(xk − µ− yk−1).

(2.28)
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We can thus write

xk−1 − xk = (xk−1 − µ− yk+1)− xk + µ+ yk+1 ≥ 2(xk − µ− yk+1) . (2.29)

On the other hand, by (2.23) one has

h′(yk+1 − ε− xk) ≤ C1(−µ− yk+1 + ε+ xk) ≤ 2C1(xk − µ− yk+1) ,

which yields (2.27).

k−1
y
k x x

k

h

µ

y
k+1

Fig. 4. If the difference yk−yk+1 is small compared with xk−µ−

yk+1, then at the previous iteration the slope h′(y−xk−1) must
be much larger, on the interval [yk+1, yk]. Therefore xk−1−xk

must be large.

Together, (2.26)-(2.27) yield the estimate

∑

k

h′(yk+1 − ε− xk) ≤
∑

k

[
2C1

c2
(yk − yk+1) + C3(xk − xk+1)

]
≤

(
2C1

c2
+ C3

)
(b− a) .

(2.30)

4. Using (2.22) and (2.30) in (2.21), we conclude that there exists a constant C4 such

that

Q2(y − ε)−Q1(y) ≤ C4(b− a)ε for all y ∈ [a, b] . (2.31)

Inverting the roles of Q1, Q2 one obtains the similar inequality

Q1(y − ε)−Q2(y) ≤ C4(b− a)ε for all y ∈ [a, b] . (2.32)

Denoting by κ an upper bound for both functions Q1, Q2, we thus conclude

‖Q2 −Q1‖L1([a,b]) =

∫ b

a

|Q2(y)−Q1(y)|dy

≤

∫ b

a

[Q2(y − ε)−Q1(y)]+ dy +

∫ b

a

[Q1(y − ε)−Q2(y)]+ dy

+

∫ b

a

|Q1(y)−Q1(y − ε)| dy +

∫ b

a

|Q2(y)−Q2(y − ε)| dy

≤ 2C4(b− a)2ε+ 2κε .
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2.2. Continuous dependence on the flux function. The main goal of this subsection

is to understand how the Nash equilibrium solution changes, if the velocity function

v = v(ρ) in (1.2) is changed. Our main result will be formulated in terms of the inverse of

the function h in (2.2). More precisely, given a flux function f satisfying the assumptions

(A1), for y ≤ 0 we define

h−1(y)
.
= min

{
s ≤ 0 ; −T f∗

(−s
T

)
≥ y

}
. (2.33)

Theorem 3. Fix κ > 0 and let the cost functions ϕ and ψ satisfy the assumptions

(A2). Let f1, f2 be two flux functions, both satisfying (A1), and let Q1, Q2 be the starting

distributions of the Nash equilibria with flux functions f1, f2, respectively. Assume that

in both cases the total number of drivers is κ, and every driver starts and arrives within

a time interval I = [a, b], and has zero total cost. Then there exists a constant C not

depending on Q1, Q2 such that

‖Q1 −Q2‖L1([a,b]) ≤ C · ‖h−1
1 − h−1

2 ‖L∞([−κ,0]) . (2.34)

Proof. The estimate (2.34) will be derived from the bound (2.14) stated in Theorem 2.

1. Consider the map x 7→ Λ2(x), implicitly defined by

ϕ(Λ2(x)) + ψ(x) = 0 .

By assumption, the initial datum Q2 yields a Nash equilibrium solution in connection

with the flux f2, determined by the map Λ2(·). We claim that Q2 also yields a Nash

solution in connection with the flux f1, for some different costs ϕ̃, ψ̃, and a corresponding

map Λ1(·).

Indeed, call κ2
.
= Q2(+∞). For every β ∈ [0, κ2] let x

a
1(β) be the arrival time of

the β-driver, if the starting distribution is Q2 and the flux function is f1. As in (2.2),

consider the functions

hi(s)
.
= −Tf∗

i

(
−s

T

)
i = 1, 2 , (2.35)

where f∗
i is the Legendre transform of fi. We define the inverse functions h−1

1 , h−1
2 by

setting

h−1
i (w)

.
= min {s ; hi(s) ≥ w} for all w ≤ 0 . (2.36)

Using (2.2) and (2.3), we obtain the representation

xa1(β) = sup
ξ<β

{
xq(ξ) − h−1

1 (ξ − β)
}
. (2.37)

Observe that, in connection with the same initial distribution Q2, if the flux function is

f2, then the arrival time is

xa2(β) = sup
ξ<β

{
xq(ξ) − h−1

2 (ξ − β)
}
. (2.38)
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From (2.37) and (2.38) it follows

sup
β∈[0,κ2]

|xa1(β)− xa2(β)| ≤ sup
ξ∈[−κ2,0]

|h−1
1 (ξ)− h−1

2 (ξ)| . (2.39)

2. For a.e. β ∈ [0, κ2], by assumption we have

ϕ(Λ2(x
a
2(β))) + ψ(xa2(β)) = 0 .

We seek new cost functions ϕ̃, ψ̃, and a map x 7→ Λ1(x) such that

ϕ̃(Λ1(x
a
1(β))) + ψ̃(xa1(β)) = 0 . (2.40)

Since we are assuming that all drivers depart and arrive within a given time interval

[a, b], using (2.39) and the identities

Λ1(x
a
1(β)) = xq1(β) = xq2(β) = Λ2(x

a
2(β)) ,

the difference Λ1 − Λ2 can be estimated by

sup
x∈[a,b]

|Λ1(x) − Λ2(x)| ≤

(
inf

x∈[a,b]

∂

∂x
Λ1(x)

)−1

·

(
sup

β∈[0,κ2]

|xa1(β)− xa2(β)|

)
, (2.41)

or equivalently by

sup
x∈[a,b]

|Λ1(x)−Λ2(x)| ≤

(
sup

x∈[a,b]

ψ′(x)

)
·

(
inf

y∈[a,b]
ϕ′(y)

)−1

·

(
sup

β∈[0,κ2]

|xa1(β)− xa2(β)|

)
.

(2.42)

The first two factors on the right hand side of (2.42) depend only on the cost functions

ϕ, ψ. The third factor is estimated by (2.39). Using Theorem 2 in connection with the

flux function f2 and the two maps Λ1,Λ2, we thus obtain

‖Q1 −Q2‖L1([a,b]) ≤ C · sup
ξ∈[−κ2,0]

|h−1
1 (ξ)− h−1

2 (ξ)| . (2.43)

β

f

M

2f

1 f2

M
1 2

0

*

’f (0)’ f (0)
2 1

u
pp p

2 1

f *
1

*ρ

ρ

s

0

α

Fig. 5. Comparing two flux functions f1, f2 and their corre-
sponding Legendre transforms.

To make use of the above theorem, one needs to understand how the distance ‖h−1
1 −

h−1
2 ‖L∞([−κ,0]) between the two inverse functions can be related to the difference between
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the flux functions f1, f2 and, in turn, with the difference between the velocity functions

v1, v2 in (1.2). Up to a linear rescaling of coordinates, it is not restrictive to assume

T = 1. In the following, we thus seek to relate the distance ‖v1 − v2‖L∞ with the

distance ‖(f∗
1 )

−1 − (f∗
2 )

−1‖L∞ between the inverses of the Legendre transforms.

Let v1, v2 be smooth, non-increasing velocity functions such that

∂2

∂ρ2
ρvi(ρ) ≤ −η0 < 0 i = 1, 2 .

Call ρ∗i the value where the flux function ρ 7→ ρvi(ρ) attains its global maximum, and

let ρ∗
.
= max{ρ∗1, ρ

∗
2}. Moreover, consider the distance

δ
.
= ‖v1 − v2‖L∞([0,ρ∗]) . (2.44)

Let κ > 0 be given. For any s ∈ [0, κ], assume that the Legendre transforms of the

corresponding functions f1, f2 in (1.4)-(1.5) satisfy

f∗
1 (p1) = f∗

2 (p2) = s . (2.45)

We seek an estimate on |p1 − p2|.

Consider any slope p ≥ p0
.
= max{f ′

1(0), f
′
2(0)}. Draw the lines with slope p tangent

to the graphs of f1, f2. Call α the distance between the interceptions of these lines with

the ρ-axis, and β the distance between the interceptions with the u-axis (see Fig. 5).

Then

α = |f∗
1 (p)− f∗

2 (p)| = p β .

Moreover, β = |g∗1(1/p)− g∗2(1/p)|, where

g∗i (q)
.
= min

ρ

{
q · ρ− ρvi(ρ)

}
.

Given any p̄ > p0 > 0, for all p ∈ [p0, p̄] we thus have

‖f∗
1 − f∗

2 ‖L∞([0,p̄]) ≤ p̄ · sup
ρ∈[0,ρ∗]

|ρv1(ρ)− ρv2(ρ)| ≤ p̄ ρ∗ ‖v1 − v2‖L∞([0,ρ∗]) .

Recalling (2.4)-(2.5), consider the minimum of the second derivative

γi
.
= min

p∈[p0,p]
(f∗

i )
′′(p) =

(
max

u∈[0,ui(p̄)]
f ′′
i (u)

)−1

.

Set η
.
= min{γ1, γ2}. If (2.45) holds with s = 0, then

|p1 − p2| = |f ′
1(0)− f ′

2(0)| =

∣∣∣∣
1

v1(0)
−

1

v2(0)

∣∣∣∣ .

More generally, for s ∈ [0, κ] one has the estimate

f∗
2

(
p1+ |f ′

1(0)−f
′
2(0)|+δ

)
≥ f∗

2 (p1)+
η

2
δ2 ≥ f∗

1 (p1)−‖f∗
1 −f

∗
2 ‖L∞([p0,p̄])+

η

2
δ2 . (2.46)

The right hand side of (2.46) is ≥ f∗
1 (p1) as soon as δ ≥

(
2η−1 ‖f∗

1 − f∗
2 ‖L∞

)1/2
. If

(2.45) holds, we thus have

p2 ≤ p1 + |f ′
1(0)− f ′

2(0)|+

√
2

η
‖f∗

1 − f∗
2 ‖L∞([p0,p̄]) .
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In conclusion, we obtain the estimate

‖(f∗
1 )

−1 − (f∗
2 )

−1‖L∞([0,κ]) ≤ C0 ·
√
‖v1 − v2‖L∞([0,ρ̄]) ,

for a suitable constant C0. In the setting of Theorem 3, the difference (2.34) between

the starting distributions in the Nash equilibria with velocity functions v1, v2 can now

be estimated by

‖Q1 −Q2‖L1([a,b]) ≤ C ·
√
‖v1 − v2‖L∞([0,ρ̄]) , (2.47)

for a suitable constant C.

3. A minimax property of Nash equilibria. Fix κ > 0 and let Qκ be the family

of all left continuous, nondecreasing functions satisfying (1.9). For Q ∈ Qκ, recalling

(1.12) define the functional

Ψ(Q)
.
= ess- sup

β∈[0,κ]

{
ϕ(xq(β)) + ψ(xa(β))

}
. (3.1)

The next result shows that the Nash equilibrium provides a global minimizer to the

functional Ψ.

Theorem 4. If Q∗ is the initial distribution of the Nash equilibrium solution with a

number κ > 0 of drivers, then

Ψ(Q∗) = min {Ψ(Q) ; Q ∈ Qκ} . (3.2)

Proof. Let Q∗ ∈ Qκ be the departure distribution for the Nash equilibrium solution

with κ > 0 drivers. Let c = Ψ(Q∗) be the common total cost payed by each driver, in

the Nash solution. Call Qc the family of all departure distributions (with an arbitrary

number of drivers) where each driver pays a total cost ≤ c. As proved in [1], the Nash

solution can be characterized as

Q∗(x) = sup {Q(x) ; Q ∈ Qc} . (3.3)

To prove (3.2) assume that, on the contrary, there exists another departure distribution

Q− ∈ Qκ ∩Qc−ε , for some ε > 0. By the analysis in [1], we can then construct a second

distribution Q+ ∈ Qκ+δ ∩ Qc , for some δ > 0. But this provides a contradiction with

(3.3), because

κ = lim
x→+∞

Q∗(x) < lim
x→+∞

Q+(x) = κ+ δ .



16 A. BRESSAN, CHEN JIE LIU, WEN SHEN, AND FANG YU

Remark 3. In general Q∗ is not the unique global minimizer for the functional Ψ.

For example, recalling (1.11), consider the initial data

Q̃(x)
.
= U∗(0+, x) = min

y

{
Q∗(y) +M(x− y) ; y ≤ x

}
≤ Q∗(x) .

Then the corresponding solution Ũ satisfies Ũ(t, x) = U∗(t, x) for all t > 0 and x ∈ R.

In particular, for any β ∈ [0, κ], the departure and arrival times of the β-driver satisfy

x̃q(β) = xd∗(β) ≥ xq∗(β) , x̃a(β) = xa∗(β) .

Hence

ϕ(x̃q(β)) + ψ(x̃a(β)) ≤ ϕ(xq∗(β)) + ψ(xa∗(β)) = c
.
= Ψ(Q∗) ,

showing that Q̃ ∈ Qκ ∩ Qc also provides a minimizer for the functional Ψ. It is quite

possible that Q̃ 6= Q∗. This happens when, in the Nash solution, some of the drivers

wait in the queue. By allowing these drivers to depart exactly at time x̃q(β) = xd∗(β),

they avoid waiting in line, and hence pay a total cost strictly smaller than c.

4. Dynamic stability of Nash equilibria. A natural modeling assumption is that

Nash equilibria should describe actual traffic pattern. However, a rigorous justification

of this claim requires a nontrivial stability analysis. Indeed, assume that on a given day

the drivers start their journey at times described by the distribution Q(·). If this is not

a Nash equilibrium, on the next day some drivers may decide to change their schedule,

starting at a different time, hopefully yielding a lower individual cost. We can thus

consider a transformation T : Q(·) 7→ Q̃(·), describing how the distribution of departure

times varies from one day to the next. For some meaningful choice of T we expect that,

for any given initial distribution Q(·), the limit of iterates limn→∞ T nQ should yield the

unique Nash equilibrium solution.

Rather than a discrete transformation, we propose here two evolution equations for the

distribution Q(·), depending on a continuous parameter s. Assume that the departure

rate is absolutely continuous w.r.t. Lebesgue measure, so that

Qx(x) = ū(x)

Let U = U(t, x) be the corresponding solution of the Hamilton-Jacobi equation (1.8)

computed by the Lax formula (1.10). Moreover, let

u(t, x) = Ux(t, x) .

For each x ∈ R, call y(x) the arrival time of a driver departing at time x. This is

implicitly defined by

Q(x) = U(T, y(x)) . (4.1)

We also define

Φ(x)
.
= ϕ(x) + ψ(y(x)) (4.2)

the total cost to a driver starting at time x. It is important to keep in mind that the

map x 7→ y(x), and hence Φ(·), depends on the overall traffic distribution, i.e. on u.
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Next, consider a one-parameter family of initial data: ū(x, s) = Qx(x, s), depending

on the auxiliary parameter s ∈ R+. We seek an evolution equation of the form

d

ds
ū = Υ(ū) (4.3)

for some (possibly non-local) functional Υ, describing how drivers may change their

departure time, in an attempt to reduce their total cost. Two choices for the right hand

side of (4.3) seem natural.

Model 1. Drivers who initially depart at x continuously modify their departure time,

forward or backward depending on the gradient Φx(x) of the cost. In this case we can

take Υ(ū) = (Φxū)x and the evolution of the starting distribution ū = ū(x, s) is described

by the conservation law

ūs − (Φx ū)x = 0 . (4.4)

Model 2. Drivers who depart at time x may decide to jump to a different departure

time ξ ∈ R, with probability proportional to the difference in cost. This leads to the

integro-differential evolution equation

d

ds
ū(x) =

∫
ū(ξ)

[
Φ(ξ)− Φ(x)

]
+
dξ −

∫
ū(x)

[
Φ(x)− Φ(ξ)

]
+
dξ . (4.5)

In both cases the key issue is whether, as s → +∞, the distribution with density

ū(·, s) converges to the initial data of the Nash equilibrium solution.

4.1. Numerical simulations. A numerical computation of the Nash equilibrium can

be achieved through the necessary condition of the optimal control problem. Let c be

the cost for every driver in the Nash solution. We discretize the Lagrangian variable β

identifying a particular driver, and set βi = i · δ, for a fixed mesh δ > 0. The departure

time xqi = xq(βi) and the arrival time xai = xa(βi) of the i-th driver are computed by

the following procedure.

• The first car find no traffic ahead, and travels with maximum speed v(0). The

total time needed for the trip is µ, as defined at (1.14). The departure time xq1
of the first car is the smallest root of the equation

ϕ(x) + ψ(x+ µ) = c . (4.6)

This can be found by a secant iterative method. We set

xq1 = t1, xa1 = t1 + µ .

The largest root of the equation (4.6) provides an upper bound for the departure

time of the last car.

• For i ≥ 2, the times xqi (when the βi-driver begins his journey, possibly joining

the queue) are computed in a sequential way. Given xqj for all j < i, we determine

xqi ∈ [xqi−1 , ∞[ as the smaller root of the equation

ϕ(x) + ψ(xai (x)) = c . (4.7)
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Here

xai (x) = min
x≥xq

i−1

{
x+ µ , sup

j<i

{
xq(βj)− h−1(βj − βi)

}}

= min
x≥xq

i−1

{
x+ µ , sup

j<i

{
xqj − h−1 ((j − i)δ)

} (4.8)

is the arrival time of the βi-driver, if he departs at time x. This root of (4.7) can

be efficiently computed by secant iteration, starting with the two initial guesses

x = xqi−1, x = xqi−2. It is found that 2-3 iterations of the secant method suffice.

• If for i = N +1 no solution of (4.7) is found, then the iteration stops. The value

κ(c) = βN = N δ is the total number of cars in the Nash equilibrium solution

with common cost c to all drivers.

In a more realistic situation, instead of the cost c one is given the total number of cars

κ̄. In this case, to compute the corresponding Nash solution one needs to invert the map

c 7→ κ(c) and find a cost c̄ such that κ(c̄) = κ̄. This can be done numerically, again using

secant iterations. For this purpose, it is found that 4-5 iterations suffice.
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Fig. 6. Numerical solutions for the model (4.9). The total (de-
parture + arrival) cost Φ (blue) and the rate of departures ū

(green) are plotted as functions of departure time x, for the
Nash equilibrium solution and for the Pareto optimal solution.
In both cases, the total number of cars is 2.2005.

In our numerical simulations we consider a highway of length l = 2. The velocity

function in (1.2) and the departure and arrival costs in (1.1) are taken to be

v(ρ) = 2− ρ , ϕ(x) = −x , ψ(x) = ex , (4.9)
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respectively. Figure 6 shows the rate ū(x) at which cars depart (possibly joining the

queue), and total cost Ψ(x) as functions of the departure time. The plots on the left

refer to the Nash equilibrium solution, while the plots on the right yields the Pareto

optimal solution, where the sum of the costs to all drivers is globally minimized. A

detailed analysis of this globally optimal solution can be found in [1].

Simulations of the two dynamic models. To simulate Model 1, the conservation law (4.3)

is solved by a Lax-Friedrichs scheme, satisfying the CFL conditions. To compute the flux

Φu
x, we apply a smooth filter (cubic spline), to guarantee that Φ is in C2. The eliminates

numerical oscillations. The presence of this filter corresponds to a numerical diffusion

term, leading to a more stable dynamical system.

To simulate Model 2, the trapezoid rule is used to numerically compute the integral

on the right hand side of (4.5). The resulting evolution equation is solved with a forward

Euler scheme. The time step is chosen small enough so that ū ≥ 0 for all s.

In both cases, we take the Pareto optimal solution as the initial data. As s becomes

larger, the profile ū(·, s) gets somewhat closer to the departure rate for the Nash equi-

librium. However, numerical data do not provide evidence of asymptotic convergence as

s→ +∞.
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Fig. 7. Numerical simulations for Model 1. Here the total cost
Φ and the rate of departures ū are plotted as functions of de-
parture time x, for increasing values of s.
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Fig. 8. Numerical simulations for Model 2. The total cost Φ
and the rate of departures ū are plotted as functions of depar-
ture time x. Here the time step is taken to be ∆s = 0.005,
hence a plot after n steps shows a solution of (4.5) at time
sn = 0.005 · n.

Remark. A rigorous analysis of the models (4.4)-(4.5) is difficult, because in both

cases the evolution operator is non-local. Even the linearized stability of these evolution

equations, at the Nash equilibrium, remains an open problem.
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