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Abstract. We analyze a class of semi-discrete monotone difference schemes
for degenerate convection-diffusion equations in one spatial dimension. These

nonlinear equations are well-posed within a class of (discontinuous) entropy

solutions. We prove that the L1 error between the approximate solutions

and the unique entropy solution is O(∆x1/3), where ∆x denotes the spatial

discretization parameter. This result should be compared with the classical

O(∆x1/2) result for conservation laws [20], and a very recent error estimate of

O(∆x1/11) for degenerate convection-diffusion equations [18].

1. Introdcution

Nonlinear convection-dominated flow problems arise in a range of applications,
such as fluid dynamics, meteorology, transport of oil and gas in porous media,
electro-magnetism, as well as in many other applications. As a consequence it has
become a very important undertaking to construct robust, accurate, and efficient
methods for the numerical approximation of such problems. Over the years a large
number of stable (convergent) numerical methods have been developed for linear
and nonlinear convection-diffusion equations in which the “diffusion part” is small,
or even vanishing, relative to the “convection part” of the equation. There is a
large literature on this topic, and we will provide a few relevant references later.

One central but exceedingly difficult issue relating to numerical methods for
convection-diffusion equations, is the derivation of (a priori) error estimates that
are robust in the singular limit as the diffusion coefficient vanishes, avoiding the
exponential growth of error constants. This problem has been resolved only partly
in special situations, such as for linear equations or in the completely degenerate
case of no diffusion (scalar conservation laws). For general nonlinear equations
containing both convection and (degenerate) diffusion terms this is a long standing
open problem in numerical analysis.

This paper makes a small contribution to this general problem by deriving an
error estimate for a class of simple difference schemes for nonlinear and strongly
degenerate convection-diffusion problems of the form{

∂tu+ ∂xf(u) = ∂2
xA(u), (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where ΠT = R × (0, T ) for some fixed final time T > 0, and u(x, t) is the scalar
unknown function that is sought. The initial function u0 : R → R is a given
integrable and bounded function, while the convection flux f : R → R and the
diffusion function A : R→ R are given functions satisfying

f,A locally C1; A(0) = 0; A nondecreasing.
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The moniker strongly degenerate means that we allow A′(u) = 0 for all u in some
interval [α, β] ⊂ R. Thus, the class of equations becomes very general, including
purely hyperbolic equations (scalar conservation laws)

∂tu+ ∂xf(u) = 0, (1.2)

as well as nondegenerate (uniformly parabolic) equations, such as the heat equation
∂tu = ∂2

xu, and point-degenerate diffusion equations, such as the heat equation with
a power-law nonlinearity: ∂tu = ∂x(um∂xu), which is degenerate at u = 0.

Whenever the problem (1.1) is uniformly parabolic (i.e., A′ ≥ η for some η > 0),
it is well known that the problem admits a unique classical (smooth) solution.
On the other hand, in the strongly degenerate case, (1.1) must be interpreted
in the weak sense to account for possibly discontinuous (shock wave) solutions.
Regarding weak solutions, it turns out that one needs an additional condition,
the so-called entropy condition, to ensure that (1.1) is well-posed. More precisely,
the following is known: For u0 ∈ L1(R) ∩ L∞(R), there exists a unique solution
u ∈ C((0, T );L1(Rd)), u ∈ L∞(ΠT ) of (1.1) such that ∂xA(u) ∈ L2(ΠT ) and for all
convex functions S : R→ R with q′S = f ′S′ and r′S = A′S′,

∂tS(u) + ∂xqS(u)− ∂2
xrS(u) ≤ 0 in the weak sense on [0, T )× R. (1.3)

The satisfaction of these inequalities for all convex S is the entropy condition,
and a weak solution satisfying the entropy condition is called an entropy solution.
The well-posedness of entropy solutions is a famous result due to Kružkov [19]
for conservation laws (1.2), and a more recent work by Carrillo [4] extends this
to degenerate parabolic equations (1.1). These results are available in the multi-
dimensional context, and we refer to [1, 8] for an overview of the relevant literature.
For uniqueness of entropy solutions in the BV class, see [25, 27].

One traditional way of constructing entropy solutions is by the vanishing viscosity
method, which starts off from classical solutions to the nondegenerate equation

∂tuη + ∂xf(uη) = ∂2
xA(uη) + η∂2

xuη, η > 0,

and establishes the strong convergence of uη as η → 0 by deriving BV estimates
that are independent of η, see Vol′pert and Hudjaev [26].

Besides proving that uη converges in the L1 norm to the unique entropy solution
u of (1.1), it is possible to prove the error estimate

‖uη(t, ·)− u(t, ·)‖L1 ≤ C
√
η, (whenever u0 ∈ BV ), (1.4)

see [12] (cf. also [13]). The error bound (1.4) can also be obtained as a consequence
of the more general continuous dependence estimate derived in [7], see also [5, 16].

Herein we are interested in the much more difficult problem of deriving error
estimates for numerical approximations of entropy solutions to convection-diffusion
equations. Convergence results (without error estimates) have been obtained for
finite difference schemes [10] (see also [11, 17]); finite volume schemes [14] (see also
[2]); operator splitting methods [15]; and BGK approximations [3], to mention just
a few references. For a posteriori estimates for finite volume schemes, see [22].

To be concrete in what follows, let us for simplicity assume f ′ ≥ 0 and consider
the semi-discrete difference scheme

d

dt
uj(t) +

f(uj)− f(uj−1)

∆x
=
A(uj+1)− 2A(uj) +A(uj−1)

∆x2
, (1.5)

where uj(t) ≈ u(t, j∆x) and ∆x > 0 is the spatial mesh size. Convergence of
this scheme can be proved as in the works [10, 11], where explicit and implicit time
discretizations are treated. Denote by u∆x(t, x) the piecewise constant interpolation
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of {uj(t)}j . The basic question we address in this paper is the following one: Does

there exist a number r ∈ (0, 1) and a constant C, independent of ∆x, such that

‖u∆x(t, ·)− u(t, ·)‖L1 ≤ C ∆xr, (1.6)

where u is the unique entropy solution of (1.1). We refer to the number r as the
rate of convergence.

In the purely hyperbolic case (1.2) (A′ ≡ 0), the answer to this question is a
classical result due to Kuznetsov [20], who proved that the rate of convergence is
1/2 for viscous approximations as well as monotone difference schemes, and this
is optimal for discontinuous solutions. The work of Kuznetsov [20] turned out to
be extremely influential, and by now a large number of related works have been
devoted to error estimation theory for conservation laws. We refer to [6] for an
overview of the relevant results and literature.

Unfortunately, the situation is unclear in the degenerate parabolic case (1.1). Let
us expose some reasons why adding a nonlinear diffusion term to (1.2) can make the
error analysis significantly more difficult than in the streamlined Kuznetsov theory.
First of all, it is well known that the purely hyperbolic difference scheme

d

dt
uj(t) +

f(uj)− f(uj−1)

∆x
= 0 (1.7)

has as a model equation the second order viscous equation

∂tu+ ∂xf(u) =
∆x

2
∂2
xf(u),

an equation that is compatible with the notion of entropy solution for (1.2). Indeed,
an error estimate for this viscous equation is highly suggestive for what to expect
for the upwind scheme (1.7) (this is of course what Kuznetsov proved). However,
for convection-diffusion equations such as (1.1) the situation changes dramatically.
The model equation for (1.5) is no longer second order but rather fourth order:

∂tu+ ∂xf(u) = ∂2
xA(u) +

∆x

2
∂2
xf(u)− ∆x2

12
∂4
xA(u), (1.8)

and hence the error estimate (1.4) appears no longer so relevant for numerical
schemes. Fourth order equations such as (1.8) are difficult to analyze as they lack
the usual maximum principle associated with first and second order equations.
In general, (1.8) possesses much fewer a priori estimates than are available for the
entropy solution of (1.1); indeed, conservation laws perturbed by fourth order terms
are not compatible with all the entropy inequalities, see [23]. All these facts seem
to render error analysis markedly more difficult than in the hyperbolic case.

Another added difficulty comes from the necessity to work with an explicit form
of the parabolic dissipation term associated with (1.1). Indeed, in the analysis one
needs to replace (1.3) by the following more precise entropy equation [4]

∂t |u− c|+ ∂x
(
sign(u− c)(f(u)− f(c)

)
− ∂2

x |A(u)−A(c)|

= −sign′(A(u)−A(c)) |∂xA(u)|2 , c ∈ R,
(1.9)

which is formally obtained multiplying (1.1) by sign (A(u)−A(c)), assuming for
the sake of this discussion that A′(·) > 0. The term on the right-hand side is
the parabolic dissipation term, which is a finite (signed) measure and thus very
singular. To illustrate why the parabolic dissipation term is needed, let u(y, s) and
v(x, t) be two solutions satisfying (1.9). In the entropy equation for u(y, s) one
takes c = v(x, t), while in the entropy equation for v(x, t) one takes c = u(y, s).
Adding the two resulting equations yields

(∂t + ∂s) |u− v|+ (∂x + ∂y)
(
sign(u− v)(f(u)− f(v)

)
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− (∂2
x + ∂2

y) |A(u)−A(v)| = −sign′(A(u)−A(v))
(
|∂yA(u)|2 + |∂xA(v)|2

)
,

By adding −2∂2
xy |A(u)−A(v)| to both sides of this equation, noting that

−2∂2
xy |A(u)−A(v)| = 2sign′(A(u)−A(v))∂yA(u)∂xA(v),

we arrive at

(∂t + ∂s) |u− v|+ (∂x + ∂y)
(
sign(u− v)(f(u)− f(v)

)
− (∂2

x − 2∂2
xy + ∂2

y) |A(u)−A(v)|

= −sign′(A(u)−A(v))
(
|∂yA(u)| − |∂xA(v)|

)2
≤ 0,

(1.10)

from which the contraction property d
dt ‖u(t, ·)− v(t, ·)‖L1 ≤ 0 follows [4]. Similarly,

to obtain error estimates for numerical methods, it is necessary to derive a “discrete”
version of (1.10) with v replaced by u∆x. The main challenge is to suitably replicate
at the discrete level the delicate balance between the two terms in (1.10) involving
A; the difficulty stems from the lack of a chain rule for finite differences.

Despite the mentioned difficulties, we will in this paper prove that there exists
a constant C, independent of ∆x, such that for any t > 0,

‖u∆x(t, ·)− u(t, ·)‖L1 ≤ C ∆x
1
3 .

The only other work we are aware of that provides L1 error estimates for numerical
approximations of (1.1) is [18]; therein (1.6) is established with r = 1

11 ; if A is a

linear function, then the convergence rate is the usual one, namely r = 1
2 .

Roughly speaking, the reason is two-fold for why we can significantly improve
the result in [18]. First, we are herein able to provide a more faithful analog of
(1.10) at the discrete level. Second, since sign′(·) is singular, one has to work with
a Lipschitz continuous approximation signε(·) of the sign function sign(·). The use
of this approximation breaks the symmetry of the corresponding entropy fluxes,
and introduces new error terms that depend on the parameter ε; the process of
“balancing” terms involving ∆x and ε lowers the convergence rate (to r = 1

11 ) [18].
In the present paper we are able to dispense with this balancing act. Indeed, we
show that it is possible to send ε→ 0 independently of ∆x.

The remaining part of this paper is organized as follows: In Section 2 we list
some relevant a priori estimates satisfied by viscous approximations and entropy
solutions, and provide a definition of entropy solutions. The semi-discrete difference
scheme is defined and proved to be well-posed in Section 3. We also list several
relevant a priori estimates. Section 4 is devoted to the proof of the error estimate.

2. Preliminary material

Set Aη(u) := A(u)+ηu for any fixed η > 0, and consider the uniformly parabolic
problem {

uηt + f(uη)x = Aη(uη)xx, (x, t) ∈ ΠT ,

uη(x, 0) = u0(x), x ∈ R.
(2.1)

It is well known that (2.1) admits a unique classical (smooth) solution.
We collect some relevant (standard) a priori estimates in the next three lemmas.

Lemma 2.1. Suppose u0 ∈ L∞(R) ∩ L1(R) ∩ BV (R), and let uη be the unique
classical solution of (2.1). Then for any t > 0,

‖uη(·, t)‖L1(R) ≤
∥∥u0
∥∥
L1(R)

,

‖uη(·, t)‖L∞(R) ≤ ‖u
0‖L∞(R),

|uη(·, t)|BV (R) ≤
∣∣u0
∣∣
BV (R)

.
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For a proof of the previous and next lemmas, see for example [26].

Lemma 2.2. Suppose u0 ∈ L∞(R) ∩ L1(R) and f(u0)−A(u0)x ∈ BV (R). Let uη

be the unique classical solution of (2.1). Then for any t1, t2 > 0,

‖uη(·, t2)− uη(·, t1)‖L1(R) ≤
∣∣f(u0)−A(u0)x

∣∣
BV (R)

|t2 − t1| .

Regarding the following lemma, see [24, 10].

Lemma 2.3. Suppose u0 ∈ L∞(R)∩L1(R) and f(u0)−A(u0)x ∈ L∞(R)∩BV (R).
Let uη be the unique classical solution of (2.1). Then for any t > 0,

‖f(uη(·, t))−A(uη(·, t))x‖L∞(R) ≤
∥∥f(u0)−A(u0)x

∥∥
L∞(R)

, (2.2)

|f(uη(·, t))−A(uη(·, t))x|BV (R) ≤
∣∣f(u0)−A(u0)x

∣∣
BV (R)

. (2.3)

Note that ‖A(uη)x‖L∞(ΠT ) and ‖A(uη)xx‖L1(ΠT ) are bounded independently of

η provided that A(u0)x is in BV (R).
These results above imply that the family {uη}η>0 is relatively compact in

C([0, T ];L1
loc(R)). If u = limη→0 u

η, then

‖uη − u‖L1(ΠT ) ≤ Cη
1/2,

for some constant C which does not depend on η, see [12]. Moreover, u is an entropy
solution according to the following definition.

Definition 2.1. An entropy solution of the Cauchy problem (1.1) is a measurable
function u = u(x, t) satisfying:

(D.1) u ∈ L∞(ΠT ) ∩ C((0, T );L1(R)).
(D.2) A(u) ∈ L2((0, T );H1(R)).
(D.3) For all constants c ∈ R and test functions 0 ≤ ϕ ∈ C∞0 (R × [0, T )), the

following entropy inequality holds:∫∫
ΠT

|u− c|ϕt + sign (u− c) (f(u)− f(c))ϕx + |A(u)−A(c|ϕxx dtdx

+

∫
R
|u0 − c|ϕ(x, 0) dx ≥ 0.

The uniqueness of entropy solutions follows from the work [4]. Actually, in view
of the above a priori estimates, the relevant functional class is BV (ΠT ), in which
case we can replace (D.2) by the condition A(u)x ∈ L∞(ΠT ). For a uniqueness
result in the BV class, see [27].

3. Difference scheme

We start by specifying the numerical flux to be used in the difference scheme.

Definition 3.1. (Numerical flux) We call a function F ∈ C1(R2) a two-point
numerical flux for f if F (u, u) = f(u) for u ∈ R. If

∂

∂u
F (u, v) ≥ 0 and

∂

∂v
F (u, v) ≤ 0

holds for all u, v ∈ R, we call F monotone.

Let Fu and Fv denote the partial derivatives of F with respect to the first and
second variable respectively. We will also assume that F is Lipschitz continuous.

Let ∆x > 0 and set xj = j∆x for j ∈ Z, and define

D±σj = ±σj±1 − σj
∆x

,

for any sequence {σj}.
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We may now define a semidiscrete approximation of the solution to (1.1) as the
solution to the (infinite) system of ordinary differential equations{

d
dtuj(t) +D−Fj+1/2 = D−D+A(uj), t > 0,

uj(0) = 1
∆x

∫
Ij
u0(x) dx,

j ∈ Z, (3.1)

where Fj+1/2 = F (uj , uj+1) is a numerical flux function and Ij = (xj−1/2, xj+1/2].
The problem above can be viewed as an ordinary differential equation in the

Banach space `1(Z) (see, e.g., [21]). To get bounds independent of ∆x we define

‖σ‖1 = ∆x
∑
j

|σj | and |σ|BV =
∑
j

|σj+1 − σj | = ‖D+σ‖1 .

If these are bounded we say that σ = {σj} is in `1 and of bounded variation.
Let u(t) = {uj(t)}j∈Z, u0 = {uj(0)}j∈Z, and define the operator A : `1 → `1 by

(A(u))j := D−(F (uj , uj+1)−D+A(uj)). Then (3.1) takes the following form

du

dt
+A(u) = 0, t > 0, u(0) = u0. (3.2)

This problem has a unique continuously differentiable solution since A is Lipschitz
continuous for each fixed ∆x > 0. This solution defines a strongly continuous
semigroup S(t) on `1. If S also satisfies

‖S(t)u− S(t)v‖1 ≤ ‖u− v‖1 for u, v ∈ `1,

we say that it is nonexpansive. The next lemma sums up some important properties
of the solutions to (3.1) (for a proof see [9]).

Lemma 3.1. Suppose that F is monotone. Then there exists a unique solution
u = {uj} to (3.1) on [0, T ] with the properties:

(a) ‖u(t)‖1 ≤
∥∥u0
∥∥

1
.

(b) For every j ∈ Z and t ∈ [0, T ],

inf
k

{
u0
k

}
≤ uj(t) ≤ sup

k

{
u0
k

}
.

(c) |u(t)|BV ≤
∣∣u0
∣∣
BV

.

(d) If v = {vj} is a another solution with initial data v0 then

‖u(t)− v(t)‖1 ≤
∥∥u0 − v0

∥∥
1
.

Lemma 3.2. If F is monotone, then

‖F (uj , uj+1)−D+A(uj)‖`∞ ≤
∥∥F (u0

j , u
0
j+1)−D+A(u0

j )
∥∥
`∞
, (3.3)

|F (uj , uj+1)−D+A(uj)|BV ≤
∣∣F (u0

j , u
0
j+1)−D+A(u0

j )
∣∣
BV

. (3.4)

Furthermore, t 7→ {uj(t)}j∈Z is `1 Lipschitz continuous.

Proof. The proof follows [10]. Let vj = ∆x
∑
k≤j

duk

dt . Then vj satisfies

vj = ∆x

j∑
k=−∞

D−(D+A(uk)− F (uk, uk+1)) = D+A(uj)− F (uj , uj+1), (3.5)

and we may define vj for all t ∈ [0, T ]. Note that {vj(t)} is in `1 for all t by
Lemma 3.1. Differentiating (3.5) with respect to t we obtain

dvj
dt

=
1

∆x

[
a(uj+1)

duj+1

dt
− a(uj)

duj
dt

]
− Fu(uj , uj+1)

duj
dt
− Fv(uj , uj+1)

duj+1

dt
,
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where a(u) = A′(u). Note that D−vj =
duj

dt and D+vj =
duj+1

dt . Therefore

dvj
dt

=

(
1

∆x
a(uj+1)− Fv(uj , uj+1)

)
D+vj

−
(

1

∆x
a(uj) + Fu(uj , uj+1)

)
D−vj . (3.6)

Assume vj0(t0) is a local maximum in j. Then D+vj0(t0) ≤ 0 and D−vj0(t0) ≥ 0 so
vj0
dt (t0) ≤ 0 since F is monotone. Similarly, if vj0(t0) is a local minimum in j, then
vj0
dt (t0) ≥ 0. Then inequality (3.3) follows by the fact that {vj(t)} ∈ `1. Consider

(3.4). We want to show that d
dt (|v(t)|BV ) ≤ 0. Now,

d

dt

(∑
j

|vj+1 − vj |
)

=
∑
j

sign (vj+1 − vj)
d

dt
(vj+1 − vj) ,

so we may use (3.6). Thus

d

dt
|v(t)|BV

=
∑
j

(
1

∆x
a(uj+2)− Fv(uj+1, uj+2)

)
(D+vj+1) sign(vj+1 − vj)

−
∑
j

(
1

∆x
a(uj+1) + Fu(uj+1, uj+2)

)
|D+vj |

−
∑
j

(
1

∆x
a(uj+1)− Fv(uj , uj+1)

)
|D+vj |

+
∑
j

(
1

∆x
a(uj) + Fu(uj , uj+1)

)
((D−vj)sign(vj+1 − vj))

=
∑
j

(
1

∆x
a(uj+1)− Fv(uj , uj+1)

)
[(D+vj) sign (vj − vj−1)− |D+vj |]

+
∑
j

(
1

∆x
a(uj) + Fu(uj , uj+1)

)
[(D−vj)sign(vj+1 − vj)− |D−vj |]

≤ 0,

since a(u) > 0 and Fv ≤ 0 and Fu ≥ 0. Given the preceeding estimates, the `1

Lipschitz continuity is straightforward to prove. �

3.1. The numerical entropy flux. It turns out that we need more conditions on
F than mere monotonicity.

Definition 3.2. Given an entropy pair (ψ, q) and a numerical flux F , we define
Q ∈ C1(R2) by

Q(u, u) = q(u),

∂

∂v
Q(v, w) = ψ′(v)

∂

∂v
F (v, w),

∂

∂w
Q(v, w) = ψ′(w)

∂

∂w
F (v, w).

We call Q a numerical entropy flux.

The next lemma gives a sufficient condition on the numerical flux to ensure that
there exists a numerical entropy flux.
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Lemma 3.3. Given a two-point numerical flux F , assume that there exist C1

functions F1, F2 such that

F (u, v) = F1(u) + F2(v), F ′1(u) + F ′2(u) = f ′(u), (3.7)

for all relevant u and v. Then there exists a numerical entropy flux Q for any
entropy flux pair (ψ, q).

Proof. Let (ψ, q) be an entropy pair. Then q has the form

q(u) =

∫ u

c

ψ′(z)f ′(z) dz + C,

for some constant C. Define Q by

Q(u, v) =

∫ u

c

ψ′(z)F ′1(z) dz +

∫ v

c

ψ′(z)F ′2(z) dz + C. (3.8)

It is easily verified that Q is a numerical entropy flux. �

Let us list a few numerical flux functions to which Lemma 3.3 applies.

Example 3.1 (Engquist-Osher flux). Let

f ′+(s) = max(f ′(s), 0) and f ′−(s) = min(f ′(s), 0).

Then, in the terminology of Lemma 3.3, let F (u, v) = F1(u) + F1(v) with

F1(u) = f(0) +

∫ u

0

f ′+(s) ds and F2(v) =

∫ v

0

f ′−(s) ds.

It is easily seen that the criteria given in Lemma 3.3 are satisfied, and F is also
clearly monotone.

Example 3.2. Let a, b ∈ R and define

F1(u) = af(u) + bu and F2(v) = (1− a)f(v)− bv.
Note that F (u, v) = F1(u) + F2(v) is monotone if

a inf
x
{f ′(x)} ≥ −b and (1− a) sup

x
{f ′(x)} ≤ b.

This example includes both the upwind scheme and the Lax-Friedrichs scheme.

From a more general point of view we may consider any flux splitting. That is
f(u) = f+(u) + f−(u) where (f+(u))′ ≥ 0 and (f−(u))′ ≤ 0 for all u ∈ R. Then
the numerical flux F defined by

F (u, v) = f+(u) + f−(v)

satisfies the assumptions of Lemma 3.3. Note also that any convex combination of
numerical flux functions which satisfy the hypothesis of Lemma 3.3, itself satisfies
the assumptions of the lemma.

If (3.7) holds, then we have a representation of Q given by (3.8). It follows that

Q(u, v) = q(u) +

∫ v

u

ψ′(z)F ′2(z) dz.

Note that we may obtain another representation depending on F1 by splitting up
the first integral.

Lemma 3.4. Let Q be a numerical entropy flux associated with the entropy pair
(ψ, q) and the monotone numerical flux F . Then

ψ′(u)(F (u,w)− F (v, u)) ≥ Q(u,w)−Q(v, u),

for all relevant u, v and w.
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Proof. Fix u and define p(v, w) = p1(w) + p2(v), where

p1(w) = −ψ′(u)F (u,w) +Q(u,w) + ψ′(u)f(u)− q(u),

p2(v) = ψ′(u)F (v, u)−Q(v, u)− ψ′(u)f(u) + q(u).

Then we have

p(v, w) = −ψ′(u)(F (u,w)− F (v, u)) + (Q(u,w)−Q(v, u)),

and so the lemma is proved if we can show that p(v, w) ≤ 0. Now

p′1(w) = −ψ′(u)
∂

∂w
F (u,w) + ψ′(w)

∂

∂w
F (u,w)

= ψ′′(ξ1)
∂

∂w
F (u,w)(w − u)

for some ξ1 ∈ int(u,w)1. Similarly

p′2(v) = ψ′(u)
∂

∂v
F (v, u)− ψ′(v)

∂

∂v
F (v, u)

= ψ′′(ξ2)
∂

∂v
F (v, u)(u− v),

for some ξ2 ∈ int(u, v). Since F is monotone and ψ is convex, p′i(z)(z − u) ≤ 0 for
i = 1, 2. It remains to observe that p1(u) = p2(u) = 0 and so

pi(z) =

∫ z

u

p′i(ξ) dξ ≤ 0, for i = 1, 2.

Hence p(v, w) ≤ 0. �

4. Error estimate

Let {uj}j∈Z be the solution to (3.1). To any sequence {uj(t)}j∈Z we associate

the piecewise constant function

u∆x(x, t) = uj(t) for x ∈ Ij . (4.1)

To derive the error estimate we need many of the uniform bounds from Sections 2
and 3. For these estimates to hold independently of ∆x, we make the following
assumptions on the initial data u0:

(i) u0 ∈ L1(R) ∩ L∞(R) ∩BV (R).
(ii) A(u0)x ∈ BV (R).

We may now state the theorem.

Theorem 4.1. Let u be the entropy solution to (1.1) and {uj(t)}j∈Z solve the

semidiscrete difference scheme (3.1). If u0 satisfies (i) and (ii) above, then for all
sufficiently small ∆x,

‖u∆x(·, t)− u(·, t)‖L1(R) ≤
∥∥u0

∆x − u0
∥∥
L1(R)

+ CT∆x
1
3 , t ∈ [0, T ], (4.2)

where the constant CT depends on A, f , u0, and T , but not on ∆x.

From now on we suppose A(σ) = Â(σ) + ησ, where Â′ ≥ 0 is the original
degenerate diffusion function. In fact, we will prove (4.2) in this case, and then
note that the right-hand side is independent of η, so we can send η → 0.

Let us define some of the functions we are going to work with. First, let the
approximation of the sign function be given by

signε(σ) =

{
sin(πσ2ε ) for |σ| < ε,

sign (σ) otherwise,

1By int(a, b) we mean the closed interval between a and b.
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where ε > 0. Note that signε is continuously differentiable and non-decreasing.
Then we define

|u|ε =

∫ u

0

signε(z) dz.

The next lemma is a replacement for the chain rule when working with sequences
and finite differences.

Lemma 4.1. Let {uj}j∈Z be some sequence in R and A : R → R a strictly in-

creasing continuously differentiable function. For any u ∈ R there exist sequences
{τj}j∈Z , {θj}j∈Z such that for each j ∈ Z both τj and θj are in int(uj , uj+1) and

D+signε(A(uj)−A(u)) = sign′ε(A(τj)−A(u))D+A(uj),

D+|A(uj)−A(u)|ε = signε(A(θj)−A(u))D+A(uj).

If u is a differentiable function of y then for each j ∈ Z
sign′ε(A(τj)−A(u))A(u)y = −(signε(A(θj)−A(u)))y. (4.3)

Both {τj}j∈Z and {θj}j∈Z depend on u and ε.

Proof. The first statement is a direct consequence of the mean value theorem.
Consider (4.3). If uj = uj+1 then θj = τj is independent of u and hence of y,
so (4.3) follows by the chain rule. In general

sign′ε(A(τj)−A(u))A(u)yD+A(uj) = D+signε(A(uj)−A(u))A(u)y

= −D+(|A(uj)−A(u)|ε)y
= −signε(A(θj)−A(u))yD+A(uj).

In the case uj 6= uj+1 we have D+A(uj) 6= 0 and (4.3) follows. �

4.1. Doubling of the variables. We let (x, t, y, s) denote a point in Π2
T , where

x and y are the spatial variables and s and t are the time variables. Moreover, we
let u∆x = u∆x(x, t) be defined by (4.1), and let u = u(y, s) be the classical solution

of (1.1) with A(σ) = Â(σ) + ησ. Although both u and u∆x depend on η, we do
not indicate this dependence in our notation. To avoid writing four integral signs
we will in general write one for each domain ΠT and let dX = dxdtdyds. For a
function ϕ : Π2

T → R, we let ϕσ(x, t, y, s) = ϕ(x+ σ, t, y, s).

4.1.1. Rewriting the continuous equation. Define an entropy pair (ψε, qε) by

ψε(u, c) =

∫ u

c

signε(A(z)−A(c)) dz,

qε(u, c) =

∫ u

c

ψ′ε(z, c)f
′(z) dz =

∫ u

c

signε(A(z)−A(c))f ′(z) dz,

where ψ′ε is the derivative with respect to the first variable. Let ϕ = ϕ(x, t, y, s)
be a non-negative smooth function such that for each (y, s), the function (x, t) 7→
ϕ(x, t, y, s) ∈ C∞0 (R×(0, T )), and for each (x, t), the function (y, t) 7→ ϕ(x, t, y, s) ∈
C∞0 (R× (0, T )). Multiply equation (2.1) by ψ′ε(u, uj)ϕ and integrate in both space
and time to get∫

ΠT

ψε(u, uj)sϕ+ ψ′ε(u, uj)(f(u)− f(uj))yϕdyds =

∫
ΠT

(ψ′ε(u, uj)ϕ)A(u)yy dyds.

Integration by parts and the chain rule gives∫
ΠT

ψε(u, uj)ϕs − qε(u, uj)yϕdyds

=

∫
ΠT

signε(A(u)−A(uj))A(u)yϕy + sign′ε(A(u)−A(uj))(A(u)y)2ϕdyds.
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Using the chain rule and integration by parts we get∫
ΠT

signε(A(u)−A(uj))A(u)yϕy dyds = −
∫

ΠT

|A(u)−A(uj)|ε ϕyy dyds.

so ∫
ΠT

ψε(u, uj)ϕs − qε(u, uj)yϕdyds

=

∫
ΠT

−|A(u)−A(c)|ε ϕyy + sign′ε(A(u)−A(uj))(A(u)y)2ϕdyds. (4.4)

Note that since u∆x is piecewise constant in x,∫
R
h (u∆x(x, t)) dx = ∆x

∑
j

h (uj(t)) ,

for any function h taking pointwise values. We thus multiply (4.4) by ∆x and sum
over j. This yields∫∫

Π2
T

ψε(u, u∆x)ϕs + qε(u, u∆x)ϕy dX

=

∫∫
Π2

T

−|A(u)−A(u∆x)|εϕyy + sign′ε(A(u)−A(u∆x))(A(u)y)2ϕdX

after integrating the resulting expression over [0, T ] in the variable t. Let us take
the limit as ε ↓ 0. By dominated convergence∫∫

Π2
T

|u− u∆x|ϕs+sign (u− u∆x) (f(u)− f(u∆x))ϕy dX

= −
∫∫

Π2
T

|A(u)−A(u∆x)|ϕyy dX

+ lim
ε↓0

∫∫
Π2

T

sign′ε(A(u∆x)−A(u))(A(u)y)2ϕdX,

(4.5)

since

lim
ε↓0

qε(u, u∆x) =

∫ u

u∆x

sign (z − u∆x) f ′(z) dz = sign (u− u∆x) (f(u)− f(u∆x)) ,

and

lim
ε↓0

ψε(u, u∆x) = lim
ε↓0

∫ u

u∆x

signε(A(z)−A(u∆x)) = |u− u∆x|.

4.1.2. Rewriting the semidiscrete equation. Next we will obtain an analogous ex-
pression for u∆x. For a function σ = σ(x, t, y, s) we let

D±σ = ±σ
±∆x − σ

∆x
,

where σ∆x(x, t, y, s) = σ(x+ ∆x, t, y, s). From (3.1) it follows that

d

dt
u∆x(x, t) +D−F (u∆x(x, t), u∆x(x+ ∆x, t)) = D−D+A(u∆x(x, t))

holds for all (x, t) ∈ ΠT . Multiply by ψ′ε(u∆x, u)ϕ and integrate in both time and
space to obtain∫

ΠT

ψε(u∆x, u)tϕ+ ψ′ε(u∆x, u)D−F
(
u∆x, (u∆x)∆x

)
ϕdxdt

=

∫
ΠT

signε(A(u∆x)−A(u)) (D−D+A(u∆x))ϕdxdt.
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Note that for any two functions u, v of x we have D+(uv) = u∆xD+v + (D+u)v.
It follows that ∫

R
(D+u)v dx = −

∫
R
uD−v dx,

given that uv lies in C0(R). We will refer to these identities respectively as Leibniz
rule for difference quotients and integration by parts for difference quotients.

By the above,∫
ΠT

ψε(u∆x, u)ϕt − ψ′ε(u∆x, u)D−F (u∆x, (u∆x)∆x)ϕdxdt

=

∫
ΠT

D+signε(A(u∆x)−A(u))D+A(u∆x)ϕ∆x dxdt

+

∫
ΠT

signε(A(u∆x)−A(u))D+A(u∆x)D+ϕdxdt.

(4.6)

Let us introduce the sequences from Lemma 4.1 and form the piecewise constant
functions τ∆x and θ∆x as in (4.1). Note that since both τj and θj depends on t, y, s
and ε the same is true for τ∆x and θ∆x. By Lemma 4.1∫

ΠT

D+signε(A(u∆x)−A(u))D+A(u∆x)ϕ∆x dxdt

=

∫
ΠT

sign′ε(A(τ∆x)−A(u))[D+A(u∆x)]2ϕ∆x dxdt.

(4.7)

Concerning the second term on the right of (4.6) we add and subtract to apply
Lemma 4.1 again. Using integration by parts for difference quotients∫

ΠT

signε(A(u∆x)−A(u))D+A(u∆x)D+ϕdxdt

=

∫
ΠT

signε(A(θ∆x)−A(u))D+A(u∆x)D+ϕdxdt

+

∫
ΠT

[signε(A(u∆x)−A(u))− signε(A(θ∆x)−A(u))]D+A(u∆x)D+ϕdxdt

= −
∫

ΠT

|A(u∆x)−A(u)|εD−D+ϕdxdt

+

∫
ΠT

[signε(A(u∆x)−A(u))− signε(A(θ∆x)−A(u))]D+A(u∆x)D+ϕdxdt.

Integrate in y and s, and apply (4.7) and the above equation to turn equation (4.6)
into∫∫

Π2
T

ψε(u∆x, u)ϕt − ψ′ε(u∆x, u)D−F (u∆x, (u∆x)∆x)ϕdX

=

∫∫
Π2

T

sign′ε(A(τ∆x)−A(u))(D+A(u∆x))2ϕ∆x dX

−
∫∫

Π2
T

|A(u∆x)−A(u)|ε (D−D+ϕ) dX

+

∫∫
Π2

T

[signε(A(u∆x)−A(u))− signε(A(θ∆x)−A(u))]D+A(u∆x)D+ϕdX.

Let ε ↓ 0 and apply dominated convergence to obtain∫∫
Π2

T

|u∆x − u|ϕt − sign (u∆x − u)D−F (u∆x, (u∆x)∆x)ϕdX (4.8)
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= −
∫∫

Π2
T

|A(u∆x)−A(u)| (D−D+ϕ) dX

+ lim
ε↓0

∫∫
Π2

T

sign′ε(A(τ∆x)−A(u))(D+A(u∆x))2ϕ∆x dX

+ lim
ε↓0

∫∫
Π2

T

[signε(A(u∆x)−A(u))− signε(A(θ∆x)−A(u))]D+A(u∆x)D+ϕdX.

Since A(u∆x) is of bounded variation in x we may apply the dominated convergence
theorem and Lemma 4.3 to compute an explicit expression for the last limit (details
will be given later). It follows by the above equation that the first limit exists.

4.1.3. Adding the equations. By Lemma 4.1,

0 =

∫∫
Π2

T

D+ (signε(A(u∆x)−A(u))A(u)yϕ) dX

=

∫∫
Π2

T

D+(signε(A(u∆x)−A(u)))A(u)yϕ
∆x

+ signε(A(u∆x)−A(u))A(u)yD+ϕdX

=

∫∫
Π2

T

D+(signε(A(u∆x)−A(u)))A(u)yϕ
∆x

− (|A(u∆x)−A(u)|ε)yD+ϕdX

=

∫∫
Π2

T

sign′ε(A(τ∆x)−A(u))D+A(u∆x)A(u)yϕ
∆x

+ |A(u∆x)−A(u)|εD+ϕy dX.

Taking the limit as ε ↓ 0,

0 = lim
ε→0

∫∫
Π2

T

sign′ε(A(τ∆x)−A(u))D+A(u∆x)A(u)yϕ
∆x dX

+

∫∫
Π2

T

|A(u∆x)−A(u)|D+ϕy dX. (4.9)

Adding (4.5) and (4.8) and subtracting twice (4.9) we get:∫∫
Π2

T

|u− u∆x| (ϕs + ϕt) + sign (u− u∆x) (f(u)− f(u∆x))ϕy dX

−
∫∫

Π2
T

sign (u∆x − u)D−F (u∆x, (u∆x)∆x)ϕdX

= −
∫∫

Π2
T

|A(u)−A(u∆x)| (D−D+ϕ+ 2D+ϕy + ϕyy) dX (4.10)

+ lim
ε↓0

∫∫
Π2

T

sign′ε(A(τ∆x)−A(u))(A(u)y −D+A(u∆x))2ϕ∆x dX (4.11)

+ lim
ε↓0

∫∫
Π2

T

[
sign′ε(A(u∆x)−A(u))ϕ

− sign′ε(A(τ∆x)−A(u))ϕ∆x
]
(A(u)y)2 dX (4.12)

+ lim
ε↓0

∫∫
Π2

T

[
signε(A(u∆x)−A(u))

− signε(A(θ∆x)−A(u))
]
D+A(u∆x)D+ϕdX. (4.13)



14 K. H. KARLSEN, N. H. RISEBRO, AND E. B. STORRØSTEN

4.2. The main inequality. Following Lemma 3.3, we define the numerical entropy
flux Qu(uj , uj+1) by

Qu(uj , uj+1) = sign (uj − u) (f(uj)− f(u)) +

∫ uj+1

uj

sign (z − u)F ′2(z) dz. (4.14)

By Lemma 3.4

sign(uj − u)D−F (uj , uj+1) ≥ D−Qu(uj , uj+1).

The term (4.11) is positive and so∫∫
Π2

T

|u∆x − u| (ϕt + ϕs) dX

+

∫∫
Π2

T

sign (u− u∆x) (f(u)− f(u∆x))ϕy +Qu(u∆x, (u∆x)∆x)D+ϕdX

+

∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ+ 2D+ϕy + ϕyy) dX ≥ <, (4.15)

where

< := (4.13) + (4.12). (4.16)

By (4.14)∫∫
Π2

T

sign (u− u∆x) (f(u)− f(u∆x))ϕy +Qu(u∆x, (u∆x)∆x)D+ϕdX

=

∫∫
Π2

T

sign (u− u∆x) (f(u)− f(u∆x)) (ϕy +D+ϕ) dX

+

∫∫
Π2

T

∫ (u∆x)∆x

u∆x

sign (z − u)F ′2(z) dz D+ϕdX.

Let

γ :=

∫∫
Π2

T

∫ (u∆x)∆x

u∆x

sign (z − u)F ′2(z) dz D+ϕdX. (4.17)

We obtain from (4.15) the inequality∫∫
Π2

T

|u∆x − u| (ϕt + ϕs) dX

+

∫∫
Π2

T

sign (u∆x − u) (f(u∆x)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ+ 2D+ϕy + ϕyy) dX

≥ −γ + <. (4.18)

Let us specify the test function ϕ. Let ρ ∈ C∞0 (R) satisfy

supp(ρ) ⊂ [−1, 1], ρ(−σ) = ρ(σ), ρ(σ) ≥ 0,

∫
R
ρ(σ) dσ = 1,

and set

ωr(x) =
1

r
ρ
(x
r

)
, ρα(ξ) =

1

α
ρ

(
ξ

α

)
, ρr0(t) =

1

r0
ρ

(
r

ρ0

)
,

for positive (small) r, α and r0. Let ν and τ be such that 0 < ν < τ < T and define

ψα(t) := Hα(t− ν)−Hα(t− τ), Hα(t) =

∫ t

−∞
ρα(ξ) dξ.
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Let

ϕ(x, t, y, s) = ψα(t)ωr(x− y)ρr0(t− s).
To ensure ϕ|t=0 ≡ 0, ϕ|s=0 ≡ 0, we choose ν and τ such that 0 < r0 < min(ν, T −τ)
and 0 < α < min(ν − r0, T − τ − r0). Note that

ϕt + ϕs = ψαt ωrρr0 ,

ϕx + ϕy = 0,

ϕxx + 2ϕxy + ϕyy = 0.

In equation (4.18) these expressions appear with difference quotients instead of
x-derivatives. It should then be expected that these equalities turns into good
approximations as long as ∆x tends relatively fast to zero compared to r. This will
be seen in what follows. Consider the first term on the left in (4.18),∫∫

Π2
T

|u∆x − u| (ϕt + ϕs) dX =

∫∫
Π2

T

|u∆x − u| ρα(t− ν)φωrρr0 dX

−
∫∫

Π2
T

|u∆x − u| ρα(t− τ)φωrρr0 dX.

Hence∫∫
Π2

T

|u∆x − u| ρα(t− ν)φωrρr0 dX

+

∫∫
Π2

T

sign (u∆x − u) (f(u∆x)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ+ 2D+ϕy + ϕyy) dX + γ

≥
∫∫

Π2
T

|u∆x − u| ρα(t− τ)φωrρr0 dX + <. (4.19)

4.3. Estimates. The subject of this section is to find bounds on the “unwanted”
terms in (4.19). In these computations we let C denote a generic constant. By
constant it is meant that it does not depend on the “small” variables but it might
depend on T and the initial conditions. Similarly we let Γ = Γ(∆x, η, α, r, r0) denote
a generic function (taking a variable number of arguments) with the property that
it is locally bounded, positive and increasing in each argument. Note the maximum
of two such functions is itself of this type.

We first write down some standard computations for future reference.

Lemma 4.2. Let Dk = ∂k

∂xk . Then∣∣Dkϕ(x, t, y, s)
∣∣ ≤ ψ(t)

∥∥ρ(k)
∥∥
L∞

rk+1
1{|x−y|≤r}(x, y)ρr0(t− s).

Let ϕσ(x, t, y, s) = ϕ(x+ σ, t, y, s). If |σ| ≤ ∆x then∣∣Dkϕσ(x, t, y, s)
∣∣ ≤ ψ(t)

∥∥ρ(k)
∥∥
L∞

rk+1
1{|x−y|≤r+∆x}(x, y)ρr0(t− s).

Considering the difference quotient applied to ωr we have

|D+ωr(x− y)|| ≤
‖ρ′‖L∞

r2
1{|x−y|≤r+∆x}(x, y).

Proof. Note that

Dkωr(x) =
1

rk+1
ρ(k)

(x
r

)
.
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Since supp(ρ) ⊂ [−1, 1] we have∣∣Dkωr(x)
∣∣ ≤ ∥∥ρ(k)

∥∥
L∞

rk+1
1{|x|≤r}(x),

which proves the first statement. Consider the second statement. If |x−y| ≥ r+∆x,
then

|x+ σ − y| ≥ |x− y| − |σ| ≥ r + ∆x−∆x = r,

so it follows that 1{|x+σ−y|≤r}(x, y) ≤ 1{|x−y|≤r+∆x}(x, y); this proves the second
statement.

To prove the last statement, recall that

D+ωr(x) =
ωr(x+ ∆x)− ωr(x)

∆x
.

If |x| ≥ r+∆x then ωr(x+∆x) = ωr(x) = 0, so supp(D+(ωr)) ⊂ [−r−∆x, r+∆x].
By the mean value theorem and the fact that ‖ω′r‖L∞ = ‖ρ′‖L∞ r−2 we get

|ωr(x+ ∆x)− ωr(x)| ≤
‖ρ′‖L∞

r2
∆x.

The last statement follows from this. �

Now observe that
D+ϕ+ ϕy = D+ϕ− ϕx,

and so∫∫
Π2

T

sign (u∆x − u) (f(u∆x)− f(u)) (D+ϕ+ ϕy) dX

=

∫∫
Π2

T

sign (u∆x − u) (f(u∆x)− f(u)) (D+ϕ− ϕx) dX =: β. (4.20)

Estimate 4.1. Let β be defined by (4.20), then

|β| ≤ C∆x

r

(
1 +

∆x

r

)
.

Proof. We claim that

(D+ϕ− ϕx) (x, t, y, s) =
1

∆x

∫ ∆x

0

(∆x− σ)ϕxx(x+ σ, t, y, s) dσ. (4.21)

Hence

β =
1

∆x

∫∫
Π2

T

∫ ∆x

0

signε (A(u∆x)−A(u)) (f(u∆x)− f(u)) (∆x− σ)ϕσxx dσ dX.

We can write

sign (u∆x − u) (f(u∆x)− f(u)) (x, t, y, s)

=
∑
j

sign (uj − u) (f(uj)− f(u)) (t, y, s)︸ ︷︷ ︸
Θj

1{Ij}(x).

Using summation by parts

1

∆x

∫
R

∫ ∆x

0

sign (u∆x − u) (f(u∆x)− f(u)) (∆x− σ)ϕσxx dσdx

=
1

∆x

∫ ∆x

0

∑
j

Θj

∫
R
1{Ij}(x)(∆x− σ)ϕσxx dxdσ

=
1

∆x

∫ ∆x

0

∑
j

Θj

∫
Ij

ϕxx(x+ σ, t, y, s) dx(∆x− σ) dσ
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=

∫ ∆x

0

∑
j

Θj

(
D−ϕ

σ
x,j+1/2

)
(∆x− σ) dσ

= −
∑
j

D+Θj

∫ ∆x

0

ϕσx,j+1/2(∆x− σ) dσ,

where ϕσx,j+1/2 = ϕx(xj+1/2 + σ, t, y, s). By Lemma 4.2 we have

|ϕx(x+ σ, t, y, s)| ≤ C 1

r2
1{|x−y|≤r+∆x}(x, y)ρr0(t− s).

Hence∣∣∣∫ ∆x

0

ϕσx,j+1/2(∆x− σ) dσ
∣∣∣ ≤ C∆x2 1

r2
1{|xj+1/2−y|≤r+∆x}(y)ρr0(t− s).

Now

|D+Θj | ≤ ‖f‖Lip |D+uj | .
Therefore∣∣∣ 1

∆x

∫
R

∫ ∆x

0

sign (u∆x − u) (f(u∆x)− f(u)) (∆x− σ)ϕσxx dσdx
∣∣∣

≤
∑
j

|D+Θj |
∣∣∣∫ ∆x

0

ϕσx,j+1/2(∆x− σ) dσ
∣∣∣

≤ C ‖f‖Lip ∆x2
∑
j

|D+uj |
1

r2
1{|xj+1/2−y|≤r+∆x}(y)ρr0(t− s).

It follows by the above and Lemma 3.1 that

|β| ≤ C∆x2 r + ∆x

r2

∫ T

0

∑
j

|D+uj | dt

= C
r + ∆x

r2

∫
ΠT

|u∆x(x+ ∆x, t)− u∆x(x, t)| dxdt

= CT
1

r

(
1 +

∆x

r

)
∆x
∣∣u0

∆x

∣∣
BV (R)

.

This concludes the proof. �

Next, let us consider the term (4.10). First observe that

D−D+ϕ+ 2D+ϕy + ϕyy = (D−D+ϕ− ϕxx) + 2 (D+ϕ− ϕx)y .

Thus (4.10) can be rewritten∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ+ 2D+ϕy + ϕyy) dX

=

∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ− ϕxx) dX

+ 2

∫∫
Π2

T

|A(u∆x)−A(u)| (D+ϕ− ϕx)y dX

=: ζ1 + ζ2.

Estimate 4.2.

|ζ1 + ζ2| ≤ C
∆x

r2

(
1 +

∆x

r

)2

.
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Proof. Consider the term ζ1. We use the same strategy as for the β term. Write
µ(σ) = ϕ(x+ σ, t, y, s). By a Taylor expansion

µ(z)− µ(0) = zµ′(0) +
1

2
z2µ′′(0) +

1

6
z3µ(3)(0)− 1

6

∫ z

0

(σ − z)3µ(4)(σ) dσ.

Using this, we get

µ(∆x)− 2µ(0) + µ(−∆x)−∆x2µ′′(0)

= −1

6

∫ ∆x

0

(σ −∆x)3µ(4)(σ) dσ +
1

6

∫ 0

−∆x

(σ + ∆x)3µ(4)(σ) dσ.

It follows that

D+D−ϕ− ϕxx = − 1

6∆x2

∫ ∆x

0

(σ −∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ

+
1

6∆x2

∫ 0

−∆x

(σ + ∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ.

Splitting ζ1 according to this equality we get

ζ1 =

∫∫
Π2

T

|A(u∆x)−A(u)| (D−D+ϕ− ϕxx) dX

= − 1

6∆x2

∫∫
Π2

T

∫ ∆x

0

|A(u∆x)−A(u)| (σ −∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

+
1

6∆x2

∫∫
Π2

T

∫ 0

−∆x

|A(u∆x)−A(u)| (σ + ∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

=: T1 + T2.

We also have that

|A(u∆x)−A(u)| (x, t, y, s) =
∑
j

|A(uj)−A(u)| (t, y, s)︸ ︷︷ ︸
Φj

1{Ij}(x).

Now consider T1,

−
∫ ∆x

0

∫
R
|A(u∆x)−A(u)| (σ −∆x)3 ∂

4

∂x4
ϕσ dxdσ

= −
∑
j

|A(uj)−A(u)| (t, y, s)
∫ ∆x

0

(σ −∆x)3

∫
R
1{Ij}(x)

∂4

∂x4
ϕσ dxdσ

= −∆x

∫ ∆x

0

(σ −∆x)3
∑
j

ΦjD−ϕ
σ
xxx,j+1/2 dσ

= ∆x
∑
j

D+Φj

∫ ∆x

0

(σ −∆x)3ϕσxxx,j+1/2 dσ

where

ϕσxxx,j+1/2(t, y, s) =
∂3

∂x3
ϕ(xj+1/2 + σ, t, y, s).

Now we use Lemma 4.2 to estimate this term,

|T1| =
∣∣∣ 1

6∆x2

∫∫
Π2

T

∫ ∆x

0

|A(u∆x)−A(u)| (σ −∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

∣∣∣
=
∣∣∣ 1

6∆x

∫
ΠT

∫ T

0

∑
j

D+Φj

∫ ∆x

0

(σ −∆x)3ϕσxxx,j+1/2 dσ dt dyds
∣∣∣
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≤ C r + ∆x

∆x2r4

∫
ΠT

|D+A(u∆x)|
(∫ ∆x

0

(σ −∆x)3 dσ
)
dxdt

≤ C∆x2 r + ∆x

r4

= C
∆x2

r3

(
1 +

∆x

r

)
,

where we have used that |A(u∆x(·, t))|BV (R) is bounded independently of ∆x, t, η

by Lemma 3.1. The term T2 is estimated in a similar way. Now consider ζ2.
Integration by parts and the dominated convergence theorem imply

ζ2 = lim
ε↓0

2

∫∫
Π2

T

|A(u∆x)−A(u)|ε (D+ϕ− ϕx)y dX

= −2 lim
ε↓0

∫∫
Π2

T

signε(A(u∆x)−A(u))A(u)y (D+ϕ− ϕx) dX

= −2

∫∫
Π2

T

sign (u∆x − u)A(u)y (D+ϕ− ϕx) dX.

By (4.21)

|ζ2| = 2
1

∆x

∣∣∣∫∫
Π2

T

∫ ∆x

0

sign(u∆x − u)A(u)y(∆x− σ)ϕσxx dσ dX|

≤ C r + ∆x

(∆x)r3

∫
ΠT

|A(u)y|
∫ ∆x

0

(∆x− σ) dσ dyds

≤ C∆x

r2

(
1 +

∆x

r

)
,

since |A(u(·, s))|BV (R) is bounded independently of s and η by Lemma 2.1. This

concludes the proof of the estimate. �

Estimate 4.3. Let γ be defined by (4.17), then

|γ| ≤ C∆x

r

(
1 +

∆x

r

)
.

Proof. By definition F ′2 is bounded, hence∣∣∣∫ uj+1

uj

sign (z − u)F ′2(z) dz
∣∣∣ ≤ ‖F2‖Lip ∆x |D+uj | .

Note that |u∆x(·, t)|BV (R) is bounded independently of ∆x, t and η by Lemma 3.1

so we may apply Lemma 4.2 to obtain the result. �

Estimate 4.4. Let < be defined by (4.16), then

|<| ≤ Γ(r)
∆x

r2

(
1 +

∆x

r

)(
1 +

(
∆x

r

)3
)

+ C
∆x

r0
.

Proof. Consider the term (4.13), i.e.,

lim
ε↓0

∫∫
Π2

T

[
signε(A(u∆x)−A(u))− signε(A(θ∆x)−A(u))

]
D+A(u∆x)D+ϕdX.

As stated before we may apply dominated convergence and Lemma 4.3 to show
that this limit exists. First observe that

0 ≤ [signε(A(θj)−A(u))− signε(A(uj)−A(u))]D+A(uj)

≤ ∆xD+signε(A(uj)−A(u))D+A(uj).
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Hence

|(4.13)| ≤ ∆x lim
ε↓0

∫∫
Π2

T

D+signε(A(u∆x)−A(u))D+A(u∆x) |D+ϕ| dX

Using both integration by parts for difference quotients and Leibniz rule for differ-
ence quotients we obtain∫∫

Π2
T

D+signε(A(u∆x)−A(u))D+A(u∆x) |D+ϕ| dX

= −
∫∫

Π2
T

signε(A(u∆x)−A(u))D+A(u∆x)D+ |D−ϕ| dX

−
∫∫

Π2
T

signε(A(u∆x)−A(u))D−D+A(u∆x) |D−ϕ| dX

=: S1 + S2.

To estimate S2 we first observe that D+ |D−ϕ| ≤ |D+D−ϕ|. Furthermore, when
proving Estimate 4.2, we established that

D+D−ϕ(x, t, y, s)

= ϕxx(x, t, y, s)− 1

6∆x2

∫ ∆x

0

(σ −∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ

+
1

6∆x2

∫ 0

−∆x

(σ + ∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ.

By Lemma 4.2, ∣∣∣∫ ±∆x

0

(σ ∓∆x)3 ∂
4

∂x4
ϕ(x+ σ, t, y, s) dσ

∣∣∣
≤ C (∆x)4

r5
1{|x−y|≤r+∆x}(x, y)ρr0(t− s).

Using Lemma 4.2 once more, the above implies that∫
ΠT

|D+D−ϕ| dyds ≤
∫

ΠT

|ϕxx| dyds+ C
(∆x)2

r4

(
1 +

∆x

r

)
≤ C

(
1

r2
+

(∆x)2

r4

)(
1 +

∆x

r

)
.

Therefore

|S1| =
∣∣∣∫∫

Π2
T

signε(A(u∆x)−A(u))D+A(u∆x)D+ |D−ϕ| dX
∣∣∣

≤
∫

ΠT

|D+A(u∆x)|
(∫

ΠT

|D+D−ϕ| dyds
)
dxdt

≤ C
(

1

r2
+

(∆x)2

r4

)(
1 +

∆x

r

)∫
ΠT

|D+A(u∆x)| dxdt.

Recall that |A(u∆x(·, t))|BV (R) is bounded independently of ∆x, t, η by Lemma 3.1.

Considering S2 we have

|S2| =
∣∣∣∫∫

Π2
T

signε(A(u∆x)−A(u)) (D−D+A(u∆x)) |D−ϕ| dX
∣∣∣

≤
∫∫

Π2
T

|D−D+A(u∆x)| |D−ϕ| dX

≤ C r + ∆x

r2

∫
ΠT

|D−D+A(u∆x)| dxdt.
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Note that it follows by (3.1) and Lemma 3.1 that ‖D−D+A(u∆x(·, t))‖L1(R) is

bounded independently of ∆x, t, η. Hence

∆x

∫∫
Π2

T

D+signε(A(u∆x)−A(u))D+A(u∆x) |D+ϕ| dX

≤ ∆x (|S1|+ |S2|)

≤ Γ(r)

(
∆x

r2
+

(∆x)3

r4

)(
1 +

∆x

r

)
.

Next we estimate (4.12). We first split the term.∫∫
Π2

T

(
sign′ε(A(u∆x)−A(u))ϕ− sign′ε(A(τ∆x)−A(u))ϕ∆x

)
(A(u)y)

2
dX

=

∫∫
Π2

T

(
sign′ε(A(u∆x)−A(u))− sign′ε(A(τ∆x)−A(u))

)
ϕ∆x (A(u)y)

2
dX

+

∫∫
Π2

T

sign′ε(A(u∆x)−A(u))
(
ϕ− ϕ∆x

)
(A(u)y)2 dX

=: W1 +W2.

We start with W1. By (2.1) we have

ψ′ε(u, uj)usϕ
∆x + ψ′ε(u, uj)f(u)yϕ

∆x = ψ′ε(u, uj)A(u)yyϕ
∆x

Now
(ψ′ε(u, uj)A(u)y)y = (signε(A(u)−A(uj))A(u)y)y

= sign′ε (A(u)−A(uj)) (A(u)y)
2

+ signε(A(u)−A(uj))A(u)yy.

(4.22)

Hence ∫
ΠT

sign′ε(A(u)−A(uj)) (A(u)y)
2
ϕ∆x dyds

=

∫
ΠT

(signε(A(u)−A(uj))A(u)y)yϕ
∆x dyds

−
∫

ΠT

signε(A(u)−A(uj))A(u)yyϕ
∆x dyds,

and so∫
ΠT

sign′ε(A(u)−A(uj)) (A(u)y)
2
ϕ∆x dyds

=

∫
ΠT

[signε(A(u)−A(uj))A(u)y]y ϕ
∆x dyds−

∫
ΠT

ψ′ε(u, uj)usϕ
∆x dyds

−
∫

ΠT

signε(A(u)−A(uj))f(u)yϕ
∆x dyds.

We shall obtain a similar expression for∫
ΠT

sign′ε(A(u)−A(τj))(A(u)y)2ϕ∆x dyds.

We have that

ψ′ε(u, θj)usϕ
∆x + ψ′ε(u, θj)f(u)yϕ

∆x = ψ′ε(u, θj)A(u)yyϕ
∆x.

Using Lemma 4.1,

(ψ′ε(u, θj)A(u)y)y = (signε(A(u)−A(θj))A(u)y)y

= sign′ε(A(u)−A(τj)) (A(u)y)
2
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+ signε(A(u)−A(θj))A(u)yy,

and so ∫
ΠT

sign′ε(A(u)−A(τj)) (A(u)y)
2
ϕ∆x dyds

=

∫
ΠT

(signε(A(u)−A(θj))A(u)y)yϕ
∆x dyds

−
∫

ΠT

signε(A(u)−A(θj))A(u)yyϕ
∆x dyds.

Hence∫
ΠT

sign′ε(A(u)−A(τj))(A(u)y)2ϕ∆x dyds

=

∫
ΠT

(signε(A(u)−A(θj))A(u)y)yϕ
∆x dyds−

∫
ΠT

ψ′ε(u, θj)usϕ
∆x dyds

−
∫

ΠT

ψ′ε(u, θj)f(u)yϕ
∆x dyds.

From this it follows

W1 =

∫
ΠT

(
sign′ε(A(u)−A(uj))− sign′ε(A(u)−A(τj))

)
(A(u)y)

2
ϕ∆x dyds

=

∫
ΠT

((signε(A(u)−A(uj))− signε(A(u)−A(θj)))A(u)y)y ϕ
∆x dyds (4.23)

−
∫

ΠT

(signε(A(u)−A(uj))− signε(A(u)−A(θj)))usϕ
∆x dyds (4.24)

−
∫

ΠT

(signε(A(u)−A(uj))− signε(A(u)−A(θj))) f(u)yϕ
∆x dyds (4.25)

Next we want to send ε to zero and then estimate the terms (4.23), (4.24) and
(4.25). The next two lemmas will enable us to do this.

Lemma 4.3. For real numbers u, a and b define

g(u, a, b) =


|A(b)−A(u)|−|A(a)−A(u)|

A(b)−A(a) if a 6= b,

sign(A(a)−A(u)) if a = b, u 6= b,

0 if a = b = u.

Under the same assumptions as in Lemma 4.1

lim
ε↓0

signε(A(θj)−A(u)) = g(u, uj , uj+1).

Proof. Recall the definition of θj :

signε (A(θj)−A(u)) (A(uj+1)−A(uj)) = |A(uj+1)−A(u)|ε − |A(uj)−A(u)|ε.
If uj+1 = uj , then θj = uj for all u and ε, since θj ∈ int(uj , uj+1). Thus in this
case

lim
ε↓0

signε (A(θj)−A(u)) =

{
0 if u = uj ,

sign (A(uj)−A(u)) otherwise.

Now assume that D+A(uj) 6= 0. Then

signε(A(θj)−A(u)) =
|A(uj+1)−A(u)|ε − |A(uj)−A(u)|ε

A(uj+1)−A(uj)
,

and the result follows by letting ε ↓ 0. �

Regarding the function g.
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Lemma 4.4. Suppose a 6= b. Then u 7→ g(u, a, b) is non-increasing function and

g(u, a, b) =

{
1 if u ≤ min {a, b},
−1 if max {a, b} ≤ u.

Proof. First observe that g(u, a, b) = g(u, b, a) so we can assume that a < b.

(A(b)−A(a))g(u, a, b) = |A(b)−A(u)| − |A(a)−A(u)|
= sign (b− u) (A(b)−A(u))− sign (a− u) (A(a)−A(u))

=

{
sign (b− u) (A(b)−A(a)) if u 6∈ (a, b),

A(b) +A(a)− 2A(u) if u ∈ (a, b).

Since A is increasing, this proves the lemma. �

Let

Hj(u) =

∫ u

−∞
sign(z − uj) + g(z, uj , uj+1) dz.

By the above lemma, the support of the integrand belongs to int(uj , uj+1). Besides,
its absolute value is bounded by 2, so Hj is Lipschitz continuous, and |Hj(u)| ≤
2 |uj+1 − uj |. Therefore∣∣∣∫ T

0

Hj(u)
∂

∂s
ρr0(t− s) ds

∣∣∣ ≤ C

r0
|uj+1 − uj | .

Regarding (4.24), we proceed as follows:∣∣∣lim
ε↓0

∫
ΠT

[
signε(A(u)−A(uj))−signε(A(u)−A(θj))

]
usϕ

∆x dyds
∣∣∣

=
∣∣∣∫

ΠT

H ′j(u)usϕ
∆x dyds

∣∣∣
=
∣∣∣∫

ΠT

∂

∂s
(Hj(u))ϕ∆x dyds

∣∣∣
=
∣∣∣∫

ΠT

Hj(u)ϕ∆x
s dyds

∣∣∣
≤ C

r0
|uj+1 − uj | = C

∆x

r0
|D+uj |.

Now we estimate (4.25). To this end, let

Qj(u) =

∫ u

0

H ′j(z)f
′(z) dz.

Then

|Qj(u)| =
∣∣∣∫ u

0

H ′j(z)f
′(z) dz

∣∣∣ ≤ C ∫ u

0

1{int(uj ,uj+1)}(z) dz ≤ C|uj+1 − uj |.

Hence∣∣∣lim
ε↓0

∫
ΠT

(
signε(A(u)−A(uj))−signε(A(u)−A(θj))

)
f ′(u)uyϕ

∆x dyds
∣∣∣

=
∣∣∣∫

ΠT

Qj(u)ϕ∆x
y dyds

∣∣∣ ≤ C∆x

r
|D+uj |

For the term (4.23) we let

Pj(u) =

∫ u

0

H ′j(z)A
′(z) dz,
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and perform the same trick.∣∣∣lim
ε↓0

∫
ΠT

((
signε(A(u)−A(uj))−signε(A(u)−A(θj))

)
A(u)y

)
y
ϕ∆x dyds

∣∣∣
=
∣∣∣∫

ΠT

Pj(u)ϕ∆x
yy dyds

∣∣∣ ≤ C∆x

r2
|D+uj | .

It follows that

|W1| =
∣∣∣lim
ε↓0

∫∫
Π2

T

[
sign′ε(A(u)−A(uj))− sign′ε(A(u)−A(τj))

]
(A(u)y)

2
ϕ∆x dX

∣∣∣
≤ Γ(r)

∆x

r2
.

Finally we need to bound W2 independently of ε. By equation (4.22)

W2 =

∫∫
Π2

T

sign′ε(A(u∆x)−A(u))
(
ϕ− ϕ∆x

)
(A(u)y)

2
dX

= −∆x

∫∫
Π2

T

sign′ε(A(u)−A(u∆x)) (A(u)y)
2
D+ϕdX

= −∆x

∫∫
Π2

T

(signε(A(u)−A(u∆x)A(u)y)yD+ϕdX

+ ∆x

∫∫
Π2

T

signε(A(u)−A(u∆x))A(u)yyD+ϕdX

=: W 1
2 +W 2

2 .

Now, by Lemma 2.1, |A(u(·, s))|BV (R) is bounded independently of s and η so∣∣W 1
2

∣∣ ≤ ∆x

∫∫
Π2

T

|A(u)y| |D+ϕy| dX

= ∆x

∫
ΠT

|A(u)y|
(∫

ΠT

|D+ϕy| dxdt
)
dyds

≤ ∆x

∫
ΠT

|A(u)y|
(∫

ΠT

|ψ(D+ωr)yρr0 | dxdt
)
dyds

≤
(
C

∆x

r
+ C

∆x

r2

(
1 +

∆x

r

))∫
ΠT

|A(u)y| dyds

≤ Γ(r)
∆x

r2

(
1 +

∆x

r

)
.

Also, using the uniform bound on ‖A(u)yy‖L1(ΠT ) from Lemma 2.3,∣∣W 2
2

∣∣ ≤ ∆x

∫∫
Π2

T

|A(u)yy| |D+ϕ| dX

≤ ∆x

∫
ΠT

|A(u)yy|
(∫

ΠT

|D+ϕ| dxdt
)
dyds

≤ ∆xC

(
1 +

1

r

(
1 +

∆x

r

))∫
ΠT

|A(u)yy| dyds

≤ Γ(r)
∆x

r

(
1 +

∆x

r

)
.

It follows that

|W2| ≤ Γ(r)
∆x

r2

(
1 +

∆x

r

)
.

�
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Now we return to inequality (4.19), and define

Ξ(∆x, r, η, ε, r0) = β + ζ1 + ζ2 + |<|+ γ.

Using this, (4.19) reads∫∫
Π2

T

|u∆x − u| ρα(t− τ)ωr(x− y)ρr0(t− s) dX

≤
∫∫

Π2
T

|u∆x − u| ρα(t− ν)ωr(x− y)ρr0(t− s) dX + Ξ(∆x, r, r0).

Combining Estimate 4.1, Estimate 4.2, Estimate 4.3, and Estimate 4.4 we find that

|Ξ| ≤ Γ

(
r,

∆x

r

)
∆x

r2
+ C

∆x

r0
,

independently of α. Hence we can send α to zero and get

κ(τ) ≤ κ(ν) + Ξ(∆x, r, r0),

where

κ(t) :=

∫
R

∫∫
ΠT

|u∆x(x, t)− u(y, s)|ωr(x− y)ρr0(t− s) dydsdx.

Lemma 4.5. Let t ≥ r0, and Lc be the Lipschitz constant of t 7→ |u(·, t)|L1(R).

Then ∣∣∣κ(t)− ‖u∆x(·, t)− u(·, t)‖L1(R)

∣∣∣ ≤ |u(·, t)|BV (R) r + Lcr0.

Proof. By the triangle inequality,∣∣∣κ(t)− ‖u∆x(·, t)− u(·, t)‖L1(R)

∣∣∣
≤
∫
R

∫
ΠT

|u(y, s)− u(x, t)|ωr(x− y)ρr0(t− s) dydsdx

≤
∫ T

0

(∫
R
|u(y, s)− u(y, t)| dy

)
ρr0(t− s) ds

+

∫
R

∫
R
|u(y, t)− u(x, t)|ωr(x− y)dydx

≤ Lcr0 + |u(·, t)|BV (R) r.

�

Recall that we had to pick ν > r0. Let Ld be the L1-Lipschitz constant of
t 7→ u∆x(·, t). By the triangle inequality

‖u∆x(·, ν)− u(·, ν)‖L1(R)

≤
∥∥u∆x(·, ν)− u0

∆x

∥∥
L1(R)

+
∥∥u0

∆x − u0
∥∥
L1(R)

+
∥∥u0 − u(·, ν)

∥∥
L1(R)

≤ Ldν +
∥∥u0

∆x − u0
∥∥
L1(R)

+ Lcν.

This means that

‖u∆x(·, t)− u(·, t)‖L1(R) ≤
∥∥u0

∆x − u0
∥∥
L1(R)

+
(
Lc + Ld

)
ν + 2

(
Lcr0 +

∣∣u0
∣∣
BV (R)

r
)

+ Γ
(
r,

∆x

r

)∆x

r2
+ C

∆x

r0
.

Now choose r3 = r2
0 = ∆x and ν = 2r0. Then there exist a constant C such that

‖u∆x(·, τ)− u(·, τ)‖L1(R) ≤
∥∥u0

∆x − u0
∥∥+ C∆x

1
3 .
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Now recall that A(σ) = Â(σ) + ησ, with Â′(σ) ≥ 0, and so it remains to send
η to zero to conclude the proof. If v is the entropy solution of the non-regularized
equation, then u(·, t) → v(·, t) in L1(R) as η → 0 (cf. Section 2). Concerning the
difference scheme, one can prove continuous dependence in `1 on the parameter η
using Grönwall’s inequality. Hence, we can also send η to zero in the scheme. This
finishes the proof of Theorem 4.1.
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