L' ERROR ESTIMATES FOR DIFFERENCE APPROXIMATIONS
OF DEGENERATE CONVECTION-DIFFUSION EQUATIONS
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ABSTRACT. We analyze a class of semi-discrete monotone difference schemes
for degenerate convection-diffusion equations in one spatial dimension. These
nonlinear equations are well-posed within a class of (discontinuous) entropy
solutions. We prove that the L' error between the approximate solutions
and the unique entropy solution is (’)(A:z:l/g)7 where Az denotes the spatial
discretization parameter. This result should be compared with the classical
O(Az'/?) result for conservation laws [20], and a very recent error estimate of
O(Az'/11) for degenerate convection-diffusion equations [18].

1. INTRODCUTION

Nonlinear convection-dominated flow problems arise in a range of applications,
such as fluid dynamics, meteorology, transport of oil and gas in porous media,
electro-magnetism, as well as in many other applications. As a consequence it has
become a very important undertaking to construct robust, accurate, and efficient
methods for the numerical approximation of such problems. Over the years a large
number of stable (convergent) numerical methods have been developed for linear
and nonlinear convection-diffusion equations in which the “diffusion part” is small,
or even vanishing, relative to the “convection part” of the equation. There is a
large literature on this topic, and we will provide a few relevant references later.

One central but exceedingly difficult issue relating to numerical methods for
convection-diffusion equations, is the derivation of (a priori) error estimates that
are robust in the singular limit as the diffusion coefficient vanishes, avoiding the
exponential growth of error constants. This problem has been resolved only partly
in special situations, such as for linear equations or in the completely degenerate
case of no diffusion (scalar conservation laws). For general nonlinear equations
containing both convection and (degenerate) diffusion terms this is a long standing
open problem in numerical analysis.

This paper makes a small contribution to this general problem by deriving an
error estimate for a class of simple difference schemes for nonlinear and strongly
degenerate convection-diffusion problems of the form

O+ O, f(u) = 02A(u), (,t) € lr,

u(x,0) = u¥(z), z €R, (L.1)

where IIr = R x (0,T) for some fixed final time T > 0, and u(z,t) is the scalar
unknown function that is sought. The initial function ug : R — R is a given
integrable and bounded function, while the convection flux f : R — R and the
diffusion function A : R — R are given functions satisfying

f, Alocally C*; A(0) = 0; A nondecreasing.
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The moniker strongly degenerate means that we allow A’(u) = 0 for all » in some
interval [, 8] C R. Thus, the class of equations becomes very general, including
purely hyperbolic equations (scalar conservation laws)

Ay + 0y f(u) =0, (1.2)

as well as nondegenerate (uniformly parabolic) equations, such as the heat equation
dyu = 0%u, and point-degenerate diffusion equations, such as the heat equation with
a power-law nonlinearity: dyu = 0, (u™d,u), which is degenerate at u = 0.

Whenever the problem is uniformly parabolic (i.e., A’ > n for some 1 > 0),
it is well known that the problem admits a unique classical (smooth) solution.
On the other hand, in the strongly degenerate case, must be interpreted
in the weak sense to account for possibly discontinuous (shock wave) solutions.
Regarding weak solutions, it turns out that one needs an additional condition,
the so-called entropy condition, to ensure that is well-posed. More precisely,
the following is known: For ug € L*(R) N L>(R), there exists a unique solution
u € C((0,T); LY(RY)), u € L>=(IIy) of such that 9, A(u) € L*(Ilr) and for all
convex functions S : R — R with ¢ = f'S” and g = A’S’,

0:S(u) + 0,qs(u) — 0%rs(u) <0 in the weak sense on [0,T) x R. (1.3)

The satisfaction of these inequalities for all convex S is the entropy condition,
and a weak solution satisfying the entropy condition is called an entropy solution.
The well-posedness of entropy solutions is a famous result due to Kruzkov [19]
for conservation laws , and a more recent work by Carrillo [4] extends this
to degenerate parabolic equations . These results are available in the multi-
dimensional context, and we refer to [ [§] for an overview of the relevant literature.
For uniqueness of entropy solutions in the BV class, see [25] 27].

One traditional way of constructing entropy solutions is by the vanishing viscosity
method, which starts off from classical solutions to the nondegenerate equation

Dy + azf(“n) = 5§A(un) + 7735%, n >0,

and establishes the strong convergence of u, as 7 — 0 by deriving BV estimates
that are independent of 7, see Vol'pert and Hudjaev [26].

Besides proving that u, converges in the L' norm to the unique entropy solution
u of , it is possible to prove the error estimate

|y (t, ) —u(t, )| < Cn, (whenever ug € BV), (1.4)

see [12] (cf. also [13]). The error bound can also be obtained as a consequence
of the more general continuous dependence estimate derived in [7], see also [5, [16].

Herein we are interested in the much more difficult problem of deriving error
estimates for numerical approximations of entropy solutions to convection-diffusion
equations. Convergence results (without error estimates) have been obtained for
finite difference schemes [I0] (see also [I1} [I7]); finite volume schemes [I4] (see also
[2]); operator splitting methods [15]; and BGK approximations [3], to mention just
a few references. For a posteriori estimates for finite volume schemes, see [22].

To be concrete in what follows, let us for simplicity assume f’ > 0 and consider
the semi-discrete difference scheme

@iy 4 £ = ) Algi) = 24() + Al )
dt Ax A2 )
where u;(t) ~ u(t,jAz) and Az > 0 is the spatial mesh size. Convergence of

this scheme can be proved as in the works [10} [IT], where explicit and implicit time
discretizations are treated. Denote by ua(t, ) the piecewise constant interpolation

(1.5)
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of {u;(t)};. The basic question we address in this paper is the following one: Does
there exist a number 7 € (0,1) and a constant C, independent of Az, such that

[uaa(t,-) —ult, )| < C AT, (1.6)

where u is the unique entropy solution of . We refer to the number r as the
rate of convergence.

In the purely hyperbolic case (A’ = 0), the answer to this question is a
classical result due to Kuznetsov [20], who proved that the rate of convergence is
1/2 for viscous approximations as well as monotone difference schemes, and this
is optimal for discontinuous solutions. The work of Kuznetsov [20] turned out to
be extremely influential, and by now a large number of related works have been
devoted to error estimation theory for conservation laws. We refer to [6] for an
overview of the relevant results and literature.

Unfortunately, the situation is unclear in the degenerate parabolic case . Let
us expose some reasons why adding a nonlinear diffusion term to can make the
error analysis significantly more difficult than in the streamlined Kuznetsov theory.
First of all, it is well known that the purely hyperbolic difference scheme

d fuj) = fluj)

7 (t) + Ax

has as a model equation the second order viscous equation

=0 (1.7)

O+ 0, () = 5021w,

an equation that is compatible with the notion of entropy solution for . Indeed,
an error estimate for this viscous equation is highly suggestive for what to expect
for the upwind scheme (|1.7)) (this is of course what Kuznetsov proved). However,
for convection-diffusion equations such as the situation changes dramatically.
The model equation for is no longer second order but rather fourth order:

O+ 0, () = 02A() + 5262 (u) - B0t A(w), (15)

and hence the error estimate appears no longer so relevant for numerical
schemes. Fourth order equations such as are difficult to analyze as they lack
the usual maximum principle associated with first and second order equations.
In general, possesses much fewer a priori estimates than are available for the
entropy solution of ; indeed, conservation laws perturbed by fourth order terms
are not compatible with all the entropy inequalities, see [23]. All these facts seem
to render error analysis markedly more difficult than in the hyperbolic case.

Another added difficulty comes from the necessity to work with an explicit form
of the parabolic dissipation term associated with . Indeed, in the analysis one
needs to replace by the following more precise entropy equation [4]

Oy [u— e| + 0, (sign(u — ) (f(u) — f(c)) — 02 |A(u) — A(c)]
= —sign’(A(u) — A(c)) |0, AW)[*,  c€eR,

which is formally obtained multiplying by sign (A(u) — A(c)), assuming for
the sake of this discussion that A’(-) > 0. The term on the right-hand side is
the parabolic dissipation term, which is a finite (signed) measure and thus very
singular. To illustrate why the parabolic dissipation term is needed, let u(y, s) and
v(z,t) be two solutions satisfying . In the entropy equation for u(y,s) one
takes ¢ = v(x,t), while in the entropy equation for v(x,t) one takes ¢ = u(y, s).
Adding the two resulting equations yields

(0 + 0s) [u — v] + (05 + 0y) (sign(u — v)(f(u) — f(v))

(1.9)
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— (97 +05) |A(u) — A(v)| = —sign’(A(u) — A(0)) (|9, A(w)* + |0: A(0)["),
By adding —282, |A(u) — A(v)| to both sides of this equation, noting that
~202, | A(u) — A(v)] = 2sign’ (A(u) — A1), A(w)D A(v),
we arrive at
(01 + 0s) [u—v| + (95 + 0y) (sign(u — v)(f(u) — f(v))
— (07 =203, + 0y) | A(u) — A(v))|
= —sign’(A(w) — A(v)) (|0, A(u)] - 0. A(v)])"
S 07

(1.10)

from which the contraction property < [[u(t, ) — v(t,")|| ;1 < 0follows []. Similarly,
to obtain error estimates for numerical methods, it is necessary to derive a “discrete”
version of with v replaced by ua.. The main challenge is to suitably replicate
at the discrete level the delicate balance between the two terms in involving
A; the difficulty stems from the lack of a chain rule for finite differences.

Despite the mentioned difficulties, we will in this paper prove that there exists
a constant C', independent of Az, such that for any ¢ > 0,

uae(t,-) = ult, )|+ < C Axs.

The only other work we are aware of that provides L' error estimates for numerical
approximations of (L.I) is [I8]; therein (L.6) is established with r = - if A is a

17
linear function, then the convergence rate is the usual one, namely r = %

Roughly speaking, the reason is two-fold for why we can significantly improve
the result in [18]. First, we are herein able to provide a more faithful analog of
(1.10) at the discrete level. Second, since sign’(-) is singular, one has to work with
a Lipschitz continuous approximation sign_(-) of the sign function sign(-). The use
of this approximation breaks the symmetry of the corresponding entropy fluxes,
and introduces new error terms that depend on the parameter ¢; the process of
“balancing” terms involving Az and ¢ lowers the convergence rate (to r = ;) [18].
In the present paper we are able to dispense with this balancing act. Indeed, we
show that it is possible to send € — 0 independently of Az.

The remaining part of this paper is organized as follows: In Section [2| we list
some relevant a priori estimates satisfied by viscous approximations and entropy
solutions, and provide a definition of entropy solutions. The semi-discrete difference
scheme is defined and proved to be well-posed in Section [3] We also list several

relevant a priori estimates. Section [4]is devoted to the proof of the error estimate.

2. PRELIMINARY MATERIAL

Set A"(u) := A(u)+nu for any fixed n > 0, and consider the uniformly parabolic
problem

u(z,0) = u(x), z eR. @1)

It is well known that (2.1)) admits a unique classical (smooth) solution.
We collect some relevant (standard) a priori estimates in the next three lemmas.

Lemma 2.1. Suppose v’ € L*(R) N LY(R) N BV (R), and let u” be the unique
classical solution of (2.1). Then for any t > 0,

[ () )y < HUOHLl(]R) ,

1 ()] oo gy < M Lo )

{'UJ? + f(un)a" = An(un)amm (I,t) S HTa

W, )| gy ) < |uO|BV(R)'
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For a proof of the previous and next lemmas, see for example [26].

Lemma 2.2. Suppose u® € L=°(R) N LY(R) and f(u’) — A(u®), € BV(R). Let u"
be the unique classical solution of (2.1)). Then for any ti,ts > 0,

||un('7t2) - un('atl)HLl(R) < |f(u0) - A(UO)I’B\/(R) |t2 - t1| :
Regarding the following lemma, see [24] [10].

Lemma 2.3. Suppose u® € L>®(R)NLY(R) and f(u®) — A(u®), € L>=(R)NBV (R).
Let u" be the unique classical solution of (2.1). Then for any t > 0,

1F (-, 8) = A ()l oo gy < (1S (0”) = A ] o gy » (2.2)
|f(ufl(,, t)) - A(un('vt))xle(R) < |f(u0) - A(uo)z’BV(R) . (2-3)

Note that [[A(u")s| o1,y and [[A(u")ss| 1111, are bounded independently of
n provided that A(u®), is in BV (R).

These results above imply that the family {u}, _, is relatively compact in
C([0,T); L, (R)). If u = lim,_,0 u", then

™ = ull ) < Cn'/?,

for some constant C' which does not depend on 7, see [12]. Moreover, u is an entropy
solution according to the following definition.

Definition 2.1. An entropy solution of the Cauchy problem is a measurable
function v = u(z,t) satisfying:
(D.1) u € L*>®(Ir) N C((0,T); L*(R)).
(D.2) A(u) € L*((0,T); H'(R)).
(D.3) For all constants ¢ € R and test functions 0 < ¢ € C§°(R x [0,7)), the
following entropy inequality holds:

//n |u — ¢l +sign (v —¢) (f(u) — f(e) s + |A(u) — A(c| puz dtdx

+/ |ug — | p(z,0)dx > 0.
R

The uniqueness of entropy solutions follows from the work [4]. Actually, in view
of the above a priori estimates, the relevant functional class is BV (Il7), in which
case we can replace (D.2) by the condition A(u), € L (IIr). For a uniqueness
result in the BV class, see [27].

3. DIFFERENCE SCHEME
We start by specifying the numerical flux to be used in the difference scheme.

Definition 3.1. (Numerical flux) We call a function F € C*(R?) a two-point
numerical flux for f if F(u,u) = f(u) for v € R. If

0 0
—_ > — <
6uF(u,v) >0 and 8UF(u,v) <0

holds for all u,v € R, we call F' monotone.

Let F, and F, denote the partial derivatives of F' with respect to the first and
second variable respectively. We will also assume that F' is Lipschitz continuous.
Let Az > 0 and set x; = jAx for j € Z, and define
_ 01— Gy

for any sequence {o;}.
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We may now define a semidiscrete approximation of the solution to (1.1 as the
solution to the (infinite) system of ordinary differential equations
%'L@(t) + D,Fj+1/2 = D,D+A<uj), t> O,
Uy (0) = ﬁ f[j uO(x) dx,
where Fj /5 = F(uj, uj41) is a numerical flux function and I; = (212, 2j41/2]-

The problem above can be viewed as an ordinary differential equation in the
Banach space (1(Z) (see, e.g., [21]). To get bounds independent of Az we define

loll, =Az) Jo;l  and  olgy =D loj41 — 05 = | Droll,.
J J

jEZ, (3.1)

If these are bounded we say that ¢ = {o,} is in ¢! and of bounded variation.
Let u(t) = {u;(t)},ez u® = {u;(0)},c5, and define the operator A : £' — ¢! by
(A(w)); == D_(F(uj,uj+1) — D4+ A(u;)). Then (3.1) takes the following form

du 0

r + A(u) =0, t>0, u(0)=u". (3:2)

This problem has a unique continuously differentiable solution since A is Lipschitz
continuous for each fixed Az > 0. This solution defines a strongly continuous
semigroup S(t) on ¢1. If S also satisfies

ISt — S|, < lu—v|l, for wuvel

we say that it is nonexpansive. The next lemma sums up some important properties
of the solutions to (3.1)) (for a proof see [9]).

Lemma 3.1. Suppose that I’ is monotone. Then there exists a unique solution
u={u;} to (3.1) on [0,T] with the properties:

(a) [lu(®); < [Ju°]],-
(b) For every j € Z and t € [0,T],

ir]if {uf} <wuy(t) < Sl;p {u}.

() |u(®)lpy < |UO‘BV'
(d) If v ={v;} is a another solution with initial data v° then

lu(t) = o), < [[u® = °|], -
Lemma 3.2. If F' is monotone, then
1F(uj,ujp1) = Dy Aug)ll oo < ||F (0, ud41) — Dy Aw) || oo (3.3)
|F(uj, uji1) — Dy A(ug)| gy < [Fuf,ufq) — Dy A(uf)] -

Furthermore, t — {u;(t)},c;, is 0Y Lipschitz continuous.

Proof. The proof follows [10]. Let v; = Az~ 4us Then v; satisfies

vy =0z Y D_(DyA(ug) = Flug,up1)) = Dy A(uy) — F(ug,uip1),  (3.5)

k=—o0

and we may define v; for all ¢ € [0,T]. Note that {v;(¢)} is in ¢! for all ¢ by
Lemma Differentiating (3.5)) with respect to ¢ we obtain

d’Uj - 1 de+1 de
dt ~ Ax [“(“f“) o w) g
du,; dujiq
- Fu(ua"uﬁl)df; = Fy(uj,uji1) th ;
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dujia

where a(u) = A’(u). Note that D_v; = % and Dy v; = =4, Therefore

dv; 1
7; = (A.’,Ea(uj+1) - Fv(“ja“ﬂl)) Dvj;

- (Alxa(uj) + Fu(“jvujJrl)) D_vj. (3.6)

Assume vj, (to) is a local maximum in j. Then D v, (to) < 0 and D_vj,(to) > 0 so
20 (t) < 0 since F' is monotone. Similarly, if v;,(to) is a local minimum in j, then
%9 (t5) > 0. Then inequality (3.3) follows by the fact that {v;(t)} € ¢*. Consider
(3-4). We want to show that < (Jv(t)|gv) < 0. Now,

d
%(Z [vj1 — vj\) = sign (vj1 — v;) 5 Wi+ =),
i i

so we may use (3.6). Thus

& o0y
= Z ( a(ujt2) Fv(uj+17uj+2)> (Dyvjq1)sign(vjyr —vj)
- Z ( aujt1) + Fu(uj+17uj+2)> | D405
23 ( o Fv<u]-,uj+1>) Dy
+ Z ( )+ F (Ujvuj+1)> ((D-vj)sign(vji1 — vj))
-3 ( o) Fu<uj,uj+1>) [(Dyv;) sign (v; — vj1) — | D3]]
3 ( )+ F, (W,WH)) [(D—v;)sign(vye1 — ;) — |D—v;]
< Oa

since a(u) > 0 and F, < 0 and F, > 0. Given the preceeding estimates, the ¢!
Lipschitz continuity is straightforward to prove. O

3.1. The numerical entropy flux. It turns out that we need more conditions on
F than mere monotonicity.

Definition 3.2. Given an entropy pair (¢, ¢) and a numerical flux F', we define
Q € C1(R?) by

Q(u, u) = q(u),
) 9
%Q(v,w) =9 (U)%F('an)a
) 0
9 Qw.w) = ) L P,

We call @) a numerical entropy flux.

The next lemma gives a sufficient condition on the numerical flux to ensure that
there exists a numerical entropy flux.
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Lemma 3.3. Given a two-point numerical flur F, assume that there exist C*
functions Fy, Fs such that

F(u,v) = Fi(u) + F2(v),  Fi(u) + Fy(u) = f'(u), (3.7)

for all relevant uw and v. Then there exists a numerical entropy flurx Q for any
entropy fluzx pair (1, q).

Proof. Let (v, q) be an entropy pair. Then ¢ has the form

/ ' (2)f'(2)dz + C,
for some constant C. Define Q by
Qu,v) = / () ds + / W () FL(2) dz + C. (3.9)
It is easily verified that @ Es a numerical entro;)y flux. O

Let us list a few numerical flux functions to which Lemma [3.3] applies.
Example 3.1 (Engquist-Osher flux). Let

fi(s) =max(f'(s),0) and  f_(s) =min(f'(s),0).
Then, in the terminology of Lemma [3.3] let F(u,v) = Fy(u) + Fi(v) with

Fi(u) = £(0) + / fi(s)ds  and / I

It is easily seen that the criteria given in Lemma are satisfied, and F' is also
clearly monotone.

Example 3.2. Let a,b € R and define
Fi(u) = af(u) + bu and Fy(v)=(1-a)f(v) — bo.
Note that F'(u,v) = F(u) + F»(v) is monotone if
ainf{f'(x)} > —b and (1—a)sup{f'(x)} <b.
This example includes both the upwind scheme and the Lax-Friedrichs scheme.

From a more general point of view we may consider any flux splitting. That is
fu) = fH(u) + f~(u) where (fT(u)) > 0 and (f~(u)) <0 for all u € R. Then
the numerical flux F' defined by

F(u,v) = fH(u) + f~(v)
satisfies the assumptions of Lemma Note also that any convex combination of
numerical flux functions which satisfy the hypothesis of Lemma itself satisfies

the assumptions of the lemma.
If (3.7) holds, then we have a representation of @ given by (3.8). It follows that

Q) = )+ [ "y () Fi(z) d

Note that we may obtain another representation depending on Fj by splitting up
the first integral.

Lemma 3.4. Let Q be a numerical entropy flux associated with the entropy pair
(1, q) and the monotone numerical fluz F'. Then

W(U)(F(Uyw) - F(”?”)) > Q(U7w) - Q(vvu)7

for all relevant u, v and w.
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Proof. Fix u and define p(v, w) = p1(w) + pa2(v), where
pi(w) = =" (W) F(u, w) + Q(u, w) + ' (u) f (u) — q(u),
p2(v) = ¢ (w)F (v, u) — Qv u) — ' (u) f(u) + q(u).
Then we have
p(v,w) = = (w)(F(u, w) = F(v,u)) + (Q(u, w) — Q(v,u)),

and so the lemma is proved if we can show that p(v,w) < 0. Now

o) = )y F ) + 9 (1) o F ()

= U(E) o () (10— )

for some &; € int(u, w)H Similarly
/ Y 2 Y 2
Ph(v) = (1) o Pl )~ (v) 2 (v, )

= 0(62) 5 F (v, w)(u — v),

for some & € int(u,v). Since F' is monotone and v is convex, p}(z)(z — u) < 0 for
i =1,2. It remains to observe that p;(u) = pa(u) = 0 and so

pi(2) :/ pi(&)dé <0, fori=1,2.
Hence p(v,w) <0 O

4. ERROR ESTIMATE

Let {u;},c;, be the solution to (3.1). To any sequence {u;(t)},., we associate
the piecewise constant function
uag(z,t) = u;(t) forz e Ij. (4.1)

To derive the error estimate we need many of the uniform bounds from Sections
and For these estimates to hold independently of Az, we make the following
assumptions on the initial data u°:
(i) u® € LY(R) N L>°(R) N BV (R).
(ii) A(u®), € BV(R).
We may now state the theorem.

Theorem 4.1. Let u be the entropy solution to (L1) and {u;(t)};., solve the

semidiscrete difference scheme (3.1)). If u® satisfies (i) and (ii) above, then for all
sufficiently small Ax,

1
”uAm('at) 7“("t)HL1(]R) < Hquac 7UOHL1(R) +CTA1737 te [OaT]a (42)
where the constant Cp depends on A, f, u®, and T, but not on Ax.

From now on we suppose A(c) = A(c) + no, where A’ > 0 is the original
degenerate diffusion function. In fact, we will prove in this case, and then
note that the right-hand side is independent of 1, so we can send n — 0.

Let us define some of the functions we are going to work with. First, let the
approximation of the sign function be given by

sign, (o) = {S%n(gg) for |o| =&
sign (o) otherwise,

1By int(a, b) we mean the closed interval between a and b.
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where € > 0. Note that sign, is continuously differentiable and non-decreasing.
Then we define

|u|E:/ sign_(z) dz.
0

The next lemma is a replacement for the chain rule when working with sequences
and finite differences.

Lemma 4.1. Let {uj}jGZ be some sequence in R and A : R — R a strictly in-
creasing continuously differentiable function. For any u € R there exist sequences
{7i}jen {0}z such that for each j € Z both 7; and 6; are in int(u;,u;4+1) and
D, sign, (A(uj) — A(u)) = sign(A(7j) — A(u)) D4+ A(uy),
Dy [A(uz) — A(u)], = sign (A(0;) — A(u)) D A(uy).
If w is a differentiable function of y then for each j € Z
signg (A(7;) — A(u)) A(u)y = —(sign_(A(6;) — A(u)))y- (4.3)
Both {7}, and {0;},., depend on u and e.
Proof. The first statement is a direct consequence of the mean value theorem.
Consider (4.3). If u; = uj4q then 6; = 7; is independent of u and hence of y,
so (4.3)) follows by the chain rule. In general
signg (A(7;) — A(u)) A(u)y D1 A(u;) = Dysign. (A(u;) — Au))A(u)y
= =D (JA(u;) — A(u)|,)y
= —SlgHE(A( i) = A(w))y Dy A(uy).
In the case u; # u;4+1 we have Dy A(u;) # 0 and ) follows. O

4.1. Doubling of the variables. We let (z,t,y, ) denote a point in 1%, where
x and y are the spatial variables and s and ¢ are the time variables. Moreover, we
let upny = uagq(z, t) be deﬁned by .7 and let u = u(y, s) be the classical solution
of (L.1) with A(c A(0) + no. Although both u and ua, depend on 7, we do
not indicate thls dependence in our notation. To avoid writing four integral signs
we will in general write one for each domain Il and let dX = dxdtdyds. For a
function ¢ : 1% — R, we let 97 (z,t,y,8) = ¢(x + 0,t,y, s).

4.1.1. Rewriting the continuous equation. Define an entropy pair (., q:) by
Ve (u, c) —/ sign_(A(z) — A(c)) dz,
(u, c) / (z,¢)f'(2)dz —/ sign_(A(z) — A(c)) f'(2) dz,

where 9. is the derivative with respect to the first variable. Let ¢ = p(z,t,y,s)
be a non-negative smooth function such that for each (y, s), the function (z,t) —
oz, t,y,s) € C5°(Rx(0,T)), and for each (x,t), the function (y,t) — ¢(z,t,y,s) €
C§°(R x (0,7T)). Multiply equation by 9. (u, u;)e and integrate in both space
and time to get

Ve (u, uj) s + P2 (u, ug) (f (w) — fug))yp dyds = / (VL (u, uj) ) A(w)yy dyds.

HT 1_IT

Integration by parts and the chain rule gives

. 1/’5(%“]‘)803 - qa(uvuj)y<pdyd3

= [ sien(Aw) = Alus) Ay, + signl(Alw) = ACu;) (A(u), ) dyds.
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Using the chain rule and integration by parts we get

[ (At = At ) Aoy dyds = = [ 14G0) = A,y duds.
IIr

IIr
SO

ws (U7 Uj)SDs - Qe(% Uj)y@ dde
IIr

= /H —|A(u) = A(€)|. pyy + signl(A(u) — Alu;))(A(u)y)*p dyds.  (4.4)
T
Note that since ua, is piecewise constant in x,

[ 1 usa( ) do = 80 37 R s 1),
R ,
J
for any function h taking pointwise values. We thus multiply (4.4) by Az and sum
over j. This yields

/ Ve (U, ung)ps + q= (U, uAr)‘Py dX

= [, 140~ Ao+ i (4w — Alusa)) (400X

after integrating the resulting expression over [0, 7] in the variable ¢. Let us take
the limit as € | 0. By dominated convergence

J[ sl otsion (= uao) (£0) = Fluan))e, ax

-/ /H 2 Aluae)| oy dX (45)

+ lim / /H % sign’ (A(uag) — A())(A(u),)?p dX,

eJ0
since
lelﬁ)l QE('L% UA:E) = / sign (Z - U’AI) f/(z) dz = sign (u - UA:L’) (f(u) - f(qu)) )
and

lim e (u, uaz) = lim/ sign_(A(z) — A(uaz)) = |u — uazl.
el0 el0 UAD

4.1.2. Rewriting the semidiscrete equation. Next we will obtain an analogous ex-
pression for ua,. For a function o = o(z,t,y, s) we let

+Azr o
Az
where 02 (z,t,y,s) = o(x + Az, t,y,s). From (3.1) it follows that

Dj:O'::l:

%uAm(xvt) =+ D—F(qu(x7t)7 qu(x + Al‘,t)) = D—D+A(U’Az(xvt))

holds for all (z,t) € IIp. Multiply by ¢.(uaz,u)e and integrate in both time and
space to obtain

'(/)E (qua u)t@ + w;(’U/Aw7 U')D—F ('U/Awa (uAa:)AI) 2 dxdt
Ir

= [ sien(Aua) = Aw) (D-D. Alus,) ¢ ded
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Note that for any two functions u, v of z we have D, (uv) = uA*D v + (Dyu)v.

It follows that
/(D+u)v dx = —/ uD_vdzx,
R R

given that uv lies in Cp(R). We will refer to these identities respectively as Leibniz
rule for difference quotients and integration by parts for difference quotients.
By the above,

ws(quv U)th - ﬁjé (uAma U)DfF(Usz (uAm)AZ)SD dxdt
IIr

= D sign_(A(uaz) — A(u)) Dy A(upg)p™® dzdt (4.6)
IIr

+/ sign_(A(uag) — A(u)) Dy A(uay) Dy dedt.

IIr

Let us introduce the sequences from Lemma and form the piecewise constant
functions 7o, and 6, as in (4.1)). Note that since both 7; and 6; depends on ¢, y, s
and ¢ the same is true for 7a, and 6a,. By Lemma

D sign_(A(uag) — A(u)) Dy Alupg ) ™" dedt
tr (4.7)

= /H sign’ (A(taz) — A(u)[Dy A(uag)>@™" dadt.

Concerning the second term on the right of (4.6) we add and subtract to apply
Lemma [.T] again. Using integration by parts for difference quotients

/ siEn.(A(uar) — AW)D; Aluae) Dy p drdt
- /H SiEn(A(0as) — A)D1 Alusr) D ded
[ i, (A(uas)  A() — sign, (A(ar) - A()] Dy Aluar) Do dade
_ _/HT |A(ua,) — A(u)| . D_Dpddt
+ [ i, (A(uas) ~ A() — sign, (A(9a.) ~ A()] Dy A(uar) D da

Integrate in y and s, and apply (4.7)) and the above equation to turn equation (4.6))
into

/ / (e, W — G (unm €) D Flua, (uas)>)p dX
112,

- / /H sign’ (A(rar) — A(u)) (D Aluay))2™* dX

2
T

- /H A(uas) = A(u)l, (D-Dyp) dX

+ // [sign. (A(uag) — A(u)) —sign, (A(0az) — A(u))] Dy A(uaz)Dyp dX.
S
Let € | 0 and apply dominated convergence to obtain

// luar — u| @ — sign (uay —u) D_F(uag, (qu)A"’)go dX (4.8)
Iz
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— [ 1Atwan) - 4@ (D-D1p) ax
1-IT

+lim / /H , s (A(rar) - A(u))(Dy A(uag)) 9> dX

13

+iim [/ S (4(us2) — Aw) ~ S0 (4082) ~ A Dy AWsr)DipdX.

Since A(ua) is of bounded variation in  we may apply the dominated convergence
theorem and Lemma to compute an explicit expression for the last limit (details
will be given later). It follows by the above equation that the first limit exists.

4.1.3. Adding the equations. By Lemma [.1]
0= [[ Ds(sign.(Aluss) - Aw)Alu)y0) dX
117,

= [, Dtsion.(Atuae) = Aw) Ay e
+ sign, (A(uaz) — A(u))A(u)y Dy dX
= / /H . D (sign, (A(uaz) — A(u)))A(u)y ™
= ([A(uaz) = A(u)],), DypdX
= / /H  signl(A(ras) — Aw) Dy Aluas) A(w), 0™
) + |A(uaz) — A(u)| Dy, dX.

Taking the limit as ¢ | 0,

e—0

0 = lim //HZT sign’ (A(Taz) — A(u)) Dy A(upz) A(u) ™% dX

i //HT [Alusz) = A(u)] Doy dX.

Adding (4.5) and (4.8) and subtracting twice (4.9) we get:

JI s (ot 1)+ sign (0= ) () = F(ua) o, 4

_ //H sign (uaz — u) D_F(uag, (uag)2%)pdX

2
T

=[] 14 ~ Awan)|(D-Dig+2Dsi, + 1) dX

+ lim //n;ign;m(m) — A(u))(A(u)y — Dy A(uas))*™" dX

0

+ lim //1_[2 [sign'E(A(uAm) — A(u))y

— signl (A(ra) - A(w)g] (A(w), ) dX
tt [ (At — 400)
 sign. (A(9a) — A()] Dy Aluar) Do dX.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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4.2. The main inequality. Following Lemma[3.3] we define the numerical entropy
flux Q" (uj, ujq1) by
Uj+1

Q" gy 1) = sign (u; — ) (uy) = Fu) + [ sign(z =) Fy(e)d=. (410
By Lemma
sign(uj — u)D_F(uj,ujt1) > D_Q"(uj, ujti1).

The term (4.11]) is positive and so

JI loas = ul e+ ax
[ sien (= uao) (£(0) = Fuae)) 0, + Q" (uars (uar) ) Do dX

4 [ 1Asn) = A (D-Dyo+ 2D, + ) dX 2R, (415)
nz

where
=R + €1, (4.16)
By
//112 sign (4 — uaz) (f (1) = f(uaz)) @y + Q" (uar, (uas)2*)DipdX
— //H2 sign (u — uaz) (f(u) — f(uaz)) (py + D) dX
(uAm)Aa:
ff [ S0 e Do

Let

(qu)A
= // / sign (z — u) Fy(2) dz Dy g dX. (4.17)
H% UAz

We obtain from (4.15)) the inequality

//HQT luae — ul (pr + ¢5) dX
+ //H sign (uae — u) (f(uaz) = f(u)) (Dyp + @y) dX

+ [ 1AGan) = AWl (D-Dip+ 2D1g, + 9y,) dX
T
> —y+ R (4.18)

Let us specify the test function . Let p € C§°(R) satisfy

supp(p) € [-1,1],  p(=0) = p(0), plo) >0, / p(o)do =1,

wy(x) = %p (%) s palf) = ép (i) s Pro(t) = %p (;}) ;

for positive (small) r, o and ro. Let v and 7 be such that 0 < v < 7 < T and define
t

Gt = Holt —v) — Ho(t 1), Ha(t) =/ pal€) de.

— 00

and set
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Let
o(x,t,y,5) = P (t)wr (= y)pr (L — 5).

To ensure p;—g = 0, pjs—¢ = 0, we choose v and 7 such that 0 < ro < min(v,T—7)
and 0 < a < min(v — rg,T — 7 — 19). Note that

Pt + s = V{'Wrprg s

Pz +py =0,

Pz + 20y + ©yy = 0.

In equation these expressions appear with difference quotients instead of
xz-derivatives. It should then be expected that these equalities turns into good

approximations as long as Ax tends relatively fast to zero compared to r. This will
be seen in what follows. Consider the first term on the left in (4.18]),

[ tuse = al ot 0 ax = [ Juss = ulpalt = v)owpr, dx
£ HES
— // luaz — u| pa(t — 7)dwrpr, dX.
7

Hence

J[[ beae =l patt = v)oupr, ax
w [ sien tuns =) (Fluss) = ) (Dio+ ) X
+ [ 1AGuan) — A@I(D-Dip+ 2040, + 9,) dX + 7

> // luaz — u| pa(t — T)dwrpr, dX + R, (4.19)
7

4.3. Estimates. The subject of this section is to find bounds on the “unwanted”
terms in . In these computations we let C' denote a generic constant. By
constant it is meant that it does not depend on the “small” variables but it might
depend on T and the initial conditions. Similarly welet I' = I'(Ax, n, o, r, o) denote
a generic function (taking a variable number of arguments) with the property that
it is locally bounded, positive and increasing in each argument. Note the maximum
of two such functions is itself of this type.
We first write down some standard computations for future reference.

Lemma 4.2. Let DF = %, Then

| (k)

p oo

kaw(xﬂf, Y, 8)| < ¢(f) ‘ rleL ]1{\mfy|§r}(myy)pm (t - 5)'
Let ¢ (z,t,y,8) = p(x + 0,t,y,s). If |o| < Ax then

(k)
o p oo
|Dk<p (xatvyv S)} < ¢(t) H rkJUlL ]1{|mfy\§r+Az}(xay)pro (t - 8)'

Considering the difference quotient applied to w, we have

121l Lo
|Djwr (2 —y)|| < Tfﬂ{u—y\gwmﬂﬂﬁyy)-

Proof. Note that

1

Do) = o ().
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Since supp(p) C [—1, 1] we have
k 1p®]]
| D wr ()] < T Ljar < (@),

which proves the first statement. Consider the second statement. If [x—y| > r+ Az,
then
z+o—yl=lz—yl—lo|2r+Ar—Az=r,
so it follows that 1{jz40—yj<r}(%,¥) < L{ja—y|<r+az}(2,y); this proves the second
statement.
To prove the last statement, recall that

wr(z 4+ Az) — w,(x) '

D_;,_UJT (IZ’) =

Ax
If |x| > r+ Az then w,(x+Az) = w,(x) =0, so supp(D (w,)) C [—r—Ax,r+Ax].
By the mean value theorem and the fact that ||w]||;« = [|p|| ;o 772 we get
/
(@ + AT) — wn ()] < 12 ”;"" Az.
T
The last statement follows from this. O

Now observe that
Dip+¢y=Dip— g,
and so

//r12 sign (uaz — u) (f(uaz) — f(w) (Dyp + @y) dX
_ //H sign (uae — u) (f(une) — F() (Do — 2) dX —: B.  (4.20)

Estimate 4.1. Let 8 be defined by (4.20]), then
A A

18] < C== <1+x>.
r T

Proof. We claim that

(Dro— et = o [ (Br—opnle t oty o (421
+¥ Pr)\ T, 1, Y, S _A£C o X O )Pra\T o,1,Y,8)ao. .
Hence
Az

B = A%: //HT /o sign, (A(uaz) — A(w)) (f (uaz) = f(u) (Az — 0)¢7, dodX.
We can write

sign (uag — ) (f(uas) — f(w)) (z,t,y,s)

= ZSign (uj —w) (f(uz) — f(u)) @t y,s) Lipy ().

9

Using summation by parts

Az
ﬁ/R/O sign (uaz — u) (f(uaz) — f(u)) (Az — 0)p3, dodx
1 Az
~ Ar O; ; Az — 0)p?, dxdo

1 Az
:E/ Zej/ Pra(T + 0,1y, 5) do(Az — o) do
0 X .
J

J
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Az
- /0 Zgj (D—spg,jﬂ/z) (Az —o)do
j

Az
= —ZD+®j/O P37 i+1/2(Az — o) do,
J

where <pg7j+1/2 = @z(Tjp1/2 + 0,t,y,5). By Lemma@ we have

1
‘(px(ﬂf +o,ty, S)| < Oﬁ]lﬂwfy\STJrAa:}(x)y)pTo (t - S)'

Hence

Ax
- 1
‘/0 07 j+1/2(Ar —0o)do| < CAxQﬁﬂ{lzj+1/z—y\Sr+Az} (Y)pro (t — 9).

Now
1D+0;] < [ fllLip [P+l -
Therefore

‘ A% /R /OAxSign (uns — ) (f(uag) — f(u) (Az — 0)¢2, dodx‘
= Z 1D+ 6]

1

2

S c ”fHLip Az Z |D+U’J| ﬁﬂ{\szrl/z—y\Sr—&-Az}(y)pro(t - S)
J

Az
| sas—a)do

It follows by the above and Lemma [3.1] that

A T
ol < can ™20 [ ST Dy
0 -
J

2
r+ Ax
2

1 Az 0
= CT; (1 + 7") Az |UA7J|BV(R) .

This concludes the proof. O

=C

/ |luaz(x + Az, t) — uag(x, t)| dadt
It

Next, let us consider the term (4.10]). First observe that
D_Dio+2D1py + ¢y = (D-Dyp — ¢uz) + 2(Dyp — 02), -
Thus (4.10) can be rewritten

J[[, 1Atuan) = A@I(D-Dio+ 2D, + 0,) axX
= [, 1Atwa0) = A@I (D-Dip = o..) ax

w2 ff , Ausa) = A (Do~ 92), 4

=: (1 + (o

Estimate 4.2.

A Az\?
|C1+§2‘§CT§ <1+rx) .
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Proof. Consider the term (;. We use the same strategy as for the g term. Write
w(o) = p(x+0,t,y,s). By a Taylor expansion

() = (0) = 2 (0) + 32 0) + 522 90) — ¢ [ (0 - 2u® (o) do.

Using this, we get
p(Az) = 2p(0) + p(—Az) — Az®p"(0)

1 Ax 1 0
=_= / (0 — Az)*u (o) do + = / (o + Az)* P (o) do.
6 0 6 —Ax
It follows that
1 Az 5 84
DiD_¢ = ¢pe = —m/o (o0 — Ax) @‘P(ﬂﬁ +o,t,y,s)do
10 ot
— A t do.
by [0 AP el ats)

Splitting (; according to this equality we get

G = [[ | 1Atan) = A (D-Dyp = .0) ax

Az 4
:*ﬁ//n/ Aluse) — A (0~ D) ol + 0,1,y 5) do dX

4
6Agc //112/ Aluag) — A(u)| (o + Az)? 8830 o(x +o,t,y,8)dodX
= Tl + TQ.
We also have that
|A(uae) — Au)| (z,t,y, s Z | A(uy) w)| (t,y,s) Liry ().
@,

Now consider T7,

Ax 3 64
7/0 /R|A(qu) — A(u)| (o — Ax) @gf dxdo

=— A( M — Az)? Ll 7 dxd
- Zl U’J |(t Y,s ) (U l’) ]l{I]}(x)a 4(10 rao
0 R €T

Az
*Ax/o (0 — Az)? Z Dy ji1/2d0
J

Ax
Az Z D, ®; / (0 — Aaz)3<pgm’j+1/2 do
- 0
J
where
- 2
pratz7j+1/2(t> Y, 8) = %w(xj-i-l/Z +o0,t,y, S).

Now we use Lemma [4.2) to estimate this term,

1 A o
\Tﬂz‘w//m/ [A(use) = Aw)| (0 = Aa)' S (@ + 0, y,s) do dX|

- ‘ Gix / / Z D+ / 0 - Ax)ggogzw,jq_l/g do dt dyds‘
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r+ Az Az 5
<C Az2rd /HT |D+ A(uaz)] (/0 (0 — Ax) da) dxdt

oT + Az
4

2
oA <1+M)7
T T

where we have used that [A(uaz(",t))|py ) is bounded independently of Az,t,n
by Lemma (3.1 The term 75 is estimated in a similar way. Now consider (5.
Integration by parts and the dominated convergence theorem imply

(o = 1im2//n2 |[A(uaz) — A(u)l. (D¢ — ¢z), dX

< CAx

el0

— 21 | /H , . (Alusr) — A@)AQ), (Do~ ) dX

—2 /H , s (s =) AWy (Drp = ) dX.

By (@.21)

Ax
Go] = QL\// / sign(uae — ) A(w)y (Az — 0)g, do dX|
Az 1z Jo

r+ Ax Aw
< A(u), Az —
< C(Ax)r?’ /HT | (u)y|/0 (Ax — o) do dyds

Scﬁﬂ(HM),
r r

since |A(u(-, 5))| gy (g is bounded independently of s and n by Lemma This
concludes the proof of the estimate. O

Estimate 4.3. Let v be defined by (4.17)), then
Ax Az
h=ctt (1420,
T r

Proof. By definition F3 is bounded, hence

Ujt1
/ sign (= — u) Fy(2) dz| < | Folly sy A D]
Note that |uaz(-, t)|BV(R) is bounded independently of Az, ¢ and n by Lemma
so we may apply Lemma [£.2] to obtain the result. O
Estimate 4.4. Let R be defined by (4.16]), then

A A Az\® A

R < T(r) = (1 + x) (1 + <x> ) +o=t
/A T T To

Proof. Consider the term (4.13), i.e.,

im [/  ign.(A(use) = A) = ign.(4(0a2) = A@)] Dy Aluan) Dy pdX.

As stated before we may apply dominated convergence and Lemma to show
that this limit exists. First observe that
0 < [sign_(A(6;) — A(u)) — sign_(A(u;) — A(uw))] Dy A(u;)
< AzD . sign, (A(u;) — A(u)) Dy A(uy).
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Hence
(@I < Actim [/ Dysign.(A(uas) — Alw)Ds Aluas) [Dipl dX
£ H%

Using both integration by parts for difference quotients and Leibniz rule for differ-
ence quotients we obtain

[ Disien. (Alwas) ~ A@w) D Aluss) IDo] dX
117,

S //n sign_(A(uaz) — A(u)) Dy A(upaz ) Dy |D_¢| dX

2
T

= [ sien.(A(uss) - A@) DD Atuss) |D-¢) dX
HT
=: Sl + SQ.
To estimate S2 we first observe that Dy |D_¢| < |D4D_¢|. Furthermore, when
proving Estimate we established that
D+D—<P($7 i, Y, 8)
Az 4
@)~ g [ o 80P Splatoty.s)d
= (2, t,y,8) — —— o—Ar)’—p(z +o,t,y,s)do
®: Y 622 J, FIvad Yy

1 0 34
/ (0 + Az)®—p(z + 0,t,y,s)do.

+ 6A.€C2 _ Az Ox?t
By Lemma
+Az 84
‘/O' (UZFA.’E)BQQD(SC-FO',Ly,S)dU‘
(Az)*
<C 5 1{\m—y|§7‘+Aw}($v y)pm (t - S)

Using Lemma [4.2] once more, the above implies that

A (. A
| DDl ayds < [ fpudl ayas + 55 (1+x)
I Iy T r

1 Ax)? A
SC(2+( 7) ) (1+x).
T T T

si=|/ /H sign.(A(uas) — A@W)Dy A(use) Dy [D_p| dX|

Therefore

< [ 1DeA@a)| ([ |DD-g] dyds) dade
HT 1-IT

1 (Az)? Az
<0 —= .
<C <r2 + > <1+ . )/HT |Dy A(ung)| dadt

Recall that [A(uaz(",t))| gy (g is bounded independently of Az,t,n by Lemma
Considering Sy we have

521 =[] sten.(A(uss) = Aw) (D-D Alus,) [D-p] x|

< [ 1D-DeAws) 1Dl ax
17

r+ Ax

<C
< 2

/ ID_ Dy A(un,)| ddt.
IIr
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Note that it follows by (3.1) and Lemma that ||D,D+A(qu(~,t))HL1(R) is
bounded independently of Ax,t,n. Hence

Bo [ Disign.(Aus) = A@)D2Aluss) [Dsgl dX
HT
< Az ([S1] + [S2])
Az (Ax)3 Az
<T — 1+— ).
<T(r) ( R +
Next we estimate (4.12]). We first split the term.

J[ (et Atusn) = Atw)e = sienl(Aras) = AW)o™) (A(w),)* dX

= //H2 (signl(A(uas) — A(u)) — signZ(A(taz) — A(u))) PA® (A(u)y)2 dX

+ / / sign! (A(uas) — A(w) (¢ — $5%) (A(u),)? dX
112,
= W1 + WQ.
We start with W;. By we have

WL,y Jus ™ UL (u,u) f(w)y o™ = YL (u, ug) Au) yy ™

Now
(6, (u, u5) Aw)y),, = (sign (A(u) — Aluy))Alu)),
— sign!, (A(u) — A(uy)) (A(w),)? (4.22)
+sign, (A(u) — A(u;) A(u),y.
Hence
/H sign’ (A(u) — A(uy)) (A(u)y)* 9> dyds
= [ (siena(A) = AG)A(0),)y* duds
- /H sign, (A(u) — A(u;)) A(u)yy 9™ dyds,
and so

| sienl(At) = Alw)) (A(u),)? ¢ dyds
= [ s (AG) = A A, o> dyds = [ g dyds
— /H sign_ (A(u) — A(u;)) f(u)y ™" dyds.
We shall obtain a similar expression for
| sienl(Atu) = A(r)) (A, 20" dyis.
We have that
DL, 05)usp™" + L (u, 07)  (u)y 0™ = PL(u,0;) A1) yy o
Using Lemma [4.1]
(Ve (u, 0;)A(u)y), = (sign.(A(u) — A(0;))A(u)y),
= sign’(A(u) — A(7))) (A(u),)”
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+ sign, (A(u) — A(0;)) A(u)yy,

and so
/H sign’ (A(u) — A(73)) (A(u)y)? 9> dyds
- /H (sign, (A(u) — A(6;))A(u)y)y 0 dyds
- /H sign, (A(u) — A(0;))A(u)yy0™" dyds.
Hence

/H sign’ (A(u) — A(m;))(A(w),) %02 dyds

- /H (sign, (A(u) — A(Gj))A(u)y)ygoA’” dyds — . w;(uﬁj)usgom” dyds

— | UL(u,0;)f(u)y ™7 dyds.

IIr
From this it follows

Wi= [ (s (A() — Alu;)) = signt(A(w) = A7) (Alw))* 97 dyds
= [ ((stana(Al) = Atw;) = sign.(A(w) = A9,))) A(w),), ¢ dyds (423)
= [ (gm0 = AGu) = sien. (A — A0) wg dyds (424

- /H (sign, (A(u) — A(u;)) — sign_(A(u) — A(6;))) F(u)yg™® dyds  (4.25)

Next we want to send € to zero and then estimate the terms (4.23)), (4.24) and
(4.25). The next two lemmas will enable us to do this.

Lemma 4.3. For real numbers u, a and b define

|[AD)—A(uw)|-|A(a)—A)| -
AB)—A(a) if a # b,

g(u,a,b) = < sign(A(a) — A(u)) ifa=0b, u#b,
0 ifa=b=u.
Under the same assumptions as in Lemma
tisign. (A(0)) — A(w) = g(u, 03, u;50).
Proof. Recall the definition of §;:
sign, (A(0;) — A(w)) (A(uj1) — A(uy)) = [A(u;41) — Au)], — [A(y;) — A(u)]..
If ujy1 = uj, then 6; = u; for all u and ¢, since 0; € int(u;,u;j4+1). Thus in this
case
limsign, (A(0;) — A(u)) = 0 ifu =,
elo 8 ! | sign (A(u;) — A(u))  otherwise.
Now assume that Dy A(u;) # 0. Then
. |A(uj1) — A(u)l, — |A(y;) — A(u)
sign,(A(6;) — A(u)) = S £,
(A = A A1) — Alu)
and the result follows by letting ¢ | 0. U

Regarding the function g.
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Lemma 4.4. Suppose a #b. Then u — g(u,a,b) is non-increasing function and

)1 if u < min {a, b},
9lu,a,b) = {—1 if max{a,b} < u.
Proof. First observe that g(u, a,b) = g(u,b,a) so we can assume that a < b.
(A(b) — A(a))g(u, a,b) = |A(b) — A(u)| — [A(a) — A(u)|
= sign (b — u) (A(b) — A(u)) — sign (a — u) (A(a) — A(u))
_ ) sign (b—u) (A(b) — A(a)) if u & (a,b),
A(b) + A(a) — 2A(u) if u € (a,b).
Since A is increasing, this proves the lemma. O

Let
Hj(u) = / sign(z — uy) + g(2, uj, uj11) dz.

— 00
By the above lemma, the support of the integrand belongs to int(u;, u;41). Besides,
its absolute value is bounded by 2, so H; is Lipschitz continuous, and |H;(u)| <
2 |uj+1 — u;|. Therefore

T
0 C
[ H0 et =) ] < g = .
Regarding (4.24]), we proceed as follows:

im [ [ (A0 — Alu;))~sign.(A() — A)] g dys|

= H; (u)us ™" dyds‘

IIr
= [ 2 () ™ dyis|
Ir 65 J

= || Hi(we ayas
IIr

c Az
—|uj+1 - Uj| = 07|D+Uj|
To To

IN

Now we estimate . To this end, let
Q) = [ H) G
Then
@0l = | [ #07@82] <€ [ Lty (21 < Clugsr = .

Hence

lim /H § (sign. (A(u) — Auy))—sign.(A(u) — A(6)))) f'(w)uy ™ dyds

Az
—| [ Qe dyas| < 05 Doy
I r
For the term (4.23) we let

P = [ ) d
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and perform the same trick.

tim | ((sizn (A(w) — Aluy))~sign (A(w) — AB;))) Alu)y ) o> dyds

= ’/HT Pj(u)giy dde’ < C% Dyl
It follows that
Wil = Jim [ [signt(A(u) = A(w)) = signl(A() = A(5)] (Alw),)* 27 0]
AmT

<I(r)—-.

r2

Finally we need to bound W5 independently of . By equation (4.22)

Wo = //H2 sign’ (A(uas) — A(u) (¢ — 92%) (A(u)y)* dX

—aa ] , S (A1)~ Alusn)) (4(0),)* DypdX

—Az //HQT (sign. (A(u) — A(uas)A(u)y), DredX

+ Az //H% sign_ (A(u) — A(uaz))A(w)yy Dy dX

= Wy + W3,
Now, by Lemma |A(u(-, 5))| gy (r) is bounded independently of s and 7 so

Wil <aa [[ 1A, Dy, ax
= Ax/ |A(u)y] (/ | D1y d:vdt) dyds
HT l_[T

gm/ﬂ |A(u)y|(/n (D, )ypry| ddt) dyds

< (CM + CATT (1 + M))/ |A(u),| dyds
T T T o

et (1+29),

r
Also, using the uniform bound on || A(w)yyl £ (11, from Lemma

W3 < aa [ 1A, 1Dyl X
T

< Ax/ | A1) yyl (/ | D4l dxdt) dyds
IIr IIr

1 A
< AzC (1 + - (1 + x)) / |A(w)yy| dyds
T T Ir

<t (1+57).

r
It follows that
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Now we return to inequality (4.19), and define
E(A(E,’I",n,é‘,’]"o) = ﬁ + Cl + 42 + |%‘ + 7.
Using this, (4.19) reads

/‘/HQT |uaz — u| pa(t — T)wr(x — y)pry (t — 8) dX

< // luazr — u| pa(t — V)we (@ — y)pry (t — 8) dX + Z(Ax, 7, 10).
7

Combining Estimate [£.1] Estimate [£:2] Estimate 1.3 and Estimate [£.4] we find that

=/ <T (r, Ax) A—f o=
T T To

independently of a. Hence we can send « to zero and get
k(1) < K(V) + E(Ax, r,10),

where
w0 =[] e, 8) ()] = ) (£ o) s

Lemma 4.5. Let t > ro, and L° be the Lipschitz constant of t — |u(-,t)]11(g)-
Then

[5(8) = T (8) = w2y | < Ol gy ey 7 + Lo
Proof. By the triangle inequality,
1t) = o () = )1 |

S/R lu(y, s) — u(z,t)|we(x — y)pr, (t — s) dydsdz

IIr
< /OT(/R lu(y, s) —u(yi)ldy)pm(t—é’) ds

+ / / fu(y, ) — u(e, )| (& — y)dyda
RJR
< Lro + |u(, )| gy gy
O

Recall that we had to pick v > ry. Let L? be the L'-Lipschitz constant of
t — upg(-,t). By the triangle inequality
luaz(-v) = u(, V)l g
< JJuaeCv) = woll gy + [4ae = 00l gy + |0” = w2l gy
< L% + HuOAI — U’OHLl(]R{) + L.

This means that

luaz(-t) = ul- )l @) < ||“0Ax - UOHLl(R)
. . Ax\ Az Az
+(L +Ld)V+2(L rO+|UO|BV(R)T)+F(T’T>TT+CK.

3

Now choose r® =72 = Az and v = 2r¢. Then there exist a constant C' such that

HUAI<'7T) - ’u’(.77—)||L1(R) S HUOAZ —_ UOH + CAJ}%
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Now recall that A(c) = A(c) + 5o, with A'(¢) > 0, and so it remains to send
71 to zero to conclude the proof. If v is the entropy solution of the non-regularized
equation, then u(-,¢) — v(-,¢) in L*(R) as n — 0 (cf. Section . Concerning the
difference scheme, one can prove continuous dependence in £! on the parameter n
using Gronwall’s inequality. Hence, we can also send 71 to zero in the scheme. This
finishes the proof of Theorem
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