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Abstract

An important problem in gas dynamics simulation is to prevent the carbuncle, a
breakdown of discrete shock profiles. We show that for high Froude number, this
also occurs in shallow water simulations and give numerical evidence that all cures
developed for gas dynamics should also work in shallow water flows.
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1. Introduction

Starting with the seminal paper by Quirk [1], many investigations of the carbuncle,
the breakdown of discrete shock profiles, in gas dynamics and many strategies to sup-
press it were published, e. g. [2, 3, 4, 5, 6, 7, 8].Among the classical complete Riemann
solvers, i. e. Riemann solvers which explicitly resolve all waves in the Riemann problem,
the Roe solver is known to be most prone to that numerical artifact and the Osher
solver to be least prone to it. Solvers like HLLE, which does not resolve entropy and
shear waves, are known to avoid that effect completely.

The carbuncle is known to be mainly driven by an interplay between one-dimensional
shock instabilities like postshock oscillations [4] or jumping shock positions [3] and
undamped unphysical vortices along the shock front.

So, there are two major ways to prevent a scheme from producing carbuncle like
structures: Adjust the viscosity on strong shocks to stabilize them (like Osher) or adjust
the viscosity on entropy and shear waves (like HLLE). Since the Osher scheme cannot
completely avoid the carbuncle [9], most cures follow the second way, which in turn
offers two major approaches: raise the viscosity on linear waves whenever a strong
shock in a neighbouring Riemann problem is detected or raise the viscosity when the
residual in the Rankine Hugoniot condition for that wave is large, e. g. [10]. The price
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for the first approach is a nonlocal data treatment, the price for the second is a slight
increase of shear viscosity outside of single shear waves.

Since mathematically there are some similarities between the Euler equations
of gas dynamics and the shallow water equations [11, 12], and since Denlinger and
O’Connell [13] report carbuncle-like instabilities in their simulations, we expect the
carbuncle to also appear in shallow water flows and to follow the same mechanisms as
in the gas dynamics case.

In the following section we will give numerical evidence of that. We translate two
standard tests from Euler to shallow water and show how they produce the carbuncle.
We also show that our simple carbuncle cure [10] has the same effect in shallow water
as it has in gas dynamics. From this, we conclude that the same should be true for all
other carbuncle cures which were developed for the Euler equations.

2. Numerical Investigation

In this section, we provide a numerical investigation of the carbuncle in shallow
water and the effect of a carbuncle cure originally developed for gas dynamics. For
the sake of simplicity, we resort to our own simple carbuncle cure, the HLLEMCC-
solver [10], which is designed to prevent the carbuncle while, like Roe, yielding exact
resolution of steady shear waves. This can be literally translated to shallow water.
The parameters given in [10, Section 4] are used with one difference: we can use ε=
10−5 instead of ε = 10−2. We compare this to the Roe and to the HLLE solver. The
computational domain for all test cases is [−2.5,2.5] discretized with 40× 40 grid
cells. The graviational constant is normalized to one. The computations are done in
clawpack [14] with first order and flat bed.

2.1. Colliding flow test

LeVeque [15, Section 7.7] outlined a test problem for the carbuncle instability. It
consists of a pair of slowly moving shocks, initialised by a strong colliding flow. To
trigger the carbuncle, LeVeque disturbs the initial state in one grid point. In this study,
we simulate this situation for shallow water by setting the initial water-height to h = 1
and the left and right velocities to u =±30. The transverse velocity is zero. Onto this
initial state, we superimpose artificial numerical noise of amplitude 10−6 instead of
disturbing it in just one point. The noise is generated randomly. This allows us to make
sure that the resulting structure of the solution is independent of the structure of the
initial perturbation. Figure 1 shows that, while the results for HLLE and HLLEMCC are
indistinguishable, the Roe scheme produces carbuncle type structures.

2.2. Steady shock test

The steady shock problem was introduced by Dumbser et al. [9] as a test for the
carbuncle. We consider the worst case: The shock is located directly on a cell face.
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Figure 1: Scatter plot of colliding flow at time t = 2 with Roe, HLLEMCC, HLLE (left to right), water height
shown.
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Figure 2: Scatter plot of steady shock with inflow Froude number F r = 30 at time t = 2 with Roe, HLLEMCC,
HLLE (left to right), water height shown.

According to Dumbser et al. [9] this situation is most likely to evolve a carbuncle-like
structure. For shallow water we set the water height and the Froude number at the
inflow to h = 1 and F r = 30. Again, we add artificial numerical noise, this time of
amplitude 10−3, to the conserved variables in the initial state. Figure 2 shows results
for the water height at time t = 2. Again, the Roe scheme shows a breakdown of the
shock profile, while HLLE and HLLEMCC nicely reproduce the shock.

To illustrate the aforementioned interplay between 1d-instabilities of the shock
and shear flows and vortices along the shock front, in Figure 3, we plot the transverse
velocity. It is nicely seen that the Roe scheme leaves the shear flow along the shock
undamped and, thus, let it grow until it starts to interact with the shock front and
destroy it. Since along the strong shock the residual in the Rankine Hugoniot condition
for the shear wave is rather large, HLLEMCC puts almost the same amount of viscosity
on it as with the HLLE. The shear flow is damped and, thus, the resulting vortices are
to weak to act back on the shock profile.

3. Conclusions and Outlook

We have given numerical evidence that the carbuncle in shallow water not only
exists, but has even the same nature as in the gas dynamics case. It is driven by
a complex interplay between one-dimensional shock instabilities and undamped
unphysical vortices along the shock front. And it can be cured by a modified diffusion
mechanism which was originally developed for the Euler equations. Thus, we expect
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Figure 3: Scatter plot of transverse velocity component (v) at times t = 0.002 (upper row) and t = 0.006
(lower row) with Roe, HLLEMCC, HLLE (left to right).

that any carbuncle cure developed for the Euler equations should also work for shallow
water flows.
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