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Abstract. We determine completely the exact Riemann solutions for the shallow water equations
with a bottom step including the dry bed problem. The nonstrict hyperbolicity of this first order
system of partial differential equations leads to resonant waves and non unique solutions. To address
these difficulties we construct the L–M and R–M curves in the state space. For the bottom step
elevated from left to right, we classify the L–M curve into five different cases and the R–M curve into
two different cases based on the subcritical and supercritical Froude number of the Riemann initial
data as well as the jump of the bottom step. The behaviors of all basic cases of the L–M and R–M
curves are fully analyzed. We observe that the non–uniqueness of the Riemann solutions is due to
bifurcations on the L–M or R–M curves. The possible Riemann solutions include classical waves and
resonant waves as well as dry bed solutions that are solved in a uniform framework for any given
initial data.
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1. Introduction. In this paper we are concerned with the shallow water system
of hyperbolic equations, which can be written in the form

∂W

∂t
+

∂F(W)

∂x
= −H(W)zx,(1.1)

where

W =





z
h
hu



 , F(W) =





0
hu

hu2 + gh2/2



 , H(W) =





0
0
gh



 ,(1.2)

see e.g. Stoker [2]. The independent variables z, h and u denote, respectively, the
bottom topography, the water height and the water velocity, while g is the gravity
constant. Usually the bottom topography z is assumed to be given a priori.

The shallow water equations (1.1) model incompressible flows on a bottom bed
under the assumption that the depth of the fluid is much smaller than the wave length
of the disturbances considered. It has wide applications in fluid dynamics, for example
tidal flows in an estuary, hydraulic jumps, river beds and channels, tsunamis, etc. The
system has also been studied from a mathematical point view. A particular feature
of the system (1.1) is the presence of the bottom topography z(x). This geometric
variable is independent of time and leads to a stationary source and a nonconservative
term.

We only reference a few publications. LeFloch [18] complemented related non
conservative system with an additional trivial equation zt = 0. This additional equa-
tion zt = 0 introduces a linear degenerate field with a 0 speed eigenvalue. As a result
the system (1.1) becomes a nonstrictly hyperbolic system. Due to the coincidence
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of eigenvectors the system becomes degenerate at sonic states, see e.g. Alcrudo and
Benkhaldoun [5]. Bernettia et al. [7] studied an enlarged system and used the en-
ergy to rule out solutions that are physically inadmissible. Andrianov [3] proposed
an example which has two solutions for one set of initial data to show that different
numerical schemes may approach different exact solutions. Li and Chen [10] stud-
ied the generalized Riemann problem for the current system. LeFloch and Thanh in
[19, 20] investigated the exact Riemann solutions. They obtained most of the possible
solutions for given initial data. However they omitted one possible type of solution
which is denoted as the wave configuration E in this work. Moreover they did not
give complete proofs for the existence and uniqueness of the solutions. Especially for
the conjecture in [20, Remark 6 p. 7646]. Besides the papers we just mentioned,
considerable work has been devoted to the topic of the shallow water equations, see
e.g. [2, 12, 1, 14] and the references therein.

In this work we propose a uniform framework to solve the system (1.1) with the
following Riemann problem

W(x, 0) =

{

WL, x < x0,
WR, x > x0,

(1.3)

where Wq with q = L or R are constant. There are three wave curves for the system
(1.1). The first and second wave curves are given by the physically relevant parts of
the rarefaction and shock curves. The third wave curve, denoted as the stationary
wave curve, is due to the variation of the bottom step. Since the governing system
is non strictly hyperbolic, the mutual positions of the stationary wave curve with
respect to the rest of the two elementary waves cannot be determined a priori. To
address this difficulty we introduce the L–M and R–M curves in the state plane for the
construction of solutions to Riemann problems. The idea is motivated by Marchesin
and Paes-Leme [21] as well as our previous work for the exact Riemann solutions to
Euler equations for duct flows in [9].

During this work we always assume without loss of generality that zL < zR. The
opposite case can be treated as the mirror–image problem by reflecting the Riemann
initial data in terms of x = x0. We take into account the stationary wave curves
by deriving a velocity function. Owing to this function, the L–M and R–M curves
with zL < zR can be, respectively, classified into five and two different cases by the
subcritical or supercritical Froude number of the Riemann initial data as well as the
jump of the bottom step. This new classification is very helpful for a systematic
consideration of solutions. It is given for the L–M curves at the begining of Section
4.2 and for the R–M curves in Section 4.3. Note that each of these curves leads to
more than one wave configurations, depending on the Riemann initial data. We obtain
the 7 wave configurations denoted as A, B, C, D, E, F , G that do not have a dry
bed state and 6 that do have a dry bed state in the solution. The dry bed states are
like vacuum states in gas dynamics and therefore we index the corresponding wave
configurations with subscript letter v.

We find that the water can always spread across a lowered bottom step. But the
water can go across an elevated bottom step if and only if a critical step size zmax is
larger than the actual jump height of the bottom step. The critical step size zmax is
determined by the height and Froude number of the inflow state.

We carefully study the monotonicity and smoothness properties of the L–M and
R–M curves in each case. Note that the introduction of these curves and the use of the
velocity function make our approach to the solution of the Riemann problem different
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from the previous work. We feel that this makes the solution procedure clearer and
simpler. Observe that a bifurcation occurs for certain cases. This bifurcation intro-
duces nonunique solutions and validates the conjecture in [20, Remark 6, p. 7646].
Especially we solve the dry bed problem of the solution in this framework. Here the
dry bed problem refers two subcases. One is for the water propagating to a dry bed,
see Toro [11]. The other one is for the dry bed state emerging due to the motion of
the flow.

The organization of the paper is as follows. We briefly review the fundamental
concepts and notions for the governing system in Section 2. In Section 3 we discuss
the stationary wave curves. Our main focus is in Section 4, which contains the def-
inition of the L–M and R–M curves and the complete analysis of their structures.
All the possible wave configurations are illustrated in this section. The algorithm
for determining the exact solutions is explained in Section 5. Finally we make some
conclusions in Section 6.

2. The shallow water system. We now derive the quasi linear form of the
system (1.1). Set V = (z, h, u)

T
, then

Vt + A(V)Vx = 0,(2.1)

where the Jacobian matrix A(V) is in the form

A(V) =





0 0 0
0 u h
g g u



 .

The eigenvalues of A(V) are

λ0 = 0, λ1 = u− c, λ2 = u + c,(2.2)

where c =
√

gh is the sound speed. They eigenvalues are referred to as the char-
acteristic speeds. The system (1.1) is not strictly hyperbolic as a result of the fact
that λ0 can coincide with any of the two other eigenvalues. The corresponding right
eigenvectors are

R0 =





c2−u2

c2

1
−u

h



 , R1 =





0
1
− c

h



 , R3 =





0
1
c
h



 .(2.3)

One can easily show that

R0 → Rk as λk → 0 for k = 1, 2.(2.4)

Consequently the system (1.1) is degenerate for the states at which the eigenvalues
λ1 or λ2 coincide with λ0. Specifically, this state is the sonic state at which u = ±c.

We use the terminology k-waves, k = 0, 1, 2, to denote the waves associated to
the k–characteristic fields when the eigenvalues are distinct from each other. Here the
1– and 2–waves are shocks, hydraulic jumps or rarefactions. Traditionally the 0–wave
is named, the stationary wave [5] due to the jump of the bottom step. Note that a
0–speed shock or a transonic rarefaction wave will coincide with the stationary wave.
In such kind a case these elementary wave will involved in the stationary wave [15].
We name these combined waves the resonant waves. They will be studied in details
later, see also Han et al. [9].
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We define the shock and rarefaction curves. Let Uq = (hq, hquq)
T be any state

in the state space. The shock speed σk, where k = 1, 2 represents the number of the
wave family, and the velocity u can be expressed as follows

σk = uq ± h

√

g

2

(

1

h
+

1

hq

)

.(2.5)

u = uq ± (h− hq)

√

g

2

(

1

h
+

1

hq

)

,(2.6)

where h > hq. The shock speed σ1 takes the − sign and σ2 takes the + sign in
(2.5), analogously in (2.6). The detailed derivation can be found in Francisco and
Benkhaldoun [5]. The admissible shock curves Sk(Uq), k = 1, 2 denote the states
which are connected to the state Uq by an admissible 1–shock or 2–shock respectively.
Set

Sk(Uq) = {U | F(U)− F(Uq) = σk(U−Uq) with h > hq} , k = 1, 2.(2.7)

Generally the shock curve Sk(Uq) contains three components, namely,

S±
k (Uq) = { U | U ∈ Sk(Uq) and σk(Uq ,U) ≷ 0} ,(2.8)

S0
k(Uq) = { U | U ∈ Sk(Uq) and σk(Uq ,U) = 0} .

We study the state set S0
k(Uq). Note that we have the shock speed

σk = uq ± h

√

g

2

(

1

h
+

1

hq

)

= 0 with h > hq.(2.9)

Therefore, introducing the Froude number Fq :=
uq

cq
=

uq√
ghq

, we obtain

(

h

hq

)2

+
h

hq

− 2F 2
q = 0.(2.10)

There are two solutions to (2.10) which are

h1 =
−1+
√

1+8F 2
q

2 hq, h2 =
−1−
√

1+8F 2
q

2 hq,(2.11)

Note that h1 > hq and h2 < 0 < hq, so h1 is the physically relevant solution to (2.9).

Hence the set S0
k(Uq) contains only one state. Hereafter we use Ûq = S0

k(Uq) to
denote it, then we have

ĥq =
−1+
√

1+8F 2
q

2 hq.(2.12)

Since ĥqûq = hquq, we get ûq =
hquq

ĥq

. Direct calculation yields

ûq =
1+
√

1+8F 2
q

4F 2
q

uq.(2.13)

For the rarefaction curves, similarly, we use Rk(Uq) to denote the states U which
can be connected to Uq by a k–Rarefaction wave, i. e.

Rk(Uq) = {U | u = uq ± 2(c− cq) with h ≤ hq} , k = 1, 2.(2.14)
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2.1. The 1– wave and 2–wave curves. Generally the k–wave curves Tk(Uq),
k = 1, 2 are defined as the sets of states which can be connected to the initial state
Uq by admissible waves. That is to say we have

T1(UL) = R1(UL) ∪ S1(UL), T2(UR) = R2(UR) ∪ S2(UR).(2.15)

Obviously T1(UL) and T2(UR) are the admissible wave curves associated to the char-
acteristic field with λ1 and λ2 in the state space respectively.

For simplicity we define the following function

fq(h; hq) :=







2(
√

gh− cq), if h ≤ hq,

(h− hq)

√

g
2

(

1
h

+ 1
hq

)

, if h > hq.
(2.16)

We will consider fq(h;Uq) as a function of h for given parameter Uq. Therefore the
k–wave curve Tk(Uq), k = 1, 2 can be rewritten as

T1(Uq) = {U|u = uq − fL(h; hq), h ≥ 0} ,
T2(Uq) = {U|u = uq + fR(h; hq), h ≥ 0} .(2.17)

Lemma 2.1. The function fq(h; hq) is continuously differentiable, strictly increas-
ing and concave.

Proof. The function fq(h; hq) is twice continuous due to lim
h→hq−

fq(h; hq) = lim
h→hq+

fq(h; hq) =

0. The derivative of the function fq(h;Qq) is

f ′
q(h; hq) :=







√

g
h
, if h ≤ hq,

√

g
2

1
h
+ 2

hq
+

hq

h2

2
q

1
h
+ 1

hq

if h > hq.
(2.18)

Therefore we have

f ′
q(h; hq) > 0(2.19)

and lim
h→hq

f ′
q(h; hq) =

√

g
hq

. To see the convexity of the function, we need to consider

the second derivative of the function fq(h; hq). Actually we have

f ′′
q (h; hq) :=











− 1
2

√
gh− 3

2 , if h ≤ hq,

−
√

g

4
√

2

5
h3 +

3hq

h4
“

1
h

+ 1
hq

” 3
2
, if h > hq.

(2.20)

Hence f ′′
q (h; hq) < 0. Moreover we have lim

h→hq

f ′′
q (h; hq) = − 1

2

√
gh

− 3
2

q . This is enough

to confirm the lemma.
Lemma 2.1 reveals that the 1–wave curve T1(UL) is a strictly decreasing concave

curve, while the 2–wave curve T2(UR) is a strictly increasing convex curve in the
(u, h) state plane. Therefore these two curves have at most one intersection point. To
find whether the intersection point exists or not, we need to consider the state with
h = 0, which corresponds to the dry bed of the water, see Toro [11]. For the 1–wave
curve T1(UL) and the 2–wave curve T2(UR) we take h = 0 in (2.17) and (2.16). We
obtain two velocities

u0L = uL + 2cL,(2.21)
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and

u0R = uR − 2cR.(2.22)

These are the velocities of the water covering or uncovering a dry state h = 0. The
two curves T1(UL) and T2(UR) will interact if u0L ≤ u0R , i.e.

uR − uL < 2 (cL + cR) .(2.23)

In thia case the intersection point of T1(UL) and T2(UR) uniquely exists, In the other
case u0L < u0R there is no intersection point. Then we obtain a dry bed intermediate
state.

Now we want to study two specific dry bed problems. Both of them concern the
water receding from the jump of the dry bed. The first problem has the Riemann
initial data

(h, u)(x, 0) =

{

(hL, uL), x < 0,
(0, 0), x > 0,

(2.24)

with the restriction that u0L < 0. In such kind of case the 2–wave of the solution is
missing while the 1–wave is a rarefaction wave on the left side. The corresponding
solution is given as

(h, u)(x, t) =















(hL, uL), x
t
≤ uL − cL,

(

(uL+2cL− x
t )

2

9g
,

uL+2cL+2 x
t

3

)

, uL − c<
x
t

< u0L,

(0, 0), x
t

> u0L.

(2.25)

The other problem is has the Riemann initial data

(h, u)(x, 0) =

{

(0, 0), x < 0,
(hR, uR), x > 0,

(2.26)

with u0R > 0. Similarly the 1–wave of the solution is missing and the 2–wave is a
rarefaction wave on the right side. The exact solution of this case is shown in the
following:

(h, u)(x, t) =















(hR, uR), x
t
≥ uR + cR,

(

(uR−2cR− x
t )

2

9g
,

uR−2cR+2 x
t

3

)

, uR + cR > x
t
≥ u0R,

(0, 0), x
t

< u0R.

(2.27)

The jump of bottom step does not affect the solution in these two examples.
However for the Riemann problem (1.1), (2.24) or ( 2.26) but with u0L > 0 or u0R > 0
respectively, the jump of the bottom step induces an additional wave. The motion of
the flow becomes more complicated. Not to mention the general Riemann problem of
(1.1) and (1.3) with hL > 0 and hR > 0. There the jump of the bottom step greatly
affects the motion of the flow. So in the next section we study the stationary wave
due to the jump of the bottom step.

3. The stationary wave curve. The stationary wave curve for the system (1.1)
is defined by the ODE system

∂F(U)

∂x
= −H(U)zx.(3.1)



7

Motivated by Alcrudo and Benkhaldoun [5] and references cited therein, we have the
following Lemma.

Lemma 3.1. For the smooth bottom topography the sonic state can only appear
when the bottom function reaches a maximum.

Proof. The ODE system (3.1) asserts the following equations

∂hu
∂x

= 0,
u∂u

∂x
+ g ∂h+z

∂x
= 0.

(3.2)

Therefore we have
(

1− u2

c2

)

h

u
ux = zx.(3.3)

The relation (3.3) shows that for smooth lowered bottom topography, i.e. zx < 0, the
velocity of the water decreases when u2 < c2 and vice versa. Similarly for smooth
elevated bottom topography, i.e. zx > 0, the velocity increases when u2 < c2 and vice
versa. So we can conclude that the quantity z as a function of x has a maximum at
the sonic state u2 = c2.

In this work we regard the stationary wave as a transition layer located at x = 0
with 0 width. In this approach the discontinuous variation of the bottom step is
viewed as the limiting case of locally monotonic bottom slope going to infinity. This
idea has been used by Alcrudo and Benkhaldoun [5], LeFloch and Thanh [19, 20],
Toro [11] etc. for the shallow water systems. Han et. al. [9] also adopted it to solve
the Riemann problem for duct flows.

3.1. The stationary wave. In this section we use the subscript i to represent
the inflow variables while o represents the outflow variables. Assume that the piece-
wise constant bottom topography has the values zi and zo, while the upstream flow
state is (hi, ui) which is known and the downstream flow state is (h, u). Here zi will
be zL if u > 0, while it is zR if u < 0. With the analogous consideration zo will be
determined.

Let assume that hi, h > 0. One can easily derive the following relations from the
system (3.1)

hu = hiui,(3.4)

u2

2
+ g(h + zo) =

u2
i

2
+ g(hi + zi).(3.5)

The formula (3.4) implies the following conditions
1. ui and u have the same sign,
2. ui = 0 ⇐⇒ u = 0.

Our aim is to calculate the downstream state (h, u). Specifically if ui = 0 and hi +
zi−zo > 0 we have u = 0 and h = hi +zi−zo, otherwise if ui = 0 and hi +zi−zo < 0,
we have u = 0 and h = 0. In the following analysis we always assume that ui 6= 0.
For simplicity we can use the notation U = J(zo;Ui, zi) to represent the explicit
solution U := (h, u)T implicitly given by (3.4) and (3.4). Our aim is to calculate the
downstream state (h, u) of the flow for the known upstream flow (hi, ui). A velocity
function is derived from (3.4) and (3.5) to be

Ψ(u;Ui, zo) :=
u2

2
+

c2
i ui

u
− u2

i

2
− ghi + g(zo − zi).(3.6)
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The behavior of the velocity function is analyzed in the following lemma.
Lemma 3.2. Consider

u∗ =
(

uic
2
i

)
1
3 ,(3.7)

then the velocity function Ψ(u;Ui, zo) has the following properties
1. Ψ(u;Ui, zo) decreases if u < u∗;
2. Ψ(u;Ui, zo) increases if u > u∗;
3. Ψ(u;Ui, zo) has the minimum value at u = u∗ and there u∗ = c∗ with the

sound speed c∗ =
√

gh∗ =
√

g uihi

u∗ .

Proof. The velocity function Ψ(u;Ui, zo) is smooth since if ui > 0 the existence
region for u is u > 0, otherwise if ui < 0 the existence region for u is u < 0. Therefore
the derivative of Ψ(u;Ui, zo) is

∂Ψ(u;Ui, zo)

∂u
= u− uic

2
i

u2
.(3.8)

Consequently we get

∂Ψ(u;Ui, zo)

∂u







< 0, if u < u∗,
= 0, if u = u∗,
> 0, if u > u∗.

(3.9)

It follows that the velocity function Ψ(u;Ui, zo) is decreasing when u < u∗ and
increasing when u > u∗ and has the minimum value at u = u∗.

Since

c2 = gh =
ghiui

u
,(3.10)

we get the formula

u
∂Ψ

∂u
(u;Ui, zo) = u2 − gu−h−

u
= u2 − c2.(3.11)

From ∂Ψ(u∗;Ui,zo)
∂u

= 0 we obtain u∗ = c∗.
Corollary 3.3. Lemma 3.2 shows that the equation Ψ(u;Ui, zo) = 0 may have

two, one or no solutions. Further discussions are as follows,
1). If the minimum value Ψ(u∗;Ui, zo) < 0, the equation Ψ(u;Ui, zo) = 0 has two

roots. Assume that the root closer to 0 is ul and the other one is ur, cl and
cr are the corresponding sound speeds. Then according to (3.11), u2

l − c2
l < 0

and u2
r − c2

r > 0. It is well known that the transition from subcritical to su-
percritical channel flow can only occur at points of maximum of the bottom
function [5]. So physically we can take the one which satisfies

sign(u2
q − c2

q) = sign(u2
i − c2

i )(3.12)

where q = l or r. However one special case is that if the inflow state Ui is a
sonic state, i.e. u2

i = c2
i , then (3.12) no longer holds. There are two possible

solutions ul and ur, which one is to be chosen depends on the requirement of
the specifical problem. The details will be given later.
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2). If Ψ(u∗;Ui, zo) = 0, the equation Ψ(u;Ui, zo) = 0 has exactly one solution which
is the sonic state, i.e. u = u∗.

3). If Ψ(u∗;Ui, zo) > 0, the equation Ψ(u;Ui, zo) = 0 has no solution.
The procedure for calculating the outflow state U = J(zo;Ui, zi) is summarized

in Algorithm 1. However it is necessary to analyze the existence region for U =
J(zo;Ui, zi) to determine it a priori.

Algorithm 1 Algorithm for solving U = J(zo;Ui, zi)

Require: flag, zi, zo and (hi, ui)
1: if zi = zo then

2: return (hi, ui)
3: else if ui = 0 then

4: if hi + zi < zo then

5: return (0, 0)
6: else

7: return (hi + zi − zo, 0)
8: end if

9: else

10: Ψmin ← Ψ(u∗;Ui, zo)
11: if Ψmin < 0 then

12: Solve Ψ(u;Ui, zo) = 0 by the iteration method to obtain ul and ur

13: c2
l ← g hiui

ul
, c2

r ← g hiui

ur

14: if sign(u2
l − c2

l ) = sign(v2
i − c2

i ) ∨
(

flag = 0 ∧ v2
i = c2

i

)

then

15: return (hiui

ul
, ul)

16: else if sign(u2
l − c2

l ) = sign(v2
i − c2

i ) ∨
(

flag = 1 ∧ v2
i = c2

i

)

then

17: return (hiui

ur
, ur)

18: end if

19: else if Ψmin = 0 then

20: return (hiui

u∗ , u∗)
21: else if Ψmin > 0 then

22: print No Solution.
23: end if

24: end if

3.2. Existence of the stationary wave. Corollary 3.3 reveals that the veloc-
ity function may have no solutions. To be more precise we now consider the existence
conditions for the outflow state (h, u) of the stationary wave introduced above. Ac-
cording to Lemma 3.2, it is equivalent to evaluate the minimum value of the velocity
function Ψ(u;Ui, zo) being not larger than 0, i.e.

Ψ(v∗;Ui, zo) =
3

2

(

uic
2
i

)
2
3 − c2

i −
u2

i

2
+ g(zo − zi) ≤ 0.(3.13)

We introduce the Froude number Fi := ui

ci
, then we have

hi

(

3

2
(Fi)

2
3 − F 2

i

2
− 1

)

+ zo − zi ≤ 0.(3.14)

Therefore we obtain

zo − zi ≤ hi

(

F 2
i

2
− 3

2
F

2
3

i + 1

)

.(3.15)
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We know that

F 2
i

2
− 3

2
F

2
3

i + 1 ≥ 0.(3.16)

It reaches 0 if and only if Fi = 1. Hence, the above computation motivates the
following theorem.

Theorem 3.4. The existence of the solution to the velocity function.
1. If zo < zi, Ψ(u;Ui, zo) always has solutions.
2. Otherwise if zo > zi, Ψ(u;Ui, zo) has a solution if and only if

zo − zi ≤ hi

(

F 2
i

2
− 3

2
F

2
3

i + 1

)

.(3.17)

Theorem 3.4 indicates that on one hand the water can always spread across the
lowered jump of the bottom step; on the other hand the water can overflow the
elevated jump of the bottom step if and only if the bottom step is not too high.
Specifically it should less than a critical value which is determined by the height and
the Froude number of the inflow.

Corollary 3.5. For the fixed inflow state Ui and two outflow bottom steps
z1

o < z2
o, if J(z2

o ;Ui, zi) exists then J(z1
o ;Ui, zi) also exists. Since we regard the

discontinuous bottom step as the limiting case of monotonic bottom step, it make
sense to assume that the solution inside this transition layer is also continuous if
there is no resonant wave.

4. L–M and R–M wave curves. In this work we always assume without loss
of generality that

zL < zR.(4.1)

According to Lemma 3.1 the sonic state can only be located on the side z = zR of
the stationary wave. The opposite case zL > zR can be treated as the mirror–image
problem by reversing the Riemann initial data and setting the velocity in the opposite
direction.

Here we study the general Riemann solution which contains a stationary wave.
The sufficient condition for this requirement is that u0L > 0 or u0R < 0, where u0L

and u0R were defined in (2.21) and (2.22). Otherwise if u0L < 0 and u0R > 0 the dry
bed appears around the initial discontinuity point x = x0. Specifically the solution
has the wave configuration Av, see Figure 4.1. Hereafter the symbols k–r, k = 1, 2
denote the k–rarefactions. An example of this case can be found in Figure 4.5. We
can see that the jump of the bottom does not affect the motion of the flow. Therefore
there is no stationary wave.

The general exact Riemann solution for the system (1.1) with (1.3) with u0L > 0
or u0R < 0 consists of a stationary wave which is located at x = 0 as well as a sequence
of 1– and 2–shocks or rarefactions. Alcrudo and Benkhaldoun in [5] presented more
than 20 different solution patterns. Indeed the solution patterns without the dry bed
under the condition (4.1) can be classified into 10 different wave configurations. We
show them in Figures 4.2, 4.6, 4.8, 4.10, 4.12, 4.9, 4.14, 4.16, 4.17, and 4.18. In all the
wave configurations the 1– and 2–wave represent a shock or a rarefaction. The dashed
right arrow indicates that the velocity across the the bottom jump is positive, while
the dashed left arrow indicates that the velocity across the bottom jump is negative.
Note that the wave configuration E has been omitted by LeFloch and Thanh in [20].
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Fig. 4.1. Av

1–wave 2–wave
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UR
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0–wave

Fig. 4.2. A

1–wave
2–r(0, 0)(hM , 0)

x

t

dry bed

UL
UR

Fig. 4.3. H1

1–wave

(hM , 0)

x

t

dry bed

UL

Fig. 4.4. H2

The wave configurations AT , CT and DT , in some sense, can be viewed as the
image–reflection of the wave configurations A, C and D in terms of x = 0 respec-
tively. Moreover the wave configurations B and G contain a resonant wave due to
the coincidence of the stationary wave with a 1– and 2–rarefaction wave respectively.
The wave configurations C and CT result from the coincidence of a statioanry wave
with a 0 speed 1– and 2–shock wave respectively. While the wave configurations E
and F are the combination of a transonic rarefaction, a stationary wave and a 0 speed
shock. We point out that analogous resonant waves to these mentioned here for other
systems can be found in Goatin and LeFloch [15], Rochette and Clain [17], Han et al.
[9] etc.

The solution patterns with a dry bed consist of the wave configurations Av, H1

and H2, see Figures 4.1, 4.3, and 4.4 respectively. Also the wave configuration Bv, see
Figure 4.7, belongs to this category. Note that the wave configuration Bv originated
from the wave configuration B. But Bv contains a dry bed intermediate state (0, 0)
and the 2–wave is a rarefaction wave. Here we should keep in mind that 2–rarefaction
wave will totally disappear if hR = 0. This is analogously to the wave configurations
Dv and Ev, see Figures 4.11 and 4.13, which comes from the wave configurations D
and E respectively. The wave configuration Gv, see Figure 4.15, originated from the
wave configuration G. Be advised that Gv contains a dry bed state (0, 0) and a 1–
rarefaction if hL > 0, or no 1–wave if hL = 0. The situation for the wave configuration
DT

v , see Figure 4.19, is similar.
For one given set of initial data we cannot determine the wave configuration of

the solution from the initial data in advance due to many possibilities of the mutual
position between the stationary wave and shocks or rarefactions. This is the nature of
non strictly hyperbolic system. Analogous to the Euler equations in a duct, see Han
et al. [9], we here also introduce the L–M and R–M curves to solve this problem. We
merge the stationary wave curve into the 1–wave curve T1(UL) or the 2–wave curve
T2(UR). Here we also name them L–M and R–M curves. These two curves can be
regarded as an extension of the T1(UL) and T2(UR) curves respectively. They will
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Fig. 4.5. Left: The water free surface h + z at t = 0.05; Right: The velocity. The Riemann
initial data are (zL, hL, uL) = (0.0, 0.5674,−6.0) when x < 0.5 and (zR, hR, uR) = (0.8, 0.558, 6.0)
when x > 0.
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Fig. 4.9. F

serve as a building block for the calculation of the Riemann solutions to the shallow
water equation in a uniform way.

There is precisely one stationary wave in a full wave curve from UL to UR located
either on the L–M curve or the R–M curve. Due to the fact that the velocity does
not change sign across the stationary wave, so the location of the stationary wave is
determined by this rule: If u > 0 the stationary wave is on the L–M curve; if u < 0
the stationary wave is on the R–M curve.

Hence if u0L > 0 the L–M curve always contains the segment

P l
1(UL) = {U|U ∈ T1(UL) with u ≤ 0} ,(4.2)

otherwise if u0L ≤ 0 the L–M will be

P l
1(UL) = {U|U ∈ T1(UL) with u ≤ u0L} .(4.3)
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Similarly if u0R < 0 the R–M curve always contains the segment

P r
1 (UR) = {U|U ∈ T2(UR) with u ≥ 0} ,(4.4)

otherwise if u0R ≥ 0 the R–M curve will be

P r
1 (UR) = {U|U ∈ T2(UR) with u ≥ u0R} .(4.5)

It is necessary to construct the remaining segments of L–M curves with u0L > 0
and u > 0. Also for the R–M curves with u0R < 0 and u < 0. Since zL < zR,
Theorem 3.4 implies that the stationary wave always exists if the fluid flows from zR

to zL. However the stationary wave equations (3.4) and (3.5) may not have solutions
if the fluid flows from zL to zR. Before constructing the L–M and R–M curves, we
need to consider the preliminaries for L–M and R–M curves first.

4.1. Preliminaries for L–M curves with u > 0. We now investigate the
existence of the state J(zR;U−, zL), where U− ∈ T1(UL) and connected to UL by a
negative speed 1–wave. Theorem 3.4 suggests the study of the following function

ω(h−) := h−

(

1

2
F (h−)2 − 3

2
F (h−)

2
3 + 1

)

− (zR − zL),(4.6)

where the Froude number F (h−) := U(h−)√
gh−

and U(h−) = uL − fL(h−; hL). Theorem

3.4 implies that if ω(h−) ≥ 0 the state J(zR;U−, zL) exists and vice versa. So we
need to study the behavior of ω(h−).

Lemma 4.1. The function ω(h−) is strictly increasing if 0 < F (h−) < 1.
Proof. The function ω(h−) is continuous and differentiable. The derivative of

ω(h−) is

ω′(h−) =
1

2
F (h−)2 − 3

2
F (h−)

2
3 + 1 + h−F (h−)−

1
3

[

F (h−)
4
3 − 1

]

F ′(h−),(4.7)
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where by (2.19) and U(h−) > 0, we have

F ′(h−) = −f ′
L(h−; hL)
√

gh−
− U(h−)

√
g

2
h
− 3

2
− < 0.

As we have mentioned in (3.16), 1
2F (h−)2 − 3

2F (h−)
2
3 + 1 ≥ 0. It takes the value

0 if and only if F (h−) = 1. so we obtain that ω′(h−) > 0 if 0 < F (h−) < 1 and
ω′(h−) = 0 if F (h−) = 1.

Denote the minimum value of h− as hmin
L and the maximum as hmax

L . The curve
T1(UL) is strictly decreasing in the (u, h) state space. Also U− ∈ T1(UL) is connected
to UL by a negative speed 1–wave. Hence if uL ≤ cL, hmin

L is the height corresponding

to the sonic state on the curve T1(UL); while if uL > cL, hmin
L is ĥL which is defined

in (2.12). That is to say we have

hmin
L =

{

(uL+2cL)2

9g
, if uL ≤ cL,

ĥL, if uL > cL.
(4.8)

Now we pay attention to hmax
L . It should satisfy

0 = uL − fL(hmax
− ;UL).(4.9)
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If uL ≤ 0, we have hmax
L < hL which is the solution to the equation

uL − 2(
√

gh− cL) = 0.

Otherwise if uL > 0, we have hmax
L > hL, Hence from (2.16) it is the solution of the

equation

uL − (h− hL)

√

g

2

(

1

h
+

1

hL

)

= 0.(4.10)

After a short calculation we have

(

h

hL

)3

−
(

h

hL

)2

− (1 + 2F 2
L)

h

hL

+ 1 = 0.(4.11)

Setting x = h
hL

> 1, (4.11) becomes

f(x) = x3 − x2 − (1 + 2F 2
L)x + 1.(4.12)

Direct calculation yields the following facts. The function f(x) defined in (4.12)

reaches the maximum at xl := 1
3 − 2

3

√

1 + 3
2F 2

L < 0 and the minimum at xr :=

1
3 + 2

3

√

1 + 3
2F 2

L > 1. When x < xl, f(x) increases from −∞ to the maximum value at

x = xl; When x ∈]xl, xr[ it decreases from the maximum value to the minimum value
at x = xr; While when x > xr it increases from the minimum value to∞. Furthermore
be advised that xl < 1 < xr and f(1) = −2F 2

L < 0, so f(xr) < f(1) < 0. Thus there
is exactly one real solution to the cubic equation f(x) = 0 when x > xr > 1. We
denote this solution as xu0

l
which can be directly calculated by the method for the

exact solution to cubic equations, see Nickalls [8]. Finally we have

hmax
L =

{

(uL+2cL)2

4g
, if uL ≤ 0,

hLxu0
l
, if uL > 0.

(4.13)

Thus the resonable region for considering ω(h−) is ]hmin
L , hmax

L [. Moreover we
have the following lemma.

Lemma 4.2. Set

zmax := zL + hmax
L .(4.14)

The stationary state U = J(zR;U−, zL) with 0 < u− ≤ c− cannot exist if zmax < zR.

Proof. Note that ω(hmax
L ) = hmax

L − (zR − zL) = zmax − zR. So if zmax < zR,
ω(hmax

L ) < 0. The function ω(h−) is increasing in terms of h− ∈]hmin
L , hmax

L [. Hence
ω(hmin

L ) < ω(h−) ≤ ω(hmax
L ) < 0 if zmax < zR. Theorem 3.4 implies that if ω(h−) < 0

the stationary wave U = J(zR;U−, zL) cannot exist.
Lemma 4.3. Suppose that zR < zmax and uL < cL. There exists a state Ũc ∈

T1(UL) which satisfies Uc = J(zR; Ũc, zL).
Proof. Due to zR < zmax, we have ω(hmax

L ) = zmax − zL > 0 and hmin
L =

(uL+2cL)2

9g
. A short calculation yields that ω(hmin

L ) = zL− zR < 0. Since the function

ω(h−) is continuous and increasing there is a unique solution to ω(h−) = 0 by the
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intermediate value theorem. Denote the solution to ω(h−) = 0 as h̃c. Then the
corresponding velocity ũc can be calculated by

ũc = uL − fL(h̃c;UL).(4.15)

The velocity function of J(zR; Ũc, zL) is

Ψ(u; Ũc, zR) :=
u2

2
+

c̃2
c ũc

u
− ũ2

c

2
− gh̃c + g(zR − zL).

The minimum of this velocity function is

Ψ(u∗; Ũc, zR) = gω(h̃c) = 0.

Hence Corollary 3.3 implies that the outflow state of stationary wave is a sonic state,
i.e. Uc = J(zR; Ũc, zL).

Corollary 4.4. Lemma 4.3 is totally consistent with Lemma 3.1.
Note that Lemma 4.2 states that in this case the flow coming from the left cannot

spill over the obstacle caused by the jump in the bed height at x = 0. Whereas
in the case of Lemma 4.3 over spill occurs if the velocity is large enough leading to
ω(h−) > 0.

In case that zR < zmax and uL > cL, we have hmin
L = ĥL. We define two critical

bottom steps

zS = zL + ĥL

(

1

2
F̂ 2

L −
3

2
F̂

2
3

L + 1

)

,(4.16)

and

zT = zL + hL

(

1

2
F 2

L −
3

2
F

2
3

L + 1

)

,(4.17)

where ĥL and ûL were defined in (2.12) and (2.13) respectively. The Froude number

F̂L =
ûL

ĉL

.(4.18)

Since ĉL =

√

gĥL, taking (2.12) and (2.13) into (4.18), we obtain

F̂L =
1

8
F−2

L

[

1 +
√

1 + 8F 2
L

]
3
2

.(4.19)

We invoke the existence condition for resonant waves due to the coincidence of a
0–speed shock and the stationary wave.

Lemma 4.5. Suppose zL < zR < zmax and uL > cL. We have the following facts.
1. The state U = J(zR; S0

1(UL), zL) exists if zR ≤ zS; otherwise it fails to exist.
2. The state U = J(zR;UL, zL) exists if zR ≤ zT ; otherwise it fails to exist.
3. One always has zT > zS.

Proof. From Theorem 3.4 the existence condition for the state U = J(zR; S0
1(UL), zL)

is that

zR < zL + ĥL

(

1

2

(

F̂L

)2

− 3

2

(

F̂L

)
2
3

+ 1

)

= zS .(4.20)
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Analogously we can prove the second statement. Now we investigate the relationship
between zS and zT . From (2.12) and (4.19), we have

zS = zL + hL

[

1
32F 2

L

(

1 +
√

1 + 8F 2
L

)2

+
−1+
√

1+8F 2
L

2 − 3
2F

2
3

L

]

.(4.21)

By (4.16) and (4.21), we have

zT − zS = hL

[

1

2
F 2

L −
3

2
F

2
3

L + 1− 1

32F 2
L

(

1 +
√

1 + 8F 2
L

)2

− −1 +
√

1 + 8F 2
L

2
+

3

2
F

2
3

L

]

,

=
hL

F 2
L

[

1

2
F 4

L + F 2
L −

1

16

(

1 + 4F 2
L +

√

1 + 8F 2
L

)

− −1 +
√

1 + 8F 2
L

2
F 2

L

]

,

=
hL

F 2
L





1

2
F 4

L +
5

4
F 2

L −
1

16
−
(

1 + 8F 2
L

)
3
2

16



 ,

=
hL

128F 2
L

[

−3 +
√

1 + 8F 2
L

]3 [

1 +
√

1 + 8F 2
L

]

.

> 0

when F 2
L > 1.

Assume that zL < zR and uL > cL. We now consider resonant waves due to the
coincidence of the 0–speed 1–shock with stationary waves. The 0–speed 1–shock splits
the stationary wave into a supersonic part and a subsonic part. The corresponding
wave curve is defined as follows.

{

U|U = J(zR;U+, z);U+ = S0
1(U−);U− = J(z;UL, zL)

}

,(4.22)

where z ∈]zL, zR[. We denote the Froude numbers for the states U± in (4.22) as
F± = u±√

gh±

. By using (3.4) we have

h+u+ = h−u− = hLuL.(4.23)

Therefore we obtain the functions F±in terms of h± respectively:

F (h±) := F± =
u2

Lh2
L

√
gh

3
2
±

.(4.24)

By (4.23) the derivatives of the functions F (h±) are

dF (h±)

dh±
= −3

2

F±
h±

.(4.25)

Similar to (4.19) we obtain the further relations for F− and F+

F+ =
1

8
F−2
−

(

1 +
√

1 + 8F 2
−

)
3
2

.(4.26)

The resonant wave curve in (4.22) is viewed as a function of z. Actually the variable
h− is more convenient to analysis the existence of the wave curve in (4.22). Specifically
the following lemma holds.
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Lemma 4.6. For the supersonic state U− = J(z;UL, zL) in (4.22) with zL ≤
z ≤ zR we have

hL ≤ h− ≤ h̄L,(4.27)

where ŪL = J(zR;UL, zL).
Proof. Considering (3.4) and (3.5) for U− = J(z;UL, zL), we study the following

equation

h2
Lu2

L

2gh2
−

+ h− + z − u2
L

2g
− hL − zL = 0.(4.28)

Taking z as a function of h−, we obtain

z(h−) := −h2
Lu2

L

2gh2
−
− h− +

u2
L

2g
+ hL + zL.(4.29)

Using (4.23), we have

dz(h−)

dh−
= F 2

− − 1 > 0.(4.30)

Note that h− = hL when z = zL, while h− = h̄L when z = zR. Thus (4.30) implies
that hL ≤ h− ≤ h̄L.

To prove the existence of the wave curve defined in (4.22), we have to study the
existence of the supersonic state U− = J(z;UL, zL) and the subsonic state U =
J(zR;U+, z) with zL ≤ z ≤ zR. We present the details in the following lemmas.

Lemma 4.7. The region of z for the existence of the subsonic state U = J(zR;U+, z)
defined in (4.22) is as follows:

1. z ∈]zL, zR[ if zS ≥ zR;
2. z ∈]zc, zR[ if zS < zR where zc is defined in (4.43).

Proof. Theorem 3.4 implies that U = J(zR;U+, z) exists if

zR − z ≤ h+

(

1

2
F 2

+ −
3

2
F

2
3
+ + 1

)

.(4.31)

In addition by (2.12) and (2.13) we have

h+ =
h−
2

(

−1 +
√

1 + 8F 2
−

)

.(4.32)

That is to say h+ can be treated as a function of h−. This suggests to consider the
function

Θ(h−) := h+

(

1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1

)

+ z − zR.(4.33)

For simplicity we introduce the function

A(h+) := h+

(

1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1

)

.

Therefore Θ(h−) in (4.33) can be rewritten as

Θ(h−) = A(h+(h−)) + z(h−)− zR.(4.34)
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By the chain rule we have

Θ′(h−) =
dA(h+)

dh+

dh+

dh−
+

dz(h−)

dh−
.(4.35)

Using (4.25) we obtain

dh+

dh−
= −1

2
+

1− 4F 2
−

2
√

1 + 8F 2
−

.(4.36)

Besides by (4.25) and (4.26) we have

dA(h+)

dh+
=

1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1 + h+

(

F (h+)− F (h+)−
1
3

) dF (h+)

dh+

=
1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1− 3

2
F (h+)

(

F (h+)− F (h+)−
1
3

)

= 1− F (h+)

= 1− 1

8
F−2
−

(

1 +
√

1 + 8F 2
−

)
3
2

.(4.37)

By (4.30), (4.36) as well as (4.37), we have

Θ′(h−) =

(

1− 1

8
F−2
−

(

1 +
√

1 + 8F 2
−

)
3
2

)



−1

2
+

1− 4F 2
−

2
√

1 + 8F 2
−



+ F 2
− − 1

=

(

3 +
√

1 + 8F 2
−

)

[

(

− 5
2 +

√

1 + 8F 2
−

)2

+ 2
(

1 +
√

1 + 8F 2
−

)

1
2 − 17

4

]

8
√

1 + 8F 2
−

.

> 0,(4.38)

when F 2
− > 1. By Lemma 4.27, we have hL ≤ h− ≤ h̄L. Thus due to (4.38) we have

Θ(hL) ≤ Θ(h−) ≤ Θ(h̄L).(4.39)

From (4.31) the state J(zR;U+, z) exists if Θ(h−) ≥ 0. Remember that we denote
ˆ̄UL = S0

k(ŪL). We have

Θ(h̄L) = ˆ̄hL

(

1

2
ˆ̄F

2

L −
3

2
ˆ̄F

2
3

L + 1

)

≥ 0.(4.40)

From (4.16) as well as (4.33) we obtain that

Θ(hL) = zS − zR.(4.41)

So on one hand if zS ≥ zR, we have 0 ≤ Θ(hL) ≤ Θ(h−) ≤ Θ(h̄L). Thus the
state J(zR;U+, z) exists for any zL ≤ z ≤ zR. On the other hand if zS < zR we have
Θ(hL) < 0 < Θ(h̄L). From the intermediate value theorem there is a unique solution,
denoted as h̃cs

, to the equation Θ(h−) = 0 where h− ∈]hL, h̄L[. The corresponding
velocity can be calculated from

ũcs
=

hLuL

h̃cs

,(4.42)
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and the related bottom step denoted as zc can be deduced from equation (4.28), i.e.

zc = −h2
Lu2

L

2gh̃2
cs

+ h̃cs
− u2

L

2g
− hL − zL.(4.43)

Hence Θ(h−) ≥ 0 if zc ≤ z ≤ zR.
Lemma 4.8. Assume that uL > cL, for zT given by (4.17) we have zT < zc if

zT < zR.
Proof. Denote U∗

c,l = J(zR;U+, zT ). Taking z = zT in (4.28), we obtain that

α(h−) :=
h2

Lu2
L

2h2
−

+ gh− −
3

2

(

uLc2
L

)
2
3 = 0.(4.44)

The function α(h−) is continuous and differentiable. The derivative of this function
is

α′(h−) = −h2
Lu2

L

h3
−

+ g.(4.45)

Set h∗ = hLF
2
3

L . We have α′(h−) < 0 if h− < h∗, while α′(h−) > 0 if h− > h∗. It has
the minimum value at h− = h∗ and α(h∗) = 0. Therefore there is a unique solution

to α(h−) = 0, i.e. h∗
c,l = h∗ = hLF

2
3

L . Using (4.23) we obtain that

u∗
c,l = uLF

− 2
3

L = cLF
1
3

L =
√

gh∗
c,l = c∗c,l.

Thus the state U∗
c,l is the sonic state. Hence we have h+ = h∗

c,l and F+ = 1 in (4.32)
and (4.24) respectively. From (4.6) we have Θ(h∗

c,l) = zT − zR < 0 if zT < zR. Since

Θ(h̃cs
) = 0, we have by (4.38) h∗

c,l < h̃cs
. Consequently we have zT < zc due to

(4.29).
Based on the previous Lemmas, we now study the existence region for the wave

curve defined in (4.22).
Lemma 4.9. Assume that zL < zR and uL > cL, then we have
1. if zR ≤ zS < zT , the curve in (4.22) exists.
2. if zS < zR ≤ zT , the curve in (4.22) exists when z ∈]zc, zR[.
3. if zS < zT < zR, the curve in (4.22) fails to exist.

Proof. The wave curve defined in (4.22) exists if the two states U− = J(z;UL, zL)
and U = J(zR;U+, z) exist. Lemma 4.5 implies that the state U− = J(z;UL, zL)
exists if z ≤ zT .

Thus in one case if zR < zT , the state U− defined in (4.22) with z ∈]zL, zR[ always
exists. Lemma 4.7 conveys that on one hand if zS ≥ zR the state U = J(zR;U+, z)
exists when z ∈]zL, zR[. Thus the first statement is true due to zS < zT by Lemma
4.5. On the other hand if zS < zR the state U = J(zR;U+, z) exists when z ∈]zc, zR[.
This is the second statement.

In the other case if zR > zT , the state U− exists if z ∈]zL, zT [. By Lemmas 4.8
and 4.7 we have ]zL, zT [

⋂

]zc, zR[= ∅. This is enough for the third statement.
Corollary 4.10. Suppose that we have zL < zR, uL > cL and zS < zR < zT .

Lemma 4.9 reveals that there exists an h̃cs
, such that Θ(h̃cs

) = 0. Moreover note

that Θ(h̃cs
) is the minimum value of the velocity function to J(zR; Ûcs

, zc), i.e. the

outflow state of J(zR; Ûcs
, zc) is the sonic state. We denote it as Uc3 , i.e. Uc3 =

J(zR; Ûcs
, zc).
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Corollary 4.11. Suppose zS < zR < zT and uL > cL, i.e. hmin
L = ĥL. Note

that

ω(ĥL) = zS − zR < 0.(4.46)

Analogously to Lemma 4.3, there is a unique solution to ω(h−) = 0. Here we denote
this as h̃L

c . The corresponding velocity ũL
c can be calculated from (4.15) by setting

h̃c = h̃L
c . Also we have Uc2 = J(zR; Ũc, zL), where Uc2 is the sonic state. The

subscript 2 is used to distinguish the sonic state Uc2 from the sonic state Uc3 in
Corollary 4.10.

4.1.1. Monotonicity. In this section we consider the monotonicity of two types
curves as the preliminary step for the study of the L–M and R–M curves.

We define

P
l(UR) = {U|U = J(zR;U−, zL) and U− ∈ T1(UL) }(4.47)

where hmin
L < h− < hmax

L and

P
r(UR) = {U|U = J(zL;U−, zR) and U− ∈ T2(UR) }(4.48)

where 0 < u− + c− < c−. Note that P l(UL) and P r(UR) are the composite of the
1– or 2–wave curve with a stationary wave. Before studying the behavior of P l(UL)
and P r(UR), we consider the following lemma first.

Lemma 4.12. For any state U− ∈ T1(UL) connected to UL by a negative speed
1–wave, we have

u− − h−f ′
L(h−; hL) < 0, and u−f ′

L(h−; hL)− g < 0.(4.49)

Proof. We have u− − c− < 0 since the states U− and UL are connected by a
negative speed 1–wave. From (2.18) we have

u− − h−f ′
L(h−; hL) =











u− − c−, if h− ≤ hL,

u− − h−
√

g
2

1
h−

+ 2
hL

+
hL

h2
−

2
q

1
h−

+ 1
hL

, if h− > hL.
(4.50)

If h− ≤ hL, obviously we have u− − h−f ′
L(h−; hL) < 0; Otherwise if h− > hL, we

have

√

g

2

1
h−

+ 2
hL

+ hL

h2
−

2
√

1
h−

+ 1
hL

=

√
g

2
√

2





√

1

h−
+

1

hL

+

1
hL

+ hL

h2
−

√

1
h−

+ 1
hL





≥
√

g

2

√

1

hL

+
hL

h2
−

>

√

g

h−
.(4.51)

So using (4.51) in (4.50) we obtain

u− − h−f ′
L(h−; hL) < u− − c−.(4.52)

Hence we have u− − h−f ′
L(h−; hL) < 0 due to u− − c− < 0.
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Now we turn to u−f ′
L(h−; hL)− g. Note that

u−f ′
L(h−; hL)− g =















√

g
h−

(u− − c−) < 0, if h− ≤ hL,

u−
√

g
2

1
h−

+ 2
hL

+
hL

h2
−

2
q

1
h−

+ 1
hL

− g, if h− > hL.
(4.53)

So it is only necessary to consider the case that h− > hL. To ensure that the 1–wave
has a negative speed, we have h− > hmin

− where

hmin
− =

{

hL, if uL ≤ cL,

ĥL, if uL > cL,
(4.54)

where ĥL was defined in (2.12). Besides by (2.20) we have

∂u−f ′
L(h−; hL)

∂h−
= − (f ′

L(h−; hL))
2

+ u−f ′′
L(h−; hL) < 0.

Therefore, when h− > hL we have

u−f ′
L(h−; hL) < umin

− f ′
L(hmin

− ;UL),(4.55)

where umin
− = uL − fL(hmin

− ;UL). Specifically by (4.54) we have

u−f ′
L(h−; hL)− g <











uL

√

g
hL
− g if uL ≤ cL,

ûL

√

g
2

1

ĥL
+ 2

hL
+

hL

ĥ2
L

2
q

1

ĥL
+ 1

hL

− g, if uL > cL.
(4.56)

Note that when uL ≤ cL, u−f ′
L(h−; hL)− g <

√

g
hL

(uL − cL) ≤ 0. Now we consider

the case that uL > cL. By ûL = hLuL

ĥL

, we have

ûL

√

g

2

1
ĥL

+ 2
hL

+ hL

ĥ2
L

2
√

1

ĥL

+ 1
hL

=
hLuL

ĥL

√

g

2

1
ĥL

+ 2
hL

+ hL

ĥ2
L

2
√

1

ĥL

+ 1
hL

=
g

2
√

2
FL

hL

ĥL

(

hL

ĥL

)2

+ hL

ĥL

+ 2
√

hL

ĥL

+ 1

Moreover from (2.12), we obtain that

hL

ĥL

=
1 +

√

1 + 8F 2
L

4F 2
L

.

Set x = hL

ĥL

, then FL =
√

x+1√
2x

. So we have

g

2
√

2
FL

hL

ĥL

(

hL

ĥL

)2

+ hL

ĥL

+ 2
√

hL

ĥL

+ 1
= g

x2 + x + 2

4
< g by 0 < x < 1.

Hence by (4.56), we obtain that u−f ′
L(h−; hL)−g < 0 when uL > cL. This completes

the proof of the lemma.
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Theorem 4.13. The curve P l(UL) defined in (4.47) is strictly decreasing in the
(u, h) state plane, while P r(UR) defined in (4.48) is strictly increasing in the (u, h)
state plane.

Proof. It is enough to consider P l(UL). The other curve P r(UR) can be dealt
with in an analogous way.

We need to prove that du
dh

< 0. Due to U = J(zR;U−, zL), we have

hu = h−u−,(4.57)

u2

2
+ g(h + zR) =

u2
−
2

+ g(h− + zL),(4.58)

where

u− = uL − fL(h−; hL),(4.59)

and fL(h−; hL) is defined in (2.16). By (4.57) and (4.58) we obtain the equations
τ(h, h−) = 0 and ̟(u, h−) = 0, where

τ(h, h−) =
(h−u−)2

2h2
+ g(h + zR)− u2

−
2
− g(h− + zL),(4.60)

and

̟(u, h−) =
u2

2
+ g(

h−u−
u

+ zR)− u2
−
2
− g(h− + zL).(4.61)

With the implicit function theorem we obtain

dh

dh−
= −

∂τ
∂h−

∂τ
∂h

=

∂τ
∂h−

u2−c2

h

,(4.62)

and

du

dh−
= −

∂̟
∂h−

∂̟
∂h

= −
∂̟
∂h−

u2−c2

u

,(4.63)

So we have

du

dh
=

du
dh−

dh
dh−

=
−u ∂̟

∂h−

h ∂τ
∂h−

.(4.64)

Lemma 4.49 tells us that

∂τ

∂h−
=

h−u−
h2

u− (u− − h−f ′
L(h−; hL)) + u−f ′

L(h−; hL)− g < 0,(4.65)

and

∂̟

∂h−
=

g

u
(u− − h−f ′

L(h−; hL)) + u−f ′
L(h−; hL)− g < 0.(4.66)

Hence we have du
dh

< 0 from (4.64) by h >, u > 0. This completes the proof of the
lemma.
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Now we define the wave curves

Pk(Uq) = {U|U = J(zo;U+, z); U+ = Sk
0 (U−); U− = J(z;Uq, zi) } ,(4.67)

where u2
q ≥ c2

q, zi ≤ z ≤ zo, as well as k = 1 when uq > 0 while k = 2 when uq < 0.
The state U− = J(z;Uq, zi) is supersonic while U = J(zo;U+, z) is subsonic. Note
that this type of the resonant wave curves is the general case of the wave curve defined
in (4.22). Moreover we have the following monotonicity lemma for Pk(Uq).

Lemma 4.14. Assume that u2
q ≥ c2

q, we have dh
dz

> 0; while du
dz

> 0 when uq > 0

as well as du
dz

< 0 when uq < 0 for the wave curves in (4.67).
Proof. It is enough to consider the case that k = 1. The case for k = 2 can be

dealt with in a similar way.
The curve P1(Uq) defined in (4.67) is a function in terms of z. Note that dh

dz
=

dh
dh−

dh−

dz
. So we consider dh

dh−
and dh−

dz
in the following. Moreover we have

hquq = h−u− = h+u+ = hu.(4.68)

From U− = J(z;Uq, zi) and U = J(zo;U+, z) we respectively have

u2
qh

2
q

2gh2
−

+ h− + z − u2
q

2g
− hq − zi = 0,(4.69)

and

u2
qh

2
q

2gh2
+ h + zo −

(hquq)
2

2gh2
+

− h+ − z = 0,(4.70)

where h+ is defined in (4.32). Similarly to (4.29) and (4.30), we have

z(h−) := − h2
qu

2
q

2gh2
−
− h− +

u2
q

2g
+ hq + zq.(4.71)

and

dz(h−)

dh−
= F− − 1 > 0.(4.72)

Taking (4.29) into (4.70), we introduce a equation ξ(h, h−) = 0 where

ξ(h, h−) =
u2

qh
2
q

2gh2
+ h + zo −

(hquq)
2

2gh2
+

− h+ − z(h−).(4.73)

So by the implicit function theorem we have

dh−
dh

= −
∂ξ
∂h
∂ξ

∂h−

=
F 2 − 1

∂ξ
∂h−

(4.74)

where F = u
c
. Using (4.26) and (4.37), we have

∂ξ

∂h−
=

∂ξ

∂h+

dh+

dh−
+

∂ξ

∂h−
,

= (F 2
+ − 1)

dh+

dh−
− F 2

− + 1,

= −Θ′(h−) < 0.(4.75)
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So we obtain that ∂ξ
∂h−

< 0 and dh−

dh
> 0. From (4.30) and (4.75), we obtain that

dh
dz

> 0. Since hu = hquq, so du
dz

= −u
h

dh
dz

. Hence du
dz

< 0 if u > 0 and vice versa.
In the next section we study the L–M and R–M curve case by case. The gravity

constant g = 9.81 unless stated otherwise.

4.2. L–M curves with u0L > 0 and u > 0. There are respectively six different
types of L–M curves. We list the classification for all cases in the following:

• CASE IL: zmax < zR.

• CASE IIL: zmax ≥ zR, uL < cL ⇐⇒ FL < 1.

• CASE IIIL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zR < zS < zT .

• CASE IVL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zS < zR < zT .

• CASE VL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zS < zT < zR.
Later we will construct the L–M curves for all cases. Before doing this we consider
an example given by Andrianov in [3, (8)]. To match with the assumption zL < zR,
we reflect the Riemann initial data with respect to x = 0.5. They become

(z, h, u) =

{

(1.1, 0.1, 2.0), x < 0.5,
(1.5, 1.3, 2.0), x > 0.5,

(4.76)

with x ∈ [0, 1]. Note that g = 2 in this example. For the given data cL =
√

0.2,
we have uL − cL > 0. From (4.14), we obtain zmax = 1.7912, zS = 1.3028 and
zT = 1.7928. So the L–M curve of this example belongs to CASE IVL. Reducing
zR from 1.5 to 1.3, we obtain the Riemann initial data for CASE IIIL. Later these
Riemann initial data will be used to give examples for the exact solutions.

4.2.1. CASE IL: zmax < zR. This is the case for which the jump of the bottom
step is too high compared with the inflow state U− of the stationary wave, which
is connected to UL by a negative 1–wave. Mathematically we say that there is no
solution to J(zR;U−, zL) for any U− ∈ T1(UL) with a negative speed 1–wave. This
was proved in Lemma 4.2.

Generally there are two different subcases for this case:
• hR = 0.
• u0R > 0.

We have the following two Riemann problems:

ht + (hu)x = 0,

(hu)t + (hu2 + gh2

2 )x = 0.
(4.77)

(h, u)(x, 0) =

{

(hL, uL), x < x0,
(hL,−uL), x > x0.

(4.78)

(h, u)(x, 0) =

{

(0, 0), x < x0,
(hR, uR), x > x0.

(4.79)

We find that when hR = 0 or u0R > 0, the solution of the Riemann problem can
be split into two parts: One part is the solution to the Riemann problem (4.77) and
(4.78) in the region x < x0. The other part is the solution to Riemann problem (4.77)
and (4.79) in the region x > x0. Note that if hR = 0, the solution to (4.77) and (4.79)
is h = 0 and u = 0 for (x, t) ∈ R × R

+. The wave configuration of u0,R > 0 in this
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case can refer Figure 4.3. The wave configuration of hR = 0 in this case can refer
Figure 4.4.

Here we give two examples to illustrate our construction. The first example has
the wave configuration H1. The results are shown in Figure 4.20, where zmax =
3.5769 < zR = 4.7. The second example has the wave configuration H2. The results
are shown in Figure 4.21, where zmax = 2.4724 < zR = 4.0.
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Fig. 4.20. Left: The water free surface h + z at t = 0.75; Right: The corresponding velocity.
The Riemann initial data are (zL, hL, uL) = (0, 3, 1) when x < 0 and (zR, hR, uR) = (4.7, 1.0, 7.0)
when x > 0.
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Fig. 4.21. Left: The water free surface h + z at t = 0.75; Right: The corresponding velocity.
The Riemann initial data are (zL, hL, uL) = (0, 3.0,−1.0) when x < 0 and (zR, hR, uR) = (4.0, 0, 0)
when x > 0.

4.2.2. CASE IIL: zmax ≥ zR, uL < cL. In this case the L–M curve consists of
three segments which are defined as follows

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ T1(UL) with 0 < u− < ũc, 0 < u < uc} ,

P l
3(UL) = {U|U ∈ T1(Uc) with u > uc} ,

where Uc = J(zR; Ũc, zL), Ũc ∈ T1(UL) which is defined in (4.15).
The continuous of the three segments is obviously. According to Theorem 4.13,

the segment P l
2(UL) is strictly decreasing in the (u, h + z) space. Also the segments

P l
1(UL) and P l

3(UL) are strictly decreasing in the (u, h+ z) space due to Lemma 2.1.

So the L–M curve
3
⋃

k=1

P l
k(UL) is strictly decreasing in the (u, h + z) space.
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We define

u∗
0L = 3uc.(4.80)

If u∗
0L > u0R there is a unique intersection point between the L–M curve and the

R–M curve. If the intersection point lies on the segment P l
2(UL), the solution has the

wave configurations A, see Figures 4.2. Here we use an example given by Alcrudo and
Benkhaldoun in [5] to illustrate the corresponding L–M curve, the exact free surface
of the fluids, as well as the Froude number in Figure 4.22. If the intersection point
lies on the segment P l

3(UL), the solution has the wave configuration B. An example
is shown in Figure 4.23. We observe that the Froude number is larger than 1 when
the water go across the bottom jump.
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Fig. 4.22. Top: L–M curve
3
S

k=1

P l

k
(UL). Bottom left: The water free surface h + z at t = 1.0;

Bottom right: The corresponding Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 4.0, 0.0) when x < 0 and (zR, hR, uR) = (1.0, 1.0, 0.0) when x > 0.

Otherwise if u∗
0L < u0R and hR > 0, the exact Riemann solution contains a dry

bed state and behaves in the manner of the wave configuration Bv, see Figure 4.7.
The example for hR > 0 is shown in Figure 4.24. The example for hR = 0 is shown
in Figure 4.25.
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Fig. 4.23. Top: L–M curve
3
S

k=1

P l

k
(UL). Bottom left: The water free surface h + z at t = 1.0;

Bottom right: The corresponding Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 4.0, 0.0) when x < 0 and (zR, hR, uR) = (1.0, 0.2, 0.0) when x > 0.

4.2.3. CASE IIIL: zmax ≥ zR, uL > cL, zR < zS < zT . In this case the L–M
curve consists of the following four parts:

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ S−

1 (UL) with 0 < v− < v̂L, 0 < u < ¯̂uL

}

,
P l

3(UL) = {U|U = J(zR;U+, z); U+ = S0
1(U−); U− = J(z;UL, zL), zL ≤ z ≤ zR} ,

P l
4(UL) =

{

U|U ∈ T1(ŪL) with u > ˆ̄uL

}

,

where
¯̂
UL = J(zR; ÛL, zL) and ÛL = S0

1(UL), while ˆ̄UL = S0
1

(

ŪL

)

and ŪL =
J(zR;UL, zL). Due to zL < zR, Lemma 4.14 tells us that h is increasing while u is

decreasing when z varies monotonically from zL to zR. So
¯̂
hL < ˆ̄hL and ¯̂uL > ˆ̄uL. As

shown in Figure 4.26, the L–M curve is folding in the (u, h + z) state space.
We define

u∗
0L = ūL + 2c̄L.(4.81)

Note that if u∗
0L > u0R, there are intersection points between the L–M curve and the

R–M curve. If the intersection point lies on the segment P l
2(UL) the solution is in
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Fig. 4.24. Top: L–M curve
3
S

k=1

P l

k
(UL). Bottom left: The water free surface h + z at t = 0.3;

Bottom right: The corresponding velocity. The Riemann initial data are (zL, hL, uL) = (0, 0.9, 1.2)
when x < 0 and (zR, hR, uR) = (1.0, 1.0, 19.0) when x > 0.

the pattern of the wave configuration A, This is analogous to the CASE IIL,. If the
intersection point lies on the segment P l

3(UL), the solution has the wave configuration
C. While if the intersection point lies on the segment P l

4(UL), the solution has the
wave configuration D.

Due to the fact that the L–M curve is folding in the (u, h + z) state space, if the
intersection point lies on the segment P l

3(UL), we can also find two other intermediate
states lying on the segments P l

2(UL) and P l
4(UL) respectively. So for one given initial

data there are three solutions with the wave configuration A, C and D respectively.
An example with g = 2.0 is shown in Figure 4.26. An example for g = 9.81 is shown
in Figure 4.27.

Moreover if u∗
0L < u0R, the solution with the wave configuration Dv occurs. An

example for hR > 0 is shown in Figure 4.28. An example for hR = 0 is shown in
Figure 4.29. Note that the computational region for these two examples is [−10, 10]
and g = 2.0.
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Fig. 4.25. Left: The water free surface h+z at t = 0.4; Right: The corresponding velocity. The
Riemann initial data are (zL, hL, uL) = (0, 4.0, 0.0) when x < 0 and (zR, hR, uR) = (1.0, 0.0, 0.0)
when x > 0.

4.2.4. CASE IVL: zmax ≥ zR, uL > cL, zS < zR < zT . In this case the L–M
curve consists of six parts. They are defined as follows

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ S−

1 (UL) with u− < ũL
c , u < uc2},

P l
3(UL) = {U|U = J(zR;U+, z); U+ = S0(U−); U− = J(z;UL, zL), zc ≤ z ≤ zR} ,

P l
4(UL) =

{

U|U ∈ T1(ŪL) with u > ˆ̄uL

}

,
P l

5(UL) = {U|U ∈ T1(Uc2) with u > uc2},
P l

6(UL) = {U|U ∈ T1(Uc3) with u > uc3} ,

where (h̃L
c , ũL

c ) and Uc2 are defined in Corollary 4.10, while Uc3 is defined in Corollary
4.11. Compared with the L–M curve in CASE IIIL, it seems that the boundary state
ˆ̄UL bifurcates into two segment P l

5(UL) and P l
6(UL). Generally the L–M curve in this

case consists of three branches P l
1(UL) ∪ P l

2(UL) ∪ P l
5(UL), P l

3(UL) ∪ P l
6(UL) and

P l
4(UL), see Figure 4.31. Apparently, if the intersection points belong to P l

3(UL),
P l

4(UL), P l
5(UL) or P l

6(UL), there are three possible solutions for the same initial
data.

Analogously to CASE IIIL, the wave configurations A, C and D are related to the
segments P l

2(UL), P l
3(UL) and P l

4(UL) respectively. Besides, the wave configuration
B is related to the segment P l

5(UL), while the wave configuration E, see Figure 4.12,
is related to the segment P l

6(UL).
An example of the three solution with the wave configurations A, C and D is

presented in Figure 4.31. As we have mentioned, this example comes from Andrianov
[3]. However he omitted the solution with the wave configuration C due to the fact
that it contains a resonant wave S0S(UL), see [9]. We reduce hR in (4.76) from 1.3
to 0.45. There are still three solutions but with the wave configurations B, E and F ,
see Figure 4.30.

We define

u∗,1
0L = 3uc2, u∗,2

0L = 3uc3, u∗,3
0L = ūL + 2c̄L.(4.82)

Note that if u∗,1
0L < u0R, a solution with the wave configuration Bv occurs. Similarly

if u∗,2
0L < u0R, a solution with the wave configuration Ev occurs; while if u∗,3

0L < u0R,
the solution with the wave configuration Dv occurs. The example of these three types
solution with hR > 0 can be found in Figure 4.32. The example for the case that
hR = 0 is shown in Figure 4.33.
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Fig. 4.26. Top: L–M curve
4
S

k=1

P l

k
(UL). Bottom left: The water free surface h+ z at t = 0.13;

Bottom right: The Froude number. The Riemann initial data are given in (4.76) but with zR = 1.3.

4.2.5. CASE VL: zmax ≥ zR, uL > cL, zS < zT < zR. When zT < zS < zR,
Lemma 4.9 tells us the segment P l

3(UL) in (4.22) fails to exist. Therefore the L–M
curve in this case consists of three segments, which are defined as follows

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ S−

1 (UL) with u− < ũL
c , u < uc2},

P l
3(UL) = {U|U ∈ T1(Uc2) with u > uc2}.

Note that the L–M curve in this case is just one branch of the L–M curve in CASE
IVL and it is decreasing and continuous. We define

u∗
0L = 3uc2.(4.83)

We observe that if u∗
0L > u0R, there is an intersection point between the L–M curve

and the R–M curve. If the intersection point lies on P l
2(UL), the solution has the

wave configuration A. An example is shown in Figure 4.34. In the other case if the
intersection point lies on P l

2(UL), the solution has the wave configuration B. An
example is shown in Figure 4.35. In the other case if u∗

0L < u0R, the solution with
the wave configuration Bv occurs. An example with hR > 0 is shown in Figures 4.36
An example with hR = 0 is shown in Figure 4.37.
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Fig. 4.27. Left: The water free surface h + z at t = 0.03; Right: The Froude number.
The Riemann initial data are (zL, hL, uL) = (0, 2.0, 12.0) when x < 0.5 and (zR, hR, uR) =
(1.5, 3.9524, 1.0142) when x > 0.5. The computational region is [0.4, 0.95]

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

h+
z

−10 −5 0 5 10

0

2

4

6

8

10

12

14

x

V
el

oc
ity

Fig. 4.28. Left: The water free surface h+z at t = 0.4; Right: The corresponding velocity. The
Riemann initial data are (zL, hL, uL) = (0, 0.7, 4.0) when x < 0 and (zR, hR, uR) = (0.8, 0.2, 14.0)
when x > 0.

4.3. R–M curves with u0R < 0 and u < 0. Generally there are two possible
cases for the R–M curves if zL < zR. Remember that we do not have to consider
zR > zL because these cases can be deduced by symmetry of solutions.

• CASE IR: uR + cR ≥ 0⇐⇒ FR > −1.
• CASE IIR: uR + cR < 0⇐⇒ FR < −1.

We define hmax
R as the solution to equation

0 = uR + fR(hmax
R ; hR).(4.84)

The calculation procedure for hmax
R is similar to hmax

L in (4.13). We intend to study
these two cases of the R–M curves in the following.

4.3.1. CASE IR: uR + cR ≥ 0. In this case the sonic state can only appear
on the right side of the initial discontinuity located at x = x0 due to the fact that
zL < zR, i.e. Uc ∈ T2(UR). According to Corollary 3.3, U = J(zR;Uc, zL) has two
solutions. One is supersonic and the other one is subsonic. We use Ū∗

c = J(z;Uc, zR)
to denote the supersonic one, and Ūc = J(z;Uc, zR) to denote the subsonic one.

The R–M curve in this case consists of four segments, which are defined in the
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Fig. 4.29. Left: The water free surface h + z at t = 0.4; Right: The corresponding velocity.
The Riemann initial data are (zL, hL, uL) = (0, 0.7, 4.0) when x < 0 and (zR, hR, uR) = (0.8, 0, 0)
when x > 0.
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Fig. 4.30. Left: The water free surface h+z at t = 1; Right: The Froude number.The Riemann
initial data are given in (4.76) but with hR = 0.45.

following:

P r
1 (UR) = {U|U ∈ T2(UR) with u > 0} ,

P r
2 (UR) = {U|U = J(zL;U−, zR) and U− ∈ T2(UR) with uc < v− < 0, ūc < u < 0} ,

P r
3 (UR) = {U|U = J(zR;U+, z); U+ = S0

2(U−); U− = J(z;Uc, zL), zL ≤ z ≤ zR} ,
P r

4 (UL) =
{

U|U ∈ T2(Ū
∗
c) with u < ˆ̄uc

}

.
(4.85)
We have to remember that the state U = J(zR;U+, z) is subsonic, and the state
U− = J(z;Uc, zL) is supersonic for the segment P r

3 (UR).
The continuity of the three segments is obvious. From Lemma 2.1 the segments

of P r
1 (UR) and P r

4 (UR) are strictly increasing in the (u, h + z) space Theorem 4.13
indicates that P r

2 (UR) is strictly increasing in the (u, h + z) space. Moreover, due to
the fact that zL < zR Lemma 4.14 tells us that h and u are strictly decreasing when
z varies from zR to zL. So the segment P r

3 (UR) is strictly increasing in the (u, h + z)
space. In summary the R–M curve in this case is continuous and strictly increasing
in the (u, h + z) space.

We define

u∗
0R = u∗

c − 2c∗c .(4.86)

Note that if hL > 0 and u0L > u∗
0R, the curve P l

1(UL) and the R–M curve always have
a intersection point. If the intersection point lies on P r

2 (UR), the solution has the
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Fig. 4.31. Top: L–M curve
6
S

k=1

P l

k
(UL). Bottom left: The water free surface h + z at t = 1;

Bottom right:the Froude number. The Riemann initial data are given in (4.76).

wave configuration AT , see Figure 4.16. An example can be found in Figure 4.38. If
the intersection point lies on P r

3 (UR), the solution has the wave configuration F , see
Figure 4.9. An example is shown in Figure 4.39. We can see that the resonant wave
occurs around x = 0.5. Similarly if the intersection point lies on P r

4 (UR), the solution
has the wave configuration G, see Figure 4.14. An example is shown in Figure 4.40.

However if u0L < u∗
0R and hL > 0, the exact solution contains a dry bed state

since there is no intersection point between P l
1(UL) and the R–M curve, see Figure

4.41. Specifically, the solution has the wave configuration Gv, see Figure 4.15. An
example with hL > 0 can be found in Figure 4.41. An example with hL < 0 is shown
in Figure 4.41. Here all the examples are in the interval [0, 1].

4.3.2. CASE IIR: uR + cR < 0. In this case the R–M curve also consists of
four segments, which are defined as follows

P r
1 (UR) = {U|U ∈ T2(UR) with u > 0} ,

P r
2 (UR) = {U|U = J(zL;U−, zR) and U− ∈ S+

2 (UL) with ûR < u− < 0, ¯̂uR < u < 0
}

,
P r

3 (UR) = {U|U = J(zL;U+, z); U+ = S0
2(U−); U− = J(z;UR, zR), zL ≤ z ≤ zR} ,

P r
4 (UR) =

{

U|U ∈ T2(ŪR) with u < ˆ̄uR

}

,
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Fig. 4.32. Left: The water free surface h+z at t = 0.08; Right: The corresponding velocity. The
Riemann initial data are (zL, hL, uL) = (1.1, 0.1, 2.0) when x < 0 and (zR, hR, uR) = (1.5, 0.45, 5.0)
when x > 0.
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Fig. 4.33. Left: The water free surface h + z at t = 0.08; Right: The corresponding velocity.
The Riemann initial data are (zL, hL, uL) = (1.1, 0.1, 2.0) when x < 0 and (zR, hR, uR) = (1.5, 0, 0)
when x > 0.

where
¯̂
UR = J(zL; ÛR, zR) and ÛR = S0

2(UR), while ˆ̄UR = S0
2

(

ŪR

)

and ŪR =
J(zL;UR, zR). Analogously to CASE IR, the R–M curve in this case is continuous
and strictly increasing in the state space (u, h + z).

We define

u∗
0R = ūR − 2c̄R.(4.87)

Note that if u0L > u∗
0R and hL > 0, the curve P l

1(UL) and the R–M curve always
have an intersection point. If the intersection point lies on P r

2 (UR), the solution has
the wave configuration AT . This is the same as for the solution related to the segment
P r

2 (UR) in CASE IR. If the intersection point lies on P r
3 (UR), the solution has the

wave configuration CT , see 4.17. An example is shown in Figure 4.43. We can see that
the resonant wave occurs around x = 0.5. If the intersection point lies on P r

4 (UR),
the solution has the wave configuration DT , see 4.18. An example is shown in Figure
4.44.

Otherwise if u0L < u∗
0R or hL > 0, the solution has the wave configuration DT

v .
An example with hL > 0 is shown in Figure 4.45. An example with hL = 0 is shown
in Figure 4.46.
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Fig. 4.34. Top: L–M curve
3
S

k=1

P l

k
(UL). Bottom left: The water free surface h+ z at t = 0.15;

Bottom right: The corresponding Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0.177, 1.69) when x > 0.5.
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Fig. 4.35. Left: The water free surface h+ z; Right: The Froude number at t = 0.15. The Rie-
mann initial data are (zL, hL, uL) = (0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.3, 0.0077, 0.0)
when x > 0.5.
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Fig. 4.36. Left: The water free surface h+ z; Right: The Froude number at t = 0.09. The Rie-
mann initial data are (zL, hL, uL) = (0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0.0077, 4.0)
when x > 0.5.
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Fig. 4.37. Left: The water free surface h + z; Right: The Froude number at t = 0.09. The
Riemann initial data are (zL, hL, uL) = (0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0, 0)
when x > 0.5.
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Fig. 4.38. Top: R–M curve
4
S

k=1

P r

k
(UR). Bottom left: The water free surface h+z at t = 0.15;

Bottom right: The corresponding Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.2883, 1.393) when x < 0.5 and (zR, hR, uR) = (0.2, 0.558,−0.68) when x > 0.5.
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Fig. 4.39. Left: The water free surface h + z at t = 0.15; Right: The corresponding Froude
number. The Riemann initial data are (zL, hL, uL) = (0.0, 0.1871, 1.1222) when x < 0.5 and
(zR, hR, uR) = (0.2, 0.558,−0.68) when x > 0.5.
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Fig. 4.40. Left: The water free surface h + z at t = 0.1; Right: The corresponding Froude
number. The Riemann initial data are (zL, hL, uL) = (0.0, 0.0109, 0.2712) when x < 0.5 and
(zR, hR, uR) = (0.2, 0.558,−0.68) when x > 0.5.
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Fig. 4.41. Top: The R–M curve of the solution. Bottom left: The water free surface h +
z at t = 0.03; Bottom right: The corresponding Froude number. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.5674,−10) when x < 0.5 and (zR, hR, uR) = (0.2, 0.558, 3.0) when x > 0.5.
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Fig. 4.42. Top: The R–M curve of the solution. Bottom left: The water free surface h +
z at t = 0.03; Bottom right: The corresponding Froude number. The Riemann initial data are
(zL, hL, uL) = (0, 0, 0) when x < 0.5 and (zR, hR, uR) = (0.1, 0.558, 3.0) when x > 0.5.
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Fig. 4.43. Top: R–M curve
4
S

k=1

P r

k
(UR). Bottom left: The water free surface h + z;

Bottom right: The Froude number at t = 0.03. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.5674, 1.9542) when x < 0 and (zR, hR, uR) = (0.8, 0.558,−3.0) when x > 0.
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Fig. 4.44. Top: R–M curve
4
S

k=1

P r

k
(UR). Bottom left: The water free surface h + z;

Bottom right: The Froude number at t = 0.01. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.2712, 0.0109) when x < 0 and (zR, hR, uR) = (0.8, 0.558,−3.0) when x > 0.
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Fig. 4.45. Top: The R–M curve of the solution. Bottom left: The water free surface h + z

at t = 0.025; Bottom right: The corresponding Froude number. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.5574,−14.0) when x < 0.5 and (zR, hR, uR) = (0.1, 0.558,−3.0) when x > 0.5.
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Fig. 4.46. Left: The water free surface h + z at t = 0.025; Right: The corresponding Froude
number. The Riemann initial data are (zL, hL, uL) = (0, 0, 0) when x < 0.5 and (zR, hR, uR) =
(0.1, 0.558,−3.0) when x > 0.5.



41

5. Algorithm for exact Riemann solutions to the shallow water equa-

tions. In this section we present an algorithm for solving the exact Riemann problem
for (1.1) and (1.3) under the assumption zL < zR. For the given Riemann initial data,
if hL = hR = 0, the solution is h = 0 and u = 0 for (x, t) ∈ R×R

+. So in the following
we always assume that hL = 0 and hR = 0 cannot occur.

If hL = 0 there is no L–M curve. Otherwise if hL > 0 but u0L < 0 the L–M
curve contains only one segment which is P l

1(UL) defined in (4.3). Analogous to the
R–M curves, if hR = 0 there is no R–M curve. Otherwiase if hR > 0 but u0R > 0 the
R–M curve contains only one segment which is P r

1 (UR) defined in (4.5). The common
point of these cases is that there is no stationary wave on the L–M and R–M curves.
Generally the possible solutions have three types:

1. If hL = 0 and u0R > 0, the solution is defined in (2.27);
2. If hR = 0 and u0L < 0, the solution is defined in (2.25);
3. If u0L < 0 and u0R > 0, the solution has the wave configuration Av.

Besides if u0L > 0 or u0R < 0, the stationary wave exists except in the case that
hmax

L + zL < hmax
R + zR and u0R > 0. Note that if u0R > 0, we have hmax

R = 0.
Therefore by (4.14) we obtain zmax < zR. i.e. CASE IL occurs.

Consider the case that the stationary wave exists. If hmax
L + zL < hmax

R + zR and
u0R < 0, we have uM < 0. Hence the stationary wave is on the R–M curve. Otherwise
the stationary wave is on the L–M curve.

According to our construction the L–M curve is classified into 5 different cases,
while the R–M curve is classified into 2 different cases. Every case contains different
types of the wave configurations. Each type of the wave configuration corresponds to
a specific segment of the wave curve. The intermediate state (hM , uM ) of the exact
solution is the intersection point of segments of the L–M and R–M curves. The L–M
curve, in the absence of CASES IIIL and IVL involving the bifurcation, is strictly
decreasing while the R–M curve is strictly increasing in the (u, h + z) state space.
This monotonicity behavior of the curves guarantees that the intersection point exists
uniquely. Moreover the L–M curve in CASES IIIL and IVL consists of more than
one branch. Every branch, however, is strictly decreasing. So every solution exists
uniquely on the corresponding branch.

We present the algorithm for the exact Riemann solutions of (1.1) and (1.3) with
zL < zR in Algorithm 4. Because of the space limitation we just take the modular
unit CASE IIIL as an example to show the algorithm for L–M and R–M curve.
Note that the L–M curve in CASE IIIL contains bifurcation. Also the solver for the
wave configuration A, see Algorithm 3, is presented as an example to calculate the
intermediate state (uM , hM ). The remaining cases of L–M and R–M curves and wave
configurations can be dealt with in a similar way. The bisection method is used to
solve the nonlinear system. Of course we can also adopt other iteration methods, say
the secant method, to solve the problem. The Newton method is not so easy to apply
because it is compliate to compute the derivative of the corresponding function.

6. Conclusion. For any given Riemann initial data UL and UR with zL < zR,
we obtained all possible exact solutions to the shallow water equation by constructing
the L–M and R–M curves. We analyzed the behavior of the L–M and R–M curves.
We observe that on one hand if the intersection points belong to CASES IIIL and
IVL of the L–M curves, a bifurcation appears on the L–M curves. there may be three
possible solutions due to the bifurcation. In the other cases the solution always exists
uniquely The dry bed problem was also consider in this framework. Here the dry bed
problem refers to two subcases. One is for the water propagating to a dry bed, i.e.
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Algorithm 2 Modular unit for CASE IIIL

Require: u0L > u0R, uL > cL, zR < zS

1: u∗
0L ← ūL + 2c̄L

2: if u∗
0L > u0R then

3: u1 ← uR + fR(¯̂u; hR), u2 ← uR + fR(ˆ̄u; hR)
4: if u2 < ˆ̄uL then

5: Solver for the wave configuration A in Algorithm 3
6: else if u1 < ¯̂uL then

7: Solver for the wave configuration A in Algorithm 3
8: Solver for the wave configuration C
9: Solver for the wave configuration D

10: else

11: Solver for the wave configuration D
12: end if

13: else

14: Sample for the wave configuration Dv

15: end if

Algorithm 3 Solver for the wave configuration A

Require: hl, hr and ǫ
1: ul ← uL − fL(hl; hL), ur ← uL − fL(hr; hL)
2: Ūl ← J(zR;Ul, zL), Ūr ← J(zR;Ur , zL).
3: f1 ← ūl − uR − fR(h̄l; hR), f2 ← ūr − uR − fR(h̄r; hR).

Require: f1ḟ2 < 0
4: if ‖f1‖ < ǫ then

5: return (ūl, h̄l)
6: else if ‖f2‖ < ǫ then

7: return (ūr, h̄r)
8: else

9: hmid ← hl+hr

2 , umid ← uL − fL(hmid; hL)
10: Ūmid ← J(zR;Umid, zL)
11: fmid ← ūmid − uR − fR(h̄mid; hR)
12: while ‖fmid‖ > ǫ do

13: if fmid · f1 > 0 then

14: hl ← hmid

15: else

16: hr ← hmid

17: end if

18: go to 9,10 and 11
19: end while

20: end if

hL = 0 or hR = 0. The other one is for the dry bed state emerging due to the motion
of the flow.
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Algorithm 4 Algorithm for the exact Riemann solutions

Require: UL, UR, zL < zR

1: u0L ← uL + 2cL, u0R ← uR − 2cR

2: if u0L < 0 ∧ hR = 0 then

3: Sample solution in (2.25)
4: else if u0R > 0 ∧ hL = 0 then

5: Sample solution in (2.27)
6: else if u0R > 0 ∧ u0L < 0 then

7: Sample solution in the wave configuration Av

8: else

9: calculate hmax
L by (4.13) and zmax ← zL + hmax

L

10: if zmax < hmax
R + u0R and u0R > 0 then

11: if uR + cR ≥ 0 then

12: Modular unit for CASE IR

13: else

14: Modular unit for CASE IIL

15: end if

16: else

17: if zmax < zR then

18: if hR = 0 then

19: sample the solution in the wave configuration H2

20: else if u0R > 0 then

21: sample the solution in the wave configuration H2

22: end if

23: else if uL < cL then

24: Modular unit for CASE IIL

25: else if uL > cL then

26: calculate zT by (4.21) and zS by (4.16)
27: if zR < zS then

28: Modular unit for CASE IIIL in Algorithm 2
29: else if zR < zT then

30: Modular unit for CASE IVL

31: else

32: Modular unit for CASE VL

33: end if

34: end if

35: end if

36: end if

.
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