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Abstract

In this paper, the Cauchy problem for extended Keyfitz-Kranzer system
of conservation laws modelling polymer flooding is studied, and a short
proof of global existence of weak entropy solutions is obtained by using a
new technique from the compensated compactness theorem coupled with
the total variation estimate on one family of Riemann invariant. This work
extends in some sense the previous works, [Barkve, SIAM J. on Appl.
Math., 49(1989), 784-798] and [Johansen and Winther, SIAM J. Math.
Anal., 19 (1988), 541-566], which provided the global existence of weak
solutions for Riemann problem; and [Lu, J. Funct. Anal., 261(2011), 2797-
2815], which gave the global weak solution of the Cauchy problem for
nonstrictly hyperbolic system of Keyfitz-Kranzer or Aw-Rascle type.

1 Introduction

In this paper, we study the Cauchy problem for extended Keyfitz-Kranzer system

of conservation laws modelling polymer flooding





St + f(S, T )x = 0,

(ST + β(T ))t + (Tf(S, T ) + α(T ))x = 0,
(1.1)
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with bounded measurable initial data

(S(x, 0), T (x, 0)) = (S0(x), T0(x)), S0(x) ≥ 0. (1.2)

When α(T ) = aT, β(T ) = bT , where a, b are constants, system (1.1) represents

a simple model for nonisothermal two-phase flow in a porous medium [Ba, Fa],

where S and T are fluid saturation and temperature, respectively. The function

f = f(S, T ) is the fractional flow function. The Riemann problem was resolved

and the entropy conditions for the system were discussed in [Ba] under suitable

conditions on f . In [JB], the analytical solutions of Riemann problem were stud-

ied for the following equivalent system





St + f(S, T )x = 0,

Ct + ((1− f(S, T )) C
1−S

)x = 0,
(1.3)

where C = T (S − 1).

When β(T ) = 0 and α(T ) = 0, system (1.1) is the famous Keyfitz-Kranzer

[KK] or Aw-Rascle model [AR], which is of interest because it arises in such areas

as elasticity theory, magnetohydrodynamics [JPP], traffic flow [AR] and enhanced

oil recovery [KK]. Its Riemann problem was first resolved in [KK, AR] and the

existence of a weak solution of the Cauchy problem with initial data of bounded

variation was obtained in [IT]. The existence of a unique and stable solution

was proved in [TW] for initial data that are constant outside an interval and

with T sufficiently smooth and by Klingenberg and Risebro with no smoothness

assumptions [KR]. The Cauchy problem with general L∞ initial data can be

found in [LW, KRe, FR, Ch, Pa, Lu2, Lu3, JPP, GP, GO] and the references cited

therein. Roughly speaking, the author obtained in [Lu2] the global existence of a

weak solution when f(S, T ) = ST − SP (S) with the weakest condition on P (S)

lim
S→0

SP (S) = 0, SP ′′(S) + 2P ′(S) > 0 for S > 0, (1.4)

which covers the prototype function P (S) = 1
γ
Sγ + A with γ > −1.

When α(T ) = 0 and β(T ) 6= 0, system (1.1) arises in connection with en-

hanced oil recovery, where S is the saturation of the mixture of water and poly-

mer, and called the aqueous phase; T is the concentration of polymer in the

aqueous phase; the function f describes the fractional flow of the aqueous phase,
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which is assumed to be immiscible with oil; the function β(T ) models adsorp-

tion of the polymer on rock. The Riemann problem was resolved in [JW] in the

domain (S, T ) ∈ I × I, where I = [0.1] under the following conditions (A) and

(B):

(A). The real-valued function f = f(S, T ) is a smooth function for (S, T ) ∈
I × I with the properties

(i) f(0, T ) = f(1, T ) = 1; (ii) fS(S, T ) > 0 for 0 < S < 1, 0 ≤ T ≤ 1;

(iii) fT (S, T ) > 0 for 0 < S < 1, 0 ≤ T ≤ 1;

(iv) For each T ∈ I, f(·, T ) has a unique point of inflection, SI = SI(T ) ∈
(0, 1), such that fSS(S, T ) > 0 for 0 < S < SI and fSS(S, T ) < 0 for SI < S < 1.

(B). The function β(T ) is a smooth function of T ∈ I such that

(i) β(0) = 0; (ii) β′(T ) > 0 for 0 < T < 1; (iii) β′′(T ) < 0 for

0 < T < 1;

For general functions β(T ) and α(T ), as far as we know, there is no any

existence result about the Cauchy problem of system (1.1).

The main object of this paper is to present the global weak solution of the

Cauchy problem (1.1) and (1.2), where the initial data (S0(x), T0(x)), S0(x) ≥ 0,

are bounded and T0(x) is of bounded total variation. Our technique is the van-

ishing viscosity method coupled with the compensated compactness theory de-

veloped by Tartar [Ta] and Murat [Mu]. The classical vanishing viscosity method

is to add the viscosity terms to the right-hand side of system (1.1) and consider

the Cauchy problem for the related parabolic system




St + (Sφ(S, T ))x = εSxx,

(ST + β(T ))t + (STφ(S, T ) + α(T ))x = ε(ST + β(T ))xx,
(1.5)

with initial data

(Sε(x, 0), T ε(x, 0)) = (Sε
0(x), T ε

0 (x)), (1.6)

where T ε
0 (x) = T0(x) ∗ Gε, Sε

0(x) = (ε + (1 − ε)S0(x)) ∗ Gε are the smooth ap-

proximations of T0(x), S0(x), Gε is a mollifier, and φ(S, T ) = f(S,T )
S

. However, if

we consider (S, m), where m = ST as two independent variables in the parabolic

system (1.5), then many terms in (1.5) are singular near the line S = 0 since

T = m
S
.

Comparing the previous results of (1.1) introduced above, mainly we meet the

following three difficulties when we study the Cauchy problem for system (1.1).
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Difficulty I. How to obtain the positive, lower bound of the viscosity solutions

Sε for the Cauchy problem (1.5) with suitable initial data?

As we introduced in [Lu2], there are three basic methods to obtain the bound

Sε ≥ c(ε, t) > 0 for some suitable function c(ε, t) (See [Di, Pe, Lu4] for the

details). However, a basic boundedness condition of φ(S, T ) is necessary in all

these papers. In this paper, we always assume that f(S, T ) is smooth for S > 0

and satisfies




|f(S, T )| = O(Sl), |fS(S, T )| = O(Sl−1),

|fSS(S, T )| = O(Sl−2), |fT (S, T )| = O(S),

|fST (S, T )| = O(1), |fSTT (S, T )| = O(1)

(1.7)

near the line S = 0, where l > 0 and O(1) means a bounded function, which covers

the examples f(S, T ) = ST − SP (S), P (S) = 1
γ
Sγ + A with γ > −1 studied in

[Lu2]. If f is a smooth function on S ≥ 0, clearly it satisfies all conditions in

(1.7).

When f(S, T ) satisfies (1.7) and 0 < l < 1, φ(S, T ) = f(S,T )
S

is singular near the

line S = 0, all methods given in [Di, Pe, Lu4] to obtain the bound Sε ≥ c(ε, t) > 0

are invalid for system (1.5). To overcome this difficulty, instead of the classical

viscosity approximation, we use again the flux approximation introduced in [Lu2]

and consider the following parabolic system





St + ( (S−δ)
S

f(S, T ))x = εSxx,

(ST + β(T ))t + ( (S−δ)
S

Tf(S, T ) + α(T ))x = ε(ST + β(T ))xx,

(1.8)

with initial data

(Sε,δ(x, 0), T ε,δ(x, 0)) = (Sε,δ
0 (x), T ε,δ

0 (x)), (1.9)

where T ε,δ
0 (x) = T0(x) ∗ Gε, Sε,δ

0 (x) = (ε + δ + (1 − (ε + δ))S0(x)) ∗ Gε are the

smooth approximations of T0(x), S0(x), Gε is a mollifier and ε, δ are positive,

small perturbation constants. Since Sε,δ
0 (x) ≥ ε + δ, applying the maximum

principle to the first equation in (1.8), we first have Sε,δ(x, t) ≥ δ. Since φ(S, T )

is bounded in S ≥ δ (the bound could depend on δ), we may obtain the lower

bound

Sε,δ ≥ c(t, ε, δ) > δ, (1.10)
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where c(t, ε, δ) could tend to δ as the time t tends to infinity or ε tends to zero

(See Theorem1.0.2 in [Lu1] for the details).

Difficulty II. How to obtain the uniformly, upper bound Sε,δ ≤ M?

For Keyfitz-Kranzer system studied in [Lu2] (i.e. α(T ) = β(T ) = 0), the upper

bound Sε,δ ≤ M is obtained by using the invariant region theorem [CCS] since

it is easy to calculate the Riemann invariants. However, for system (1.1) with

general functions α(T ), β(T ), the explicit Riemann invariants are only available

when both α(T ) and β(T ) are linear functions. If α(T ) = aT and β(T ) = bT ,

where a, b are constants, one Riemann invariant is T and another is f+a
S+b

([Ba]).

In this paper, we will study the upper bound Sε,δ ≤ M in two different cases.

First, f satisfies the condition f(M,T ) = d as given in Condition (A) above,

where d is a constant, and M a upper bound of the initial data S0(x); Second,

both α(T ) and β(T ) are linear functions.

For general nonlinear functions f, α(T ) and β(T ), we will study the upper

estimate Sε,δ ≤ M in a coming paper.

Difficulty III. How to prove the pointwise convergence of T ε,δ as ε, δ go to

zero?

When the initial data T0(x) is of bounded total variation, it is easy to prove

that T ε,δ
x (·, t) is uniformly bounded in L1(R) by using a technique by Serre [Se].

If we could also prove that T ε,δ
t (x, ·) is uniformly bounded in L1(R+), then the

pointwise convergence of T ε,δ would follow immediately. However, to obtain the

uniform bound of T ε,δ
t (x, ·) in L1(R+) is very difficult or even impossible.

In this paper, a very short proof of the pointwise convergence of T ε,δ is ob-

tained by using a new idea to apply for the div-curl lemma to some special pairs

of functions (c, F (T )), where c is a constant and F (T ) is a suitable function of

T . We can prove the H−1
loc compactness of ct + F (T ε,δ)x since the L1(R) estimate

of T ε,δ
x (·, t).
The main results of this paper are listed in Theorems 1-3.

First, we have the following compactness framework theorem

Theorem 1 (I). Suppose (S0(x), T0(x)) are bounded, S0(x) ≥ 0 and T0(x) is

of bounded total variation; α(T ), β(T ) are suitable smooth functions and f(S, T )

satisfies the condition (1.7); β′(T ) ≥ 0, meas {T : β′′(T ) = 0} = 0 or β(T ) =

bT, b > 0; meas {S : fSS(S, T ) = 0} = 0 for any fixed T . Assume Sε,δ(x, t) has

a uniformly bounded estimate Sε,δ(x, t) ≤ M , where M is a constant independent
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of ε and δ, then the global smooth solution of the Cauchy problem (1.8) and (1.9)

exists, and there exists a subsequence (still labelled (Sε,δ(x, t), T ε,δ(x, t))) such that

(Sε,δ(x, t), T ε,δ(x, t)) → (S(x, t), T (x, t)) (1.11)

as ε, δ go to zero, a.e. on any bounded and open set Ω ⊂ R × R+, and the limit

(S, T ) is a weak entropy solution of the Cauchy problem (1.1) and (1.2), namely

satisfies the Lax entropy condition.

(II). If β(T ) = 0 and all other conditions in (I) are satisfied, then there exists

a subsequence (still labelled (Sε,δ(x, t), T ε,δ(x, t))) such that

T ε,δ(x, t) → T (x, t) (1.12)

pointwisely on any support set {(x, t) : S(x, t) > 0} and

Sε,δ(x, t) → S(x, t) (1.13)

as ε, δ go to zero, a.e. on any bounded and open set Ω ⊂ R × R+. Particularly,

if α(T ) = 0, the limit (S, T ) is a weak entropy solution of the Cauchy problem

(1.1) and (1.2).

Remark 1. As a direct corollary of (II) in Theorem 1, and the L∞ estimates

obtained in [Lu2] when the nonlinear function f satisfies (1.4), we have a simple

and short proof of Theorems 2,3 in [Lu2] for the Keyfitz-Kranzer or Aw-Rascle

model.

Second, we have the following theorems about the upper bound estimate

Sε,δ ≤ M .

Theorem 2 If all conditions in (I) of Theorem 1 are true, f is a suitable smooth

function, and satisfies f(0, T ) = 0, f(M,T ) = d, where d is a constant and M is

a upper bound of S0(x), then the a priori L∞ estimate Sε,δ(x, t) ≤ M is true, and

so the Cauchy problem (1.1) and (1.2) has a weak entropy solution.

Remark 2. The conditions in Theorems 1 and 2 are much weaker than (A) and

(B) above for obtaining the existence of Riemann solution in [Ba, JW].

Theorem 3 If α(T ) = aT and β = bT, b > 0, f(0, T ) = 0 and f(S, T ) = F (S, C)

is a convex, smooth function with respect to the variables S and C, where C =

(S + b)T , moreover, if limS→+∞
f(S,T )

S
= +∞, then the a priori L∞ estimate

Sε,δ(x, t) ≤ M is true, and so the Cauchy problem (1.1) and (1.2) has a weak

entropy solution.
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Remark 3. It is worthwhile to point out that the results in Theorem 1 can

be easily extended to the following nonstrictly hyperbolic conservation system of

n + 1 equations





ρt + f(ρ, u1, u2, ...un)x = 0

(ρui + βi(ui))t + (uif(ρ, u1, u2, ...un) + αi(ui))x = 0, i = 1, 2, ...n
(1.14)

with bounded measurable initial data

(ρ(x, 0), ui(x, 0)) = (ρ0(x), ui0(x)), 0 ≤ ρ0(x) ≤ c0, −c1
i ≤ ui0(x) ≤ c2

i .

(1.15)

Let 



|f(ρ, u1, u2, ...un)| = O(ρl), |fρ| = O(ρl−1),

|fρρ| = O(ρl−2), |fui
| = O(ρ),

|fρui
| = O(1), |fρuiuj

| = O(1)

(1.16)

near the line ρ = 0, for i, j = 1.2...n, where l > 0 and O(1) means a bounded

function.

We consider the flux-viscosity approximation





ρt + (ρ−δ
ρ

f(ρ, u1, u2, ...un))x = ερxx

(ρui + βi(ui))t + (ρ−δ
ρ

uif(ρ, u1, u2, ...un) + αi(ui))x = ε(ρui + βi(ui))xx

(1.17)

with suitable smooth initial data like (1.9). Then we have

Theorem 4 (I). Suppose (ρ0(x), ui0(x)) are bounded, ρ0(x) ≥ 0 and ui0(x) are

of bounded total variation; αi(ui), βi(ui) are suitable smooth functions and f sat-

isfies the condition (1.16); β′i(ui) ≥ 0, meas {ui : β′′i (ui) = 0} = 0 or βi(ui) =

biui, bi > 0 are constants; meas {ρ : fρρ(ρ, u1, u2, ...un) = 0} = 0 for any fixed

(u1, u2, ...un). Assume ρε,δ(x, t) has a uniformly bounded estimate ρε,δ(x, t) ≤ M ,

where M is a constant independent of ε, then the global smooth solution of the

Cauchy problem (1.17) with suitable initial data exists, and there exists a subse-

quence (still labelled (ρε,δ(x, t), uε,δ
i (x, t))) such that

(ρε,δ(x, t), uε,δ
i (x, t)) → (ρ(x, t), ui(x, t)) (1.18)
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as ε, δ go to zero, a.e. on any bounded and open set Ω ⊂ R × R+, and the limit

(ρ, ui) is a weak entropy solution of the Cauchy problem (1.14) and (1.15).

(II). If βi(ui) = 0 and all other conditions in (I) are satisfied, then there exists

a subsequence (still labelled (Sε,δ(x, t), T ε,δ(x, t))) such that

uε,δ
i (x, t) → ui(x, t) (1.19)

pointwisely on any support set {(x, t) : ρ(x, t) > 0} and

uε,δ
i (x, t) → ui(x, t) (1.20)

as ε, δ go to zero, a.e. on any bounded and open set Ω ⊂ R × R+. Particularly,

if αi(ui) = 0, the limit (ρ, ui) is a weak entropy solution of the Cauchy problem

(1.14) and (1.15).

We will prove Theorems 1-3 in the next two sections.

2 Proof of Theorem 1

The proof of Theorem 1 is divided into several lemmas. From (1.9), it is easy

to see that |T ε,δ
0 (x)| ≤ M and 0 < ε + δ ≤ Sε,δ

0 (x) ≤ M , where M is a suitable

constant, which is independient of ε, δ.

Lemma 5 For any fixed ε > 0, δ > 0, if we assume that the viscosity so-

lution of the Cauchy problem (1.8) and (1.9) has the a-priori upper estimate

Sε,δ(x, t) ≤ M , then its global smooth solution (Sε,δ(x, t), T ε,δ(x, t)) exists, and

has the following estimates

0 < δ < c(t, ε, δ) ≤ Sε,δ(x, t) ≤ M, |T ε(x, t)| ≤ M, (2.1)

where c(t, ε, δ) could tend to δ as the time t tends to infinity or ε tends to zero.

Furthermore if T0(x) is of bounded total variation, then
∫ ∞

−∞
|T ε,δ

x |(x, t)dx ≤
∫ ∞

−∞
|T ε,δ

x |(x, 0)dx ≤ M. (2.2)

Proof of Lemma 5. Let C = ST + β(T ). Since β′(T ) ≥ 0, then for any fixed

S ∈ (0,M ], there exists a smooth, inverse function T = g(S, C) and system (1.8)

can be rewritten as




St + ( (S−δ)
S

f(S, g(S, C)))x = εSxx,

Ct + ( (S−δ)
S

g(S, C)f(S, g(S, C)) + α(g(S, C)))x = εCxx,

(2.3)
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where the flux functions (S−δ)
S

f(S, g(S, C)), (S−δ)
S

g(S, C)f(S, g(S, C))+α(g(S, C))

are smooth in the domain S > 0.

Substituting the first equation in (1.8) into the second, we may rewrite the

second equation in (1.8) as

Tt +
(S−δ)

S
f + α′(T )

S + β′(T )
Tx = εTxx + ε

2Sx + β′′(T )Tx

S + β′(T )
Tx. (2.4)

Then we have the estimates |T ε(x, t)| ≤ M by applying the maximum principle to

(2.4). Since Sε,δ
0 (x) ≥ ε+δ, applying the maximum principle to the first equation

in (1.8), we may first have Sε,δ(x, t) ≥ δ. If we assume the a-priori upper estimate

Sε(x, t) ≤ M , then φ(S, T ) = f(S,T )
S

is bounded in δ ≤ S ≤ M (the bound could

depend on δ), and we may obtain the lower bound (1.10) (See Theorem 1.0.2 in

[Lu1] for the details).

Thus the existence of the viscosity solution for the Cauchy problem (1.8)-(1.9)

( or (2.3)-(1.9)) can be proved by the standard theory of semilinear parabolic

systems, namely the local existence and the bounded estimate given in (2.1).

Using (2.4), the estimate (2.2) can be proved by applying for a technique from

[Se] or [Lu2, Lu3]. So, the proof of Lemma 5 is completed.

Since T ε,δ
x are uniformly bounded both in L1

loc(R×R+) and W−1,∞
loc (R×R+)

from the estimates (2.1)-(2.2), we have from Murat’s lemma that

Lemma 6

ct + h(T ε,δ)x are compact in H−1
loc (R×R+) (2.5)

for any constant c and smooth function h.

Furthermore we have

Lemma 7

Sε,δ
t + f δ(Sε,δ, T ε,δ)x are compact in H−1

loc (R×R+), (2.6)

where f δ(S, T ) = (S−δ)
S

f(S, T ).

Proof of Lemma 7. We multiply g′(S) to the first equation in (2.3) to obtain

(for simplicity, we omit the superscript ε)

g(S)t + (
∫ S
0 g′(τ)f δ

S(τ, T )dτ)x + (g′(S)f δ
T −

∫ S
0 g′(τ)f δ

ST (τ, T )dτ)Tx

= εg(S)xx − εg′′(S)S2
x.

(2.7)
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Since Tx is bounded in L1
loc(R × R+) and the condition (1.7), then the term in

(2.7)

(g′(S)f δ
T −

∫ S

0
g′(τ)f δ

ST (τ, T )dτ)Tx

is bounded in L1
loc(R×R+).

Choosing a strictly convex function g and multiplying a suitable nonnegative

test function to (2.7), we have that εS2
x is bounded in L1

loc(R × R+). So the

right-hand side of the first equation in (2.3) is compact in H−1
loc (R×R+). Lemma

7 is proved.

Lemma 8

(Sε,δh(T ε,δ) +
∫ T ε,δ

0
h′(τ)β′(τ)dτ)t + (h(T ε,δ)f δ(Sε,δ, T ε,δ) +

∫ T ε,δ

0
h′(τ)α′(τ)dτ)x

(2.8)

are compact in H−1
loc (R×R+), where h is an arbitrary smooth function of T .

Proof of Lemma 8. We multiply S + β′(T ) to (2.4) to obtain

STt + β(T )t + f δTx + α(T )x = ε(S + β′(T ))Txx + ε(2Sx + β′′(T )Tx)Tx. (2.9)

We multiply (2.9) by h′(T ), the first equation in (2.3) by h(T ) and then add the

result to obtain

(Sh(T ) +
∫ T
0 h′(τ)β′(τ)dτ)t + (h(T )f δ(S, T ) +

∫ T
0 h′(τ)α′(τ)dτ)x

= ε(Sh(T ))xx − ε(Sh′′(T ) + h′′(T )β′(T ))(Tx)
2 + ε(h′(T )β′(T )Tx)x.

(2.10)

If we multiply a suitable nonnegative test function to (2.10) and choose a strictly

convex function h(T ), we may first prove from (2.10) that

εSε,δ(T ε,δ
x )2, εβ′(T ε,δ)(T ε,δ

x )2 are bounded in L1
loc(R×R+), (2.11)

which imply that, for any smooth function h, the first and third terms on the

right-hand side of (2.10) are compact in H−1
loc (R × R+) and the second term is

uniformly bounded in L1
loc(R×R+). Thus the right-hand side of (2.10) is compact

in W−1,q
loc (R×R+), 1 < q < 2 by Sobolev’s embedding theorem. Furthermore since

the left-hand side of (2.10) is bounded in W−1,∞(R × R+), we may use Murat’s

lemma to obtain the proof of Lemma 8.
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Lemma 9 If meas {T : β′′(T ) = 0} = 0 or β(T ) = bT, b > 0, then there exists

a subsequence (still labelled T ε,δ(x, t) ) such that

T ε,δ(x, t) → T (x, t) (2.12)

a.e. on any bounded and open set Ω ⊂ R×R+.

Proof of Lemma 9. We first apply for the div-curl lemma in the compensated

compactness theory [Ta] to the following special pairs of functions

(c, h(T ε,δ)), (Sε,δ, f δ(Sε,δ, T ε,δ)) (2.13)

to obatin

Sε,δ · h(T ε,δ) = Sε,δh(T ε,δ), (2.14)

where f(θε,δ) denotes the weak-star limit of f(θε,δ).

We choose h(T ) = T in (2.8), and have from (2.6) that

(Sε,δ(T ε,δ − k) + β(T ε,δ)− β(k))t + ((T ε,δ − k)f δ(Sε,δ, T ε,δ) + α(T ε,δ))x (2.15)

are compact in H−1
loc (R×R+) for any constant k.

Second, we apply for the div-curl lemma to the following pairs of functions

(c, β(T ε,δ)−β(k)), (Sε,δ(T ε,δ−k)+β(T ε,δ)−β(k), (T ε,δ−k)f δ(Sε,δ, T ε,δ)+α(T ε,δ))

(2.16)

to obatin

Sε,δ(T ε,δ − k)(β(T ε,δ)− β(k)) + (β(T ε,δ)− β(k))2

= Sε,δ(T ε,δ − k) · β(T ε,δ)− β(k) + (β(T ε,δ)− β(k))2.

(2.17)

Finally, letting h(T ) = β(T )− β(k) in (2.10), we apply for the div-curl lemma to

the following pairs of functions (c, T ε,δ − k) and

(Sε,δ(β(T ε,δ)− β(k)) +
∫ T ε,δ

k
(β′(τ))2dτ, h(T ε,δ)f(Sε,δ, T ε) +

∫ T ε

0
h′(τ)α′(τ)dτ)

(2.18)

to obatin

Sε,δ(T ε,δ − k)(β(T ε,δ)− β(k)) + (T ε,δ − k)
∫ T ε,δ

k (β′(τ))2dτ

= (T ε,δ − k) · Sε,δ(β(T ε,δ)− β(k)) + (T ε,δ − k) · ∫ T ε,δ

k (β′(τ))2dτ .

(2.19)
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Since we have from (2.14) that

Sε,δ(T ε,δ − k) = Sε,δ · (T ε,δ − k), Sε,δ(β(T ε,δ)− β(k)) = Sε,δ · (β(T ε,δ)− β(k)),

(2.20)

then (2.17) and (2.19) reduce that

(T ε,δ − k)
∫ T ε,δ

k (β′(τ))2dτ − (β(T ε,δ)− β(k))2

= (T ε,δ − k) · ∫ T ε,δ

k (β′(τ))2dτ − (β(T ε,δ)− β(k))2.

(2.21)

Let T ε,δ = T . By simple calculations (see Theorem 3.1.1 in [Lu1] for the details),

we have

(T ε,δ − T )
∫ T ε,δ

T
(β′(τ))2dτ − (β(T ε,δ)− β(T ))2 + (β(T ε,δ)− β(T ))2 = 0, (2.22)

which implies the pointwise compactness of T ε if meas {T : β′′(T ) = 0} = 0.

If β(T ) is a linear function, β(T ) = bT, b > 0, then letting h(T ) = T in (2.8)

and applying for the div-curl lemma to the following special pairs of functions

(c, T ε,δ), (Sε,δT ε,δ + bT ε,δ, T ε,δf δ(Sε,δ, T ε,δ) + α(T ε,δ)) (2.23)

to obatin

(Sε,δT ε,δ + bT ε,δ) · T ε,δ = Sε,δ(T ε,δ)2 + b(T ε,δ)2, (2.24)

Let h(T ) = T in (2.14). We have from (2.14) and (2.24) that

Sε,δ(T ε,δ − T )2 = Sε,δ(T ε,δ)2 − 2Sε,δT ε,δT + ST 2 = bT 2 − b(T ε,δ)2 (2.25)

Since the left-hand side of (2.25) is nonnegative, and the right-hand side is non-

positive, we know that both sides of (2.25) must be zero. From

T 2 − (T ε,δ)2 = 0, (2.26)

we get the pointwise convergence of T ε,δ. The proof of Lemma 9 is completed.

Lemma 10 If β(T ) = 0, then there exists a subsequence (still labelled T ε,δ(x, t)

) such that

T ε,δ(x, t) → T (x, t) (2.27)

pointwisely on any support set {(x, t) : S(x, t) > 0}, where S(x, t) is the weak

limit of Sε,δ(x, t).
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Proof of Lemma 10. If β(T ) = 0, we have from (2.25) that

Sε,δ(T ε,δ − T )2 = Sε,δ(T ε,δ)2 − 2Sε,δT ε,δT + ST 2 = 0 (2.28)

which reduces the conclusion (2.27) in Lemma 10.

Lemma 11 If meas {S : fSS(S, T ) = 0} = 0 for any fixed T , then there exists

a subsequence (still labelled Sε(x, t) ) such that

Sε(x, t) → S(x, t) (2.29)

a.e. on any bounded and open set Ω ⊂ R×R+.

Proof of Lemma 11. Letting F = f δ and multiplying rSr−1 to the first equation

in (2.3), we have

vt + G(v, T )x −
∫ S

c
rτ r−1FST (τ, T )dτTx + rSr−1FT (S, T )Tx = εrSr−1Sxx, (2.30)

where r ≥ 2 and c are constants, v = Sr and G(v, T ) =
∫ S
c rτ r−1FS(τ, T )dτ .

By simple calculations,




Gv = rSr−1FS(S, T ) ds
dv

= FS(S, T ), GT =
∫ S
c rτ r−1FST (τ, T )dτ,

Gvv = 1
rSr−1 FSS(S, T ), GvT = FST .

(2.31)

Multiplying (2.30) by Gv, (2.4) by GT respectively, then adding the result, we

have (for simplicity, we omit the superscript ε, δ)

Gt + (
∫ v
c G2

v(τ, T )dτ)x −
∫ v
c 2Gv(τ, T )GvT (τ, T )dτTx + rSr−1FT (S, T )Tx

+GT
F+α′(T )
S+β′(T )

Tx = εrSr−1GvSxx + εGT Txx + ε 2GT

S+β′(T )
SxTx + εβ′′(T )GT

S+β′(T )
T 2

x .

(2.32)

Since the pointwise convergence of T ε(x, t) proved in Lemmas 9 and 10, to prove

Lemma 11, we may use the compensated compactness lemma on the scalar

conservation equation with a space-time discontinuous flux [KT, Lu1]. This

means that we only need to prove that both (v − c)t + (G(v, T ) − G(c, T ))x

and (G(v, T )−G(c, T ))t + (
∫ v
c G2

v(τ, T )dτ)x are compact in H−1
loc (R×R+).

If we choose g(S) = Sl1 in (2.7), where l1 is an arbitrary positive constant, we

may prove that

εSl1−2S2
x are bounded in L1

loc(R×R+). (2.33)
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Using (2.33) and the boundedness of Tx(·, t) in L1(R), we have from (2.30) that

(v − c)t + (G(v, T )−G(c, T ))x are compact in H−1
loc (R×R+). (2.34)

Since the conditions about f in (1.7), by simple calculations, we have





|F (S, T )| = O(Sl), |FS(S, T )| = O(Sl−1),

|FSS(S, T )| = O(Sl−2), |FT (S, T )| = O(S),

|FST (S, T )| = O(1), |FSTT (S, T )| = O(1)

(2.35)

near the line S = δ. Then we can estimate the terms in (2.32) as follows.

First, ∫ v

c
G2

v(τ, T )dτ ≈
∫ v

c
τ

2(l−1)
r dτ ≈ v

2(l−1)
r

+1 + d (2.36)

near the line v = 0, where d is a constant. So,
∫ v
c G2

v(τ, T )dτ is a continuous

function;

Second

|(−
∫ v

c
2Gv(τ, T )GvT (τ, T )dτ + rSr−1FT (S, T ) + GT

F + α′(T )

S + β′(T )
)Tx| ≤ M |Tx|

(2.37)

are bounded in L1
loc(R×R+) and so compact in W−1,q

loc (R×R+), 1 < q < 2;

Third, since the estimates (2.11),(2.31), (2.33) and (2.35), we have that

ε
2GT

S + β′(T )
SxTx + ε

β′′(T )GT

S + β′(T )
T 2

x (2.38)

are bounded in L1
loc(R×R+) and so compact in W−1,q

loc (R×R+), 1 < q < 2, and

εrSr−1GvSxx + εGT Txx = εrSr−1FSSxx + εGT Txx

= ε(rSr−1FSSx)x + ε(GT Tx)x − ε(rSr−1FSS + r(r − 1)Sr−2FS)S2
x − εGTT T 2

x ,
(2.39)

where on the right-hand side of (2.39), the last two terms are bounded in L1
loc(R×

R+) and so compact in W−1,q
loc (R×R+), 1 < q < 2; the first two terms are compact

in H−1
loc (R×R+).

Therefore, we proved from (2.32) that

G(v, T )t + (
∫ v

c
G2

v(τ, T )dτ)x are compact in W−1,q
loc (R×R+) (2.40)
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for a constant q ∈ (1, 2). Since they are also bounded in W−1,∞(R × R+), we

thus have that

G(v, T )t + (
∫ v

c
G2

v(τ, T )dτ)x are compact in H−1
loc (R×R+) (2.41)

by using the Murat’s Theorem [Mu]. Lemma 11 is proved.

Combining (2.12) and (2.29), we complete the proof of Part (I) in Theorem 1

by letting ε, δ go to zero in (1.8). When β(T ) = α(T ) = 0, since S appears in all

terms in system (1.8), we have the proof of Part (II) in Theorem 1 from (2.27)

and (2.29).

3 Proofs of Theorems 2 and 3

In this section, we shall prove Theorems 2 and 3.

Proof of Theorem 2. In the proof of Theorem 1, the technique to add the

approximation perturbation δ to the flux function since f
S

could be singular near

the line S = 0. If f is a smooth function as stated in Theorem 2, this technique is

not necessary since we may easily obtain the lower, positive bound Sε ≥ c(ε, t) > 0

for the classical viscosity solutions of system (1.5) ( [Di, Pe, Lu4]). So, we just

let δ = 0 in (1.8) or consider (1.5) directly. We rewrite the first equation in (1.5)

as follows:

St + fS(S, T )Sx + fT (S, T )Tx = εSxx. (3.1)

Since f(M,T ) = d uniformly with respect to T , then fT (M,T ) = 0. Since M is a

upper bound of the initial data S0(x), the standard maximum principle reduces

the upper bound Sε ≤ M . Theorem 2 is proved.

Proof of Theorem 3. When β(T ) = bT and α(T ) = aT , one family of the

Riemann invariant of system (1.1) is





z(S, T ) = f(S,T )+a
S+b

or

Z(S, C) =
f(S, C

S+b
)+a

S+b
= F (S,C)+a

S+b
,

(3.2)

where C = (S + b)T .

Since f is a smooth function, we also let δ = 0 in (1.8) or consider (1.5)

directly.
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Substituting the first equation in (1.5) into the second, we may rewrite the

second equation in (1.5) as

Tt +
f + a

S + b
Tx =

ε

S + b
Cxx − ε

C

(S + b)2
Sxx. (3.3)

We multiply (3.3) by zT , the first equation in (1.5) by zS and then add the result

to obtain one equation, whose left-hand side is

zt + zS(fSSx + fT Tx) + zT
f+a
S+b

Tx = zt + zSfSSx + (zSfT + zzT )Tx

= zt + zSfSSx + zT fSTx = zt + fSzx = Zt + fSZx;
(3.4)

and the right-hand side is

εzsSxx + zT ( ε
S+b

Cxx − ε C
(S+b)2

Sxx)

= ε(ZS + ZC
C

S+b
)Sxx + ZC(S + b)( ε

S+b
Cxx − ε C

(S+b)2
Sxx)

= ε(ZSSxx + ZCCxx) = εZxx − ε(ZSSS2
x + 2ZSCSxCx + ZCCC2

x).

(3.5)

By simple calculations,





ZS = − 1
(S+b)2

F + FS

S+b
− a

(S+b)2
, ZC = FC

S+b
, ZCC = FCC

S+b
,

ZSC = − 1
(S+b)2

FC + FSC

S+b
, ZSS = 2

(S+b)3
F − 2FS

(S+b)2
+ 2a

(S+b)3
+ FSS

S+b

(3.6)

and

Zx = (− 1

(S + b)2
F +

FS

S + b
− a

(S + b)2
)Sx +

FC

S + b
Zx. (3.7)

Thus we have from (3.4)-(3.7) that

Zt + fSZx = εZxx − ε
S+b

(FSSS2
x + 2FSCSxCx + FCCC2

x) + 2ε
S+b

SxZx

≤ εZxx + 2ε
S+b

SxZx

(3.8)

since conditions on F given in Theorem 3. Applying for the maximum principle

to (3.8), we have Z(S, C) ≤ M , where M is a upper bound of the initial data

Z(S0(x), C0(x)). Using the conditions in Theorem 3 again, we have the upper

estimate Sε ≤ M , so we end the proof of Theorem 3.
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