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Abstract

This paper is concerned with the construction of global smooth solutions away from
vacuum to the Cauchy problem of the one-dimensional compressible Navier-Stokes-Poisson
system with large data and density dependent viscosity coefficient and density and temper-
ature dependent heat conductivity coefficient. The proof is based on some detailed analysis
on the bounds on the density and temperature functions.
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1 Introduction

The compressible Navier-Stokes-Poisson (denoted by NSP) system consisting of the compress-
ible Navier-Stokes equations coupled with Poisson equation models the viscous fluid under the
influence of the self-induced electric force:

ρτ +∇ξ · (ρu) = 0,
(ρu)τ +∇ξ · (ρu⊗ u) +∇ξp = ρ∇ξΦ +∇ξ ·T,

(ρE)τ +∇ξ · (ρuE + up) = ρu · ∇ξΦ +∇ξ · (uT) +∇ξ · (κ(v, θ)∇ξθ) ,
∆ξΦ = ρ− ρ(ξ), lim

|ξ|→+∞
Φ(τ, ξ) = 0.
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Here, ρ > 0, u = (u1, u2, u3), θ > 0, p = p(ρ, θ), e and Φ denote the density, velocity, absolute
temperature, pressure, internal energy and the electrostatic potential function, respectively. And
E = 1

2 |u|
2 + e is the specific total energy, T = µ(ρ, θ)

(
∇ξu+ (∇ξu)t

)
+ ν(ρ, θ)(∇ξ · u)I is the

stress tensor with I being the identity matrix. The viscosity coefficients µ(ρ, θ) > 0 and ν(ρ, θ)
satisfy µ(ρ, θ) + 2

3ν(ρ, θ) > 0. The thermodynamic variables p, ρ, and e are related by Gibbs
equation de = θds − pdρ−1 with s being the specific entropy. κ(ρ, θ) > 0 denotes the heat
conductivity coefficient, and ρ(ξ) > 0 is the background doping profile, cf. [30].

To explain the purpose of this paper, we firstly give the following remarks on the viscosity
and heat conductivity coefficients:

• When the viscosity coefficients µ(ρ, θ) > 0, ν(ρ, θ) and the heat-conductivity coefficient
κ(ρ, θ) > 0 are constants, (1.1) is used in semiconductor theory to model the transport of
charged particles under the influence of self-induced electric field, cf. [30].

• In the kinetic theory, the time evolution of the particle distribution function for the charged
particles in a dilute gas can be modelled by the Vlasov-Poisson-Boltzmann system, cf. [4],
[3], [34]. When we derive the NSP (1.1) from the Vlasov-Poisson-Boltzmann system by
using the Chapman-Enskog expansion, cf. [4], [12], [34], the viscosity coefficients µ, ν and
the heat-conductivity coefficient κ depend on the absolute temperature θ and ν = −2

3µ
for the monatomic gas. If the inter-molecular potential is proportional to r−α with α > 1,
where r represents the intermolecular distance, then µ, ν and κ are proportional to the
temperature to some power:

µ, −ν, κ ∝ θ
α+4
2α .

In particular, for the Maxwellian molecule (α = 4), such dependence is linear, while for
the hard sphere model and also the case when α→ +∞, the dependence is in the form of√
θ.

This paper is concerned with the global existence of large data solutions when the viscosity
coefficients µ, ν and the heat conductivity coefficient κ depend on ρ and θ. Unlike the smal-
l perturbation solutions, such dependence has strong influence on the solution behavior and
thus leads to difficulties in analysis not for the case of constant coefficients. In fact, for the
one-dimensional compressible Navier-Stokes equations, recently there are a lot of works on the
construction of non-vacuum solutions to the one-dimensional compressible Navier-Stokes equa-
tions with density and temperature dependent transportation coefficients in various forms, cf.
[1] [5], [18], [19], [21], [22], [23], [24], [25] and the references therein. However, there is a gap
between the physical models and the satisfactory existence theory.

The main purpose in this paper is devoted to the construction of globally smooth, non-
vacuum solutions to the one-dimensional non-isentropic compressible NSP with degenerate den-
sity dependent viscous coefficient and degenerate density and temperature dependent heat con-
ductivity coefficient for arbitrarily large data. We hope that the analysis here can shed some
light on the construction of global classical solutions to the fluid model derived from the Vlasov-
Poisson-Boltzmann system with large data.

Let x be the Lagrangian space variable, t be the time variable, and v = 1
ρ denote the specific

volume. Then the one-dimensional compressible NSP system (1.1) with viscous coefficient µ(v)
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and heat conductivity coefficient κ(v, θ) becomes

vt − ux = 0,

ut + p(v, θ)x =
(
µ(v)ux
v

)
x

+ Φx
v ,

et + p(v, θ)ux = µ(v)u2x
v +

(
κ(v,θ)θx

v

)
x
,(

Φx
v

)
x

= 1− v, lim
|x|→+∞

Φ(t, x) = 0.

(1.1)

Throughout this paper, we will concentrate on the ideal, polytropic gases:

p(v, θ) =
Rθ

v
= Av−γ exp

(
γ − 1

R
s

)
, e = Cvθ =

Rθ

γ − 1
, (1.2)

where the specific gas constant R and the specific heat at constant volume Cv are positive
constants and γ > 1 is the adiabatic constant. Moreover, to simplify the presentation, we will
only consider the case when the background doping profile ρ is a positive constant which is
normalized to 1 as in (1.1)4.

Take the initial data

(v(0, x), u(0, x), θ(0, x)) = (v0(x), u0(x), θ0(x)), lim
x→±∞

(v0(x), u0(x), θ0(x)) = (v±, u±, θ±)

(1.3)
satisfying v− = v+, u− = u+, θ− = θ+. Without loss of generality, we assume v− = v+ = 1, u− =
u+ = 0, θ− = θ+ = 1.

The first result is concerned with the case

µ(v) = v−a, κ(v, θ) = θb, (1.4)

which is stated as follows.

Theorem 1.1 Suppose

• (v0(x)−1, u0(x), θ0(x)−1,Φ0x(x)) ∈ H1(R), and there exist positive constants V , V , Θ, Θ
such that

V ≤ v0(x) ≤ V , Θ ≤ θ0(x) ≤ Θ; (1.5)

• 1
3 < a < 1

2 ;

• b satisfies one of the following conditions

(i) 1 ≤ b < 2a
1−a ,

(ii) 0 < b < 1, 2−b
2 + (a2−a+2)(1−b)

(1−2a)(3a−1) < 1, (1−b)(3+a−2a2)
(3a−1)(1−2a) < 1.

Then the Cauchy problem (1.1), (1.3) with µ(v) and κ(v, θ) given by (1.4) admits a unique global
solution (v(t, x), u(t, x), θ(t, x)) satisfying(

v(t, x)− 1, u(t, x), θ(t, x)− 1
)
∈ C0

(
0, T ;H1(R)

)
,(

ux(t, x), θx(t, x)
)
∈ L2

(
0, T ;H2(R)

)
,

Φ(t, x) ∈ C0
(
0, T ;H3(R)

)
,

0 < V −1
0 ≤ v(t, x) ≤ V0, 0 < Θ−1

0 ≤ θ(t, x) ≤ Θ0, ∀(t, x) ∈ [0, T ]×R.

(1.6)

Here T > 0 is any given positive constant and V0,Θ0 are some positive constants which may
depend on T .
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Note that the assumptions imposed on a and b in Theorem 1.1 exclude the case when the
viscous coefficient µ and the heat conductivity coefficient κ are positive constants. The next
result will recover this in another setting. The main idea is to use the smallness of γ − 1 to
deduce uniform lower and upper bounds on the absolute temperature. This can be achieved by
showing that (v0(x)− 1, u0(x), s0(x)− s) ∈ H1(R) are bounded in H1(R) independent of γ − 1
so that ‖θ0(x) − 1‖L∞(R) can be chosen to be small when γ is close to 1. Here s = R

γ−1 ln R
A is

the far field of the initial entropy s0(x), that is,

lim
|x|→+∞

s0(x) = lim
|x|→+∞

R

γ − 1
ln
Rθ0(x)v0(x)γ−1

A
= s.

Take (v, u, s) as the unknown function, the second global existence theorem can be stated as
follows.

Theorem 1.2 Suppose

• ‖(v0(x)−1, u0(x), s0(x)−s,Φ0x(x))‖H1(R) is bounded by some positive constant independent

of γ − 1 and (1.5) holds for some γ − 1−independent positive constants V , V , Θ, Θ;

• (γ − 1)‖s0(x)‖L∞(R) is bounded by some constant independent of γ − 1;

• The smooth function µ(v) satisfies µ(v) > 0 for all v > 0 and

lim
v→0+

Ψ(v) = −∞, lim
v→+∞

Ψ(v) = +∞. (1.7)

Here

Ψ(v) =

∫ v

1

√
z − ln z − 1

z
µ(z)dz; (1.8)

• For the heat conductivity coefficient, there are two cases. If κ(v, θ) = κ(θ) depends only
on θ, we only assume κ(θ) > 0 for θ > 0 with some smoothness condition. If it depends
on both v and θ, then in addition to κ(v, θ) > 0 for all v > 0, θ > 0, we also assume the
following. Set κ1(v) = min

Θ≤θ≤Θ
κ(v, θ), assume

κθθ(v, θ) < 0, ∀v > 0, θ > 0, (1.9)

and

lim
v→0+

µ(v)
κ1(v)

|Ψ(v)|2
= lim

v→+∞

µ(v)
κ1(v)

|Ψ(v)|2
= 0; (1.10)

• γ − 1 is sufficiently small.

Then the Cauchy problem (1.1), (1.3) admits a unique global solution (v(t, x), u(t, x), θ(t, x))
satisfying (1.6) and

lim
t→+∞

sup
x∈R

∣∣∣(v(t, x)− 1, u(t, x), θ(t, x)− 1)
∣∣∣ = 0. (1.11)

Although in Theorem 1.2, the case µ and κ are positive constants can be covered, it does
ask that γ−1 to be sufficiently small, our final result in this paper shows that for the case when
µ is a positive constant, similar result hold provided that κ(v, θ) satisfies

κ(v, θ) > 0 ∀v > 0, θ > 0, min
v≥Ṽ >0, θ≥Θ̃>0

κ(v, θ) ≥ κ
(
Ṽ , Θ̃

)
> 0. (1.12)
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Theorem 1.3 Suppose

• (v0(x)−1, u0(x), θ0(x)−1,Φ0x(x)) ∈ H1(R), and there exist positive constants V , V , Θ, Θ
satisfying (1.5);

• µ is a positive constant and κ(v, θ) satisfies (1.12).

Then the Cauchy problem (1.1), (1.3) admits a unique global solution (v(t, x), u(t, x), θ(t, x))
satisfying (1.6).

Remark 1.1 We give the following remarks on Theorem 1.1-Theorem 1.3.

• From the proof of Theorem 1.2, one will notice that the assumption (1.10) can be replaced
by the following weaker assumption

lim
v→0+

µ(v)
κ1(v)

|Ψ(v)|2
≤ ε0, lim

v→+∞

µ(v)
κ1(v)

|Ψ(v)|2
≤ ε0. (1.13)

Here ε0 > 0 is a suitably chosen sufficiently small positive constant.

• Under the assumptions in Theorem 1.2, when γ − 1 is sufficiently small, although ‖θ0 −
1‖H1(R) is small, ‖(v0 − 1, u0, s0 − s)‖H1(R) can be large.

• When µ(v) satisfies certain growth conditions when v → 0+ and v → +∞, for example,
µ(v) ∼ va as v → 0+ and µ(v) ∼ vb as v → +∞ with a < 0, b > −1

2 , then similar result
to Theorem 1.2 also holds even when (v0 − 1, u0, s0 − s)‖H1(R), V , and V depend on 1

γ−1
with certain growth condition as γ → 1+.

• The same arguments for Theorem 1.1-Theorem 1.3 can be applied directly the compressible
Navier-Stokes equations which generalize the previous results [18] and [23] where the viscos-
ity coefficient is assumed to be a positive constant and/or is bounded from below and above
by some positive constants, which means that viscosity coefficient µ(v) is non-degenerate.

• It is worth to pointing out that since the fact that(
µ(v)ux
v

)
x

=

(
µ(v)vt
v

)
x

=

(
µ(v)vx
v

)
t
, (1.14)

plays an important role in the following analysis, we can only treat the case when µ(v) is
a smooth function of v. Hence, it is interesting to study the case when µ depends on θ.

We now review some related results. Firstly, recently there are some results on the construc-
tion of non-vacuum, large solutions to the one-dimensional compressible Navier-Stokes equations
with constant viscosity coefficient µ and density and temperature dependent heat conductivity
coefficient κ, cf. [18], [23]. A key ingredient in these works is the pointwise a priori estimates
on the specific volume which guarantees that no vacuum nor concentration of mass occur. It is
worth pointing out that it was in deducing the above mentioned upper and lower bounds on the
specific volume that the viscosity coefficient µ(v) is assumed to be non-degenerate, for example
µ(v) is assumed to satisfy 0 < µ0 ≤ µ(v) ≤ µ1 in [23] and µ(v) ≡ µ0 > 0 in [18], .

The strategy to prove Theoerem 1.1 can be stated as follows. We will firstly apply the
maximum principle for second order parabolic equation to obtain a lower bound estimate on
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θ(t, x) in terms of the lower bound on v(t, x) in Lemma 2.4. And then by combining the
arguments used in [21] and [25], we can deduce a lower bound and an upper bound on v(t, x)
in terms of ‖θ1−b‖L∞([0,T ]×R), that is, the estimates (2.35) and (2.36). These two estimates
together with the L∞([0, T ]×R)−estimate on θ(t, x) given in Lemma 4.9 then yield the desired
lower and upper bound on v(t, x) and θ(t, x) provided that the parameters a and b satisfy certain
conditions.

To prove Theorem 1.2, the main idea is to assume the following a priori assumption on the
absolute temperature θ(t, x)

1

2
Θ ≤ θ(t, x) ≤ 2Θ, (1.15)

for (t, x) ∈ [0, T ]×R. Then by some delicate energy type estimates and by using the argument
initiated in [21], we can deduce an uniform (with respect to the time variable t) lower and upper

bound on v(t, x) and some uniform energy estimates on
∥∥∥(v − 1, u, θ−1√

γ−1

)
(t)
∥∥∥
H1(R)

in terms of∥∥∥(v0 − 1, u0,
θ0−1√
γ−1

)∥∥∥
H1(R)

, inf
x∈R

v0(x), and sup
x∈R

v0(x). At the end, to extend the solution globally

in time, we only need to close the a priori assumption (1.15) where we need the smallness of
γ − 1.

For Theorem 1.3, since the viscosity coefficient µ is assumed to be a positive constant, even
though the heat conductivity coefficient κ(v, θ) may depend on v and θ and there is a nonlocal
term Φx

v in the momentum equation, the argument in [25] can be adopted to deduce an explicit
formula for the specific volume v(t, x). Based on this formula, we can deduce a lower bound on
v(t, x) and from which and the maximum principle for the absolute temperature θ(t, x), we can
deduce a lower bound on θ(t, x). Having obtained the lower bound estimates on both v(t, x)
and θ(t, x), we can deduce the desired upper bound on v(t, x) by employing the explicit formula
for v(t, x) again provided that κ(v, θ) satisfies (1.12). With these estimates in hand, the upper
bound on θ(t, x) can be obtained by following the argument used in the proof of Theorem 1.1 by
considering the case κ(v, θ) is uniformly bounded for 0 < V −1

0 ≤ v ≤ V0, θ ≥ Θ−1
0 (such a bound

can depends on V0 and Θ0) and the case lim
θ→+∞

κ(v, θ) = +∞ for 0 < V −1
0 ≤ v ≤ V0, θ ≥ Θ−1

0

respectively.

Before concluding the introduction, we point out that there are many results on the construc-
tion of global solutions to the NSP system (1.1). In particular, recently, the global existence
of smooth small perturbative solutions away from vacuum with the optimal time decay esti-
mates was obtained in [26] for the isentropic flow, and in [37], [16] for the non-isentropic flow.
There, it is observed that the electric field affects the large time behavior of the solution so
that the momentum decays at the rate (1 + t)−

1
4 which is slower than the rate (1 + t)−

3
4 for

the compressible Navier-Stokes system, while the density tends to its asymptotic state at the
rate (1+ t)−

3
4 just like the compressible Navier-Stokes system. Moreover, the global existence of

strong solution in Besov type space was obtained in [15]. On the other hand, it is quite different
for the compressible Euler-Poisson (EP) system. In fact, it was shown in [14] that the long time
convergence rate of global irrotational solution is enhanced by the dispersion effect due to the
coupling of electric field, namely, both density and velocity tend to the equilibrium constant
state at the rate (1 + t)−p for any p ∈ (1, 3

2).

Note that even though most of the results for the small perturbative solutions are considered
for the case when µ, ν, and κ are constants, it is straightforward to show that they hold when
µ, ν, and κ are smooth functions of density and temperature.

Finally, for the results with large initial data, the existence of re-normalized solutions to
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the NSP system are obtained in [6], [33], [38]. Note that for the compressible NSP system
related to the dynamics of selfgravitating gases stars, some existence results on the weak solution
(renormalized solution) were given in [8], [9], [38]. Since the analysis in these works is based
on the weak convergence argument, only isentropic polytropic gas was studied with a special
requirement on the range of adiabatic exponent, i.e. γ > 3

2 with constant viscosity coefficient.
For the non-isentropic case, even for the compressible Navier-Stokes system, the only available
global existence theory for large data is the construction of the so called “variational solution”,
cf. [11].

The rest of the paper is organized as follows. The proofs of Theorem 1.1 and Theorem 1.2
will be given in Section 2 and Section 3 respectively.

Notations: O(1) or Ci(i ∈ N) stands for a generic positive constant which is independent of
t and x, while Ci(·, · · · , ·) (i ∈ N) is used to denote some positive constant depending on the
arguments listed in the parenthesis. Note that all these constants may vary from line to line.
‖ · ‖s represents the norm in Hs(R) with ‖ · ‖ = ‖ · ‖0 and for 1 ≤ p ≤ +∞, Lp(R) denotes the
standard Lebesgue space.

2 The proof of Theorem 1.1

To prove Theorem 1.1, we first define the following function space for the solution to the Cauchy
problem (1.1), (1.3)

X(0, T ;M0,M1;N0, N1) =


(
v, u, θ,Φ

)
(t, x)

∣∣∣∣∣∣∣∣∣∣∣∣

(
v − 1, u, θ − 1

)
(t, x) ∈ C0

(
0, T ;H1(R)

)(
ux, θx

)
(t, x) ∈ L2

(
0, T ;H2(R)

)
Φ(t, x) ∈ C0

(
0, T ;H3(R)

)
M0 ≤ v(t, x) ≤M1, N0 ≤ θ(t, x) ≤ N1


.

(2.1)
Here T > 0,M1 ≥M0 > 0, N1 ≥ N0 > 0 are some positive constants.

Under the assumptions given in either Theorems 1.1 or 1.2, we can get the following local
existence result.

Lemma 2.1 (Local existence) Under the assumptions in either Theorems 1.1 or 1.2, there
exists a sufficiently small positive constant t1, which depends only on V , V ,Θ,Θ and ‖(v0 −
1, u0, θ0 − 1)‖1, such that the Cauchy problem (1.1), (1.3) admits a unique smooth solution

(v(t, x), u(t, x), θ(t, x), Φ(t, x)) ∈ X
(
0, t1; 1

2V , 2V ; 1
2Θ, 2Θ

)
and (v(t, x), u(t, x), θ(t, x),Φ(t, x))

satisfies 0 < V
2 ≤ v(t, x) ≤ 2V ,

0 < Θ
2 ≤ θ(t, x) ≤ 2Θ,

(2.2)

sup
[0,t1]

(
‖(v − 1, u, θ − 1,Φx)(t)‖1

)
≤ 2‖(v0 − 1, u0, θ0 − 1,Φ0)‖1, (2.3)

and

lim
|x|→∞

(
v(t, x)− 1, u(t, x), θ(t, x)− 1,Φx(t, x)

)
= (0, 0, 0, 0). (2.4)
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Lemma 2.1 can be proved by the standard iteration argument as in [32] for the one-dimensional
compressible Navier-Stokes system, we thus omit the details for brevity.

Now we give some properties on the local solution (v(t, x), u(t, x), θ(t, x),Φ(t, x)) constructed
above. Noticing that(

u+

(
Φx

v

)
t

)
x

= ux +

[(
Φx

v

)
x

]
t

= ux + (1− v)t = ux − vt = 0,

we have the following lemma from (2.4).

Lemma 2.2 Under the conditions in Lemma 2.1, we have

u(t, x) = −
(

Φx(t, x)

v(t, x)

)
t

. (2.5)

Now we turn to prove Theorem 1.1. Recall that µ(v) = v−a, κ(v, θ) = θb, and the constitutive
equations (1.2), the Cauchy problem (1.1), (1.3) can be rewritten as

vt − ux = 0,

ut + p(v, θ)x =
(

ux
v1+a

)
x

+ Φx
v ,

Cvθt + p(v, θ)ux = u2x
v1+a

+
(
θbθx
v

)
x
,(

Φx
v

)
x

= 1− v, lim
|x|→+∞

Φ(t, x) = 0,

(2.6)

(v(0, x), u(0, x), θ(0, x)) = (v0(x), u0(x), θ0(x)), lim
|x|→+∞

(v0(x), u0(x), θ0(x)) = (1, 0, 1). (2.7)

Suppose that the local solution (v(t, x), u(t, x), θ(t, x),Φ(t, x)) constructed in Lemma 2.1 has
been extended to t = T ≥ t1 and satisfies the a priori assumption

(H1) V 0 ≤ v(t, x) ≤ V 1, Θ0 ≤ θ(t, x) ≤ Θ1

for all x ∈ R, 0 ≤ t ≤ T, and some positive constants 0 < Θ0 ≤ Θ1, 0 < V 0 ≤ V 1, we now
deduce certain a priori estimates on (v(t, x), u(t, x), θ(t, x),Φ(t, x)) which are independent of
Θ0,Θ1, V 0, V 1 but may depend on T .

The first one is concerned with the basic energy estimate. For this, note that

η(v, u, θ) = Rφ(v) +
u2

2
+
Rφ(θ)

γ − 1
, with φ(x) = x− lnx− 1,

is a convex entropy to (2.6) which satisfies

η(v, u, θ)t +

{(
Rθ

v
−R

)
u

}
x
−
{
uux
v1+a

+
(θ − 1)θx
vθ1−b

}
x

+

{
u2
x

v1+aθ
+

θ2
x

vθ2−b

}
=
uΦx

v
. (2.8)

With (2.8), since

uΦx

v
=

(
uΦ

v
+

Φ

v

(
Φx

v

)
t

)
x

− 1

2

[(
Φx

v

)2
]
t

+
Φvx
v2

[
u+

(
Φx

v

)
t

]
,

we can deduce the following lemma by integrating (2.8) with respect to t and x over [0, T ]×R
and from (2.5).
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Lemma 2.3 (Basic energy estimates) Let the conditions in Lemma 2.1 hold and suppose
that the local solution (v(t, x), u(t, x), θ(t, x),Φ(t, x)) constructed in Lemma 2.1 satisfies the a
priori assumption (H1), then we have for 0 ≤ t ≤ T that

∫
R

(
η(v, u, θ) +

1

2

(
Φx

v

)2
)

(t, x)dx+

∫ t

0

∫
R

(
u2
x

v1+aθ
+

θ2
x

vθ2−b

)
(τ, x)dxdτ

=

∫
R

(
η(v0, u0, θ0) +

1

2

(
Φ0x

v0

)2
)

(x)dx. (2.9)

The next estimate is concerned with a lower bound estimate on θ(t, x) in terms of the lower
bound on v(t, x).

Lemma 2.4 Under the assumptions in Lemma 2.3, we have for a < 1 that

1

θ(t, x)
≤ O(1) +O(1)

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

, x ∈ R, 0 ≤ t ≤ T. (2.10)

Proof: First of all, (2.6)3 implies

Cv

(
1

θ

)
t

= − u2
x

θ2v1+a
+
Rux
vθ
− 2θ1+b

v

[(
1

θ

)
x

]2

+

[(
θb

v

)(
1

θ

)
x

]
x

=

[(
θb

v

)(
1

θ

)
x

]
x

−
{

2θ1+b

v

[(
1

θ

)
x

]2

+
1

v1+aθ2

(
ux −

Rθva

2

)2
}

(2.11)

+
R2

4v1−a .

Set

h(t, x) =
1

θ
− R2t

4Cv

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

,

we can deduce that h(t, x) satisfiesCvht ≤
(
θb

v hx
)
x
, x ∈ R, 0 ≤ t ≤ T,

h(0, x) = 1
θ0(x) ≤

1
Θ ,

(2.12)

and the standard maximum principle for parabolic equation implies that h(t, x) ≤ 1
Θ holds for

all (t, x) ∈ [0, T ]×R. That is, for x ∈ R, 0 ≤ t ≤ T

1

θ
− R2t

4Cv

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

≤ 1

Θ
. (2.13)

This is (2.10) and the proof of Lemma 2.4 is completed.

To use Y. Kanel’s method to deduce a lower bound and an upper bound on v(t, x), we need

to deduce an estimate on
∥∥∥ vx
v1+a

∥∥∥, which is the main concern of our next lemma. It is worth to

pointing out that it is in this step that we ask the viscous coefficient µ depends only on v.
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Lemma 2.5 Under the assumptions in Lemma 2.3, we have∥∥∥∥ vx
v1+a

∥∥∥∥2

+

∫ t

0

∫
R

(
θv2
x

v3+a
+ g(v)(v − 1)

)
dxds

≤
(
‖v0x‖2 + ‖(v0 − 1, u0, θ0 − 1,Φ0x)‖2

)
+

∫ t

0

∫
R

u2
x

v1+a
dxds+O(1)

∫ t

0

∫
R

θ2
x

v1+aθ
dxds,

(2.14)

and

g(v) =

∫ v

1

dz

z1+a
=

1− v−a

a
.

Proof: Notice that(
vx
v1+a

)
t

=

(
vt
v1+a

)
x

=

(
ux
v1+a

)
x

= ut + p(v, θ)x −
Φx

v
,

we have by multiplying the above identity by vx
v1+a

and integrating the resulting equation with
respect to t and x over [0, T ]×R that

1

2

∥∥∥∥ vx
v1+a

∥∥∥∥2

+

∫ t

0

∫
R

Rθv2
x

v3+a
dxds

≤ O(1)‖v0x‖2 +

∫ t

0

∫
R

Rθxvx
v2+a

dxds︸ ︷︷ ︸
I1

+

∫ t

0

∫
R

utvx
v1+a

dxds︸ ︷︷ ︸
I2

−
∫ t

0

∫
R

vx
v1+a

Φx

v
dxds︸ ︷︷ ︸

I3

. (2.15)

Now we estimate I1, I2 and I3 term by term. First, we have from (2.6)4 and the Cauchy-
Schwarz inequality that

I3 =

∫ t

0

∫
R
g(v)x

(
Φx

v

)
dxds = −

∫ t

0

∫
R
g(v)

(
Φx

v

)
x
dxds = −

∫ t

0

∫
R
g(v)(1− v)dxds ≥ 0,

(2.16)
and

I1 ≤
1

2

∫ t

0

∫
R

Rθv2
x

v3+a
dxds+O(1)

∫ t

0

∫
R

θ2
x

v1+aθ
dxds. (2.17)

As to I2, we have from (2.9) that

I2 =

∫
R

uvx
v1+a

dx
∣∣∣t
0
−
∫ t

0

∫
R
u

(
vx
v1+a

)
t
dxds

≤
∫
R

uvx
v1+a

dx+O(1) ‖(u0, v0x)‖2 −
∫ t

0

∫
R
u

(
ux
v1+a

)
x
dxds (2.18)

≤ 1

2

∥∥∥∥ vx
v1+a

∥∥∥∥2

+O(1) ‖(v0 − 1, v0x, u0, θ0 − 1,Φ0x)‖2 +

∫ t

0

∫
R

u2
x

v1+a
dxds.

Inserting (2.16)-(2.18) into (2.15), we can deduce (2.14) immediately. This completes the
proof of Lemma 2.5.

To bound the two terms on the right hand side of (2.14), we now estimate
∫ t

0

∫
R

u2x
v1+a

dxds in
the following lemma.
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Lemma 2.6 Under the assumptions in Lemma 2.3, we have

‖u(t)‖2 +

∫ t

0

∫
R

u2
x

v1+a
dxds ≤ O(1)‖(v0− 1, u0, θ0− 1,Φ0x)‖2 +O(1)

∫ t

0

∫
R

(θ − 1)2

v1−a dxds. (2.19)

Proof: Multiplying (2.6)2 by u, we have by integrating the resulting equation with respect to
t and x over [0, T ]×R that

1

2
‖u(t)‖2 +

∫ t

0

∫
R

u2
x

v1+a
dxds

≤ O(1)‖u0‖2 +

∫ t

0

∫
R

R(θ − 1)ux
v

dxds︸ ︷︷ ︸
I4

+

∫ t

0

∫
R
R

(
1− 1

v

)
uxdxds︸ ︷︷ ︸

I5

+

∫ t

0

∫
R

uΦx

v
dxds︸ ︷︷ ︸

I6

.(2.20)

From the basic energy estimate (2.9) and the Cauchy-Schwarz inequality, we can bound
Ij (j = 4, 5, 6) as follows:

I6 ≤
∫ t

0
‖u(s)‖

∥∥∥∥(φxv
)

(s)

∥∥∥∥ ds ≤ C(T )‖(u0, v0 − 1, θ0 − 1,Φ0x)‖2,

I5 =

∫ t

0

∫
R
R

(
1− 1

v

)
vtdxds = R

∫
R
φ(v)dx

∣∣∣t
0

= R

(∫
R
φ(v)dx−

∫
R
φ(v0)dx

)
≤ O(1)‖(u0, v0 − 1, θ0 − 1,Φ0x)‖2,

I4 ≤
1

2

∫ t

0

∫
R

u2
x

v1+a
dxds+O(1)

∫ t

0

∫
R

(θ − 1)2

v1−a dxds.

Substituting the above estimates into (2.20), we can deduce (2.19) and complete the proof
of the lemma.

To bound the terms appearing on the right hand side of (2.19) and (2.14), we need the
following

Lemma 2.7 Under the assumptions in Lemma 2.3, we have for b 6= 0,−1 that∫ t

0
max
x∈R
|θ(s, x)|bds ≤ C(T ), (2.21)

∫ t

0
max
x∈R
|θ(s, x)|b+1ds ≤ C(T )

(
1 + ‖θ‖L∞T,x

)
, (2.22)

and ∫ t

0
max
x∈R
|θ(s, x)|b+1ds ≤ C(T )

(
1 + ‖v‖L∞T,x

)
. (2.23)

Proof: We only prove (2.22) because (2.21)and (2.23) can be proved similarly.
From the argument used in [25], we have from the basic energy estimate (2.9), the Jenssen

inequality that from each i ∈ Z, there are positive constants A0 > 0, A1 > 0 such that

A0 ≤
∫ i+1

i
v(t, x)dx,

∫ i+1

i
θ(t, x)dx ≤ A1, ∀t ∈ [0, T ]. (2.24)
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Hence, there exist ai(t) ∈ [i, i+ 1], bi(t) ∈ [i, i+ 1] such that

A0 ≤ v(t, ai(t)), θ(t, bi(t)) ≤ A1. (2.25)

Define

g1(θ) =

∫ θ

1
s
b−1
2 ds =

2

b+ 1

(
θ
b+1
2 − 1

)
,

for each x ∈ R, there exists an integer i ∈ Z such that x ∈ [i, i+ 1] and we can assume without
loss of generality that x ≥ bi(t). Thus

g1(θ(t, x)) = g1(θ(t, bi(t))) +

∫ x

bi(t)
g1(θ(t, y))ydy

≤ O(1) +

∫ i+1

i

∣∣∣θ b−1
2 θx

∣∣∣dx
≤ O(1) +

(∫
R

θ2
x

vθ2−bdx

) 1
2 (∫ i+1

i
vθdx

) 1
2

≤ O(1) + ‖θ‖
1
2
L∞T,x

(∫
R

θ2
x

vθ2−bdx

) 1
2

.

The above estimate and (2.9) give (2.22) and then complete the proof of the lemma.

As a direct corollary of (2.21)-(2.23), we have

Corollary 2.1 Under the conditions in Lemma 2.3, we have∫ t

0

∫
R

(θ − 1)2dxds ≤ O(1)
∥∥∥θ1−b

∥∥∥
L∞T,x

. (2.26)

Proof: In fact (2.9) together with (2.21) imply that∫ t

0

∫
R

(θ − 1)2dxdτ ≤ O(1)

∫ t

0

∫
R

(θ + 1)φ(θ)dxdτ

≤ O(1)

∫ t

0
max
x∈R

θ(τ, x)dτ +O(1)

= O(1)

∫ t

0
max
x∈R

(
θ1−bθb

)
dτ +O(1)

≤ O(1)
∥∥∥θ1−b

∥∥∥
L∞T,x

∫ t

0
max
x∈R

θb(τ, x)dτ +O(1)

≤ O(1)
∥∥∥θ1−b

∥∥∥
L∞T,x

+O(1),

and this completes the proof of corollary.

Having obtained (2.26), we can deduce that∫ t

0

∫
R

(θ − 1)2

v1−a dxdτ ≤
∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

∫ t

0

∫
R

(θ − 1)2dxdτ ≤ O(1)
∥∥∥θ1−b

∥∥∥
L∞T,x

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

. (2.27)
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On the other hand, from (2.9), we have∫ t

0

∫
R

θ2
x

θv1+a
dxdτ =

∫ t

0

∫
R

θ2
x

vθ2−b
1

vaθb−1
dxdτ

≤
∥∥∥∥1

v

∥∥∥∥a
L∞T,x

∥∥∥θ1−b
∥∥∥
L∞T,x

∫ t

0

∫
R

θ2
x

vθ2−bdxdτ

≤ O(1)‖(v0 − 1, u0, θ0 − 1,Φ0x)‖2
∥∥∥∥1

v

∥∥∥∥a
L∞T,x

∥∥∥θ1−b
∥∥∥
L∞T,x

. (2.28)

Substituting (2.27) and (2.28) into (2.19) and (2.14), we have

Corollary 2.2 Under the assumptions in Lemma 2.3, we have

‖u(t)‖2 +

∫ t

0

∫
R

u2
x

v1+a
dxdτ ≤ O(1) ‖(v0 − 1, u0, θ0 − 1,Φ0x)‖2 +O(1)

∥∥∥∥1

v

∥∥∥∥a
L∞T,x

∥∥∥θ1−b
∥∥∥
L∞T,x

, (2.29)

∥∥∥∥ vx
v1+a

∥∥∥∥2

+

∫ t

0

∫
R

(
θv2
x

v3+a
+ g(v)(v − 1)

)
dxdτ

≤ O(1) ‖(v0 − 1, u0, θ0 − 1,Φ0x)‖2 +O(1)

(∥∥∥∥1

v

∥∥∥∥a
L∞T,x

+

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

)∥∥∥θ1−b
∥∥∥
L∞T,x

. (2.30)

Now we apply Y. Kanel’s approach to deduce a lower bound and an upper bound on v(t, x)

in terms of
∥∥∥θ1−b

∥∥∥
L∞T,x

. To this end, set

Ψ(v) =

∫ v

1

√
φ(z)

z1+a
dz. (2.31)

Note that there exist positive constants A2, A3 such that

|Ψ(v)| ≥ A2

(
v−a + v

1
2
−a
)
−A3. (2.32)

Since

|Ψ(v)| =
∣∣∣∣∫ x

−∞
Ψ(v(t, y))ydy

∣∣∣∣
≤
∫
R

∣∣∣∣∣
√
φ(v)

v1+a
vx

∣∣∣∣∣ dx
≤
∥∥∥∥√φ(v)

∥∥∥∥ ∥∥∥∥ vx
v1+a

∥∥∥∥ (2.33)

≤ O(1)

(
1 +

(∥∥∥∥1

v

∥∥∥∥a2
L∞T,x

+

∥∥∥∥1

v

∥∥∥∥ 1−a
2

L∞T,x

)∥∥∥θ1−b
∥∥∥ 1

2

L∞T,x

)
,

we have from (2.32) and (2.33) that∥∥∥∥1

v

∥∥∥∥a
L∞T,x

+ ‖v‖
1
2
−a

L∞T,x
≤ O(1)

(
1 +

(∥∥∥∥1

v

∥∥∥∥a2
L∞T,x

+

∥∥∥∥1

v

∥∥∥∥ 1−a
2

L∞T,x

)∥∥∥θ1−b
∥∥∥ 1

2

L∞T,x

)
. (2.34)

Thus if 1
3 < a < 1

2 , we can deduce from (2.34)
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Corollary 2.3 Under the conditions in Lemma 2.3, if we assume further that 1
3 < a < 1

2 , then
we have

1

v(t, x)
≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 1

3a−1

L∞T,x

)
, (2.35)

and

v(t, x) ≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

(3a−1)(1−2a)

L∞T,x

)
(2.36)

hold for any (t, x) ∈ [0, T ]×R.
Consequently, (2.29) and (2.30) can be rewritten as

‖u(t)‖2 +

∫ t

0

∫
R

u2
x

v1+a
dxdτ ≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

3a−1

L∞T,x

)
, (2.37)

∥∥∥∥ vx
v1+a

∥∥∥∥2

+

∫ t

0

∫
R

(
θv2
x

v3+a
+ g(v)(v − 1)

)
dxdτ ≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

3a−1

L∞T,x

)
. (2.38)

To get an upper bound on θ(t, x), we need also the estimate on ‖ux(t)‖ which is given in the
following lemma.

Lemma 2.8 Under the conditions listed in Lemma 2.3, we have for 0 ≤ t ≤ T , that

‖ux(t)‖2 + ‖v(t)‖2 +

∫ t

0

∫
R

u2
xx

v1+a
dxdτ

≤ O(1) ‖(v0 − 1, u0, θ0 − 1,Φ0x)‖2

+O(1)
∥∥∥θ2−b

∥∥∥
L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ 2a2

(3a−1)(1−2a)

L∞T,x

)

+O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2(2a−2a2+1)

(3a−1)(1−2a)

L∞T,x

)
. (2.39)

Proof: By differentiating (2.6)2 with respect to x, multiplying the resulting identity by ux, and
integrating the result with respect to t and x over [0, T ]×R, we have

‖ux(t)‖2 +

∫ t

0

∫
R

u2
xx

v1+a
dxdτ + ‖v − 1‖2

≤ O(1)‖u0x‖2 + 2

∫ t

0

∫
R
uxxp(v, θ)xdxdτ︸ ︷︷ ︸

I7

+ 2(1 + a)

∫ t

0

∫
R

uxvxuxx
v2+a

dxdτ︸ ︷︷ ︸
I8

. (2.40)

For I7, we have from (2.9) that

I7 = 2R

∫ t

0

∫
R
uxx

(
θx
v
− θvx

v2

)
dxdτ

≤ 1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

∫ t

0

∫
R

θ2
x

v1−adxdτ +O(1)

∫ t

0

∫
R

θ2v2
x

v3−adxdτ

≤ 1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

∥∥∥θ2−b
∥∥∥
L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ 2a2

(3a−1)(1−2a)

L∞T,x

)

+O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 7a−4a2−1

(3a−1)(1−2a)

L∞T,x

)
. (2.41)
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Here we have used the fact that∫ t

0

∫
R

θ2
x

v1−adxdτ =

∫ t

0

∫
R

θ2
x

vθ2−b v
aθ2−bdxdτ

≤ O(1)‖v‖aL∞T,x
∥∥∥θ2−b

∥∥∥
L∞T,x

∫ t

0

∫
R

θ2
x

vθ2−bdxdτ

≤ O(1)‖v‖aL∞T,x
∥∥∥θ2−b

∥∥∥
L∞T,x

≤ O(1)
∥∥∥θ2−b

∥∥∥
L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ 2a2

(3a−1)(1−2a)

L∞T,x

)
,

and ∫ t

0

∫
R

θ2v2
x

v3−adxdτ =

∫ t

0

∫
R

v2
x

v2+2a

θ2

v1−3a
dxdτ

≤
∫ t

0

∫
R

(
max
x∈R

θ2(s, x)ds

)
‖v‖3a−1

L∞T,x

(∫
R

v2
x

v2+2a
dx

)
dτ

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

3a−1

L∞T,x

)
‖v‖3a−1

L∞T,x

∫ t

0

(
max
x∈R

θ2(s, x)ds

)

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

3a−1

L∞T,x

)
‖v‖3a−1

L∞T,x

∫ t

0

(
max
x∈R

θ1−bθ1+b(s, x)ds

)

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 5a−1

3a−1

L∞T,x

)
‖v‖3a−1

L∞T,x

∫ t

0

(
max
x∈R

θ1+b(s, x)ds

)

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 5a−1

3a−1

L∞T,x

)
‖v‖3a−1

L∞T,x

(
1 + ‖v‖L∞T,x

)
≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 7a−4a2−1

(3a−1)(1−2a)

L∞T,x

)
,

where (2.9), (2.21)-(2.23), and (2.38) are used.
As for I8, since (2.36), (2.37) together with the Sobolev inequality imply∫ t

0
‖ux(τ)‖2L∞x dτ ≤

∫ t

0
‖ux(τ)‖‖uxx(τ)‖dτ

≤
(∫ t

0
‖ux(τ)‖2dτ

) 1
2
(∫ t

0
‖uxx(τ)‖2dτ

) 1
2

≤ ‖v‖1+a
L∞T,x

(∫ t

0

∥∥∥∥ ux

v
1+a
2

(τ)

∥∥∥∥2

dτ

) 1
2
(∫ t

0

∥∥∥∥ uxx
v

1+a
2

(τ)

∥∥∥∥2

dτ

) 1
2

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 3a

(3a−1)(1−2a)

L∞T,x

)(∫ t

0

∥∥∥∥ uxx
v

1+a
2

(τ)

∥∥∥∥2

dτ

) 1
2

, (2.42)

we can deduce from (2.35)-(2.38) that

I8 ≤
1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

∫ t

0

∫
R

u2
xv

2
x

v3+a
dxdτ
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≤ 1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

∫ t

0

∥∥∥∥∥ u2
x

v1−a

∥∥∥∥∥
L∞x

∫
R

v2
x

v2+2a
dxdτ

≤ 1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

∥∥∥∥1

v

∥∥∥∥1−a

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ 2a

3a−1

L∞T,x

)∫ t

0
‖ux(τ)‖2L∞x dτ

≤ 1

4

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2a−2a2+1

(3a−1)(1−2a)

L∞T,x

)(∫ t

0

∫
R

u2
xx

v1+a
dxdτ

) 1
2

≤ 1

2

∫ t

0

∫
R

u2
xx

v1+a
dxdτ +O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2(2a−2a2+1)

(3a−1)(1−2a)

L∞T,x

)
. (2.43)

Putting (2.40), (2.41), and (2.43) together and noticing that 2(2a− 2a2 + 1) > 7a− 4a2 − 1
imply (2.39), and this completes the proof of Lemma 2.8.

Now we turn to deduce the upper bound on θ(t, x).

Lemma 2.9 Under the conditions in Lemma 2.3, we have

‖θ‖L∞T,x ≤ O(1)

1 +

∫ t

0

∥∥∥∥∥ u2
x

v1+a

∥∥∥∥∥
L∞x

+

∥∥∥∥∥u2
x

v2

∥∥∥∥∥
L∞x

+ ‖θ‖2L∞x

 dτ
 . (2.44)

Proof: From (2.6)3, it is easy to see that for each p > 1,

Cv
[
(θ − 1)2p

]
t
+ 2p(2p− 1)(θ − 1)2(p−1) θ

bθ2
x

v

=

{
2p(θ − 1)2p−1θbθx

v

}
x

+
2p(θ − 1)2p−1

v1+a
u2
x −

2pRθ

v
ux(θ − 1)2p−1. (2.45)

Integrating (2.45) with respect to x over R, we have

Cv
(
‖θ − 1‖2pL2p

)
t
≤ 2p

∫
R

u2
x(θ − 1)2p−1

v1+a
dx︸ ︷︷ ︸

I9

− 2pR

∫
R

θux(θ − 1)2p−1

v
dx︸ ︷︷ ︸

I10

. (2.46)

Since

I9 ≤ 2pO(1)‖θ − 1‖2p−1
L2p

∥∥∥∥∥ u2
x

v1+a

∥∥∥∥∥
L2p

,

I10 ≤ 2pO(1)‖θ − 1‖2p−1
L2p

∥∥∥∥θuxv
∥∥∥∥
L2p

hold for some positive constant O(1) independent of p, we have

‖θ − 1‖L2p ≤ O(1) +O(1)

∫ t

0

(∥∥∥∥∥ u2
x

v1+a

∥∥∥∥∥
L2p

+

∥∥∥∥θuxv
∥∥∥∥
L2p

)
dτ. (2.47)

Letting p → ∞ in (2.47) and by exploiting the Cauchy inequality, we can deduce (2.44)
immediately and the proof of Lemma 2.9 is complete.
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We are now ready to use (2.35), (2.36), and (2.44) to deduce a lower bound and an upper
bound on θ(t, x). Firstly, we have from (2.42) and (2.39) that∫ t

0
‖ux(s)‖2L∞x ds

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 3a

(3a−1)(1−2a)

L∞T,x

)

×
[∥∥∥θ2−b

∥∥∥ 1
2

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ a2

(3a−1)(1−2a)

L∞T,x

)
+ 1 +

∥∥∥θ1−b
∥∥∥ 2a−2a2+1

(3a−1)(1−2a)

L∞T,x

]

≤ O(1)
∥∥∥θ2−b

∥∥∥ 1
2

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ 3a+a2

(3a−1)(1−2a)

L∞T,x

)
+O(1)

∥∥∥θ1−b
∥∥∥ 5a−2a2+1

(3a−1)(1−2a)

L∞T,x
+O(1). (2.48)

Thus, we have from (2.35)-(2.36), (2.48) that∫ t

0

∥∥∥∥∥ u2
x

v1+a

∥∥∥∥∥
L∞x

+

∥∥∥∥∥u2
x

v2

∥∥∥∥∥
L∞x

 dτ
≤ O(1)

(∥∥∥∥1

v

∥∥∥∥1+a

L∞T,x

+

∥∥∥∥1

v

∥∥∥∥2

L∞T,x

)∫ t

0
‖ux(τ)‖2L∞x dτ

≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 2

3a−1

L∞T,x

)∫ t

0
‖ux(τ)‖2L∞x dτ

≤ O(1)
∥∥∥θ2−b

∥∥∥ 1
2

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ a2−a+2

(3a−1)(1−2a)

L∞T,x

)
+O(1)

∥∥∥θ1−b
∥∥∥ 3+a−2a2

(3a−1)(1−2a)

L∞T,x
+O(1), (2.49)

and ∫ t

0
max
x∈R

θ2(s, x)ds ≤
∫ t

0
max
x∈R

(
θ1−b(s, x)θb+1(s, x)

)
ds

≤
∥∥∥θ1−b

∥∥∥
L∞T,x

∫ t

0
max
x∈R

θ1+b(s, x)ds

≤ O(1)
∥∥∥θ1−b

∥∥∥
L∞T,x

(
1 + ‖v‖L∞T,x

)
≤ O(1)

(
1 +

∥∥∥θ1−b
∥∥∥ 7a−6a2−1

(3a−1)(1−2a)

L∞T,x

)
. (2.50)

Inserting (2.49) and (2.50) into (2.44) yields

‖θ‖L∞T,x ≤ O(1) +O(1)
∥∥∥θ2−b

∥∥∥ 1
2

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ a2−a+2

(3a−1)(1−2a)

L∞T,x

)

+O(1)
∥∥∥θ1−b

∥∥∥ 3+a−2a2

(3a−1)(1−2a)

L∞T,x
+O(1)

∥∥∥θ1−b
∥∥∥ 7a−6a2−1

(3a−1)(1−2a)

L∞T,x

≤ O(1) +O(1)
∥∥∥θ2−b

∥∥∥ 1
2

L∞T,x

(
1 +

∥∥∥θ1−b
∥∥∥ a2−a+2

(3a−1)(1−2a)

L∞T,x

)
(2.51)

+O(1)
∥∥∥θ1−b

∥∥∥ 3+a−2a2

(3a−1)(1−2a)

L∞T,x
.

Based on the estimate (2.10), (2.35), (2.36) and (2.51), we have
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Corollary 2.4 Under the assumptions in Lemma 2.3, we further assume that 1
3 < a < 1

2 and
one of the following conditions holds

(i). 1 ≤ b < 2a
1−a < 2;

(ii). 0 < b < 1,2−b2 + (a2−a+2)(1−b)
(3a−1)(1−2a) < 1, (1−b)(3+a−2a2)

(3a−1)(1−2a) < 1.

Then there exists positive constants V1 > 0,Θ1 > 0, such thatV
−1

1 ≤ v(t, x) ≤ V1,

Θ−1
1 ≤ θ(t, x) ≤ Θ1.

(2.52)

Proof: We first consider the case b ≥ 1. In this case, we have from (2.10), (2.35), and (2.36)
that ∥∥∥∥1

θ

∥∥∥∥
L∞T,x

≤ O(1) +O(1)
∥∥∥θ1−b

∥∥∥ 1−a
3a−1

L∞T,x
≤ O(1) +O(1)

∥∥∥∥1

θ

∥∥∥∥
(1−a)(b−1)

3a−1

L∞T,x

,

which, together with the assumption b < 2a
1−a , implies that there exists a positive constant

Θ1 > 0 such that

θ(t, x) ≥ Θ−1
1 > 0, ∀(t, x) ∈ [0, T ]×R. (2.53)

Moreover, (2.35), (2.36), (2.53) together with the fact that b ≥ 1 imply that there exists a
positive constant V1 > 0, which may depends on T , such that

V −1
1 ≤ v(t, x) ≤ V1, ∀(t, x) ∈ [0, T ]×R. (2.54)

Thus to prove (2.52), we only need to deduce the upper bound on θ(t, x). For this purpose,
we have from the fact 1 ≤ b < 2a

1−a < 2, (2.53), and (2.51) that

‖θ‖L∞T,x ≤ O(1) +O(1) ‖θ‖
2−b
2

L∞T,x

(
1 +

∥∥∥1
θ

∥∥∥ (a2−a+2)(b−1)
(3a−1)(1−2a)

L∞T,x

)
+O(1)

∥∥∥1
θ

∥∥∥ (3+a−2a2)(b−1)
(3a−1)(1−2a)

L∞T,x

≤ O(1)

(
1 + ‖θ‖

2−b
2

L∞T,x

)
.

(2.55)

From (2.55) and the fact that 0 < 2−b
2 < 1, one can easily deduce an upper bound on θ(t, x).

This completes the proof of (2.52) for the case 1 ≤ b < 2a
1−a .

When b < 1, we have from (2.51) that

‖θ‖L∞T,x ≤ O(1) +O(1)‖θ‖
2−b
2

+
(a2−a+2)(1−b)
(3a−1)(1−2a)

L∞T,x
+O(1)‖θ‖

(3+a−2a2)(1−b)
(3a−1)(1−2a)

L∞T,x
. (2.56)

From (2.56) and the assumption (ii) of Corollary 2.4, we can deduce an upper bound on θ(t, x).
With this, the lower and upper bound on v(t, x) can be deduced from (2.35) and (2.36). And
then (2.10) implies the lower bound on θ(t.x). This completes the proof of the corollary.

With Corollary 2.4, Theorem 1.1 follows from the standard continuation argument.
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3 The proof of Theorem 1.2

First of all, the local solvability of the Cauchy problem (1.1),(1.3) in the function space X (0, t1;
1
2V , 2V ; 1

2Θ, 2Θ
)

with t1 depending on V , V ,Θ,Θ, ‖(v0−1, v0, θ0−1,Φ0x)‖1 can be proved as in

Lemma 3.1. Suppose this solution (v(t, x), u(t, x), θ(t, x),Φ(t, x)) is extended to t = T ≥ t1. To
apply the continuation argument for global existence, we first set the following a priori estimate:

(H2)
1

2
Θ ≤ θ(t, x) ≤ 2Θ, (t, x) ∈ [0, T ]×R.

Here without loss of generality, we can assume that 0 < Θ < 1 < Θ.
Note that the smallness of γ−1 is needed to close the a priori estimate, the generic constants

used later are independent of γ − 1 and whenever the dependence on this factor will be clearly
stated in the estimates.

Similar to Lemma 2.3 we have the following basic energy estimate.

Lemma 3.1 Under the conditions in Theorem 1.2, we have for 0 ≤ t ≤ T that∫
R

{
Rφ(v) +

u2

2
+

R

γ − 1
φ(θ) +

Φ2
x

2v2

}
(t, x)dx+

∫ t

0

∫
R

(
µ(v)u2

x

vθ
+
κ(v, θ)θ2

x

vθ2

)
dxdτ

=

∫
R

(
Rφ(v0) +

u2
0

2
+

R

γ − 1
φ(θ0) +

Φ2
0x

2v2
0

)
(x)dx. (3.1)

Here, as in Section 2, φ(x) = x− lnx− 1.

Now, we turn to deduce an estimate on
∥∥∥µ(v)vx

v

∥∥∥. For this, similar to Lemma 2.5, we can

deduce ∥∥∥∥µ(v)vx
v

∥∥∥∥2

+

∫ t

0

∫
R

µ(v)θv2
x

v3
dxdτ +

∫ t

0

∫
R
g(v)(1− v)dxdτ

≤ O(1)‖v0x‖2 +O(1)

∫ t

0

∫
R

µ(v)u2
x

v
dxdτ︸ ︷︷ ︸

J1

+O(1)

∫ t

0

∫
R

µ(v)θ2
x

vθ
dxdτ︸ ︷︷ ︸

J2

. (3.2)

If the a priori estimate (H2) holds, we have from (3.1) and the assumptions imposed on
κ(v, θ) in Theorem 1.2 that

J1 ≤ O(1)

∫ t

0

∫
R

µ(v)u2
x

vθ
dxdτ ≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

, (3.3)

and

J2 ≤
∫ t

0

∫
R

κ(v, θ)θ2
x

vθ2

θµ(v)

κ(v, θ)
dxdτ

≤ O(1)

∥∥∥∥ µ(v)

κ1(v)

∥∥∥∥
L∞

∫ t

0

∫
R

κ(v, θ)θ2
x

vθ2
dxdτ

≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2 ∥∥∥∥ µ(v)

κ1(v)

∥∥∥∥
L∞

. (3.4)

Putting (3.2), (3.3) and (3.4) together, we obtain
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Lemma 3.2 Under the assumptions in Lemma 3.1 and the a priori assumption (H2), we have∥∥∥∥µ(v)vx
v

∥∥∥∥2

+

∫ t

0

∫
R

µ(v)v2
x

v3
dxdτ ≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x, v0x

)∥∥∥∥2
1 +

∥∥∥∥ µ(v)

κ1(v)

∥∥∥∥
L∞T,x

 .
(3.5)

Having obtained (3.1) and (3.5), we can use Y. Kanel’s argument, cf. [21], to deduce the
lower and upper bounds on v(t, x) as follows.

Lemma 3.3 Under the assumptions in Theorem 1.2 and Lemma 3.2, there exists a positive

constant V2 ≥ 1, which depends only on
∥∥∥(v0 − 1, u0,

θ0−1√
γ−1

,Φ0x, v0x

)∥∥∥, V , V ,Θ, and Θ, but is

independent of T , such that

V −1
2 ≤ v(t, x) ≤ V2, (t, x) ∈ [0, T ]×R. (3.6)

Proof: Define

Ψ(v) =

∫ v

1

√
φ(z)

z
µ(z)dz, φ(z) = z − ln z − 1,

and notice that

|Ψ(v)| =
∣∣∣∣∫ x

−∞
Ψ(v(t, y))ydy

∣∣∣∣
≤
∫
R

∣∣∣∣√φ(v)
µ(v)vx
v

∣∣∣∣ dx
≤ ‖φ(v)‖

1
2

L1

∥∥∥∥µ(v)vx
v

∥∥∥∥
≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x, v0x

)∥∥∥∥2
1 +

∥∥∥∥ µ(v)

κ1(v)

∥∥∥∥
L∞T,x

 1
2

.

It is straightforward to deduce (3.6) from the assumptions in Theorem 1.2. This completes the
proof of the lemma.

The next lemma is about the estimate on ‖ux(t)‖.

Lemma 3.4 Under the assumptions in Lemma 3.3, we have for each 0 ≤ t ≤ T that

‖ux(t)‖2 + ‖v(t)− 1‖2 +

∫ t

0

∫
R

u2
xx

v1+a
dxdτ ≤ O(1)

∥∥∥∥(v0 − 1, v0x, ux, u0x,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥6

. (3.7)

Since v(t, x) satisfies (3.6) and θ(t, x) is assumed to satisfy the a priori estimate (H2), (3.7)
can be proved by applying the argument used in the proof of Lemma 2.8. Thus, we omit the
detail for brevity.

To close the a priori estimate (H2), we need to deduce an estimate on ‖θx(t)‖. For the case
when κ(v, θ) ≡ κ(θ), we have

Lemma 3.5 Under the assumptions in Theorem 1.2 and Lemma 3.3, we have∫
R

|K(θ)x|2

γ − 1
dx+

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ ≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥10

1

. (3.8)

Here

K(θ) =

∫ θ

1
κ(z)dz. (3.9)
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Proof: Multiplying (1.1)3 by κ(θ) and differentiating the resulting equation with respect to x,
we get

CvK(θ)tx + (κ(θ)p(v, θ)ux)x =

(
κ(θ)µ(v)u2

x

v

)
x

+

[
κ(θ)

(
K(θ)x
v

)
x

]
x

. (3.10)

Multiplying (3.10) by K(θ)x and integrating with respect to t and x over [0, t]×R give∫
R

Cv
2
|K(θ)x|2 dx+

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ
≤ O(1)

∥∥∥∥ θ0x√
γ − 1

∥∥∥∥2

+O(1)

∫ t

0

∫
R

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣ ∣∣∣∣K(θ)x
v

vx

∣∣∣∣ dxdτ︸ ︷︷ ︸
J3

+

∫ t

0

∫
R
K(θ)x

(
κ(θ)µ(v)u2

x

v

)
x

dxdτ︸ ︷︷ ︸
J4

−
∫ t

0

∫
R
K(θ)x (κ(θ)p(v, θ)ux)x dxdτ︸ ︷︷ ︸

J5

. (3.11)

Notice that

‖θx‖L∞x ≤ O(1)

∥∥∥∥K(θ)x
v

∥∥∥∥
L∞x

≤ O(1)

∥∥∥∥K(θ)x
v

∥∥∥∥
1
2
∥∥∥∥(K(θ)x

v

)
x

∥∥∥∥
1
2

≤ O(1)‖θx‖
1
2

∥∥∥∥(K(θ)x
v

)
x

∥∥∥∥
1
2

,

(3.12)
we have from (3.1), (3.5), (3.6), and the a priori estimate (H2) that

J3 ≤
1

12

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∫ t

0

∫
R
v2
xθ

2
xdxdτ

≤ 1

12

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∫ t

0
‖vx(τ)‖2‖θx(τ)‖

∥∥∥∥√vκ(θ)

(
K(θ)x
v

)
x

∥∥∥∥ dτ
≤ 1

6

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∫ t

0
‖vx(τ)‖4‖θx(τ)‖2dτ

≤ 1

6

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥6

1

, (3.13)

J4 = −
∫ t

0

∫
R
κ(θ)µ(v)u2

x

(
K(θ)x
v

)
x
dxdτ −

∫ t

0

∫
R

K(θ)xvxκ(θ)µ(v)u2
x

v2
dxdτ

≤ 1

12

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∫ t

0

∫
R
u4
xdxdτ +O(1)

∫ t

0

∫
R
θ2
xv

2
xdxdτ

≤ 1

6

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥10

1

, (3.14)

and

J5 =

∫ t

0

∫
R

(
K(θ)x
v

)
x
vκ(θ)p(v, θ)uxdxdτ +

∫ t

0

∫
R

K(θ)x
v

vxκ(θ)p(v, θ)uxdxdτ

≤ 1

12

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∫ t

0

∫
R

(
u2
x + θ2

xv
2
x

)
dxdτ

≤ 1

6

∫ t

0

∫
R
vκ(θ)

∣∣∣∣(K(θ)x
v

)
x

∣∣∣∣2 dxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

Φ0x

)∥∥∥∥6

1

. (3.15)
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Here we have used the fact that∫ t

0

∫
R
u4
xdxdτ ≤ O(1)

∫ t

0
‖ux(τ)‖2‖ux(τ)‖2L∞x dτ

≤ O(1)

∫ t

0
‖ux(τ)‖3‖uxx(τ)‖dτ

≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

Φ0x

)∥∥∥∥10

1

. (3.16)

Inserting (3.13)-(3.15) into (3.11), we deduce (3.8) and complete the proof of the lemma.

Now we turn to the case when κ(v, θ) depends on both v and θ. For this , we have

Lemma 3.6 Under the assumptions in Lemma 3.5, if κθθ(v, θ) < 0 holds for v > 0, θ > 0, then
we have ∥∥∥∥ θx(t)√

γ − 1

∥∥∥∥2

+

∫ t

0

κ(v, θ)

v
θ2
xxdxdτ −

∫ t

0

∫
R

κθθ(v, θ)

v
θ4
xdxdτ (3.17)

≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥6

1

.

Proof: Differentiating (1.1)3 with respect to x and multiplying the resulting equation by θx, we
have by integrating it over [0, t]×R that

Cv
2
‖θx(t)‖2 +

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ

=
Cv
2
‖θ0x‖2 +

∫ t

0

∫
R
θx

(
µ(v)

v
u2
x

)
x
dxdτ︸ ︷︷ ︸

J6

−
∫ t

0

∫
R
θx

(
κ(v, θ)

v

)
x
θxxdxdτ︸ ︷︷ ︸

J7

+

∫ t

0

∫
R
θxxp(v, θ)uxdxdτ︸ ︷︷ ︸

J8

. (3.18)

For J6, J7 and J8, we have from Lemma 3.1-Lemma 3.4 and the a priori estimate (H2) that

J6 = −
∫ t

0

∫
R

µ(v)

v
u2
xθxxdxdτ

≤ 1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∫ t

0

∫
R
u4
xdxdτ

≤ 1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∫ t

0

∫
R
‖ux(τ)‖3‖uxx(τ)‖dxdτ

≤ 1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥10

1

, (3.19)

J8 ≤
1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∫ t

0

∫
R
u2
xdxdτ

≤ 1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

1

, (3.20)
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and

J7 = −
∫ t

0

∫
R
θ2
x

(
κ(v, θ)

v

)
θ
θxxdxdτ −

∫ t

0

∫
R
θxvx

(
κ(v, θ)

v

)
v
θxxdxdτ

=
1

3

∫ t

0

∫
R
θ4
x

κθθ(v, θ)

v
dxdτ +

1

3

∫ t

0

∫
R
θ3
xvx

(
κθ(v, θ)

v

)
v
dxdτ −

∫ t

0

∫
R
θxvx

(
κ(v, θ)

v

)
v
θxxdxdτ

≤ 1

6

∫ t

0

∫
R
θ4
x

κθθ(v, θ)

v
dxdτ +

1

12

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∫ t

0

∫
R
θ2
xv

2
xdxdτ

≤ 1

6

∫ t

0

∫
R
θ4
x

κθθ(v, θ)

v
dxdτ +

1

6

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ

+O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥6

1

. (3.21)

Here we have used the fact that∫ t

0

∫
R
θ2
xv

2
xdxdτ

≤
∫ t

0
‖θx(τ)‖2L∞x ‖vx(τ)‖2dτ ≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

1

∫ t

0
‖θx(τ)‖2L∞x dτ

≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

1

∫ t

0
‖θx(τ)‖‖θxx(τ)‖dτ

≤ 1

12

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ +O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥4

1

∫ t

0

∫
R
θ2
xdxdτ.

Inserting (3.19)-(3.21) into (3.18), we obtain

Cv
2
‖θx(t)‖2 +

1

2

∫ t

0

∫
R

κ(v, θ)

v
θ2
xxdxdτ −

1

6

∫ t

0

∫
R

κθθ(v, θ)

v
θ4
xdxdτ (3.22)

≤ O(1)

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥10

1

.

This is (3.17) and the proof of Lemma 3.6 is completed.

Lemma 3.1-Lemma 3.6 imply that under the a priori estimate (H2), there exist two positive

constants V2 ≥ 1 and C1 ≥ 1 with V2 depending only on
∥∥∥(v0 − 1, u0,

θ0−1√
γ−1

,Φ0x, v0x

)∥∥∥, V , V ,Θ,

and Θ but independent of T and γ − 1, and C1 depending only on V2 but independent of T > 0
and γ − 1, such that

V −1
2 ≤ v(t, x) ≤ V2, (t, x) ∈ [0, T ]×R,∥∥∥∥(v − 1, u,

θ − 1√
γ − 1

,Φx

)
(t)

∥∥∥∥2

+

∫ t

0

∫
R

(
u2
x + θ2

x

)
(τ, x)dxdτ ≤ C1

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

,

‖vx(t)‖2 +

∫ t

0

∫
R
v2
x(τ, x)dxdτ ≤ C1

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥2

1

,

‖ux(t)‖2 +

∫ t

0

∫
R
u2
xx(τ, x)dxdτ ≤ C1

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥6

1

,∥∥∥∥ θx(τ)√
γ − 1

∥∥∥∥2

+

∫ t

0

∫
R
θ2
xx(τ, x)dxdτ ≤ C1

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥10

1

(3.23)
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hold for 0 ≤ t ≤ T .

To obtain the global existence of solutions, we only need to close the a priori estimate (H2).
For this, we need the smallness of γ−1 > 0. In fact, we have from (3.23)2, (3.23)5 and Sobolev’s
inequality that

‖θ(t)− 1‖L∞T,x ≤ ‖θ(t)− 1‖
1
2 ‖θx(t)‖

1
2 ≤ C1(γ − 1)

1
2

∥∥∥∥(v0 − 1, u0,
θ0 − 1√
γ − 1

,Φ0x

)∥∥∥∥4

1

. (3.24)

On the other hand, since θ = A
Rv

1−γ exp
(
γ−1
R s

)
, if we set s = R

γ−1 ln R
A , we have

θ − 1 =
A

R
v1−γ exp

(
γ − 1

R
s

)
− 1

=
A

R
v1−γ exp

(
γ − 1

R
s

)
− A

R
exp

(
γ − 1

R
s

)
=
A

R

(
v1−γ − 1

)
exp

(
γ − 1

R
s

)
+
A

R

(
exp

(
γ − 1

R
s

)
− exp

(
γ − 1

R
s

))
.

Consequently,

‖θ0 − 1‖ ≤ O(1)
A(γ − 1)

R
exp

(
γ − 1

R
‖s0‖L∞x

)[∥∥∥v−γ0

∥∥∥
L∞x
‖v0 − 1‖+

1

R
‖s0(x)− s‖

]
, (3.25)

‖θ0x‖ ≤ O(1)
A(γ − 1)

R
exp

(
γ − 1

R
‖s0‖L∞x

)[
(inf v0(x))−γ ‖v0x‖+

1

R

(
inf
x
v0(x)

)1−γ
‖s0x‖

]
.

Since ‖v0(x)‖L∞x , inf v0(x), γ−1
A ‖s0(x)‖L∞x are assumed to be independent of γ − 1, we have

from (3.24) and (3.25) that

‖θ(t)− 1‖L∞x ≤ C2(γ − 1)
1
2 ‖(v0 − 1, u0,Φ0x)‖31 + C3(γ − 1)2‖(v0 − 1, s0 − s)‖31 (3.26)

holds for 0 ≤ t ≤ T .

Thus if γ − 1 > 0 is chosen to be sufficiently small such that

C2(γ−1)
1
2 ‖(v0 − 1, u0,Φ0x)‖31 +C3(γ−1)2‖(v0−1, u0, s0− s)‖31 ≤ min

{
Θ− 1, 1−Θ

}
, (3.27)

we have from (3.26) and (3.27) that for any 0 ≤ t ≤ T, x ∈ R,

θ(t, x) ≤ ‖θ(t, x)− 1‖L∞T,x + 1 ≤ 1 + min
{

Θ− 1, 1−Θ
}
≤ Θ, (3.28)

and

θ(t, x) ≥ 1− ‖θ(t, x)− 1‖L∞T,x ≥ 1−min
{

Θ− 1, 1−Θ
}
≥ 1− (1−Θ) = Θ. (3.29)

That is

Θ ≤ θ(t, x) ≤ Θ, x ∈ R, 0 ≤ t ≤ T. (3.30)

This closes the a priori estimate (H2) and then Theorem 1.2 follows from the standard contin-
uation argument.
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4 The proof of Theorem 1.3

When µ is a positive constant, the Cauchy Problem (1.1), (1.3) can be rewritten as

vt − ux = 0,

ut +
(
Rθ
v

)
x

= µ
(ux
v

)
x

+ Φx
v ,

Cvθt + Rθ
v ux = µu2x

v +
(
κ(v,θ)θx

v

)
x
,(

Φx
v

)
x

= 1− v, lim
|x|→+∞

Φ(t, x) = 0

(4.1)

with prescribed initial data

(v(0, x), u(0, x), θ(0, x)) = (v0(x), u0(x), θ0(x)), lim
x→±∞

(v0(x), u0(x), θ0(x)) = (1, 0, 1). (4.2)

Let (v(t, x), u(t, x), θ(t, x)) ∈ X(0, T ;M0,M1;N0, N1) be a solution of the Cauchy Problem
(1.1), (1.3) which is defined in the time strip [0, T ] for some T > 0, to extend such a solution
globally, as pointed out in the proofs of Theorems 1.1 and 1.2, we only need to deduce positive
lower and upper bounds on v(t, x) and θ(t, x) which are independent of M0,M1, N0 and N1 but
may depend on T .

First, similar to the proof of Theorem 1.2, we have the following basic energy estimate

Lemma 4.1 Under the conditions in Theorem 1.3, we have for 0 ≤ t ≤ T that∫
R

{
Rφ(v) +

u2

2
+

R

γ − 1
φ(θ) +

Φ2
x

2v2

}
(t, x)dx+

∫ t

0

∫
R

(
µu2

x

vθ
+
κ(v, θ)θ2

x

vθ2

)
dxdτ

=

∫
R

(
Rφ(v0) +

u2
0

2
+

R

γ − 1
φ(θ0) +

Φ2
0x

2v2
0

)
(x)dx. (4.3)

Here, as in Section 2, φ(x) = x− lnx− 1.

Based on the estimate (4.3), we now turn to deduce the desired lower and upper bounds on
v(t, x) and θ(t, x). To this end, for each x ∈ R, we can find some i ∈ Z such that x ∈ [i, i+ 1].
Recall ai(t), bi(t) defined in (2.24) and (2.25) and notice that in Theorem 1.3, since µ is a positive
constant, we have by employing the argument developed in [25] that

v(t, x) =
1 + R

µ

∫ t

0
θ(τ, x)Bi(τ, x)Yi(τ)Ai(τ, x)dτ

Bi(t, x)Yi(t)Ai(t, x)
. (4.4)

Here

Ai(t, x) = exp

(
−
∫ t

0

∫ ai(t)

x

(
Φx

v

)
(τ, y)dydτ

)
, (4.5)

Bi(t, x) =
v0(ai(t))

v0(x)v(t, ai(t))
exp

(
1

µ

∫ ai(t)

x
(u(t, y)− u0(y))dy

)
, (4.6)

Yi(t) = exp

(
R

µ

∫ t

0

(
θ

v

)
(τ, ai(t))dτ

)
. (4.7)
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(2.5) implies that (
Φx

v

)
(t, x) = −

∫ t

0
u(τ, x)dx+

(
Φx

v

)
(0, x), (4.8)

we have from (4.8) and (4.3) that there exist positive constants A, A, B, B such that

0 < A ≤ Ai(t, x) ≤ A, 0 < B ≤ Bi(t, x) ≤ B, Yi(t) ≥ 1. (4.9)

On the other hand, notice that (4.4) can be rewritten as

v(t, x)Yi(t) =
1 + R

µ

∫ t

0
θ(τ, x)Bi(τ, x)Yi(τ)Ai(τ, x)dτ

Bi(t, x)Ai(t, x)
. (4.10)

Integrating (4.10) with respect to x over [i, i+ 1], we can get from (2.24) and (4.9) that

Yi(t) ≤ O(1)

(
1 +

∫ t

0

(∫ i+1

i
θ(τ, y)dy

)
Yi(τ)dτ

)
(4.11)

≤ O(1)

(
1 +

∫ t

0
Yi(τ)dτ

)
.

From which and the Gronwall inequality, we can deduce that there exists a positive constant Y
which is independent of M0,M1, N0, N1 and i but may depend on T such that

1 ≤ Yi(t) ≤ Y , ∀i ∈ Z, ∀t ∈ [0, T ]. (4.12)

From (4.4), (4.9), and (4.12), one easily deduce that there exists a positive constant V3 > 0
which is independent of M0,M1, N0, N1 but may depend on T such that

v(t, x) ≥ V −1
3 > 0, ∀(t, x) ∈ [0, T ]×R. (4.13)

(4.13) together with Lemma 2.4 imply that there exists a positive constant Θ−1
3 > 0 which

is independent of M0,M1, N0, N1 but may depend on T such that

θ(t, x) ≥ Θ−1
3 > 0, ∀(t, x) ∈ [0, T ]×R. (4.14)

Now we turn to deduce an upper bound for v(t, x). For this purpose, notice from (2.24),
(2.25), (4.9)-(4.14), (4.12) and the fact

min
v≥V −1

3 , θ≥Θ−1
3

κ(v, θ) ≥ κ
(
V −1

3 ,Θ−1
3

)
> 0

that

θ(t, x) ≤ 2

∣∣∣∣√θ(t, x)−
√
θ(t, bi(t))

∣∣∣∣2 + 4θ(t, bi(t))

=

∣∣∣∣∣
∫ bi(t)

x

( |θx|√
θ

)
(t, y)dy

∣∣∣∣∣
2

+ 4θ(t, bi(t))

≤ O(1)

(
1 +

∫ i+1

i

κ(v, θ)θ2
x

vθ2
dx ·

∫ i+1

i

vθ

κ(v, θ)
dx

)
(4.15)

≤ O(1)

(
1 + ‖v(t)‖L∞x

∫ i+1

i

κ(v, θ)θ2
x

vθ2
dx

)
.
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(4.4) together with (4.3), (2.24), (2.25), (4.9)-(4.14), (4.12), and (4.15) imply

‖v(t)‖L∞x ≤ O(1)

(
1 +

∫ t

0
max
x∈R

θ(τ, x)dτ

)
≤ O(1)

(
1 +

∫ t

0
‖v(τ)‖L∞x

∫
R

(
κ(v, θ)θ2

x

vθ2

)
(τ, x)dxdτ

)
.

Based on the above inequality, we can conclude from (4.3), (4.13), (4.14) and the Gronwall
inequality that

Lemma 4.2 Under the conditions listed in Lemma 4.1, there exist positive constants V3 and
Θ3 such that

0 < V −1
3 ≤ v(t, x) ≤ V3, θ(t, x) ≥ Θ−1

3 > 0 (4.16)

hold for (t, x) ∈ [0, T ] × R. Here the constants V3 and Θ3 are independent of M0,M1, N0, N1

but may depend on T .

To complete the proof of Theorem 1.3, we only need to deduce an upper bound on θ(t, x).
To do so, as a direct consequence of (4.15), (4.16), we can deduce from (4.3) and the fact

(θ − 1)2 ≤ O(1)(1 + |θ − 1|)φ(θ)

that

Corollary 4.1 Under the conditions listed in Lemma 4.1, we have∫ t

0
max
x∈R

θ(τ, x)dτ ≤ O(1) (4.17)

and ∫ t

0

∫
R

(θ(τ, x)− 1)2dxdτ ≤ O(1). (4.18)

Here and throughout this section, O(1) is used to denote some positive constant independent of
M0,M1, N0, N1 but may depend on T .

With (4.17) and (4.18) in hand, we have from (4.16) and the proof of Lemma 2.6 that

Lemma 4.3 Under the conditions listed in Lemma 4.1, we have

‖u(t)‖2 +

∫ t

0
‖ux(s)‖2ds ≤ O(1). (4.19)

As to the estimate on ‖vx(t)‖, if we set

κ1(θ) = min
V −1
3 ≤v≤V3

κ(v, θ), (4.20)

we have from the proof of Lemma 2.5 and the fact∫ t

0

∫
R

θ2
x

θ
dxdτ ≤

∥∥∥∥ θ

κ1(θ)

∥∥∥∥
L∞t,x

∫ t

0

∫
R

κ(v, θ)θ2
x

θ2
dxdτ ≤ O(1)

∥∥∥∥ θ

κ1(θ)

∥∥∥∥
L∞t,x

that
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Lemma 4.4 Under the conditions listed in Lemma 4.1, we have

‖vx(t)‖2 +

∫ t

0

∥∥∥∥√θ(s)vx(s)

∥∥∥∥2

ds ≤ O(1)

1 +

∥∥∥∥ θ

κ1(θ)

∥∥∥∥
L∞t,x

 . (4.21)

To deduce an estimate on ‖ux(t)‖, noticing that∫ t

0

∫
R
u2
xv

2
xdxds ≤ ε

∫ t

0
‖uxx(s)‖2ds+O(1)

∫ t

0
‖ux(s)‖2‖vx(s)‖4ds,

we have from the proof of Lemma 2.8, (4.3), (4.19), and (4.21) that

Lemma 4.5 Under the conditions listed in Lemma 4.1, we have

‖ux(t)‖2 +

∫ t

0
‖uxx(s)‖2ds

≤ O(1) +O(1)

∫ t

0

∫
R

(
θ2
x + θ2v2

x + u2
xv

2
x

)
dxds

≤ O(1)

1 +

∥∥∥∥ θ

κ1(θ)

∥∥∥∥2

L∞t,x

+ ‖θ‖L∞t,x

∥∥∥∥ θ

κ1(θ)

∥∥∥∥
L∞t,x

+

∥∥∥∥∥ θ√
κ1(θ)

∥∥∥∥∥
2

L∞t,x

 . (4.22)

Now we turn to deduce an upper bound on θ(t, x) for the case lim
θ→+∞

κ1(θ) = +∞ based on

the above estimates. In fact (2.44) together with (4.17) and the Gronwall inequality imply

‖θ(t)‖L∞x ≤ O(1)

(
1 +

∫ t

0
‖ux(s)‖2L∞x + ‖θ − 1‖2L∞x ds

)
≤ O(1)

(
1 +

∫ t

0
‖ux(s)‖‖uxx(s)‖+ ‖θ − 1‖2L∞x ds

)
(4.23)

≤ O(1)

1 +

∥∥∥∥ θ

κ1(θ)

∥∥∥∥2

L∞t,x

+ ‖θ‖
1
2
L∞t,x

∥∥∥∥ θ

κ1(θ)

∥∥∥∥ 1
2

L∞t,x

+

∥∥∥∥∥ θ√
κ1(θ)

∥∥∥∥∥
L∞t,x

+

∫ t

0
‖θ − 1‖2L∞x ds

 .
Here we have used (4.19) and (4.22).

From (4.23) and the assumption that lim
θ→+∞

κ1(θ) = +∞, one easily deduce an upper bound

on θ(t, x).
For the case κ(v, θ) is bounded from above, the above argument does not apply and we have

to use another method to deduce an upper bound on θ(t, x). For this purpose, as in [1], set

w(t, x) =
1

2
u2(t, x) + Cv(θ(t, x)− 1), (4.24)

we can easily deduce that

wt = µ

(
wx
v

)
x

+

(
(κ(v, θ)− Cvµ)

θx
v

)
x
−
(
Rθu

v

)
x

+
uΦx

v
. (4.25)

Multiplying (4.25) by w and integrating the result with respect to t and x over [0, t]×R, we
have by some integrations by parts that

1

2
‖w(t)‖2 +

∫ t

0

∫
R

µw2
x

v
dxds ≤ O(1)−

∫ t

0

∫
R

(κ(v, θ)− Cvµ)
wxθx
v

dxds (4.26)

+

∫ t

0

∫
R

(
Rθuwx
v

+
wuΦx

v

)
dxds︸ ︷︷ ︸

K1

.
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Since

µw2
x

v
=
µu2u2

x

v
+

2µCvuuxθx
v

+
C2
vµθ

2
x

v
,

−(κ(v, θ)− Cvµ)θxwx
v

=
(Cvµ− κ(v, θ))Cvθ

2
x

v
+

(cvµ− κ(v, θ))θxuux
v

,

K1 ≤ O(1) + ε

∫ t

0
‖wx(s)‖2ds

+O(1)

∫ t

0

∫
R

(
(θ − 1)2u2 + w2u2 +

(
Φx

v

)2
)
dxds

≤ O(1) + ε

∫ t

0
‖wx(s)‖2ds+O(1)

∫ t

0

∫
R

(
(θ − 1)2u2 + w2u2

)
dxds,∫ t

0

∫
R
|uuxθx|dxds ≤ ε

∫ t

0
‖θx(s)‖2ds+O(1)

∫ t

0

∫
R
u2u2

xdxds,

we have by substituting the above estimates into (4.26) that

‖w(t)‖2 +

∫ t

0

∫
R

(Cvκ(v, θ)− ε)θ2
xdxds (4.27)

≤ O(1) +O(1)

∫ t

0

∫
R

(
(θ − 1)2u2 + w2u2 + u2u2

x

)
dxds.

Here and in the above analysis, we have used the fact that κ(v, θ) is uniformly bounded for
0 < V −1

3 ≤ v ≤ V3, θ ≥ Θ−1
3 .

To estimate
∫ t
0

∫
R u

2u2
xdxds, we multiply (4.1) by u3 and integrate the result with respect to

t and x over [0, t]×R to yield

‖u(t)‖4L4 +

∫ t

0

∫
R

µu2u2
x

v
dxds ≤ O(1) +O(1)

∫ t

0

∫
R

∣∣∣∣∣Rθu2ux
v

∣∣∣∣∣ dxds︸ ︷︷ ︸
K2

(4.28)

+O(1)

∫ t

0

∫
R

∣∣∣∣∣Φxu
3

v

∣∣∣∣∣ dxds︸ ︷︷ ︸
K3

.

Due to

K3 ≤ O(1)

∫ t

0

∫
R

∣∣∣∣Φx

v

∣∣∣∣2 dxds+O(1)

∫ t

0

∫
R
u6dxds

≤ O(1) +O(1)

∫ t

0
‖u(s)‖4L∞x ds

≤ O(1) + ε

∫ t

0
‖u(s)ux(s)‖2ds+O(1)

∫ t

0
‖u(s)‖4L4ds,

K2 ≤ ε
∫ t

0

∫
R

µu2u2
x

v
dxds+O(1)

∫ t

0

∫
R

(θ − 1)2u2dxds+O(1),

we have by inserting the above estimates into (4.28) and by employing the Gronwall inequality
that

‖u(t)‖4L4 +

∫ t

0
‖u(s)ux(s)‖2ds ≤ O(1) +O(1)

∫ t

0

∫
R

(θ − 1)2u2dxds. (4.29)
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A suitable linear combination of (4.29) and (4.27) yields

‖θ(t)− 1‖2 + ‖u(t)‖4L4 +

∫ t

0

(
‖θx(s)‖2 + ‖u(s)ux(s)‖2

)
ds (4.30)

≤ O(1) +O(1)

∫ t

0

∫
R

(
θ − 1)2u2 + u2w2

)
dxds.

Here again we have used the fact that κ(v, θ) is bounded both from below and above for 0 <
V −1

3 ≤ v ≤ V3, θ ≥ Θ−1
3 > 0.

From (4.19), we have∫ t

0

∫
R

(θ − 1)2u2dxds ≤ O(1)

∫ t

0
‖θ(s)− 1‖2L∞x ds,∫ t

0

∫
R
u2w2dxds ≤ O(1)

∫ t

0
‖w(s)‖2L∞x ds

≤
∫ t

0

(
‖θ(s)‖2L∞x + ‖u(s)‖4L∞x

)
ds,∫ t

0
‖θ(s)− 1‖2L∞x ds ≤ ε

∫ t

0
‖θx(s)‖2ds+O(1)

∫ t

0
‖θ(s)− 1‖2ds,∫ t

0
‖u(s)‖4L∞x ds ≤ ε

∫ t

0
‖u(s)ux(s)‖2ds+O(1)

∫ t

0
‖u(s)‖4L4ds.

Putting the above estimates into (4.30), we have by the Gronwall inequality that

‖θ(t)− 1‖2 + ‖u(t)‖4L4 +

∫ t

0

(
‖θx(s)‖2 + ‖u(s)ux(s)‖2

)
ds ≤ O(1). (4.31)

A direct consequence of (4.31) is∫ t

0
‖θ(s)‖2L∞x ds ≤ O(1) (4.32)

and the estimate (4.21) obtained in Lemma 4.4 can be improved as

‖vx(t)‖2 +

∫ t

0

∥∥∥∥√θ(s)vx(s)

∥∥∥∥2

ds ≤ O(1). (4.33)

(4.19), (4.32) together with (4.33) imply∫ t

0

∫
R
θ2v2

xdxds ≤ O(1)

∫ t

0
‖θ(s)‖2L∞x ‖vx(s)‖2ds

≤ O(1)

∫ t

0
‖θ(s)‖2L∞x ds ≤ O(1),∫ t

0

∫
R
u2
xv

2
xdxds ≤ O(1)

∫ t

0
‖ux(s)‖2L∞x ‖vx(s)‖2ds

≤ O(1)

∫ t

0
‖ux(s)‖2L∞x ds

≤ ε
∫ t

0
‖uxx(s)‖2ds+O(1)

∫ t

0
‖ux(s)‖2ds

≤ ε
∫ t

0
‖uxx(s)‖2ds+O(1).
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Combining the above estimates with the first inequality of (4.22) yields

‖ux(t)‖2 +

∫ t

0
‖uxx(s)‖2ds ≤ O(1). (4.34)

(4.34) together with (4.19) imply∫ t

0
‖ux(s)‖2L∞x ds ≤ O(1). (4.35)

Having obtained (4.35), the upper bound on θ(t, x) can be obtained immediately from (4.23)
for the case when κ(v, θ) is uniformly bounded for 0 < V −1

3 ≤ v ≤ V3, θ ≥ Θ−1
3 > 0. This

completes the proof of Theorem 1.3.
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