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Abstract

This paper is concerned with a conservation law model of traffic flow on a network of
roads, where each driver chooses his own departure time in order to minimize the sum of
a departure cost and an arrival cost. The model includes various groups of drivers, with
different origins and destinations and having different cost functions. Under a natural
set of assumptions, two main results are proved: (i) the existence of a globally optimal
solution, minimizing the sum of the costs to all drivers, and (ii) the existence of a Nash
equilibrium solution, where no driver can lower his own cost by changing his departure
time or the route taken to reach destination. In the case of Nash solutions, all departure
rates are uniformly bounded and have compact support.

1 Introduction

Consider a model of traffic flow where drivers travel on a network of roads. We denote by
A1, . . . , Am the nodes of the network, and by γij the arc connecting Ai with Aj . Following the
classical papers [13, 14], along each arc the flow of traffic will be modeled by the conservation
law

ρt + [ρ vij(ρ)]x = 0 . (1.1)

Here t is time and x ∈ [0, Lij ] is the space variable along the arc γij . By ρ = ρ(t, x) we denote
the traffic density, while the map ρ 7→ vij(ρ) is the speed of cars as function of the density,
along the arc γij . We assume that vij is a continuous, nonincreasing function. If vij(0) > 0 we
say that the arc γij is viable. It is quite possible that two nodes i, j are not directly linked by
a road. This situation can be easily modeled by taking vij ≡ 0, so that the arc is not viable.
The conservation laws (1.1) are supplemented by suitable boundary conditions at points of
junctions, which will be discussed later.
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We consider n groups of drivers traveling on the network. Different groups are distinguished
by the locations of departure and arrival, and by their cost functions. For k ∈ {1, . . . , n}, let
Gk be the total number of drivers in the k-th group. All these drivers depart from a node Ad(k)

and arrive at a node Aa(k), but can choose different paths to reach destination. Of course, we
assume that there exists at least one chain of viable arcs

Γ
.
=
(
γ
i(0),i(1)

, γ
i(1),i(2)

, . . . , γ
i(ν−1),i(ν)

)
(1.2)

with i(0) = d(k) and i(ν) = a(k), connecting the departure node Ad(k) with the arrival node
Aa(k). We shall denote by

V .
=
{

Γ1, Γ2, . . . , ΓN

}
the set of all viable chains (i.e. concatenations of viable arcs) which do not contain any closed
loop. Since there are m nodes, and each chain can visit each of them at most once, the
cardinality of V is bounded by (m+ 1)!. For a given k ∈ {1, . . . , n}, let Vk ⊂ V be the set of
all viable paths for the k-drivers, connecting Ad(k) with Aa(k).

By Uk,p(t) we denote the total number of drivers of the k-th group, traveling along the viable
path Γp, who have started their journey before time t.

Definition 1. A departure distribution function t 7→ Uk,p(t) is a bounded, nondecreasing,
left-continuous function, such that

Uk,p(−∞)
.
= lim

t→−∞
Uk,p(t) = 0 .

Given group sizes G1, . . . , Gn ≥ 0, we say that a set of departure distribution functions {Uk,p}
is admissible if it satisfies the constraints∑

p

Uk,p(+∞) = Gk k = 1, . . . , n . (1.3)

Since Gk is the total number of drivers in the k-th group, the admissibility condition (1.3)
means that, sooner or later, every driver of each group has to depart. If the function Uk,p is
absolutely continuous, its derivative will be denoted by

uk,p(t) =
d

dt
Uk,p(t) . (1.4)

Clearly, ūk,p measures the rate of departures of k-drivers traveling along Γp.

The overall traffic pattern can be determined by (i) the departure distribution functions Uk,p(·),
(ii) the conservation laws (1.1), and (iii) a suitable set of conditions at junctions, specifying
the priorities assigned to drivers that wish to enter the same road.

In this paper we consider the simplest type of condition at junctions, where a separate queue
can form at the entrance of each road. Drivers arriving at the node Ai from all incoming
roads, and who want to travel along the arc γij , join a queue at the entrance of this outgoing
arc. Their place in the queue is determined by the time at which they arrive at Ai, first-come
first-serve. Some additional care is needed to handle the case where different groups of drivers
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depart from the same node. Indeed, if a positive amount of drivers initiate their journey
exactly at the same time, some additional information is needed to determine their place in
the queue. This can be achieved in terms of the prioritizing functions introduced in [3].

As in [2, 3, 4], we consider a set of departure costs ϕk(·), and arrival costs ψk(·) for the various
drivers. Namely, a driver of the k-th group departing at time τd and arriving at destination
at time τa will incur in the total cost

ϕk(τ
d) + ψk(τ

a). (1.5)

In this framework, the concepts of globally optimal solution and of Nash equilibrium solution
considered in [2, 3] can be extended to traffic flows on a network of roads.

Definition 2. An admissible family {Uk,p} of departure distributions is globally optimal if
it minimizes the sum of the total costs of all drivers.

Definition 3. An admissible family {Uk,p} of departure distributions is a Nash equilibrium
solution if no driver of any group can lower his own total cost by changing departure time or
switching to a different path to reach destination.

The main goal of this paper is to prove the existence of a globally optimal solution and of a
Nash equilibrium solution, under natural assumptions on the costs and on the flux functions.

In the case of a single group of drivers traveling on a single road, the existence and uniqueness
of such solutions were proved in [2]. We highlight the main features of the present analysis.

• Following the direct method of the Calculus of Variations, a globally optimal solution

is constructed by taking the limit of a minimizing sequence {U (ν)
k,p }ν≥1 of admissible

departure distributions. The existence of the limit is guaranteed by the “tightness” of
the sequence of approximating measures. Namely, for each ε > 0 there exists T > 0
(independent of n) such that the total amount of drivers departing at times t /∈ [−T, T ]
is less than ε.

• Toward the existence of a Nash equilibrium, the results in [2, 3] used the assumption ψ′k ≥
0, meaning that the arrival cost functions are nondecreasing. We now strengthen this
assumption to ψ′k > 0, so that the arrival costs are strictly increasing. This apparently
minor change in the hypotheses has an important consequence. Namely, it allows us to
prove a crucial a priori bound on all departure rates, in any Nash equilibrium solution.

• The proofs in [2, 3] relied on a monotonicity argument. Indeed, the departure distribu-
tion U(·) for a Nash equilibrium was obtained as the (unique) pointwise supremum of
a family of admissible distributions, satisfying an additional constraint. On the other
hand, the present existence result is proved by a fixed point argument. By its nature,
this topological technique cannot yield information about uniqueness or continuous de-
pendence of the Nash equilibrium.

The paper is organized as follows. In Section 2 we describe more carefully the traffic flow
model, explaining how to compute the admissible solutions using the Lax-Hopf formula. In
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Section 3 we prove the existence of a globally optimal solution, while Section 4 is devoted to
the existence of a Nash equilibrium solution.

For the modeling of traffic flow we refer to [1, 6, 13, 14]. Traffic flow on networks has been the
topic of an extensive literature, see for example [5, 8, 9, 10] and references therein. A different
type of optimization problems for traffic flow was considered in [11].

2 Analysis of the traffic flow model

In our model, x ∈ [0, Lij ] is the space variable, describing a point along the arc γij . Here Lij
measures the length of this arc. The basic assumptions on the flux functions Fij(ρ) = ρ vij(ρ)
and on the cost functions ϕk, ψk are as follows.

(A1) For every viable arc γij , the flux function ρ 7→ Fij(ρ) = ρvij(ρ) is continuous, concave
down, and non-negative on some interval [0, ρij ], with Fij(0) = Fij(ρij) = 0. We shall
denote by ρ∗ij ∈]0, ρij [ the unique value such that

F (ρ∗ij) = Fmaxij
.
= max

ρ∈[0,ρij ]
Fij(ρ) , F ′ij(ρ) > 0 for a.e. ρ ∈ [0, ρ∗ij ] . (2.1)

(A2) For every k ∈ {1, . . . , n} the cost functions ϕk, ψk are continuously differentiable and
satisfy 

ϕ′k(t) < 0 ,

ψ′k(t) > 0 ,
lim
|t|→∞

(
ϕk(t) + ψk(t)

)
= +∞ . (2.2)
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Figure 1: Left: the function ρ 7→ Fij(ρ) = ρ vij(ρ) describing the flux of cars. Middle: the function
gij , implicitly defined by gij(ρvij(ρ)) = ρ. Right: the Legendre transform g∗ij .

Remark 2.1. By (A1), the flux function u = Fij(ρ) is continuous, concave and strictly
increasing on the interval [0, ρ∗ij ]. Therefore, it has a continuous inverse: ρ = gij(u). As shown
in fig. 1, the function u 7→ gij(u) is convex and maps the interval [0, Fmaxij ] onto [0, ρ∗ij ].

Remark 2.2. According to (A2), the cost for early departure is strictly decreasing in time,
while cost for late arrival is strictly increasing. The assumption that these costs tend to infinity
as t→ ±∞ coincides with common sense and guarantees that in an equilibrium solution the
departure rates are compactly supported.
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Remark 2.3. In the engineering literature (see for example [9]) it is common to define the
travel cost as the sum of the travel time plus a penalty if the arrival time does not coincide
with the target time TA :

D(t) + Ψ
(
t+D(t)− TA

)
. (2.3)

Here D(t) denotes the total duration of the trip for a driver departing at time t, while Ψ is a
penalty function. Calling τa(t) = t + D(t) the arrival time of driver departing at t, the cost
function (2.3) can be recast in the form (1.5). Indeed,

D(t) + Ψ
(
t+D(t)− TA

)
= − t+ t+D(t) + Ψ

(
t+D(t)− TA

)
= − t+ τa(t) + Ψ

(
τa(t)− TA

)
= ϕ(t) + ψ(τa(t)) ,

where ϕ(t)
.
= −t, ψ(τ)

.
= τ + Ψ

(
τ − TA). In order that the assumptions (A2) be satisfied, it

suffices to require that the function Ψ be continuously differentiable and

Ψ ≥ 0, Ψ′ > − 1, lim
|t|→∞

(Ψ(t)− t) = +∞ . (2.4)

2.1 Traffic flow with an absolutely continuous departure distribution.

We now describe more in detail how the traffic flow on the entire network can be uniquely
determined, given the departure distributions Uk,p. As a first step, we consider the absolutely
continuous case, so that (1.4) holds.

Along any arc γij , the traffic density ρij satisfies a boundary value problem of the form{
∂tρij(t, x)t + ∂xFij

(
ρij(t, x)

)
= 0 (t, x) ∈ R× [0, Lij ] ,

Fij
(
ρij(t, 0)

)
= u−ij(t) t ∈ R ,

(2.5)

where u−ij(t) describes the incoming flux at x = 0. Following the approach in [2, 3], we switch
the roles of the variables t, x, replacing the above boundary value problem (2.5) with a Cauchy
problem for the conservation law describing the flux uij = Fij(ρij):{

∂xuij(t, x) + ∂tgij
(
uij(t, x)

)
= 0 (t, x) ∈ R× [0, Lij ] ,

uij(t, 0) = u−ij(t) t ∈ R .
(2.6)

Here gij : [0, Fmaxij ] 7→ [0, ρ∗ij ] is the inverse of the function Fij , as in Remark 2.1. Consider
the integrated functions

Uij(t, x) =

∫ t

−∞
uij(s, x) ds, U−ij (t) =

∫ t

−∞
u−ij(s) ds .

Then Uij(t, x) provides a solution to the Hamilton-Jacobi equation{
∂xUij(t, x) + gij

(
∂tUij(t, x)

)
= 0 ,

Uij(t, 0) = U−ij (t) .
(2.7)
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The viscosity solution to the above Cauchy problem is given by the Lax-Hopf formula [7]

Uij(t, x) = min
τ

{
U−ij (τ) + x g∗ij

( t− τ
x

)}
, x ∈ [0, Lij ] . (2.8)

Here g∗ij denotes the Legendre transform of gij , namely

g∗ij(p)
.
= max

u∈[0, Fmaxij ]

(
pu− gij(u)

)
. (2.9)

l
Ai

A
j

ij
γ

l i
γA

Figure 2: A generic node of the network.

For any given node Ai, in general there will be several incoming arcs γ`,i, ` ∈ I(i) and several
outgoing arcs γi,j , j ∈ O(i) (see fig. 2). To determine the flux at the entrance of the arc γij ,
one needs to know how many drivers, after reaching the node Ai, actually want to take the
road γij . For this purpose, we need to introduce the distribution functions

• U−kp,ij(t)
.
= total number of drivers of the k-th group, traveling along the path Γp, that

have entered the arc γij (possibly joining a queue at the entrance) within time t.

• U+
kp,ij(t)

.
= total number of drivers of the k-th group, traveling along the path Γp, that

have exited from the arc γij (reaching the node Aj) within time t.

Of course, U±kp,ij ≡ 0 if the path Γp does not contain the arc γij .

The entire flux along the network is entirely determined by the functions U±kp,ij . To recursively
compute these functions, observe that the total number of drivers who have entered the arc
γij (possibly joining a queue) within time t is determined by

U−ij (t) =
∑
`∈I(i)

∑
k

∑
γ`i,γij∈Γp

U+
kp,`i(t) +

∑
d(k)=i

∑
γij∈Γp

Ukp(t) . (2.10)

Notice that the first sum accounts for the drivers that transit through the node Ai, while the
second sum accounts for the drivers that initiate their journey from the node Ai. Using the
solution formula (2.8) with x = Lij we obtain

U+
ij (t)

.
= Uij(t, Lij) = min

τ

{
U−ij (τ) + Lij g

∗
ij

( t− τ
Lij

)}
. (2.11)

Notice that the function U+
ij is nondecreasing and Lipschitz continuous. Indeed, the rate at

which drivers arrive at the end of the arc γij is computed by

u+
ij(t) =

d

dt
U+
ij (t) ∈ [0, Fmaxij ] for a.e. t .
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Among the drivers who reach the end of the arc γij within time t, we still need to compute
how many belong to the various groups.

In the case where all departure rates Uk,p with d(k) = i are absolutely continuous, the functions
U+
kp,ij can be computed as follows. For a.e. t there exists a unique time τ enter(t) such that

U−ij (τ enter(t)) = U+
ij (t).

A driver entering the arc γij at time τ enter(t) thus reaches the end of the arc at time t. The
first-come first-serve assumption now implies

u+
kp,ij(t) =

u+
kp,`i(τ

enter(t))

u−ij(τ
enter(t))

if ` ∈ I(i) , γ`i, γij ∈ Γp , (2.12)

u+
kp,ij(t) =

ukp(τ
enter(t))

u−ij(τ
enter(t))

if γij ∈ Γp , i = d(k) . (2.13)

In other words, among all drivers who exit from the arc γij at time t, the percentage of (k, p)-
drivers must be equal to the percentage of (k, p)-drivers that enter γij at time τ enter(t). In
turn, the arrival distributions are computed by

U+
kp,ij(t) =

∫ t

−∞
u+
kp,ij(t) dt . (2.14)

Remark 2.4. The above equations can be solved iteratively in time. Namely, let

∆min
.
= min

ij

Lij
vij(0)

be the minimum time needed to travel along any viable arc of the network. Given the departure
rates ūk,p, if the functions U±kp,ij(t) are known for all t ≤ τ , by the above equations (2.10)–(2.14)

one can uniquely determine the values of U±kp,ij(t) also for t ≤ τ + ∆min.

Let Gk,p be the total number of drivers of the k-th group who travel along the path Γp.
The admissibility condition implies Gk,1 + · · ·+Gk,N = Gk. We use the Lagrangian variable
β ∈ [0, Gk,p] to label a particular driver in the subgroup Gk,p of k-drivers traveling along the
path Γp. The departure and arrival time of this driver will be denoted by τdk,p(β) and τak,p(β),

respectively. Let Udepartk,p (t) = Uk,p(t) denote the amount of drivers of the subgroup Gk,p who

have departed before time t. Similarly, let Uarrivek,p (t) be the amount of (k, p)-drivers who have
arrived at destination before time t. For a.e. β ∈ [0, Gk,p] we then have

τdk,p(β) = inf
{
τ ; Udepartk,p (t) ≥ β

}
, τak,p(β) = inf

{
τ ; Uarrivek,p (t) ≥ β

}
. (2.15)

With this notation, the definition of globally optimal and of Nash equilibrium solution can be
more precisely formulated.

Definition 2′. An admissible family of departure distributions {Uk,p} is a globally optimal
solution if it provides a global minimum to the functional

J
.
=
∑
k,p

∫ Gk,p

0

(
ϕk(τ

d
k,p(β)) + ψk(τ

a
k,p(β))

)
dβ . (2.16)
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Definition 3′. An admissible family of departure distributions {Uk,p} is a Nash equilibrium
solution if there exist constants c1, . . . , cn such that:

(i) For almost every β ∈ [0, Gk,p] one has

ϕk(τ
q
k,p(β)) + ψk(τ

a
k,p(β)) = ck . (2.17)

(ii) For all τ ∈ R, there holds

ϕk(τ) + ψk(Ak,p(τ)) ≥ ck . (2.18)

Here Ak,p(τ) is the arrival time of a driver that starts at time τ from the node Ad(k) and
reaches the node Aa(k) traveling along the path Γp.

In other words, condition (i) states that all k-drivers bear the same cost ck. Condition (ii)
means that, regardless of the starting time x, no k-driver can achieve a cost < ck.

2.2 Traffic flow with general departure distribution

If all departure distributions Uk,p are absolutely continuous, the previous analysis shows that
the first-come first-serve assumption on the queues completely determines the traffic pattern.
This is no longer true if a positive amount of drivers of different groups initiate their journey
exactly at the same time. For example, assume that i = d(k) = d(k′) is the departure node for
both k-drivers and k′-drivers. Let γij be the first arc in the paths Γp and Γp′ , and assume that,
at the instant t0, a positive amount of drivers in the subgroups Gk,p and Gk′,p′ initiate their
journey. Since all these drivers join the queue at the entrance of the arc γij at the same time,
additional information must be provided to determine their relative position in the queue. For
this purpose, we follow the approach introduced in [3].

Given an arc γij , call

Gij =
⋃

d(k)=i, γij∈Γp

Gk,p (2.19)

the family of all drivers that initiate their journey from the node Ai, traveling along γij as
first leg of their journey. The total number of these drivers is

Gij =
∑

d(k)=i, γij∈Γp

Gk,p .

The cumulative departure distribution Udepartij : R 7→ [0, Gij ] is defined as

Udepartij (t)
.
=

∑
d(k)=i, γij∈Γp

Uk,p(t) . (2.20)

In other words, Udepartij (t) is the total number of drivers in the family Gij that depart before
time t. The relative position of these drivers in the queue at the entrance of the arc γij will
be determined by a set of prioritizing functions.
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Definition 4. A set of prioritizing functions for departures on the arc γij is a family of
nondecreasing maps

Bk,p : [0, Gij ] 7→ [0, Gk,p] , Gk,p ⊆ Gij , (2.21)

satisfying ∑
Gk,p⊆Gij

Bk,p(β) = β for all β ∈ [0, Gij ] , (2.22)

Bk,p(Udepartij (t)) = Uk,p(t) for a.e. t ∈ R . (2.23)

Otherwise stated, among the first β drivers that depart and choose γij as the first arc of
their journey, Bk,p(β) counts how many belong to the subgroup Gk,p. If all functions Uk,p
are continuous, then the conditions (2.22)-(2.23) uniquely determine the prioritizing functions
Bk,p. In this case, there is actually no need to introduce this concept. On the other hand,
if two or more functions Uk,p have an upward jump at a time t0, then different prioritizing
functions are possible.

We now show that, by choosing one set of prioritizing functions, the traffic flow on the entire
network is entirely determined. Indeed, for all k, p, i, j the values U+

kp,ij(t), determining how
many drivers of the subgroup Gk,p reach the end of the arc γij within time t, are computed as
follows.

CASE 1: The only drivers traveling on the arc γij are those who started their journey from
the node Ai. In this case, as in (2.11) the total number of drivers arriving at the end of the
arc γij within time t is

U+
ij (t) =

∑
k,p

U+
kp,ij(t) = min

τ

{
Udepartij (τ) + Lij g

∗
ij

( t− τ
Lij

)}
. (2.24)

Given the prioritizing functions Bk,p, the values U+
kp,ij(t) are immediately obtained by the

formula
U+
kp,ij(t) = Bk,p

(
U+
ij (t)

)
. (2.25)

CASE 2: The arc γij is also traveled by drivers who transit through the node Ai, departing
from other nodes. In this case, drivers originating from Ai have to merge with drivers in
transit, coming from other nodes. The cumulative distribution function, accounting for the
total number of drivers that have entered the arc γij within time t is

U−ij (t) = Udepartij (t) + U transitij (t) =
∑

d(k)=i,γij∈Γp

U−kp,ij(t) +
∑

d(k)6=i,γij∈Γp

U−kp,ij(t) . (2.26)

As before, the total number of drivers who have exited from the arc γij before time t is given
by (2.11). To determine how many of these drivers belong to each subgroup Gk,p, we proceed
as follows.

Consider the driver who exits from the arc γij at time t. This driver will have entered the arc
γij at an earlier time τ = τ enter(t), such that

lim
s→τ−

U−ij (s) ≤ U+
ij (t) ≤ lim

s→τ+
U−ij (s) . (2.27)
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Notice that τ enter(t) is uniquely determined, for all but countably many times t. For all
subgroups of drivers in transit, the first-come first-serve priority assumption implies

U+
kp,ij(t) = U−kp,ij(τ

enter(t)). (2.28)

Here the right hand side of (2.28) is uniquely determined, because the distribution function
U−kp,ij in (2.26) is Lipschitz continuous.

On the other hand, for drivers who initiate their journey at Ai, the distribution function U−kp,ij
can have a jump at τ enter(t), in which case the formula (2.28) is not meaningful. Given a set
of prioritizing functions Bk,p, the distribution functions U+

kp,ij can be determined by setting

β
.
= U+

ij (t)− U transitij (τ enter(t)) , (2.29)

U+
kp,ij = Bk,p(β) . (2.30)

Indeed, U+
ij (t) is the total number of drivers that reach the end of the arc γij before time

t, while β counts how many of these drivers start their journey from the node Ai. In turn,
Bk,p(β) determines how many belong to the subgroup Gk,p.

3 Globally optimal solutions

In this section we establish the existence of a globally optimal solution. The proof follows the
direct method of the Calculus of Variations, constructing a minimizing sequence of solutions
and showing that a subsequence converges to the optimal one.

Theorem 1 (existence of a globally optimal solution). Let the flux functions Fij and the
cost functions ϕk, ψk satisfy the assumptions (A1)-(A2). Then, for any n-tuple (G1, . . . , Gn)
of nonnegative numbers, there exists an admissible set of departure distributions Uk,p and
prioritizing functions Bk,p which yield a globally optimal solution of the traffic flow problem.

Proof. 1. By (A2), all functions ϕk +ψk are bounded below. By possibly adding a constant,
it is not restrictive to assume that ϕk(t)+ψk(t) ≥ 0 for every time t. Calling m0 the infimum of
all total costs in (2.16), taken among all admissible departure distributions {Uk,p}, this implies
m0 ≥ 0. In addition, it is clearly not restrictive to assume Gk > 0 for all k ∈ {1, . . . , n}.

Recalling Definitions 1 and 4, consider a minimizing sequence of departure distributions Uνk,p
and prioritizing functions Bνk,p : [0, Gνij ] 7→ [0, Gνkp]. Here

Gνk,p = Uνk,p(+∞).

By choosing a subsequence, we can assume

lim
ν→∞

Gνk,p = Gk,p with
∑
p

Gk,p = Gk . (3.1)

Moreover, by Helly’s compactness theorem we can assume that, as ν → ∞, one has the
pointwise convergence

Uνk,p(t) → Uk,p(t) for a.e. t ∈ R , (3.2)
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while Ascoli’s theorem yields the uniform convergence

Bνk,p(β) → Bk,p(β) β ∈ R . (3.3)

In (3.3), we have extended the prioritizing functions to the entire real line by setting

Bνk,p(β) =

{
0 if β ≤ 0 ,

Gνk,p if β ≥ Gνij .

In the remainder of the proof we show that the set of departure distributions Uk,p together
with the prioritizing functions Bk,p yield a globally optimal solution.

2. Let ε > 0 be given. We claim that there exists a large enough constant T , independent of
ν such that 

∑
p

Uνk,p(t) ≤ ε for t ≤ −T ,

∑
p

Uνk,p(t) ≥ Gk − ε for t ≥ T ,
(3.4)

for all ν sufficiently large. Indeed, by (A2) there exists T such that

ϕk(t) + ψk(t) >
m0 + 1

ε
for |t| ≥ T , k ∈ {1, . . . , n} .

If any one of the two conditions in (3.4) fails, then the total cost would be > m0 + 1. Since
by assumption as ν →∞ the total cost approaches the infimum m0, this proves our claim.

By (3.4) it follows that the limit functions satisfy

Uk,p(−∞) = 0, Uk,p(+∞) = Gk,p .

In particular, the limit departure distribution is admissible.

3. For β ∈ [0, Gνk,p] let

β 7→ τd,νk,p (β) and β 7→ τa,νk,p (β) (3.5)

describe the departure and arrival time of the β-driver, in the subgroup Gk,p. We claim that,
by possibly extracting a further subsequence, one has the pointwise convergence

τd,νk,p (β) → τdk,p(β) , τa,νk,p (β) → τak,p(β) for a.e. β ∈ [0, Gk,p]. (3.6)

Indeed, the maps in (3.5) are nondecreasing. Moreover, for any ε > 0, by (3.4) these maps
are uniformly bounded when restricted to the subinterval [ε, Gk,p − ε], uniformly w.r.t. ν.
By Helly’s compactness theorem, we can find a subsequence that converges pointwise on
[ε, Gk,p − ε]. Since ε > 0 was arbitrary, a standard argument proves our claim.

4. It remains to prove that the limit departure distribution is optimal. Recall that, without
loss of generality, we are assuming ϕk(t) + ψk(t) ≥ 0 for all k, t. The total cost J̄ determined
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by the set of departure distributions {Uk,p} and prioritizing functions {Bk,p} can be estimated
by

J̄
.
=
∑
k,p

∫ Gk,p

0

(
ϕk(τ

d
k,p(β)) + ψk(τ

a
k,p(β))

)
dβ

= sup
ε>0

∑
k,p

∫ Gk,p−ε

ε

(
ϕk(τ

d
k,p(β)) + ψk(τ

a
k,p(β))

)
dβ .

(3.7)

Fix ε > 0. By (3.4) all departures and arrivals of β-drivers with β ∈ [ε, Gk,p− ε] take place in
a uniformly bounded interval of time, say [−T, T ′]. On this interval, all functions ϕk, ψk are
uniformly continuous. Hence the pointwise convergence (3.6) yields

∑
k,p

∫ Gk,p−ε

ε

(
ϕk(τ

d
k,p(β)) + ψk(τ

a
k,p(β))

)
dβ

=
∑
k,p

lim
ν→∞

∫ Gk,p−ε

ε

(
ϕk(τ

d,ν
k,p (β)) + ψk(τ

a,ν
k,p (β))

)
dβ

≤ lim
ν→∞

∑
k,p

∫ Gk,p

0

(
ϕk(τ

d,ν
k,p (β)) + ψk(τ

a,ν
k,p (β))

)
dβ = m0 .

Together with (3.7), this implies J̄ ≤ m0, completing the proof.

Remark 3.1. The above theorem remains valid if in assumption (A2) we only require ϕ′k ≤ 0,
ψ′k ≥ 0.

Remark 3.2. A natural conjecture is that, in a globally optimal solution, all departure rates
ūk,p = d

dtUk,p are uniformly bounded and have compact support. Hence the corresponding
solution should be uniquely determined without need of prioritizing functions. In the case
of one group of drivers traveling on a single road, this fact was proved in [2]. In the general
case, a proof of the above conjecture will likely require a more detailed study of the globally
optimal solution, establishing necessary conditions for optimality.

4 Nash equilibria

In this section we prove the existence of a Nash equilibrium solution for traffic flow on a
network. For our model, it turns out that in a Nash equilibrium all departure rates must be
uniformly bounded and have compact support. As a consequence, the corresponding solution
is uniquely determined without need of prioritizing functions.

Theorem 2 (existence of a Nash equilibrium). Let the flux functions Fij and the cost
functions ϕk, ψk satisfy the assumptions (A1)-(A2).

(i) For any n-tuple (G1, . . . , Gn) of nonnegative numbers, there exists at least one admissible
family of departure rates {u∗k,p} which yields a Nash equilibrium solution.

12



(ii) In every Nash equilibrium solution, all departure rates are uniformly bounded and have
compact support.

Before proving the theorem, we establish a “modulus of continuity” for the exit time. Namely,
for drivers traveling along a given path Γp, the arrival time τp(t) is a uniformly continuous
function of the departure time t. In the following, we first consider a single arc γij with flux
function Fij(·) satisfying (A1). As in figure 1, gij denotes the inverse function while g∗ij is the
Legendre transform. For a driver who enters the arc γij at time t (possibly joining a queue),
we denote by τij(t) his exit time.

Lemma 4.1. Given constants G,M > 0, there exists a continuous function φij : R+ 7→ R+

depending on the flux function Fij in (2.1) and on M,G, such that φij(0) = 0 and moreover
the following holds. Let U−ij (·) be a Lipschitz continuous departure distribution, such that

0 ≤ uij(t) = d
dtU

−
ij (t) ≤M for a.e. t and

∫
uij(t) dt ≤ G. Then the exit time τij(·) satisfies

τij(t2)− τij(t1) ≤ φij(t2 − t1) whenever t1 ≤ t2 . (4.1)

Proof. 1. Let Lij be the length of the arc γij . Following [2], consider the function

hij(s)
.
= − Lij g∗ij

(
−s
Lij

)
. (4.2)

Since the Legendre transform g∗ij is convex, the function hij is concave. Moreover, calling
µij

.
= Lij/vij(0) the minimum time needed to drive across the arc γij (= length of the arc

divided by the maximum speed), one has

hij(s) = 0 if s ≥ −µij ,
hij(s) < 0 if s < −µij .

(4.3)

Using the solution formula (2.24), the amount of drivers that exit from the arc γij before time
t is computed by (see Fig. 3)

U+
ij (τ) = min

s

{
U−ij (s)− hij(s− τ)

}
. (4.4)

In other words, U+
ij (t) is the amount by which one can shift upward the graph of h(· − τ),

before hitting the graph of U−ij (·). In turn, the exit time of a driver who enters the arc γij at
time t is given by

τij(t) = (t+ µij) ∨ inf
{
τ ; U−ij (t) + hij(s− τ) ≤ U−ij (s) for all s < t

}
, (4.5)

where we used the notation a ∨ b .= max{a, b}.

2. Let t1 < t2 be given. Two cases can be considered.

CASE 1 (Fig. 4, left). The minimum

U+
ij (τij(t2)) = min

s

{
U−ij (s)− hij(s− τij(t2))

}
. (4.6)
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Figure 3: A geometric construction of the exit distribution t 7→ U+
ij (t) from the entrance distribution

U−
ij , using the formula (4.4).

is attained at a point s̄ ∈ [t1, t2]. In this case we have

τij(t1) ≥ t1 + µij ,

τij(t2) ≤ t2 + inf
{
τ ; Ms ≥ hij(s− τ) for all s ∈ [−M(t2 − t1) , 0]

}
.

Hence
τij(t2)− τij(t1) ≤ φ]ij(t2 − t1) (4.7)

with
φ]ij(ξ)

.
= ξ + inf

{
τ ; Ms ≥ hij(s− τ) for all s ∈ [−Mξ , 0]

}
− µij . (4.8)

CASE 2 (Fig. 4, right). The minimum in (4.6) is attained at a point s̄ < t1. In this case we
have

U−ij (t1) + hij(s̄− τij(t1)) ≤ U−ij (s̄) = U−ij (t2) + hij(s̄− τij(t2)) .

Since hij is concave and τij(t1)− t1 ≥ µij , τij(t2)− t2 ≥ µij , one has

0 ≥ hij (τij(t1)− τij(t2)− µij) ≥ hij(s̄− τij(t2))− hij(s̄− τij(t1))

≥ U−ij (t1)− U−ij (t2) ≥ M(t1 − t2).

In this case, we conclude
τij(t2)− τij(t1) ≤ φ[ij(t2 − t1), (4.9)

where the continuous function φ[ij is implicitly defined by

hij(−µij − φ[ij(ξ)) = −Mξ . (4.10)

3. The two functions φ]ij , φ
[
ij defined at (4.8), (4.10) are both continuous and vanish at the

origin. Defining
φij(ξ)

.
= max {φ]ij(ξ) , φ

[
ij(ξ)} , (4.11)

the conclusion of the lemma is satisfied.
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Figure 4: The two cases considered in the proof of Lemma 4.1.

The next lemma extends the result of Lemma 4.1 to a general path Γp. Here τp(t) denotes
the arrival time of a driver starting at time t and traveling along Γp.

Lemma 4.2. Let all departure rates uk,p(t) be uniformly bounded, so that

uk,p(t) ≤ M0 for all k, p, t . (4.12)

Then, for any viable path Γp, there exists continuous function φp : R+ 7→ R+ such that

φp(0) = 0 ,
(
τp(t2)− τp(t1)

)
≤ φp(t2 − t1) whenever t1 ≤ t2 . (4.13)

Proof. The assumption (4.12), together with the fact that the flux through each arc γij
cannot be greater than the maximum flux Fmaxij , implies that the maximum incoming flux
through each arc is bounded by some constant M . For each arc γij , let φij be the modulus of
continuous dependence constructed in Lemma 4.1. If Γ is the path in (1.2), obtained as the
concatenation of the arcs γi(`−1),i(`), ` = 1, . . . , ν, it now suffices to define the function φp as
the composition of the corresponding functions φi(`−1),i(`), namely

φp
.
= φi(ν−1),i(ν) ◦ · · · ◦ φi(1),i(2) ◦ φi(0),i(1) .

Our final lemma shows that the arrival times, and hence the cost functions, depend continu-
ously on the departure rates.

Lemma 4.3. Consider a sequence of departure rates uν = (uνk,p) which are uniformly bounded
and supported inside a common interval I = [−T, T ], namely

0 ≤ uνk,p(t) ≤ M0 for all t ∈ I , uνk,p(t) = 0 if t /∈ I , (4.14)

for every ν ≥ 1. Assume that for all k, p one has the weak convergence

uνk,p ⇀ u∗k,p . (4.15)

For each viable path Γq, call τνq (t), τ∗q (t) the corresponding arrival times of a driver who departs
at time t and travels along Γq. Then, as ν →∞, one has the uniform convergence

‖τνq − τ∗q ‖C([−T,T ]) → 0 . (4.16)
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Proof. 1. We first consider the case of a single arc γ = γij . Assume that the departure rates
uν satisfy

uν(t) ∈ [0,M0] if t ∈ [−T, T ] ,
uν(t) = 0 if t /∈ [−T, T ] ,

and converge weakly: uν ⇀ u. Define the integrated functions

Uν(t)
.
=

∫ t

−∞
uν(s) ds, U∗(t)

.
=

∫ t

−∞
ū(s) ds .

Our assumptions imply the convergence Uν(t) → U(t), uniformly for t ∈ R. In turn, this
implies that the exit distributions

Uν+(t)
.
= min

τ

{
Uν(τ) + Lij g

∗
ij

( t− τ
Lij

)}
, U+(t)

.
= min

τ

{
U(τ) + Lij g

∗
ij

( t− τ
Lij

)}
,

(4.17)
satisfy the uniform convergence Uν+ → U+. Indeed, by (4.17) we have

‖Uν+ − U+‖L∞ ≤ ‖Uν − U‖L∞ → 0 as ν →∞ . (4.18)

2. Given ε > 0 choose ν̂ large enough so that

|Uν(t)− U(t)| ≤ ε for all ν ≥ ν̂, , t ∈ R . (4.19)

Fix a time t ∈ [−T, T ]. To estimate the difference |τν(t) − τ(t)| between the corresponding
arrival times, consider the modified departure distribution

U ](s)
.
=


U(s) if s ≤ t ,

U(t) + (1 +M0)(s− t) if s ∈ [t, T ] ,
U(t) + (1 +M0)(T − t) if s ≥ T .

(4.20)

Call τ ](t) the arrival time of a driver departing at time t, relative to the distribution U ]. By
Lemma 4.1, the function t 7→ τ ](t) satisfies a uniform modulus of continuity say

τ ](t2)− τ ](t1) ≤ φ(t2 − t1) for all t1 < t2 ,

for some continuous function φ with φ(0) = 0. In particular,

τ ](t+ ε)− τ ](t) ≤ φ(ε) . (4.21)

Observing that

U ](t+ ε)− U ](s) ≥ Uν(t+ ε)− Uν(s) for all ν ≥ ν̂ , s ≤ t+ ε

and using the representation formula (4.5) with hij given by (4.2), we obtain

τ ](t+ ε)

= (t+ ε+ µij) ∨ inf
{
τ ; U ](t+ ε)− U ](s) ≤ Lij g

∗
ij

(
τ−s
Lij

)
for all s ≤ t+ ε

}
≥ (t+ ε+ µij) ∨ inf

{
τ ; Uν(t+ ε)− Uν(s) ≤ Lij g

∗
ij

(
τ−s
Lij

)
for all s ≤ t+ ε

}
= τν(t+ ε) .
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Therefore

τν(t) ≤ τν(t+ ε) ≤ τ ](t+ ε) ≤ τ ](t) + φ(ε) = τ(t) + φ(ε) for all ν ≥ ν̂ . (4.22)

Switching the roles of U,Uν and hence defining

U ](s)
.
=


Uν(s) if s ≤ t ,

Uν(t) + (1 +M0)(s− t) if s ∈ [t, T ] ,
Uν(t) + (1 +M0)(T − t) if s ≥ T ,

we obtain the converse inequality

τ(t) ≤ τν(t) + φ(ε) for all ν ≥ ν̂ . (4.23)

3. For each arc γij , the inequalities (4.22)-(4.23) show that the functions t 7→ τνij(t) converge
uniformly to the corresponding functions t 7→ τij(t). Given any path Γq, the uniform conver-
gence τνq → τ∗q is now obtained by a straightforward argument, using induction on the number
of arcs contained in Γq.

We are now ready to prove the main result of this paper.

Proof of Theorem 2.

1. We claim that there exists a time interval I = [−T0, T0] so large that, in any Nash equilib-
rium, no driver will depart or arrive at a time t /∈ I. Indeed, given the n-tuple (G1, . . . , Gn),
the travel time along any viable path Γp =

(
γi(0),i(1), . . . , γi(ν−1),i(ν)

)
is a priori bounded by

Tmaxp
.
=

ν∑
`=1

{
G

Fmaxi(`−1),i(`)

+
Li(`−1),i(`)

vi(`−1),i(`)

(
ρ∗i(`−1),i(`)

)} . (4.24)

Here and in the sequel, we call
G

.
= G1 + · · ·+Gn (4.25)

the total number of drivers. Notice that, in each summand on the right hand side of (4.24),
the first term is an upper bound for the time spent waiting in the queue (total number of
drivers divided by the maximum flux) while the second term is an upper bound on the actual
travel time (length divided by the minimum speed). Let

Tmax
.
= max

p
Tmaxp

be an upper bound on the travel time along all viable paths. In view of assumption (A2),
there exists T0 large enough such that

min
k

{
ϕk(t) + ψk(t)

}
> max

k

{
ϕk(0) + ψk(T

max)
}

for all t /∈ I .
= [−T0, T0] . (4.26)

Therefore, in a Nash equilibrium no driver will depart or arrive outside [−T0, T0]. Otherwise,
he would achieve a strictly lower cost by departing at time t = 0.

2. Let Fmax = max
i,j

Fmaxij be an upper bound for the flux over all arcs. Call

ϕ′max
.
= max

1≤k≤n
max
t∈I

|ϕ′k(t)| , ψ′min
.
= min

1≤k≤n
min
t∈I

ψ′k(t).
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Observe that ψ′min > 0, because of the assumption (A2). We claim that, in a Nash equilibrium,
all departure rates uk,p must satisfy the priori bound

uk,p(t) ≤ κ
.
=

ϕ′max · Fmax
ψ′min

for a.e. t . (4.27)

Indeed, consider drivers of the k-th family traveling along the path Γp. Let t1 < t2 be any two
departure times, and call τ1 < τ2 the corresponding arrival times. The total costs for these
two drivers must be the same, hence

ϕ(t1) + ψ(τ1) = ϕ(t2) + ψ(τ2) .

On the other hand, the upper bound on the flux implies

τ2 − τ1 ≥
1

Fmax

∫ t2

t1

uk,p(t) dt .

Therefore

(t2 − t1)ϕ′max ≥ ϕ(t1)− ϕ(t2) = ψ(τ2)− ψ(τ1) ≥ (τ2 − τ1)ψ′min ≥
ψ′min
Fmax

∫ t2

t1

uk,p(t) dt .

We thus conclude
ϕ′max · Fmax

ψ′min
≥ 1

t2 − t1

∫ t2

t1

uk,p(t) dt .

Since this bound is valid for every interval [t1, t2] ⊆ I, the pointwise bound (4.27) must hold.
Moreover, for t /∈ I we already know that uk,p(t) = 0. The last statement of the Theorem is
thus proved.

3. Choose the time

T
.
= T0 +

G

κ
, (4.28)

where G
.
=
∑

kGk .

Consider the family of admissible departure rates

U .
=

{
(uk,p)1≤k≤n, 1≤p≤N ; uk,p : R 7→ [0, 4κ] , uk,p(t) = 0 for t /∈ [−T, T ] ,

∑
p

∫
uk,p(t) dt = Gk for every k

}
.

(4.29)
It is understood that uk,p ≡ 0 if the path Γp does not connect Ad(k) with Aa(k). Notice that

U is a closed convex subset of L1(R; Rn×N ).

For each fixed ν ≥ 1, we consider a finite dimensional subset Uν ⊂ U consisting of all u = (uk,p)
which are piecewise constant on time intervals of length T/ν. Introducing the points

tν`
.
=

`

ν
T , −ν ≤ ` ≤ ν ,
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we thus define

Uν
.
=
{
u = (uk,p) ∈ U ;

every function uk,p is constant on each subinterval Iν`
.
= ]tν`−1, t

ν
` ]
}
.

(4.30)
Observe that every u ∈ Uν has the form

u = (uk,p) , uk,p(t) = uk,p,` for all t ∈ ]tν`−1, t
ν
` ] , (4.31)

for some constants uk,p,` ∈ [0, 4κ].

4. Given u = (uk,p) ∈ U , let τq(t) be the arrival time of a driver starting at time t and traveling
along the path Γq. Clearly, this arrival time depends on the overall traffic conditions, hence
on all functions uk,p. If this driver belongs to the j-th family, his total cost is

Φ
(u)
j,q (t) = ϕj(t) + ψj(τq(t)) .

We now observe that, for each ν ≥ 1, the domain Uν is a finite dimensional, compact, convex

subset of L2([−T, T ]; Rn×N ). Moreover, by Lemma 4.3 the maps u 7→ Φ
(u)
k,p(·) are continuous

from Uν into L2. Hence, by the theory of variational inequalities [12], there exists a function
ūν = (ūνj,q) ∈ Uν which satisfies

∑
j,q

∫ T

−T
Φ

(ūν)
j,q (t) ·

(
vj,q(t)− ūνj,q(t)

)
dt ≥ 0 for all v ∈ Uν . (4.32)

5. We now let ν → ∞. By the previous steps, there exists a sequence of piecewise constant
functions ūν = (ūνk,p) ∈ Uν such that (4.32) holds for every ν ≥ 1. Since all functions ūνk,p are
uniformly bounded and supported inside the interval I = [−T, T ], by taking a subsequence we
can assume the weak convergence

(ūνk,p) ⇀ (u∗k,p) (4.33)

for some function u∗ = (u∗k,p) ∈ U . We claim that the departure rates u∗k,p yield a Nash
equilibrium solution. More precisely:

(NE) Given any k, p, any t1 ∈ Supp(u∗k,p), t2 ∈ R and any path Γq with the same initial and
final nodes as Γp, one has

Φ∗k,p(t1) ≤ Φ∗k,q(t2). (4.34)

Indeed, (4.34) implies that no k-driver can lower his own cost by switching to the time t2 or
choosing the alternative path Γq to reach destination. We recall that t is in the support of a

function f ∈ L1 if and only if
∫ t+ε
t−ε |f(s)| ds 6= 0 for every ε > 0.

6. By Lemma 4.2, all maps t 7→ τνk,p(t) have the same modulus of continuity. Since these
arrival times are uniformly bounded, we can apply Ascoli’s compactness theorem. Choosing
a subsequence and relabeling, as ν →∞ we thus achieve the convergence

τνk,p(t) → τ∗k,p(t) for all k, p, uniformly for t ∈ [−T, T ]. (4.35)
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By the assumption (A2), the cost functions ϕk(·), ψk(·) are continuous. Therefore, the func-
tions Φν

k,p(·) = ϕk(·) + ψk
(
τνk,p(·)

)
converge to Φ∗k,p(·) = ϕk(·) + ψk

(
τ∗k,p(·)

)
, uniformly for

t ∈ [−T, T ]. By Lemma 4.3, τ∗k,p(t) is indeed the arrival time of a k-driver departing at time
t and following the path Γp, in the case where the departure rates of all drivers are given by
u∗ = (u∗j,q).
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Figure 5: The three cases considered in the proof of Theorem 2. In Case 1 (top left) the average
of the cost Φk,p on the interval Iνi is higher than on the interval Iνj . To obtain a contradiction with
(4.32) we simply move some of the mass from Iνi to Iνj . In Case 2a (top right) one cannot increase the
value of uνk,p on the interval Iνj because of the constraint u ≤ 4κ. However, some mass can be moved
from Iνi to the previous interval Iνj−1. In Case 2b (bottom) there are several adjacent intervals where
uνk,p ≡ 4κ. In this case, if Iνj∗ is the first interval to the left of Iνj where uνk,p < 4κ, we argue that (i)
tνj∗ > −T , and (ii) the average of the cost Φk,p on Iνj∗ is strictly less than on Iνj . In this last case, to
obtain a contradiction with (4.32) we move some mass from Iνj∗ to Iνj .

7. If (4.34) fails, then by continuity there exists δ > 0 such that

Φ∗k,p(t) > Φ∗k,q(t
′) + 2δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (4.36)

By uniform convergence, for all ν large enough we have

Φν
k,p(t) > Φν

k,q(t
′) + δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (4.37)

Observe that it is not restrictive to assume that t2 ∈ [−T0, T0]. Indeed, if (4.34) fails for some
t2 /∈ [−T0, T0], then (4.26) implies

Φ∗k,p(t1) > Φ∗k,q(t2) > Φ∗k,q(0),

and we can simply replace t2 with zero.

The weak convergence (4.33), together with the assumption on the support of the function
u∗k,p, now implies

lim
ν→∞

∫ t1+δ

t1−δ
ūνk,p(t) dt =

∫ t1+δ

t1−δ
u∗k,p(t) dt > 0 .
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Therefore, for every ν sufficiently large we can find two intervals

Iνi = ]tνi−1, t
ν
i ] ⊂ [t1 − δ , t1 + δ], Iνj = ]tνj−1, t

ν
j ] ⊂ [t2 − δ , t2 + δ] (4.38)

with tνj > t2 and ūνk,p(t) > 0 for t ∈ Iνi .

8. We now derive a contradiction, showing that, for ν sufficiently large, the departure rates
ūνk,p do not satisfy the variational inequality (4.32). Two possibilities can arise (see fig.5).

CASE 1: ūνk,q,j < 4κ. In this case we define a new set of departure rates vε = (vεk,p) ∈ Uν by
setting

vεk,p(t) = uνk,p(t)− ε if t ∈ Iνi ,

vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj ,

and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,p,i, 4κ−uνk,q,j} then
these new departure rates are still admissible. By (4.37) and (4.38), this construction yields∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

∫
Iνj

Φ
(ūν)
k,q (t) dt−ε

∫
Iνi

Φ
(ūν)
k,p (t) dt ≤ −2εδ , (4.39)

providing a contradiction with (4.32).

CASE 2: ūνk,q,j = 4κ. If this equality holds, consider the index

j∗
.
= max {i < j ; ūνk,q,i < 4κ} .

Notice that tνj∗ > −T . Indeed, by construction t2 > −T0. If tνj∗ ≤ −T , by (4.28) this would
imply

ūνk,q(t) = 4κ for all t ∈ [tνj∗ , t
ν
j ] ⊇ [−T, −T0] ,∫

ūνk,q(t) dt ≥ 4κ(tνj − tνj∗) ≥ 4κ(T − T0) > G ,

reaching a contradiction. We consider two subcases.

CASE 2a: j∗ = j − 1. In this case, since it is not restrictive to assume T
ν < δ

4 , we have
Iνj−1 = [tνj−2, t

ν
j−1] ⊂ [t2− δ, t2 + δ]. We can thus derive a contradiction as in CASE 1, simply

replacing j by j − 1.

CASE 2b: j∗ ≤ j − 2. Observe that, for all s1 < s2,

τνk,q(s2)− τνk,q(s1) ≥ 1

Fmax

∫ s2

s1

ūνk,q(ξ) dξ . (4.40)

In particular, for any s1 ∈ Iνj∗ and s2 ∈ Iνj we have

τνk,q(s2)− τνk,q(s1) ≥ 1

Fmax

∫ s2

s1

ūνk,q(ξ) dξ ≥
1

Fmax
4κ [tj−1 − tj∗ ] ≥

4κ(s2 − s1)

3Fmax
. (4.41)

This yields the estimate

ψk
(
τνk,q(s2)

)
− ψk

(
τνk,q(s1)

)
≥ ψ′min

(
τνk,q(s2)− τνk,q(s1)

)
≥ ψ′min ·

4κ(s2 − s1)

3Fmax
. (4.42)
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On the other hand, we have

ϕk(s2)− ϕk(s1) ≥ − ϕ′max(s2 − s1) . (4.43)

Recalling the definition of the constant κ in (4.27), from (4.42)-(4.43) we obtain

Φν
k,q(s2)− Φν

k,q(s1) ≥
(

4κψ′min
3Fmax

− ϕ′max
)

(s2 − s1) =
1

3
ϕ′max · (s2 − s1) (4.44)

for all s1 ∈ Iνj∗ and s2 ∈ Iνj .

We now choose the departure rates vε = (vεk,p) ∈ Uν by setting

vεk,p(t) = uνk,q(t)− ε if t ∈ Iνj ,
vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj∗ ,

(4.45)

and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,q,j , 4κ − uνk,q,j∗}
then these new departure rates are still admissible.

Using (4.44) with s1 = t, s2 = t+ tνj − tνj∗ we compute

∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

(∫
Iν
j∗

Φ
(ūν)
k,q (t) dt−

∫
Iνj

Φ
(ūν)
k,q (t) dt

)

= ε

∫
Iν
j∗

(
Φ

(ūν)
k,q (t)− Φ

(ūν)
k,q (t+ tνj − tνj∗)

)
dt ≤ − ε

3
ϕ′max · (tνj − tνj∗) < 0 .

(4.46)

Once again we reached a contradiction with (4.32), completing the proof.

Remark 4.4. The above proof is based on a topological method, and does not yield any
information about the uniqueness of the Nash equilibrium. Another important question is the
dynamic stability of this equilibrium solution. This issue was investigated numerically in [4].
In the case of a single group of drivers traveling on a single road, the uniqueness of the Nash
equilibrium solution was proved in [2], but the stability issue remains unresolved.
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