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Abstract

We establish a necessary and sufficient condition for existence of noncon-
stant periodic entropy sub- and super-solutions to a multidimensional degen-
erate elliptic-hyperbolic equation with merely continuous nonlinearities.

1 Introduction

In the space Rn we consider a quasilinear degenerated elliptic-hyperbolic equation

k∑
i=1

(φi(u))xi
+

n∑
i,j=k+1

(bij(u))xixj
= 0, u = u(x), (1)

where 0 ≤ k ≤ n and the functions φi(u), bij(u) are supposed to be merely con-
tinuous. It is assumed that the (n − k) × (n − k) matrix B(u) = (bij(u))

n
i,j=k+1 is

symmetric and for all u, v ∈ R the matrix (u− v)(B(u)−B(v)) is positive semidef-
inite. We can extend the matrix B(u) to n × n symmetric matrix (bij(u))

n
i,j=1,

setting bij(u) = 0 for min(i, j) ≤ k. Then (1) can be written in the form

divφ(u) +D2B(u) = 0, (2)

where the vector φ(u) = (φ1(u), . . . , φk(u), 0, . . . , 0) ∈ Rn and we use the notation

D2B(u) =
n∑

i,j=1

(bij(u))xixj .

The notions of entropy sub-solution, super-solution and solution of (1) can be in-
troduced in the same way as for conservation laws

divφ(u) = 0 (3)

when k = n (see [5, 6]). Let sign+(u) = max(signu, 0) be the Heaviside function,
and sign−(u) = min(signu, 0) = −sign+(−u).

Definition 1.1 (cf. [9, 4]). A measurable function u = u(x) is called an entropy
sub-solution (e.sub-s. for short) of (1) if sign+(u)φi(u), sign

+(u)bij(u) ∈ L1
loc(Rn),

i, j = 1, . . . , n, and for all p ∈ R

div[sign+(u− p)(φ(u)− φ(p))] +D2[sign+(u− p)(B(u)−B(p))] ≤ 0 (4)

in the sense of distributions on Rn (in D′(Rn));

1The research was carried out under financial support of the Russian Foundation for Basic
Research (grant No. 12-01-00230-a).
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A measurable function u = u(x) is called an entropy super-solution (e.super-s.
for short) of (1) if sign−(u)φi(u), sign

−(u)bij(u) ∈ L1
loc(Rn), i, j = 1, . . . , n, and for

all p ∈ R

div[sign−(u− p)(φ(u)− φ(p))] +D2[sign−(u− p)(B(u)−B(p))] ≤ 0 (5)

in D′(Rn);
Finally, a measurable function u = u(x) is called an entropy solution (e.s. for

short) of (1) if it is an e.s.sub-s. and an e.super-s. of (1) simultaneously.

Condition (4), (5) mean that for all non-negative test functions f = f(x) ∈
C2

0 (Rn)∫
Rn

sign±(u− p)
{
(φ(u)− φ(p)) · ∇f(x)− (B(u)−B(p)) ·D2f(x)

}
dx ≥ 0.

We use the notation D2f for the matrix {∂2xixj
f}ni,j=1 and “·” denotes the scalar

product of vectors or matrices. In particular,

(φ(u)− φ(p)) · ∇f(x) =
n∑

i=1

(φi(u)− φi(p))∂xif,

(B(u)−B(p)) ·D2f =

n∑
i,j=1

(bij(u)− bij(p))∂
2
xixj

f.

It is rather well-known that a function u(x) is an e.s. of (1) if and only if φi(u), bij(u) ∈
L1
loc(Rn), i, j = 1, . . . , n, and for all p ∈ R

div[sign(u− p)(φ(u)− φ(p))] +D2[sign(u− p)(B(u)−B(p))] ≤ 0 (6)

in D′(Rn), that is, u(x) is an e.s. in the sense of [9, 4]. Remark that in the case
of conservation laws (3) relation (6) coincides with the known Kruzhkov entropy
condition, see [5].

Observe also that u(x) is an e.super-s. of (1) if and only if v = −u(x) is an
e.sub-s. to the equation

div(−φ(−v)) +D2(−B(−v)) = 0. (7)

In the present paper we assume that the requirement of space-periodicity holds:
u(x+ ei) = u(x) for almost all x ∈ Rn and all i = 1, . . . , n, where {ei}ni=1 is a fixed
basis of periods in Rn. Without loss of generality, we may suppose that this basis is
canonical. We denote by P = [0, 1)n the corresponding fundamental parallelepiped
(cube).

We propose the following necessary and sufficient condition for the nonexistence
of nonconstant periodic entropy sub- and super-solutions of (1) (by Z we denote
the set of integers)

∀ξ ∈ Zn, ξ ̸= 0, the functions u 7→ φ(u) · ξ, u 7→ B(u)ξ · ξ
are not constant simultaneously on non-empty intervals. (8)

Thus, our main result is the following
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Theorem 1.2. If requirement (8) holds then any periodic e.sub-s (or e.super-s.)
u(x) is constant. Conversely, if (8) fails then there exists a nonconstant periodic
e.s. of (1).

Remark that if the basis of periods is not fixed and may depend on a solu-
tion, Theorem 1.2 remains valid after replacement of condition (8) by the following
stronger one:

∀ξ ∈ Rn, ξ ̸= 0, the functions u 7→ φ(u) · ξ, u 7→ B(u)ξ · ξ
are not constant simultaneously on non-empty intervals. (9)

2 Preliminaries

We denote by X the space

Rk = { x = (x1, . . . , xn) | xi = 0 ∀i > k }, (10)

and let X⊥ be its orthogonal complement,

X⊥ = Rn−k = { x = (x1, . . . , xn) | xi = 0 ∀i ≤ k }.

We also denote by P1, P2 operators of orthogonal projections on X and X⊥, re-
spectively. To prove Theorem 1.2 we derive the strong pre-compactness property
for the self-similar scaling sequence u(k2P1x+ kP2x), k ∈ N, which can be satisfied
only for constant u(x). This pre-compactness property will be obtained under con-
dition (8) on the base of localization principles for ultra-parabolic H-measures with
“continuous indexes”, introduced in [9]. The strong pre-compactness property for
arbitrary sequences of e.s. of (1) under exact non-degeneracy condition (9) follows
from general results of papers [9, 4]. In the present paper we also take into account
the periodicity condition, which allow to refine the localization principle.

First, we recall the original concept of H-measure introduced by L. Tartar [12]
and P. Gerárd [3]. Let F (u)(ξ) =

∫
Rn e

−2πiξ·xu(x)dx, ξ ∈ Rn, be the Fourier
transform extended as a unitary operator in the Hilbert space of functions u(x) ∈
L2(Rn), S = Sn−1 = { ξ ∈ Rn | |ξ| = 1 } be the unit sphere in Rn. Denote by
u→ u, u ∈ C the complex conjugation.

Let Uk(x) =
(
U1
k (x), . . . , U

l
k(x)

)
∈ L2

loc(Rn,Rl) be a sequence of vector-functions
weakly convergent to the zero vector.

Proposition 1 (see [12], Theorem 1.1). There exists a family of complex locally

finite Borel measures µ =
{
µij

}l

i,j=1
in Rn × S and a subsequence Ur(x) = Uk(x),

k = kr, such that

⟨µij ,Φ1(x)Φ2(x)ψ(ξ)⟩ = lim
r→∞

∫
Rn

F (U i
rΦ1)(ξ)F (U

j
rΦ2)(ξ)ψ

(
ξ

|ξ|

)
dξ (11)

for all Φ1(x),Φ2(x) ∈ C0(Rn) and ψ(ξ) ∈ C(S).

The family µ =
{
µij

}l

i,j=1
is called the H-measure corresponding to Ur(x).

In [1] the new concept of parabolic H-measures was introduced. Here we need
the more general variant of this concept recently developed in [9], see also [10].
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Suppose that X ⊂ Rn is a linear subspace, X⊥ is its orthogonal complement,
P1, P2 are orthogonal projections on X, X⊥, respectively. We denote for ξ ∈ Rn

ξ̃ = P1ξ, ξ̄ = P2ξ, so that ξ̃ ∈ X, ξ̄ ∈ X⊥, ξ = ξ̃ + ξ̄. Under the above notations we
define the set

SX = { ξ ∈ Rn | |ξ̃|2 + |ξ̄|4 = 1 }

and the projection πX : Rn \ {0} → SX

πX(ξ) =
ξ̃

(|ξ̃|2 + |ξ̄|4)1/2
+

ξ̄

(|ξ̃|2 + |ξ̄|4)1/4
.

Obviously, SX is a compact smooth manifold of codimension 1, in the case when
X = {0} or X = Rn, it coincides with the unit sphere S = {ξ ∈ Rn | |ξ| = 1 } and
then πX(ξ) = ξ/|ξ| is the orthogonal projection on the sphere.

The following analogue of Proposition 1 holds.

Proposition 2. There exist a family of complex Borel measures µ =
{
µij

}l

i,j=1
in

Ω × SX and a subsequence Ur(x) of Uk(x) such that for all Φ1(x),Φ2(x) ∈ C0(Ω),
ψ(ξ) ∈ C(SX)

⟨µij ,Φ1(x)Φ2(x)ψ(ξ)⟩ = lim
r→∞

∫
Rn

F (Φ1U
i
r)(ξ)F (Φ2U

j
r )(ξ)ψ(πX(ξ))dξ. (12)

Besides, the matrix-valued measure µ is Hermitian and positive definite, that is, for

each ζ = (ζ1, . . . , ζl) ∈ Cl the measure µζ · ζ =
l∑

i,j=1

µijζiζj ≥ 0.

The proof of Proposition 2 can be found in [10].

Definition 2.1. The family µij , i, j = 1, . . . , l, is called the ultra-parabolic H-
measure corresponding to a subspace X ⊂ Rn and a subsequence Ur(x).

Remark 1. In the case when the sequence Uk(x) is bounded in L∞(Ω) it follows
from (12) and the Plancherel identity that prx|µij | ≤ Cmeas, and that (12) remains
valid for all Φ1(x),Φ2(x) ∈ L2(Rn). Here we denote by |µ| the variation of measure
µ (it is a nonnegative measure), and by meas the Lebesgue measure on Ω.

We need also the concept of measure valued functions (Young measures). Let
Ω ⊂ Rn be an open domain. Recall (see [2, 11]) that a measure-valued function on
Ω is a weakly measurable map x 7→ νx of Ω into the space Prob0(R) of probability
Borel measures with compact support in R.

The weak measurability of νx means that for each continuous function g(λ) the
function x→ ⟨νx, g(λ)⟩ =

∫
g(λ)dνx(λ) is measurable on Ω.

Measure-valued functions of the kind νx(λ) = δ(λ− u(x)), where u(x) ∈ L∞(Ω)
and δ(λ− u∗) is the Dirac measure at u∗ ∈ R, are called regular. We identify these
measure-valued functions and the corresponding functions u(x), so that there is a
natural embedding of L∞(Ω) into the set MV(Ω) of measure-valued functions on Ω.

Measure-valued functions naturally arise as weak limits of bounded sequences
in L∞(Π) in the sense of the following theorem by L. Tartar (see [11]).
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Theorem 2.2. Let uk(x) ∈ L∞(Ω), k ∈ N, be a bounded sequence. Then there
exist a subsequence (we keep the notation uk(x) for this subsequence) and a measure
valued function νx ∈ MV(Ω) such that

∀g(λ) ∈ C(R) g(uk) →
k→∞

⟨νx, g(λ)⟩ weakly-∗ in L∞(Ω). (13)

Besides, νx is regular, i.e., νx(λ) = δ(λ − u(x)) if and only if uk(x) →
k→∞

u(x) in

L1
loc(Ω) (strongly).

In [7] the new concept of H-measures with “continuous indexes” was introduced,
corresponding to sequences of measure valued functions. Later in [9] ultra-parabolic
variant of such H-measures was developed. We describe this concept in the par-
ticular case of “usual” sequences in L∞(Rn). Let uk(x) be a bounded sequence in
L∞(Rn). Passing to a subsequence if necessary, we can suppose that this sequence
converges to a measure valued function νx ∈ MV(Rn) in the sense of relation (13).
We introduce the measures γkx(λ) = δ(λ − uk(x)) − νx(λ) and the corresponding
distribution functions Uk(x, p) = γkx((p,+∞)), u0(x, p) = νx((p,+∞)) on Rn × R.
Observe that Uk(x, p), u0(x, p) ∈ L∞(Rn) for all p ∈ R, see [7, Lemma 2]. We define
the set

E = E(νx) =

{
p0 ∈ R | u0(x, p) →

p→p0

u0(x, p0) in L1
loc(Rn)

}
.

As was shown in [7, Lemma 4], the complement Ē = R \ E is at most countable
and if p ∈ E then Uk(x, p) ⇀

k→∞
0 weakly-∗ in L∞(Rn).

The next result, similar to Proposition 2, has been established in [9, Proposi-
tion 2, Lemma 4].

Proposition 3. 1) There exists a family of locally finite complex Borel measures
{µpq}p,q∈E in Rn × SX and a subsequence Ur(x, p) = Ukr (x, p) such that for all
Φ1(x),Φ2(x) ∈ C0(Rn) and ψ(ξ) ∈ C(SX)

⟨µpq,Φ1(x)Φ2(x)ψ(ξ)⟩ = lim
r→∞

∫
Rn

F (Φ1Ur(·, p))(ξ)F (Φ2Ur(·, q))(ξ)ψ(πX(ξ))dξ;

2) The correspondence (p, q) → µpq is a continuous map from E × E into the
space Mloc(Rn × SX) of locally finite Borel measures on Ω× SX (with the standard
locally convex topology);

3) For any p1, . . . , pl ∈ E the matrix {µpipj}li,j=1 is Hermitian and positive
semidefinite, that is, for all ζ1, . . . , ζl ∈ C the measure

l∑
i,j=1

µpipjζiζj ≥ 0.

We call the family of measures {µpq}p,q∈E the H-measure corresponding to the
subsequence ur(x) = umr (x) (and the subspace X).

As was demonstrated in [9], the H-measure µpq = 0 for all p, q ∈ E if and only
if the subsequence ur(x) converges as r → ∞ strongly (in L1

loc(Rn)). Observe also
that assertion 3) in Proposition 3 implies that measures µpp ≥ 0 for all p ∈ E, and
that

|µpq(A)| ≤
√
µpp(A)µqq(A) (14)

for any Borel set A ⊂ Rn×SX and all p, q ∈ E. Indeed, this directly follows from the

fact that the matrix

(
µpp(A) µpq(A)
µqp(A) µqq(A)

)
is Hermitian and positive semidefinite.
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3 Main results

Let v = v(x) be a periodic function on Rn such that v(x) ∈ L2(P ), and let

v(x) =
∑
κ∈Zn

aκe
2πiκ·x (15)

be the Fourier series of v(x) in L2(P ), so that aκ =

∫
P

e−2πiκ·xv(x)dx. Then

this series converges to v(x) in L2(P ). We consider the subspace X = Rk defined
in (10) and the sequence vk = v(k2x̃ + kx̄), k ∈ N, where x̃ = P1x, x̄ = P2x
are the orthogonal projection of x on the spaces X, X⊥, respectively. We define
the ultra-parabolic H-measure µ̄ corresponding to the subspace X and the scalar
sequence vr − v∗, where vr = vkr (x) is a subsequence of vk, and v∗ = v∗(x) is a
weak limit of vr as r → ∞ in L2(P ) ( remark that, in view of periodicity of vk,
∥vk∥L2(P ) = ∥v∥L2(P ) = const ).

Lemma 3.1. (i) The function v∗(x) ≡ a0 is constant;
(ii) vr →

r→∞
v∗ in L2(P ) (strongly) if and only if v ≡ const = a0;

(iii) supp µ̄ ⊂ Rn × S0, where

S0 = { πX(ξ) | ξ ∈ Zn, ξ ̸= 0 } ⊂ SX .

Proof. By (15)

vk(x) =
∑
κ∈Zn

aκe
2πiκ·(k2x̃+kx̄) =

∑
κ∈Zn

aκe
2πi(k2κ̃+kκ̄)·x, (16)

where κ̃ = P1κ, κ̄ = P2κ. It readily follows from (16) that vr ⇀
r→∞

a0 and this

convergence is strong in L2(P ) if and only if v ≡ a0. Thus, statements (i), (ii) are
proved.

Let Φ(x) ∈ L2(Rn)∩C∞(Rn) be such that its Fourier transform is a continuous
compactly supported function:

Φ̂(ξ) =

∫
Rn

e−2πiξ·xΦ(x)dx ∈ C0(Rn). (17)

We take R = max
ξ∈supp Φ̂

|ξ|. By (16) we find that

(vr(x)− v∗)Φ(x) =
∑

κ∈Zn,κ̸=0

aκe
2πi(k2κ̃+kκ̄)·xΦ(x). (18)

Observe that the Fourier transform of e2πi(k
2κ̃+kκ̄)·xΦ(x) in Rn coincides with

Φ̂(ξ − (k2r κ̃+ krκ̄)). Since for kr > 2R supports of these functions do not inter-
sect, then for such r the series∑

κ∈Zn,κ̸=0

aκΦ̂(ξ − (k2r κ̃+ krκ̄)) (19)

is orthogonal in L2(Rn). Besides, by the Plancherel equality

∥Φ̂(ξ − (k2r κ̃+ krκ̄))∥L2(Rn) = ∥Φ̂∥2 = ∥Φ∥2,
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and ∑
κ∈Zn,κ̸=0

|aκ|2∥Φ̂(ξ − (k2r κ̃+ krκ̄))∥2L2(Rn) =

∥Φ∥22
∑

κ∈Zn,κ̸=0

|aκ|2 = ∥Φ∥22 · ∥v − v∗∥2L2(P ) < +∞.

Therefore, orthogonal series (19) converges in L2(Rn). Since the Fourier transfor-
mation is an isomorphism on L2(Rn), we conclude that series (18) also converges
in L2(Rn) (not only in L2(P ). This implies that

F ((vr − v∗)Φ)(ξ) =
∑

κ∈Zn,κ̸=0

aκΦ̂(ξ − (k2r κ̃+ krκ̄)). (20)

Since supports of functions Φ(ξ − (k2r κ̃ + krκ̄)) do not intersect for different κ if
kr > 2R, we derive from (20) that

|F ((vr − v∗)Φ)(ξ)|2 =
∑

κ∈Zn,κ̸=0

|aκ|2|Φ̂(ξ − (k2r κ̃+ krκ̄))|2. (21)

It now follows from (21) that for kr > 2R∫
Rn

|F (Φ(vr − v∗))(ξ)|2ψ(πX(ξ))dξ =∑
κ∈Zn,κ̸=0

|aκ|2
∫
Rn

|Φ̂(ξ − (k2r κ̃+ krκ̄))|2ψ(πX(ξ))dξ =

∑
κ∈Zn,κ ̸=0

|aκ|2
∫
Rn

|Φ̂(ξ)|2ψ(πX(ξ + (k2r κ̃+ krκ̄)))dξ. (22)

Since ψ(ξ) ∈ C(SX) it is uniformly continuous on SX and, therefore,

ψ(πX(ξ + (k2r κ̃+ krκ̄))) = ψ(πX(κ+ (k−2
r ξ̃ + k−1

r ξ̄))) →
r→∞

ψ(πX(κ))

uniformly in the ball |ξ| ≤ R. Hence,∫
Rn

|Φ̂(ξ)|2ψ(πX(ξ+(k2r κ̃+krκ̄)))dξ →
r→∞

ψ(πX(κ))

∫
Rn

|Φ̂(ξ)|2dξ = ψ(πX(κ))∥Φ∥22.

(23)
Taking into account that∫

Rn

|Φ̂(ξ)|2ψ(πX(ξ + (k2r κ̃+ krκ̄)))dξ ≤ ∥ψ∥∞∥Φ∥22 = const

and that the series
∑

κ∈Zn,κ̸=0

|aκ|2 converges, we derive from (22), (23) that

⟨µ̄, |Φ(x)|2ψ(ξ)⟩ = lim
r→∞

∫
Rn

|F (Φ(vr − v∗))(ξ)|2ψ(πX(ξ))dξ =∑
κ∈Zn,κ̸=0

|aκ|2ψ(πX(κ))∥Φ∥22 =

∫
Rn

|Φ(x)|2dx
∑

κ∈Zn,κ̸=0

|aκ|2ψ(πX(κ)). (24)
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Observe that by Remark 1 we may use test functions Φ(x) ∈ L2(Rn) in the definition
ofH-measure µ̄. Since the set of functions Φ(x) with the prescribed above properties
is dense in L2(Rn) we derive from (24) that µ̄ is a the product of the Lebesgue
measure dx and the singular measure σ =

∑
κ∈Zn,κ̸=0

|aκ|2δ(ξ − πX(κ)): µ̄ = dx× σ.

In particular, supp µ̄ ⊂ Rn × S0, as was to be proved.

Now let u(x) ∈ L∞(Rn). We consider the H-measure {µpq}p,q∈E corresponding
to a subsequence ur = ukr (x) of the sequence uk(x) = u(k2x̃+ kx̄), k ∈ N, defined
in accordance with Proposition 3.

Theorem 3.2. For every p, q ∈ E suppµpq ⊂ Rn × S0.

Proof. Let νx be a weak measure valued limit of the sequence ur (in the sense of
Theorem 2.2). We introduce measures

γrx(λ) = δ(λ− ur(x))− νx(λ),

and set Ur(x, p) = γrx((p,+∞)). Let s(u) ∈ C1(R) be such that its derivative s′(u)
is compactly supported, and vr(x) = s(ur(x)), r ∈ N. Then vr ⇀ v∗ =

∫
s(λ)dνx(λ)

as r → ∞ weakly-∗ in L∞(Π) (by Lemma 3.1(i), the limit function v∗ is constant).
Integrating by parts, we find that

vr(x)− v∗ =

∫
s(λ)dγrx(λ) =

∫
s′(λ)Ur(x, λ)dλ. (25)

Let Φ(x) ∈ C0(Rn), ψ(ξ) ∈ C(SX). Then, in view of (25), we find∫
Rn

|F (Φ(vr − v∗))(ξ)|2ψ(πX(ξ))dξ =∫ ∫
s′(p)s′(q)

(∫
Rn

F (ΦUr(·, p))(ξ̄)F (ΦUr(·, q))(ξ)ψ(πX(ξ))dξ

)
dpdq. (26)

By the definition of H-measure, for each p, q ∈ E

lim
r→∞

∫
Rn

F (ΦUr(·, p))(ξ̄)F (ΦUr(·, q))(ξ)ψ(πX(ξ))dξ = ⟨µpq, |Φ(x)|2ψ(ξ)⟩.

Using Lebesgue dominated convergence theorem, we can pass to the limit as r → ∞
in equality (26) and arrive at

⟨µ̄, |Φ(x)|2ψ(ξ)⟩ = lim
r→∞

∫
Rn

|F (Φ(vr − v))(ξ)|2ψ(πX(ξ))dξ =∫ ∫
s′(p)s′(q)⟨µpq, |Φ(x)|2ψ(ξ)⟩dpdq, (27)

where µ̄ = µ̄(x, ξ) is the ultra-parabolic H-measure, corresponding to the scalar
sequence Ur = vr − v∗ in accordance with Definition 2.1. Clearly, the equality

⟨µ̄, |Φ(x)|2ψ(ξ)⟩ =
∫ ∫

s′(p)s′(q)⟨µpq, |Φ(x)|2ψ(ξ)⟩dpdq

remains valid for every Borel function ψ(ξ). Taking ψ(ξ) being the indicator func-
tion of the set SX \ S0 and using Lemma 3.1 (iii), we obtain the relation∫ ∫

s′(p)s′(q)⟨µpq, |Φ(x)|2ψ(ξ)⟩dpdq = 0. (28)
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Now we take in (28) s′(p) = lω(l(p−p0)), where p0 ∈ E, l ∈ N, and ω(y) ∈ C0((0, 1))
is a non-negative function such that

∫
ω(y)dy = 1. Since the H-measure µpq is

strongly continuous with respect to (p, q) at the point (p0, p0), we derive from (28)
in the limit as l → ∞ that

⟨µp0p0 , |Φ(x)|2ψ(ξ)⟩ =

lim
l→∞

l2
∫ ∫

ω(l(p− p0))ω(l(q − p0))⟨µpq, |Φ(x)|2ψ(ξ)⟩dpdq = 0.

Since Φ(x) ∈ C0(Rn) is arbitrary, we conclude that µp0p0(Rn × (SX \ S0)) = 0
( remark that µp0p0 ≥ 0 ). Hence, for every p = p0 ∈ E suppµpp ⊂ Rn × S0.
Finally, as directly follows from (14), for p, q ∈ E suppµpq ⊂ suppµpp ⊂ Rn × S0.
The proof is complete.

Now, suppose that u(x) is an e.sub-s. of (1). Then, as is easy to verify, the
sequence uk(x) = u(k2x̃+ kx̄) consists of e.sub-s. of (1). Indeed, for all p ∈ R

div[sign+(uk − p)(φ(uk)− φ(p))]−D2[sign+(uk − p)(B(uk)−B(p))] =

k2{div[sign+(u− p)(φ(u)− φ(p))]−
D2[sign+(u− p)(B(u)−B(p))]}(k2x̃+ kx̄) ≤ 0

in D′(Rn). We need the following simple

Lemma 3.3. Let u = u(x) be an e.sub-s. of (1), M = ∥u∥∞. Then for each p ∈ R

Lp
.
= div[sign+(u− p)(φ(u)−φ(p))]−D2[sign+(u− p)(B(u)−B(p))] = −γp (29)

in D′(Rn), where γp ∈ Mloc(Rn) is a nonnegative locally finite Borel measure on
Rn. Besides, for each compact K ⊂ Rn

γp(K) ≤ C(K)
(
∥sign+(u− p)(φ(u)− φ(p))∥L1(K) +

∥sign+(u− p)(B(u)−B(p))∥L1(K)

)
, u = u(x). (30)

where the constant C(K) depends only on K.

Proof. By the known representation of nonnegative distributions,

−Lp = −{div[sign+(u− p)(φ(u)− φ(p))]−D2[sign+(u− p)(B(u)−B(p))]} = γp,

where γp ∈ Mloc(Rn), γp ≥ 0, and (29) follows.
Further, for a compact set K ⊂ Rn we choose a nonnegative function fK(x) ∈

C∞
0 (Rn), which equals 1 on K. Then

γp(K) ≤
∫
fk(x)dγp(x) = −⟨Lp, fK⟩ =∫

sign+(u− p)[(φ(u)− φ(p)) · ∇fK(x) + (B(u)−B(p)) ·D2fK(x)]dx ≤

max
(
∥∇fK∥∞, ∥D2fK∥∞

)(
∥sign+(u− p)(φ(u)− φ(p))∥L1(K) +

∥sign+(u− p)(B(u)−B(p))∥L1(K)

)
,

and estimate (30) follows with C(K) = max
(
∥∇fK∥∞, ∥D2fK∥∞

)
. The proof is

complete.
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For a, b ∈ R, a ≤ b we define the cut-off function sa,b(u) = max(a,min(b, u)).

Lemma 3.4. Let u = u(x) be a e.sub-s. of (1), M = ∥u∥∞. Then for each a, b ∈ R,
a ≤ b

divφ(sa,b(u))−D2B(sa,b(u)) = γb − γa in D′(Rn). (31)

Proof. One can easily verify that

φ(sa,b(u)) = sign+(u− a)(φ(u)− φ(a))− sign+(u− b)(φ(u)− φ(b)) + φ(a),

B(sa,b(u)) = sign+(u− a)(B(u)−B(a))− sign+(u− b)(B(u)−B(b)) +B(b).

Therefore,
divφ(sa,b(u))−D2B(sa,b(u)) = La − Lb = γb − γa,

by Lemma 3.3, as was to be proved.

Let us fix m ∈ R, m > 0. We consider the H-measure {µpq}p,q∈E corresponding
to a subsequence vr = s−m,m(ur), where ur = u(k2r x̃+krx̄). Let p0 ∈ E. We define
the minimal linear subspace L = L(p0) ⊂ Rn such that suppµp0p0 ⊂ Rn × L.

Theorem 3.5. There exists δ > 0 such that the functions u 7→ ξ̃·φ(u), u 7→ B(u)ξ̄·ξ̄
are constant on the interval (p0 − δ, p0 + δ) for all ξ ∈ L.

Proof. Let D ⊂ E be a countable dense subset such that p0 ∈ D. By [9, Proposi-
tion 3] there exists a family of complex finite Borel measures µpq

x ∈ M(SX) on SX ,
where p, q ∈ D, x ∈ Ω, Ω ⊂ Rn being a subset of full Lebesgue measure such that
µpq = µpq

x dx, i.e., for all Φ(x, ξ) ∈ C0(Rn × SX) the function

x 7→ ⟨µpq
x (ξ),Φ(x, ξ)⟩ =

∫
SX

Φ(x, ξ)dµpq
x (ξ)

is Lebesgue-measurable, bounded, and

⟨µpq,Φ(x, ξ)⟩ =
∫
Ω

⟨µpq
x (ξ),Φ(x, ξ)⟩dx.

Since ur(x) is a sequence of e.sub-s. of equation (1) then by Lemma 3 for every
a, b ∈ R, a ≤ b the sequence of distributions

Lr
a,b = divφ(sa,b(u))−D2B(sa,b(u)) = γrb − γra.

Since u(x) is a periodic function then the sequences

∥sign+(ur − p)(φ(ur)− φ(p))∥L1(K) + ∥sign+(ur − p)(B(ur)−B(p))∥L1(K)

are bounded for every compact K ⊂ Rn. In view of (30) the sequences Lr
a,b,

r ∈ N are bounded in Mloc(Rn). Therefore, these sequences are precompact in the
Sobolev space W−1

d,loc(Rn) for each 1 < d < n/(n − 1). By [9, Theorem 4] the H-
measure satisfies the following localization property: for all p ∈ D and a.e. x ∈ Rn

suppµpp
x ⊂ L1(p), where

L1(p) = { ξ ∈ Rn | ∃δ > 0 ∀u ∈ (p− δ, p+ δ)

(φ(u)− φ(p)) · ξ̃ = (B(u)−B(p))ξ̄ · ξ̄ = 0 }.
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In view of the representation µpp = µpp
x dx we derive that suppµpp ⊂ Rn × L1. In

particular, L ⊂ L1 = L1(p0). Let ξk, k = 1, . . . , l = dimL, be a basis in L. Since
ξk ∈ L1 then there exist δk > 0 such that the functions

(φ(u)− φ(p0)) · ξ̃k = (B(u)−B(p0))ξ̄k · ξ̄k = 0 (32)

for all u ∈ (p0 − δk, p0 + δk), k = 1, . . . , l. Setting δ = min
k=1,...,l

δk, we find that (32)

holds on the interval u ∈ (p0 − δ, p0 + δ) for all vectors ξk, k = 1, . . . , l. Since the
linear span of these vectors coincides with L, relation

(φ(u)− φ(p0)) · ξ̃ = (B(u)−B(p0))ξ̄ · ξ̄ = 0

remains true for u ∈ (p0 − δ, p0 + δ) and every ξ ∈ L. This concludes the proof.

Now we are ready to prove our main Theorem 1.2.

Proof of Theorem 1.2. We fix m > 0, p ∈ E and assume that µpp ̸= 0 (recall that
{µpq}p,q∈E is the H-measure corresponding to the subsequence vr = s−m,m(ur)).
Then the space L = L(p) is not trivial: dimL > 0. By Theorem 3.2 there exists a
nonzero vector ξ ∈ Zn ∩ L. Then, by Theorem 3.5 the functions

u 7→ ξ · φ(u) = ξ̃ · φ(u), u 7→ B(u)ξ · ξ = B(u)ξ̄ · ξ̄

are constant on some interval (p−δ, p+δ), which contradicts to condition (8). Hence
µpp = 0 for all p ∈ E. In view of (14) this implies that the H-measure µpq ≡ 0.
Therefore, the sequence vr(x) = s−m,m(u(k2r x̃+krx̄)) converges strongly as r → ∞
to a function u∗(x). By Lemma 3.1(ii) and arbitrariness of m, this is possible only
if u(x) ≡ c = const.

If u(x) is a periodic e.super-s. of (1) when v = −u is a periodic e.sub-s. of
equation (7), which obviously satisfies requirement (8), and, as was already proved
above, u together with v must be constant.

Conversely, if condition (8) fails then we can find the segment [a, b], a < b, and
a nonzero vector ξ ∈ Zn such that the functions u 7→ ξ · φ(u), u 7→ B(u)ξ · ξ are
constant on the segment [a, b]. Then, as is easy to verify, the function

u(x) =
a+ b

2
+
b− a

2
sin(2πξ · x)

is a nonconstant periodic e.s. of (1). The proof is complete.

Corollary 1. Let k = n, u1(x), u2(x) be bounded e.sub-s. and e.super-s. of (3),
respectively, and h ̸= 0. Introduce the functions

vh(x) = sup
κ∈Zn

u1(x+ hκ), wh(x) = inf
κ∈Zn

u2(x+ hκ).

Assume that condition (8) is satisfied. Then the functions vh(x), wh(x) are con-
stant: vh(x) = ess supu1(x), wh(x) = ess inf u2(x) a.e. on Rn.

Proof. Since the functions u1(x + hκ), u2(x + hκ) are, respectively, e.sub-s. and
e.super-s. of conservation law (3) for every κ ∈ Zn then by the results of [8, Theorem
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1], the functions vh(x) and wh(x) are e.sub-s. and e.super-s. of (3) as well. Indeed,
introduce the sequences

vr(x) = max
κ∈Zn,|κ|<r

u1(x+ hκ), wr(x) = min
κ∈Zn,|κ|<r

u2(x+ hκ), r ∈ N.

Then vr(x), wr(x) are e.sub-s. and e.super-s. of (3) as a maximum of finite family
of e.sub-s. ( respectively, a minimum of finite family of e.super-s. ). It is clear
that vr(x) →

r→∞
vh(x), wr(x) →

r→∞
wh(x) pointwise and in L1

loc(Rn). Obviously, the

limit functions vh(x), wh(x) are, respectively, an e.sub-s. and an e.super-s. of (3).
It is clear that vh(hx), wh(hx) are periodic e.sub-s. and e.super-s. of (3). By
Theorem 1.2 we claim that these functions are constant. Therefore, vh(x) = α(h),
wh(x) = β(h) for almost every x ∈ Rn, where α(h), β(h) are some constants.
Obviously,

u1(x) ≤ α(h) = vh(x) ≤ ess supu1(x), ess inf u2(x) ≤ β(h) = wh(x) ≤ u2(x)

a.e. in Rn. This implies that α(h) = ess supu1(x) and β(h) = ess inf u2(x). In par-
ticular, the constants α(h), β(h) do not depend on h. Thus, vh(x) = ess supu1(x),
wh(x) = ess inf u2(x) a.e. on Rn. This completes the proof.

Remark 2. For the general basis of periods ei, i = 1, . . . , n, one should replace Zn

in condition (8) by the set

{ ξ ∈ Rn | ξ · ei ∈ Z ∀i = 1, . . . , n }.

If the vector φ(u) and the matrix B(u) are not simultaneously constant on non-
degenerate intervals then one always can choose such a basis ei, i = 1, . . . , n that
condition (8) is satisfied and, therefore, the statement of Theorem 1.2 holds.
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