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Abstract. We consider a model of traffic flow with unilateral constraint on the flux introduced by R. M. Colombo and P.
Goatin [14], for which the convergence of numerical approximation using monotone finite volume schemes has been performed
by B. Andreianov et al. [4]. We derive for this problem some new BV-estimate, and make use of it to provide an error estimate
for the Godunov approximation of the problem of order h1/3 that is improved into the optimal order h1/2 under a reasonable
assumption. Numerical experiments are then provided to illustrate the optimality of the result.
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1. Presentation of the continuous problem. Recently, R. M. Colombo and P. Goatin [14]
analyzed the following model of traffic flow, inspired from the so-called LWR model [21, 25], with a constraint
on the flux:











∂tu+ ∂xf(u) = 0 for (x, t) ∈ R× R+,

u(x, 0) = u0(x) for x ∈ R,

f(u)(0, t) ≤ F (t) for t ∈ R+,

(1.1)

where f is supposed to be Lipschitz continuous on [0, 1] and bell-shaped, i.e. there exists u ∈ (0, 1) such that

f(0) = f(1) = 0, f ≥ 0, f ′(u)(u− u) > 0 for a.e. u ∈ [0, 1], (1.2)

and where the constraint F satisfies

0 ≤ F (t) ≤ f(u), for a.e. t ∈ R+.

This constraint F models toll gates or traffic lights. In the case where the flow is not constrained, i.e.
F ≡ f(u), then it is well known that the good notion of solution for the problem (1.1) is the notion of
entropy solution [23, 28, 19]. In the case where the constraint becomes active, i.e. F (t) < f(u) on a
non negligible set of R+, then it is shown in [14] that a non-classical shock with zero speed can appear
at the interface {x = 0}, so that the constraint can be satisfied. It has then been pointed out by B.
Andreianov, P. Goatin and N. Seguin [4] that the problem (1.1) can be immersed in the framework of
scalar conservation laws with discontinuous flux functions, that has been widely studied during the last years.
Among the numerous references available on this topic, let us mention that Adimurthi, S. Mishra andG.D.
Veerappa Gowda [1] exhibited that such scalar conservation laws with discontinuous flux function admit
an infinite number of solutions.

More precisely, we look for solutions of
{

∂tu+ ∂xf(u) = 0 for (x, t) ∈ R× R+,

u(x, 0) = u0(x) for x ∈ R,
(1.3)

that satisfy the usual entropy criterion away from the interface, i.e. such that

∂t|u− κ|+ ∂xΦκ(u) ≤ 0, in D′([0,+∞)× R+), (1.4)

where Φκ(u) = sign(u− κ)(f(u)− f(κ)). We also require the continuity of the flux at {x = 0}, yielding the
Rankine-Hugoniot condition

f(uL) = f(uR), (1.5)

where uL and uR respectively denote the one-sided traces of u on {x = 0} from {x < 0} and {x > 0}, i.e.

uL(t) = lim
ǫ→0+

1

ǫ

∫ 0

−ǫ

u(x, t)dx, uR(t) = lim
ǫ→0+

1

ǫ

∫ ǫ

0

u(x, t)dx. (1.6)
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Note that, following E. Yu. Panov [24], since the flux function f is non constant on any interval and since
the solution u satisfies (1.4), then the traces uL,R defined by (1.6) exist for almost all t > 0.

As it was first noticed in [1], uniqueness of the solution of (1.3)–(1.5) fails since undercompressive shocks
can be generated by the interface {x = 0}, yielding an infinite number of solutions. More precisely, define by

U =
{

(A,B) ∈ [0, 1]2 | f(A) = f(B), A ≥ u and B ≤ u
}

the set of all possible stationary undercompressive shocks. For all (A,B) ∈ U , the piecewise constant function

x 7→ A11x<0(x) +B11x>0(x) (1.7)

is a steady solution to the problem (1.3)–(1.5), being a usual entropy solution in the sense of [19, 23] if and
only if A = B = u. It has been emphasized in [9, 5] that for all (A,B) ∈ U , there exists a unique L1-
contraction semi-group such that (1.7) is a solution to the problem. Reciprocally, given a time independent
L1-contraction semi-group for the problem (1.3)–(1.5), there exists a unique (A,B) ∈ U such that (1.7)
is a solution to the problem. Let u be the solution of (1.3)–(1.5) belonging to this latter L1-contraction
semi-group, then its one-sided traces satisfy

ΦB(uR(t))− ΦA(uL(t)) ≤ 0, for a.e. t > 0.

Moreover, it has been pointed out in [3] that

f(uL) = f(uR) ≤ f(A) = f(B) for a.e. t > 0,

so that the choice of (A,B) ∈ U enforces a constraint on the flux at the interface.

Symmetrically, let F ∈ L∞(R+; [0, f(u)]), then there exists a unique couple (A,B) ∈ (L∞(R+; [0, 1]))
2

such that

A(t) ≥ u (resp. B(t) ≤ u), F (t) = f(A(t)) = f(B(t)). (1.8)

Obviously, (A(t), B(t)) ∈ U for a.e. t > 0.
Definition 1.1. Let F ∈ L∞(R+; [0, f(u)]), and let A,B ∈ L∞(R+) be defined almost everywhere

by (1.8), then the subset G∗(t) of [0, 1]2, defined by: for a.e. t > 0,

G∗(t) =
{

(cL, cR) ∈ [0, 1]2 | f(cL) = f(cR) and ΦB(t)(cR)− ΦA(t)(cL) ≤ 0
}

.

is said to be the L1-dissipative (dual) germ corresponding to F .
We refer to [5] for an extensive discussion about the notion of L1-dissipative germs and to [3] for a

discussion on the correspondence between constraining the flux and choosing an undercompressive shock.
We focus now on the characterization of the relevant solution to (1.1).
Definition 1.2. A function u ∈ L∞(R× R+; [0, 1]) is said to be a solution of the problem (1.1) if:
1. for all κ ∈ [0, 1], for all ψ ∈ D+(R× R+)

1 such that ψ(0, ·) = 0,

∫ +∞

0

∫

R

|u(x, t)− κ|∂tψ(x, t)dxdt +

∫

R

|u0(x)− κ|ψ(x, 0)dx

+

∫ +∞

0

∫

R

Φκ(u)(x, t)∂xψ(x, t)dxdt ≥ 0; (1.9)

2. for almost every t ∈ R+, the one-sided traces (uL(t), uR(t)) belong to G∗(t).
Remark 1.1. Three equivalent notions of solutions to the problem (1.1), among which the previous one,

are proposed in [4]. Here, we choose to focus on only one of them, which is sufficient for our study.
Let us describe now the L1-dissipative germ G∗ involved in the problem (1.1). Given a constraint

F ∈ L∞(R+, [0, f(u)]) and A,B the functions defined by (1.8), then following [4], the L1-dissipative germ G∗

corresponding to the problem (1.1), represented in Figure 1.1, can be split into three parts

G∗(t) = G1(t) ∪ G2(t) ∪ G3(t),

where
• G1(t) = (A(t), B(t)) corresponds to the unique undercompressive shock allowed at time t > 0;
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Fig. 1.1. Left: graphical representation of the values A(t) and B(t) corresponding to the constraint F (t). Right: graphical
representation of the corresponding L1-dissipative germ G∗(t).

• G2(t) = {(c, c) ∈ [0, 1]2 | f(c) ≤ F (t)} corresponds to a continuous solution across the interface and
a flux satisfying the constraint;

• G3(t) = {(cL, cR) ∈ [0, 1]2 | cL ≤ u, cR ≥ u and f(cL) = f(cR) ≤ F (t)} correspond to the
compressive stationary shocks satisfying the constraint.

We now state the existence and uniqueness result for the solution u of the problem (1.1) whose proof
is detailed in [14, 4]. The time continuity of the solution u prescribed below is a consequence of the result
stated in [11].

Theorem 1 ([14, 4]). Let u0 ∈ L∞(R; [0, 1]), and let F ∈ L∞(R+; [0, f(u)]), then there exists a unique u
solution to the problem (1.1) in the sense of the Definition 1.2, which furthermore can be assumed to belong
to C(R+, L

1
loc(R)). Moreover, if v is another solution corresponding to the initial data v0 ∈ L∞(R; [0, 1]) such

that (u0 − v0) ∈ L1(R), then one has, for all t ∈ R+,

‖u(·, t)− v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R).

2. Godunov approximation of the problem and main result.

2.1. The Godunov approximation. In this section, we introduce the Godunov approximation of
the problem (1.1). For the sake of simplicity, we choose to deal with uniform discretizations of R × R+.
Nevertheless, note that all the following results can be adapted to the case of non-uniform discretizations.

Let h > 0 the space step, we denote, for all i ∈ Z,

xi = ih, xi+1/2 = (i+ 1/2)h and u0i+1/2 =
1

h

∫ xi+1

xi

u0(x)dx.

Let k > 0 be the time step, we denote by tn = nk (n ∈ N), and by

Fn =
1

k

∫ tn+1

tn
F (t)dt, An = max{s ∈ [0, 1] | f(s) = Fn}, Bn = min{s ∈ [0, 1] | f(s) = Fn}. (2.1)

Note that Fn ≤ f(u) (n ∈ N).
We define the constrained Godunov scheme by

un+1
i+1/2 − uni+1/2

k
h+Gn

i+1(u
n
i+1/2, u

n
i+3/2)−Gn

i (u
n
i−1/2, u

n
i+1/2) = 0, (2.2)

where Gn
i is the Godunov numerical flux through the edge xi, given by

• the classical Godunov numerical flux G if i 6= 0, i.e.

Gn
i (a, b) = G(a, b) = min (f(min{a, u}), f(max{u, b})) =







min
s∈[a,b]

f(s) if a ≤ b,

max
s∈[b,a]

f(s) if b ≤ a;
(2.3)

1The set D+(R× R+) denotes the space of C∞(R× R+;R+) functions with compact support.
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• the constrained Godunov numerical flux Gn
0 if i = 0, i.e.

Gn
0 (a, b) = min (Fn, G(a, b)) , (2.4)

as proposed in [4].
We now state a Proposition, whose generalization to the case of discontinuous flux functions is the

purpose of the note [3].
Proposition 2.1. The constrained Godunov numerical flux (2.4) coincides with the classical Godunov

numerical flux for the constrained problem, i.e. f(U(0; a, b)) where U(x/t; a, b) is the self-similar solution of
the constrained Riemann problem (described in [14]).

Proof. Consider u0(x) = a11x<0 + b11x>0. First, solving the Riemann problem without constraint, i.e.
{

∂tv + ∂xf(v) = 0 in R× R+,

v|t=0
= a11x<0 + b11x>0 in R

provides that either the solution v is continuous at x = 0 and t > 0, with v(0, t) = c that does not depend on
t, or we have an compressive shock f(a) = f(b) and a < b. In any case, the solution is self-similar, yielding
that t 7→ f(v)(0, t) is constant on (0,+∞), and is exactly given by the formula (2.3).

Assume first that f(v)(0, t) ≤ Fn, then, clearly, v satisfies (1.9). Moreover, (v(0−, t), v(0+, t)) either
belongs to G2(t) or G3(t) (that do not depend on time, since we consider here the constraint F ≡ Fn).
Therefore, v is the unique solution of the problem (1.1) for the constant constraint F ≡ Fn.

Assume now that f(v(0, t)) > Fn, then one deduces from the formula (2.3) and from the fact that f
is bell-shaped (1.2) that a ≥ Bn and b ≤ An. In this case, define u as the solution of two distinct initial
boundary value problems







∂tu+ ∂xf(u) = 0 in R− × R+

u|t=0
= a in R−

u|x=0
= An in R+,







∂tu+ ∂xf(u) = 0 in R+ × R+

u|t=0
= b in R+

u|x=0
= Bn in R+.

Since a ≥ Bn (respectively b ≤ An), the wave connecting a to An (resp. Bn to b) has a non-positive (resp.
non-negative) speed, so that the boundary condition is fulfilled in a strong sense in each case. Clearly, u
satisfies (1.9), and its traces on the interface belong to G3(t), thus u is the unique solution to the problem (1.1)
for the constant constraint F ≡ Fn, and the flux at the interface is exactly given by Fn.

All along this paper, we assume that the following CFL condition is fulfilled:

2Lfk

h
≤ 1, (2.5)

where Lf denotes the Lipschitz constant of f , and also that the time step is bounded, let say, without loss
of generality,

k ≤ 1. (2.6)

Definition 2.1. We denote by uh the so-called approximate solution, defined almost everywhere by

uh(x, t) = uni+1/2 if (x, t) ∈ (xi, xi+1)× [tn, tn+1).

We now state the L∞ stability of the scheme. We refer to [4, Proposition 4.2] for the proof of Proposi-
tion 2.2.

Proposition 2.2. Under the CFL condition (2.5), one has 0 ≤ uh ≤ 1 a.e. in R× R+.

2.2. Approximate traces on the interface. In this section, we seek to introduce, for all n ∈ N, two
artificial approximate traces unL, u

n
R such that (unL, u

n
R) belongs to the approximate germ Gn, defined by

Gn = Gn
1 ∪ Gn

2 with Gn
1 = (An, Bn) and Gn

2 = {(c, c) ∈ [0, 1]2 | f(c) < Fn},

and then to derive some properties on them.
Proposition 2.3. For all n ∈ N, there exists (unL, u

n
R) ∈ Gn such that

Gn
0 (u

n
−1/2, u

n
1/2) = G(un−1/2, u

n
L) = G(unR, u

n
1/2) = f(unL) = f(unR). (2.7)
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In the case where G(un−1/2, u
n
1/2) < Fn, one has either unL = unR = un−1/2 or unL = unR = un1/2. Moreover, the

case unL = An and unR = Bn only occurs when un1/2 ≤ An and un−1/2 ≥ Bn.
Proof. We can prove the above Proposition by a case by case study. For reader’s convenience, we drop

the index n. Let u−1/2 and u1/2 belong to [0, 1], then we define by u⋆−1/2 ∈ [u, 1] and u⋆1/2 ∈ [0, u] by

f(u⋆−1/2) = f(u−1/2), f(u⋆1/2) = f(u1/2).

1. Assume that 0 ≤ u−1/2 < B.
(a) If u1/2 ≤ u⋆−1/2, then uL = uR = u−1/2 satisfies (2.7).

(b) If u1/2 > u⋆−1/2, then uL = uR = u1/2 satisfies (2.7).
2. Assume that B ≤ u−1/2 ≤ 1.

(a) If 0 ≤ u1/2 ≤ A, then uL = A and uR = B satisfies (2.7).
(b) If A < u1/2 ≤ 1, then uL = uR = u1/2 satisfies (2.7).

Remark 2.1.
1. Note that unL, u

n
R are not in general unique. Indeed, assume that un−1/2 < Bn, and that un1/2 = un,⋆−1/2,

then (unL, u
n
R) can be chosen equal to either (un−1/2, u

n
−1/2) or (un1/2, u

n
1/2). Of course, whatever this

choice is, the flux f(unL) = f(unR) through the interface {x = 0} is unique.
2. The introduction of these approximate traces enables us to rewrite the constrained Godunov scheme

(2.2)-(2.4) as two classical Godunov schemes on {x < 0} and {x > 0} with respective Dirichlet
boundary conditions unL and unR:

un+1
i+1/2 − uni+1/2

k
h+G(uni+1/2, u

n
i+3/2)−G(uni−1/2, u

n
i+1/2) = 0, for i /∈ {−1, 0},

un+1
−1/2 − un−1/2

k
h+G(un−1/2, u

n
L)−G(un−3/2, u

n
−1/2) = 0,

un+1
1/2 − un1/2

k
h+G(un1/2, u

n
3/2)−G(unR, u

n
1/2) = 0.

(2.8)

In the sequel, we denote by uL,h and uR,h the functions defined by

uL,h(t) := unL, uR,h(t) = unR for t ∈ [tn, tn+1). (2.9)

2.3. Convergence of the scheme and error estimate. We state here the following convergence
result, which is the main result of [4].

Theorem 2 ([4]). Let F ∈ L∞(R+; [0, f(u)]), and let u0 ∈ L∞(R; [0, 1]), then, under the CFL condition

2Lfk

h
≤ 1− ξ, with ξ ∈ (0, 1), (2.10)

then the approximate solution uh defined in Definition 2.1 converges in L1
loc(R × R+) towards the unique

solution u to the problem in the sense of Definition 1.2 as h tends to 0.
Remark 2.2. Note that the CFL condition (2.10) is slightly more restrictive than (2.5), so that some nu-

merical diffusion stabilizes the scheme. However, we will deduce from this work that, if the data are sufficiently
regular (roughly speaking in BVloc), then the scheme still converges under the weaker CFL condition (2.5).
First, we need a classical BVloc assumption on (A,B):

Assumption 1. The functions A and B defined in (1.8) belong to BVloc(R+).
Notice that this last assumption is slightly more restrictive than the one imposed in [14], i.e. F ∈ BVloc(R+).
Nevertheless, in the particular case where minu∈[0,1] |f

′(u)| > α, as in the so called hat flux test case proposed
in Section 6, Assumption 1 is equivalent to assuming F ∈ BVloc(R+).

In order to improve the error estimate, we shall make the following assumption.
Assumption 2. There exists CBV depending only on T such that, for all discretization parameters h, k

fulfilling (2.5), and for all τ ∈ (0, T ),

∫ T−τ

0

(|uL,h(t+ τ)− uL,h(t)|+ |uR,h(t+ τ)− uR,h(t)|) dt ≤ CBVτ.
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In the sequel, we denote by ωR the subset of R× R+ given by

ωR = {(x, t) ∈ R× R+ | |x| ≤ R− Lf t}. (2.11)

Because the solution u propagates with finite speed lower or equal to Lf , the restriction to ωR of the solution
u depends only on the restriction of u0 to [−R,R].

Let us now state the main result of this paper. It relies on two error estimates between the approximate
solution uh and the solution u. As usual, it is derived in the BV setting, but due to the (relatively slight) loss of
control of the approximate traces (unL, u

n
R)n, the optimal order, that is h1/2, is obtained under Assumption 2.

Theorem 3. Let u0 ∈ BVloc(R), let u be the unique solution of the problem (1.1), and let uh be
the approximate solution given by its Godunov approximation. Then, under the CFL condition (2.5) and
Assumption 1, for all R > 0, there exists C depending only u0, f , A,B and R such that

∫∫

ωR

|uh(x, t) − u(x, t)|dxdt ≤ Ch1/3. (2.12)

Moreover, if Assumption 2 holds, then for all R > 0, there exists C depending only u0, f , A,B, CBV and R
such that

∫∫

ωR

|uh(x, t) − u(x, t)|dxdt ≤ Ch1/2. (2.13)

Remark 2.3. In the particular case of a Riemann problem, then uL,h and uR,h are constant w.r.t. time,
then Assumption 2 holds for CBV = 0, and the error estimate (2.13) holds.

The proof of Theorem 3 is based on the doubling variable technique introduced by S. N. Kružkov [19]
for proving the uniqueness of the solution of the entropy solution of a multidimensional scalar conservation
law, and then used by N. N. Kuznetsov [20] in order to obtain some error estimate for the approximation
of scalar conservation laws by monotone finite differences methods.

In order to obtain the convergence rates 1/3 and 1/2 stated in (2.12) and (2.13), we need to show that
(i) the exact solution u belongs to BVloc(R× R+),
(ii) the approximate solution uh is uniformly bounded w.r.t. the discretization in BVloc(R× R+).

2.4. Outline of the paper. We derive in Section 3 a uniform (w.r.t. the space step h) estimate for the
local total variation of the approximate solution uh. As a direct consequence, this will yield an estimate on
the local total variation of the exact solution u. In Section 4, we provide the discrete and continuous entropy
inequalities that the approximate solution verifies. Section 5 is devoted to the proof of Theorem 3, following
N. N. Kuznetsov [20]. We illustrate our error estimates by numerical tests in Section 6 and discuss in
Section 7 several perspectives which could follow this work.

3. BV estimates. We first derive BV estimates on the approximate solution. This requires a careful
study of the approximate traces, based on an extended definition of the numerical total variation which
incorporates the discrete traces. Secondly, we deduce BV estimates on the exact solution.

3.1. BV estimate on the approximate constraint.

Lemma 3.1. Under Assumption 1, the functions Ah, Bh defined respectively by Ah(t) = An, Bh(t) = Bn

if t ∈ [tn, tn+1) belong to BVloc(R+), and, for all T > 0,

TV[0,T ](Ah −Bh) = TV[0,T ](Ah) + TV[0,T ](Bh) ≤ TV[0,T ](A) + TV[0,T ](B) + 1. (3.1)

Proof. Assume first that the functions A,B are smooth, so F = f(A) = f(B) is Lipschitz continuous.
Then, for all n ∈ N, there exists t̃n ∈ (tn, tn+1) such that Fn = F (t̃n). Hence, An = A(t̃n) and Bn = B(t̃n).
Thus, denoting by N the index of the time step where tN ≤ T < tN+1, one gets that

TV[0,T ](Ah) =

N−1
∑

n=0

|An+1 −An| =

N−1
∑

n=0

|A(t̃n+1)−A(t̃n)|

=

N−2
∑

n=0

|A(t̃n+1)−A(t̃n)|+ |A(t̃N )−A(t̃N−1)|.



ERROR ESTIMATE FOR CONSTRAINED CONSERVATION LAWS 7

Since |A(t̃N )−A(t̃N−1)| ≤ 1− u and
∑N−2

n=0 |A(t̃n+1)−A(t̃n)| ≤ TV[0,T ](A), one obtains that

TV[0,T ](Ah) ≤ TV[0,T ](A) + (1 − u).

Similarly, we can state that

TV[0,T ](Bh) ≤ TV[0,T ](B) + u,

so that the estimate (3.1) holds for smooth functions A,B. Assume now that A,B only belong to BVloc(R+),
then there exists some sequences (Aν)ν∈N

, (Bν)ν∈N
, (Aν,h)ν∈N

and (Bν,h)ν∈N
of smooth functions (obtained

for example by convolution with smoothing kernels) such that Aν → A, Bν → B, Aν,h → Ah and Bν,h → Bh

a.e. in R+ as ν → ∞ and

TV[0,T ](Aν) ≤ TV[0,T ](A), TV[0,T ](Bν) ≤ TV[0,T ](B),

TV[0,T ](Aν,h) ≤ TV[0,T ](Ah), TV[0,T ](Bν,h) ≤ TV[0,T ](Bh).

Then we can pass to the limit and extend (3.1) to functions A,B merely in BVloc(R+).
It only remains to check that due to their definition (2.1) and to the bell-shaped behavior of the function

f , the functions n→ An and n→ Bn have variations of opposite signs, i.e.

An+1 ≥ An ⇔ Fn+1 ≤ Fn ⇔ Bn+1 ≤ Bn,

yielding TV(Ah −Bh) = TV(Ah) + TV(Bh).

3.2. Space BV estimate on the approximate solution. In the sequel, we introduce a modified total
variation, that takes the approximate traces into account:

T V(uh(·, t
n)) =

∑

i6=0

∣

∣

∣
uni+1/2 − uni−1/2

∣

∣

∣
+
∣

∣

∣
un−1/2 − unL

∣

∣

∣
+
∣

∣

∣
un1/2 − unR

∣

∣

∣
,

while the classical total variation of uh(·, t
n) is given by

TV(uh(·, t
n)) =

∑

i∈Z

∣

∣

∣
uni+1/2 − uni−1/2

∣

∣

∣
.

We first state the following technical lemma, whose proof can be carried out thanks to a case by case study.
Lemma 3.2. Let (c, d) ∈ [0, 1]2 such that c ≥ d and (a, b) ∈ [0, 1]2. If we denote

Ψ(a, b) = |c− a|+ |d− b| − |a− b|,

we have

a ∈ [0, d] a ∈ [d, c] a ∈ [c, 1]
b ∈ [0, d] Ψ(a, b) = c+ d− 2(a⊤b) Ψ(a, b) = c+ d− 2a Ψ(a, b) = d− c
b ∈ [d, c] Ψ(a, b) = c− d Ψ(a, b) = c− d− 2(a− b)+ Ψ(a, b) = 2b− (d+ c)
b ∈ [c, 1] Ψ(a, b) = c− d Ψ(a, b) = c− d Ψ(a, b) = 2(a⊥b)− (c+ d)

(3.2)

where a⊤b = max(a, b) and a⊥b = min(a, b). In particular, if (a, b) ∈ [d, 1]× [0, c], we have

|Ψ(a, b)| ≤ c− d.

Lemma 3.3. For all t ≥ 0, one has

|T V(uh(·, t))− TV(uh(·, t))| ≤ 1.

Proof. Let t ∈ [tn, tn+1). Assume that (unL, u
n
R) ∈ Gn

2 , then T V(uh(·, t)) = TV(uh(·, t)). We now focus on
the case where (unL, u

n
R) = (An, Bn). As seen in Proposition 2.3, this implies that un−1/2 ≥ Bn and un1/2 ≤ An.

Since

T V(uh(·, t)) − TV(uh(·, t)) = |un−1/2 −An|+ |un1/2 −Bn| − |un−1/2 − un1/2|,
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then using the lemma 3.2 with a = un−1/2, b = un1/2, c = An, d = Bn provides the result.
Denote by Λ ⊂ N the set of the time step indices where the constraint is saturated, i.e.

p ∈ Λ ⇔ up−1/2 ≥ Bp and up1/2 ≤ Ap (⇔ G(up−1/2, u
p
1/2) ≥ F p),

and introduce the sets

Λ = {p ∈ N | p /∈ Λ, p+ 1 ∈ Λ}, Λ = {p ∈ Λ | p+ 1 /∈ Λ},
◦

Λ = Λ \ Λ,

Υ = N \ (Λ ∪ Λ) = {p ∈ N | p /∈ Λ, (p+ 1) /∈ Λ},

so that we have N = Υ ∪
◦

Λ ∪ Λ ∪ Λ.
Lemma 3.4. Let p ∈ Υ, then, under the CFL condition (2.5),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)).

Proof. Since p /∈ Λ, then uh(·, t
p+1) is the solution computed by the classical Godunov scheme without

constraint. Hence, it follows from classical computations (see e.g. [17] or Lemma 5.7 in [16]) that

∑

i∈Z

|up+1
i+1/2 − up+1

i−1/2| ≤
∑

i∈Z

|upi+1/2 − upi−1/2|. (3.3)

Now, since p ∈ Υ then, thanks to Proposition 2.3, for q ∈ {p, p+ 1}, either uqL = uqR = uq−1/2 or uqL = uqR =

uq1/2. As a consequence,

T V(uh(·, t
q)) =

∑

i∈Z

|uqi+1/2 − uqi−1/2|. (3.4)

Lemma 3.4 is a direct consequence of (3.3) and (3.4).
Lemma 3.5. Let p ∈ Λ, then, under the CFL condition (2.5),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + (Ap+1 −Bp+1).

Proof. Since p /∈ Λ, then, as previously,

∑

i∈Z

|up+1
i+1/2 − up+1

i−1/2| ≤
∑

i∈Z

|upi+1/2 − upi−1/2| = T V(uh(·, t
p)).

Since (up+1
L , up+1

R ) = (Ap+1, Bp+1), then

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) +Rp+1, (3.5)

where

Rp+1 = |up+1
−1/2 −Ap+1|+ |up+1

1/2 − Bp+1| − |up+1
1/2 − up+1

−1/2|. (3.6)

Since p + 1 ∈ Λ, then one has, thanks to Proposition 2.3, up+1
−1/2 ≥ Bp+1 and up+1

1/2 ≤ Ap+1. Hence we can

apply Lemma 3.2 to claim that Rp+1 ≤ Ap+1 −Bp+1.

We investigate now the cases where the constraint at the time step tp is saturated, i.e. if p ∈
◦

Λ ∪ Λ.
In these cases, (upL, u

p
R) = (Ap, Bp), and adapting once again the computations of [16, Lemma 5.7] on the

formulation (2.8), we get, under the CFL condition (2.5),

∑

i>0

∣

∣

∣
up+1
i+1/2 − up+1

i−1/2

∣

∣

∣
+ |up+1

1/2 −Bp| ≤
∑

i>0

∣

∣

∣
upi+1/2 − upi−1/2

∣

∣

∣
+ |up1/2 −Bp|.

∑

i<0

∣

∣

∣
up+1
i+1/2 − up+1

i−1/2

∣

∣

∣
+ |up+1

−1/2 −Ap| ≤
∑

i<0

∣

∣

∣
upi+1/2 − upi−1/2

∣

∣

∣
+ |up−1/2 −Ap|.
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As a direct consequence of the inequalities stated above, one has

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) +Rp+1, (3.7)

where

Rp+1 = |up+1
−1/2 − up+1

L | − |up+1
−1/2 −Ap|+ |up+1

1/2 − up+1
R | − |up+1

1/2 −Bp|. (3.8)

Lemma 3.6. Let p ∈
◦

Λ, then, under the CFL condition (2.5),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + |(Ap+1 −Bp+1)− (Ap −Bp)|.

Proof. Since p+ 1 ∈ Λ, one has (up+1
L , up+1

R ) = (Ap+1, Bp+1). Replacing in (3.8) leads to, thanks to the
triangle inequality,

Rp+1 ≤ |Ap+1 −Ap|+ |Bp+1 −Bp|

Since Ap+1 ≥ Ap if and only if Bp+1 ≤ Bp, one obtains

Rp+1 ≤ |Ap+1 − Ap|+ |Bp+1 −Bp| = |(Ap+1 −Bp+1)− (Ap −Bp)|. (3.9)

We conclude by using (3.9) in (3.7).
Lemma 3.7. Let p ∈ Λ, then, under the CFL condition (2.5),

T V(uh(·, t
p+1)) ≤ T V(uh(·, t

p)) + (Bp+1 − Ap+1) + |Ap+1 −Ap|+ |Bp+1 −Bp|.

Proof. Since, thanks to Proposition 2.3, up+1
L = up+1

R ∈ {up+1
−1/2, u

p+1
1/2 }, then the expression (3.8) turns to

Rp+1 ≤ Rp+1
1 + |Ap+1 −Ap|+ |Bp+1 −Bp|,

with

Rp+1
1 = |up+1

1/2 − up+1
−1/2| − |up+1

−1/2 −Ap+1| − |up+1
1/2 −Bp+1|

Since p+ 1 /∈ Λ, we known from the case by case study carried out in Proposition 2.3 that up+1
−1/2 ≤ Bp+1 or

up+1
1/2 ≥ Ap+1. We deduce from the first column and the last line of (3.2) that Rp+1

1 ≤ Bp+1 −Ap+1.

Lemma 3.8. Assume that u0 ∈ BV(R), then, under the CFL condition (2.5) and Assumption 1, there
exists C depending only on A,B and T (but neither on h nor on k) such that

TV(uh(·, T )) ≤ TV(u0) + C. (3.10)

Proof. Let n ∈ N be such that T ∈ [tn, tn+1), then

T V(uh(·, T )) = T V(uh(·, 0)) +
n−1
∑

p=0

(

T V(uh(·, t
p+1))− T V(uh(·, t

p))
)

.

From Lemmas 3.4, 3.5, 3.6 and 3.7, we deduce that

T V(uh(·, t
p+1)) − T V(uh(·, t

p)) ≤



























0, if p ∈ Υ,

Ap+1 −Bp+1, if p ∈ Λ,

|(Ap+1 −Bp+1)− (Ap −Bp)|, if p ∈
◦

Λ,

Bp+1 −Ap+1 + |(Ap+1 −Bp+1)− (Ap −Bp)| if p ∈ Λ.
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Therefore,

T V(uh(·, T )) ≤ T V(uh(·, 0)) +
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)|

+
∑

p≤n−1
p∈Λ

(Ap+1 −Bp+1) +
∑

p≤n−1

p∈Λ

(Bp+1 −Ap+1). (3.11)

Since for all p, q ∈ Λ with p < q, there exists r ∈ Λ such that p < r < q, and since |Ak −Bk| ≤ 1 for all k, it
follows

∑

p≤n−1
p∈Λ

(

(Ap −Bp)− (Ap+1 −Bp+1)
)

≥ (A0 −B0)11Λ(0) +
∑

p≤n−1
p∈Λ

(Ap+1 −Bp+1) +
∑

p≤n−1

p∈Λ

(Bp+1 −Ap+1)− 1

where the last term −1 is a lower bound to An −Bn. This inequality can also be written as

∑

p≤n−1
p∈Λ

(Ap+1 −Bp+1) +
∑

p≤n−1

p∈Λ

(Bp+1 −Ap+1) ≤ 1 +
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)| (3.12)

which, taking (3.12) into account in (3.11), yields

T V(uh(·, T )) ≤ T V(uh(·, 0)) + 1 + 2
∑

p≤n−1
p∈Λ

|(Ap+1 −Bp+1)− (Ap −Bp)|

≤ T V(uh(·, 0)) + 1 + 2TV[0,T ](Ah −Bh).

We conclude by using Lemmas 3.1 and 3.3.

Proposition 3.9. Let u0 ∈ BV(R), then, under the CFL condition (2.5) and Assumption 1, there exists
C depending only on u0, T, A,B such that, for all ξ > 0,

∫ T

0

∫

R

|uh(x+ ξ, t)− uh(x, t)|dxdt ≤ Cξ.

Proof. It follows from Lemma 3.8 that the function uh(·, t) has a bounded variation for all t ∈ [0, T ], thus
there exists C depending only on u0, A,B, T such that

∫

R

|uh(x+ ξ, t)− uh(x, t)|dx ≤ Cξ.

We conclude by integrating w.r.t. to t ∈ [0, T ].

3.3. Time BV estimate on the approximate solution.

Lemma 3.10. Let u0 ∈ BV(R), then, one has

∑

i∈Z

|un+1
i+1/2 − uni+1/2| ≤

2Lfk

h
T V(uh(·, t

n)). (3.13)

Proof. The scheme (2.2) can be rewritten

un+1
i+1/2 − uni+1/2 =

k

h

(

G(uni−1/2, u
n
i+1/2)− f(uni+1/2)−

(

G(uni+1/2, u
n
i+3/2)− f(uni+1/2)

))

if i /∈ {−1, 0},

un+1
−1/2 − un−1/2 =

k

h

(

G(un−3/2, u
n
−1/2)− f(un−1/2)−

(

G(un−1/2, u
n
L)− f(un−1/2)

))

,

un+1
1/2 − un1/2 =

k

h

(

G(unR, u
n
1/2)− f(un1/2)−

(

G(un1/2, u
n
3/2)− f(un1/2)

))

.
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Using the fact that G is Lf -Lipschitz continuous w.r.t. each of its variables, we obtain

|un+1
i+1/2 − uni+1/2| ≤

Lfk

h

(

|uni−1/2 − uni+1/2|+ |uni+1/2 − uni+3/2|
)

if i /∈ {−1, 0}, (3.14)

|un+1
−1/2 − un−1/2| ≤

Lfk

h

(

|unL − un−1/2|+ |un−1/2 − un−3/2|
)

, (3.15)

|un+1
1/2 − un1/2| ≤

Lfk

h

(

|un1/2 − unR|+ |un3/2 − un1/2|
)

. (3.16)

Summing (3.14) for i ∈ Z \ {−1, 0} with (3.15) and (3.16) yields (3.13).
Proposition 3.11. Let u0 ∈ BV(R), then, under the CFL condition (2.5), (2.6) and Assumption 1, for

all T > 0, there exists C depending only on A,B, T, u0 and Lf such that, for all τ ∈ (0, T ),

∫ T−τ

0

∫

R

|uh(x, t+ τ)− uh(x, t)|dxdt ≤ Cτ. (3.17)

Proof. One has (with a slight abuse of notation, since ∂tuh is a bounded Radon measure on R × [0, T ]
which is not absolutely continuous w.r.t. to the Lebesgue measure)

∫

R

∫ T

0

|∂tuh(x, t)| dxdt =
∑

i∈Z

⌊T/k⌋
∑

n=0

|un+1
i+1/2 − uni+1/2|h.

Then it follows from Lemmas 3.10 and 3.8 and from (2.6)

∫

R

∫ T

0

|∂tuh(x, t)| dxdt ≤ C

⌊T/k⌋
∑

n=0

k ≤ C′.

The inequality (3.17) is a classical consequence of the previous estimate (see e.g. [6]).

3.4. BV estimates on the exact solution. Letting now h tend to 0, since we know, thanks to
Theorem 2, that uh tends to the unique solution u (at least under the more restrictive CFL condition (2.10))
we obtain the following regularity result on the exact solution u.

Proposition 3.12. Let u be the exact solution to the problem corresponding to u0 ∈ BV(R). Then,
under Assumption 1, then, for all T > 0, u ∈ BV(R× [0, T ]).

Remark 3.1. Because of the finite speed propagation property, the solution u to the problem depends,
on the set ωR defined in (2.11), only on the restriction of the initial data u0 to [−R,R]. So, if u0 ∈
BVloc(R), extending u0 by a constant outside of [−R,R] will not affect the solution u on ωR. Thus the
Proposition 3.12 can be generalized in the following way. If u0 ∈ BVloc(R), then, under Assumption 1, u
belongs to BVloc(R× R+).

4. Entropy formulations for the approximate solution.

4.1. Discrete entropy inequalities. Using the approximate traces unL, u
n
R introduced in Section 2.2,

the scheme (2.8) can be rewritten under the form

H
(

un+1
i+1/2, u

n
i+1/2, u

n
i−1/2, u

n
i+3/2

)

= 0, ∀i /∈ {−1, 0},

H
(

un+1
−1/2, u

n
−1/2, u

n
−3/2, u

n
L

)

= 0,

H
(

un+1
1/2 , u

n
1/2, u

n
R, u

n
3/2

)

= 0,

where, under the CFL condition (2.5), the function H is non-decreasing w.r.t. its first argument, and non-
increasing w.r.t. its three last arguments. As a consequence, if (a, b, c, d) ∈ [0, 1]4 satisfies H(a, b, c, d) = 0,
then, thanks to the fact that, for all κ ∈ [0, 1], H(κ, κ, κ, κ) = 0, it follows from classical computations (see
e.g. [16]) that

H(a⊤κ, b⊤κ, c⊤κ, d⊤κ)−H(a⊥κ, b⊥κ, c⊥κ, d⊥κ) ≤ 0. (4.1)



12 C. CANCES AND N. SEGUIN

In the sequel, we introduce Φκ(a, b) = G(a⊤κ, b⊤κ) − G(a⊥κ, b⊥κ). Note that for all a ∈ [0, 1], for all
κ ∈ [0, 1], Φκ(a, a) = Φκ(a). The following proposition follows from (4.1).

Proposition 4.1. For all κ ∈ [0, 1], one has

|un+1
i+1/2 − κ| − |uni+1/2 − κ|

k
h+Φκ(u

n
i+1/2, u

n
i+3/2)− Φκ(u

n
i−1/2, u

n
i+1/2) ≤ 0, ∀i ∈ Z \ {−1, 0}, (4.2)

|un+1
−1/2 − κ| − |un−1/2 − κ|

k
h+Φκ(u

n
−1/2, u

n
L)− Φκ(u

n
−3/2, u

n
−1/2) ≤ 0, (4.3)

|un+1
1/2 − κ| − |un1/2 − κ|

k
h+Φκ(u

n
1/2, u

n
3/2)− Φκ(u

n
R, u

n
1/2) ≤ 0. (4.4)

Lemma 4.2. For all κ ∈ [0, 1],

Φκ(u
n
−1/2, u

n
L)− Φκ(u

n
L) ≥ 0, (4.5)

Φκ(u
n
R)− Φκ(u

n
R, u

n
1/2) ≥ 0. (4.6)

Proof. We only prove (4.5), since the proof of (4.6) is similar. Here again, for readers convenience, we
drop the index n. We denote by I(a, b) the interval [a, b] if a ≤ b and [b, a] otherwise.

Firstly, if κ /∈ I(u−1/2, uL), then, using that G(u−1/2, uL) = f(uL), one has

Φκ(u−1/2, uL) = Φκ(uL).

Consider now the case where κ ∈ I(u−1/2, uL). Since G(u−1/2, uL) = f(uL), the function a 7→ G(a, uL) is
constant on I(u−1/2, uL). Assume that u−1/2 ≥ uL, then

Φκ(u−1/2, uL) = G(u−1/2, κ)−G(κ, uL) = G(u−1/2, κ)− f(uL).

Since G is non-increasing w.r.t. its second argument, G(u−1/2, κ) ≥ f(κ), hence one has

Φκ(u−1/2, uL) ≥ f(κ)− f(uL) = Φκ(uL).

Similarly, if u−1/2 ≤ uL, one obtains Φκ(u−1/2, uL) ≥ f(uL)− f(κ) = Φκ(uL).

We now state the straightforward corollary, obtained by subtracting (4.5) to (4.3) and (4.6) to (4.4).
Corollary 4.3. For all κ ∈ [0, 1],

|un+1
−1/2 − κ| − |un−1/2 − κ|

k
h+Φκ(u

n
L)− Φκ(u

n
−3/2, u

n
−1/2) ≤ 0, (4.7)

|un+1
1/2 − κ| − |un1/2 − κ|

k
h+Φκ(u

n
1/2, u

n
3/2)− Φκ(u

n
R) ≤ 0. (4.8)

4.2. Continuous entropy inequalities. For a C1(R× R+;R) function ϕ, we denote by

‖∇ϕ‖ = ‖∂tϕ‖∞ + ‖∂xϕ‖∞.

Recall that when ϕ is compactly supported, i.e. if ϕ ∈ C1
c ((−R,R)× [0, T )), then there exists C depending

only on R, T such that ‖ϕ‖∞ ≤ C‖∇ϕ‖.

Lemma 4.4. Let T > 0, and let ϕ ∈ D+((−R,R)× [0, T )), then there exists C depending only on u0, f ,
A, B, R and T such that, for all κ ∈ [0, 1],

∫

R+

∫

R−

|uh − κ|∂tϕdxdt +

∫

R−

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R−

Φκ(uh)∂xϕdxdt −

∫

R+

Φκ(uL,h)ϕ(0, ·)dt ≥ −C‖∇ϕ‖h. (4.9)
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∫

R+

∫

R+

|uh − κ|∂tϕdxdt +

∫

R+

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R+

Φκ(uh)∂xϕdxdt+

∫

R+

Φκ(uR,h)ϕ(0, ·)dt ≥ −C‖∇ϕ‖h. (4.10)

Proof. We only prove (4.9), the proof of (4.10) being similar. Let ϕ ∈ D+((−R,R)× [0, T )), we note

ϕn
i = ϕ(xi, t

n), ϕn
i+1/2 = ϕ(xi+1/2, t

n), ∀i ∈ Z, ∀n ∈ N.

Multiplying equations (4.2) by kϕn+1
i+1/2 and (4.7) by kϕn+1

−1/2, then summing on i < −1, one obtains after

reorganization of the sums,

T1 + T2 + T3 + T4 ≥ 0, (4.11)

with

T1 =
∑

n∈N

∑

i<0

|uni+1/2 − κ|(ϕn+1
i+1/2 − ϕn

i+1/2)h+
∑

i<0

|u0i+1/2 − κ|ϕ0
i+1/2h,

T2 =
∑

n∈N

k
∑

i<0

Φκ(u
n
i−1/2, u

n
i+1/2)(ϕ

n+1
i+1/2 − ϕn+1

i−1/2)h,

T3 = −
∑

n∈N

kΦκ(u
n
L)ϕ

n+1
0 ,

T4 = −
∑

n∈N

kΦκ(u
n
L)(ϕ

n+1
i−1/2 − ϕn+1

0 ).

First, it is easy to check that

|T4| ≤ C‖∇ϕ‖h, (4.12)
∣

∣

∣

∣

∣

T3 +

∫

R+

Φκ(uL,h)ϕ(0, ·)dt

∣

∣

∣

∣

∣

≤ C‖∇ϕ‖h, (4.13)

It follows from Propositions 3.9 and 3.11 (we use here classical computations that we can deduce for example
from [12]) and the CFL condition (2.5) that

∣

∣

∣

∣

∣

T1 −

∫

R+

∫

R−

|uh − κ|∂tϕdxdt−

∫

R−

|u0 − κ|ϕ(·, 0)dx

∣

∣

∣

∣

∣

≤ Ch‖∇ϕ‖, (4.14)

∣

∣

∣

∣

∣

T2 −

∫

R+

∫

R−

Φκ(uh)∂xϕdxdt

∣

∣

∣

∣

∣

≤ Ch‖∇ϕ‖. (4.15)

Then (4.9) follows from (4.11)–(4.15).
As a direct consequence of Lemma 4.4, following the idea of R. Eymard et al. [15] (see also F. Bouchut

and B. Perthame [8]), we can state the following proposition.
Proposition 4.5. There exist positive local Radon measures µL,h, µR,h belonging to (Cc(R× R+))

′
such

that there exists C depending only on R,Lf

µL,h(ωR) ≤ Ch, µR,h(ωR) ≤ Ch, (4.16)

and such that, for all ϕ ∈ D+(R× R+), one has
∫

R+

∫

R−

|uh − κ|∂tϕdxdt +

∫

R−

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R−

Φκ(uh)∂xϕdxdt −

∫

R+

Φκ(uL,h)ϕ(0, ·)dt ≥ −〈µL,h, |∂tϕ|+ |∂xϕ|〉 , (4.17)

∫

R+

∫

R+

|uh − κ|∂tϕdxdt +

∫

R+

|u0 − κ|ϕ(·, 0)dx

+

∫

R+

∫

R+

Φκ(uh)∂xϕdxdt +

∫

R+

Φκ(uR,h)ϕ(0, ·)dt ≥ −〈µR,h, |∂tϕ|+ |∂xϕ|〉 . (4.18)
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In section 5, we will use the doubling variable technique introduced by S. N. Kružkov [19] and adapted to
this frame by N. N. Kuznetsov [20]. For this reason, we will assume that the exact solution u depends on the
variable (y, s) instead of (x, t). Since u admits strong traces uL, uR ∈ L∞(R+; [0, 1]) on {y = 0}×R+ (either
thanks to Proposition 3.12 or to [24]), then u satisfies the following entropy inequalities : ∀ψ ∈ D+(R×R+),

∫

R+

∫

R−

|u− κ|∂sψdyds+

∫

R−

|u0 − κ|ψ(·, 0)dy

+

∫

R+

∫

R−

Φκ(u)∂yψdyds−

∫

R+

Φκ(uL)ψ(0, ·)ds ≥ 0, (4.19)

∫

R+

∫

R+

|u− κ|∂sψdyds+

∫

R+

|u0 − κ|ψ(·, 0)dy

+

∫

R+

∫

R+

Φκ(u)∂yψdyds+

∫

R+

Φκ(uR)ψ(0, ·)ds ≥ 0. (4.20)

5. Proof of Theorem 3. As mentioned before, the proof of the error estimates is based on the doubling
variable technique, introduced by S. N. Kružkov [19] for proving the uniqueness of the entropy solution
to a multidimensional scalar conservation law and later adapted by N. N. Kuznetsov [20] to derive error
estimates on the solutions provided by monotone finite difference schemes. First of all, we need to introduce
approximation of the unit.

5.1. Approximation of the unit. Because of the presence of the interface {x = 0}, we need to
introduce a family of non-even smoothing kernels (ρǫ)ǫ>0. It is built as follows. Let ρ ∈ D+(R) such that

supp(ρ) ⊂ [0, 1],
∫

R
ρ(a)da = 1 and such that (x− 1/2)ρ′(x) ≤ 0. Let ǫ ∈ (0, 1], we denote by ρǫ(x) =

1
ǫρ
(

x
ǫ

)

,
so that supp(ρǫ) ⊂ [0, ǫ], and

∫

R

|ρ′ǫ(a)|da =
2

ǫ
ρ(1/2). (5.1)

5.2. The case where Fh ≡ F . In this section, we first assume that for almost all t ∈ [tn, tn+1),
F (t) = Fn, and thus (uL,h(t), uR,h(t)) ∈ G∗(t).

Let ϕ ∈ D+((−R,R)× [0, T )), then we define the functions ξL, ξR by

ξL(x, t, y, s) = ϕ(x, t)ρǫ(x− y)ρη(s− t), ξR(x, t, y, s) = ϕ(x, t)ρǫ(y − x)ρη(s− t),

for some ǫ, η > 0 to be fixed later, and where ρǫ (or ρη) is the approximation of the unit introduced in
Section 5.1. The functions ξL and ξR are built so that

ξL(x, t, y, 0) = ξR(x, t, y, 0) = 0, ∀(x, y, t) ∈ R2 × R+, (5.2)

ξL(x, t, 0, s) = 0, ∀(x, t, s) ∈ R− × (R+)
2
, ξR(x, t, 0, s) = 0, ∀(x, t, s) ∈ (R+)

3
. (5.3)

Let us choose κ = u(y, s) in (4.17) and integrate on R− ×R+ w.r.t. (y, s), and κ = uh(x, t) in (4.19) and
integrate on R− × R+ w.r.t. (x, t), and then sum both contributions. This provides

DL
1 +DL

2 +DL
3 +DL

4 ≥ DL
5 , (5.4)

where

DL
1 =

∫

R+

∫

R−

∫

R+

∫

R−

|uh(x, t)− u(y, s)|∂tϕ(x, t)ρǫ(x− y)ρη(s− t)dxdtdyds,

DL
2 =

∫

R+

∫

R−

∫

R−

|u0(x) − u(y, s)|ϕ(x, 0)ρǫ(x− y)ρη(s)dxdyds,

DL
3 =

∫

R+

∫

R−

∫

R+

∫

R−

Φu(y,s)(uh(x, t))∂xϕ(x, t)ρǫ(x− y)ρη(s− t)dxdtdyds,

DL
4 = −

∫

R+

∫

R−

∫

R+

Φu(y,s)(uL,h(t))ϕ(0, t)ρǫ(−y)ρη(s− t)dtdyds,

DL
5 = −

∫

R+

∫

R−

〈µL,h, (|∂tϕ|+ |∂xϕ|) ρǫ(· − y)ρη(s− ·)〉 dyds

−

∫

R+

∫

R−

〈

µL,h, ϕ
(

|ρ′ǫ(· − y)|ρη(s− ·) + ρǫ(· − y)|ρ′η(s− ·)|
)〉

dyds
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Among the above terms, only DL
4 is original in the sense that its treatment has not already been performed

in the already mentioned works [20, 17, 16]. Let us first recall the classical results concerning the other terms.
Concerning the term DL

5 , it follows from Fubini-Tonelli theorem and from estimate (4.16) that

∫

R+

∫

R−

〈µL,h, (|∂tϕ|+ |∂xϕ|) ρǫ(· − y)ρη(s− ·)〉 dyds ≤ Ch‖∇ϕ‖.

On the other hand, thanks to (5.1), one has

∫

R+

∫

R−

〈

µL,h, ϕ
(

|ρ′ǫ(·,−y)|ρη(s− ·) + ρǫ(· − y)|ρ′η(s− ·)|
)〉

dyds ≤ C

(

h

ǫ
+
h

η

)

‖ϕ‖∞,

hence

DL
5 ≥ −C

(

h+
h

ǫ
+
h

η

)

‖∇ϕ‖. (5.5)

Let us now consider the term D1, for which one has

DL
1 ≤ DL

1,1 +DL
1,2, (5.6)

where

DL
1,1 =

∫

R+

∫

R−

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt,

DL
1,2 =

∫

R+

∫

R−

∫

R+

∫

R−

|u(x, t)− u(y, s)||∂tϕ(x, t)|ρǫ(x− y)ρη(s− t)dxdtdyds.

Using the fact that u belongs to BV(suppϕ) (cf. Proposition 3.12), one thus obtains that

DL
1,2 ≤ C(ǫ + η)‖∇ϕ‖, (5.7)

where C only depends on suppϕ, u0, f , A,B.
In order to estimate DL

2 , we mimic the method proposed in [15, 12, 22]. This provides

DL
2 ≤ C(ǫ + η)‖ϕ‖∞ + Cη‖∇ϕ‖.

Concerning DL
3 , one has

DL
3 ≤ DL

3,1 +DL
3,2, (5.8)

with

DL
3,1 =

∫

R+

∫

R−

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt,

DL
3,2 = Lf

∫

R+

∫

R−

∫

R+

∫

R−

|u(x, t)− u(y, s)||∂xϕ(x, t)|ρǫ(x− y)ρη(s− t)dxdtdyds.

Therefore, using again that u ∈ BVloc(R× R+), we deduce that

DL
3,2 ≤ C(ǫ + η)‖∇ϕ‖. (5.9)

Let us now focus on DL
4 and choose

(y, s) 7→ ϕ(0, t)ρη(s− t)

∫ ∞

−y

ρǫ(a)da

as test function in (4.19) and integrating for t ∈ R+ yield

DL
4 ≤ DL

4,1 +DL
4,2, (5.10)
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where

DL
4,1 = −

∫

R+

∫

R+

ΦuL(s)(uL,h(t))ϕ(0, t)ρη(s− t)dtds,

DL
4,2 =

∫

R+

∫

R+

∫

R−

|u(y, s)− uL,h(t)|ϕ(0, t)ρ
′
η(s− t)

∫ ∞

−y

ρǫ(a)dadydsdt.

We deduce from the triangle inequality that

DL
4,2 ≤ DL

4,3 +DL
4,4, (5.11)

where

DL
4,3 =

∫

R+

∫

R+

∫

R−

|u(y, s)− uL,h(s)|ϕ(0, t)ρ
′
η(s− t)

∫ ∞

−y

ρǫ(a)dadydsdt,

DL
4,4 = ǫ

∫

R+

∫

R+

|uL,h(t)− uL,h(s)||ρ
′
η(s− t)|dsdt.

Integrating DL
4,3 by parts w.r.t. the variable t leads to

DL
4,3 =

∫

R+

∫

R−

|u(y, s)− uL,h(s)|

(
∫ ∞

−y

ρǫ(a)da

){

ϕ(0, 0)ρη(s) +

∫ ∞

0

∂tϕ(0, t)ρη(s− t)dt

}

dyds.

Since 0 ≤ u(y, s), uL,h(t) ≤ 1, since, y 7→
∫∞

−y ρǫ(a)da is compactly supported in [−ǫ, 0] and bounded by 1,
we obtain that

DL
4,3 ≤ Cǫ (‖ϕ‖∞ + ‖∇ϕ‖) . (5.12)

We provide now two estimates for DL
4,4 according to the regularity of t 7→ uL,h(t).

• First, we do not assume that Assumption 2 holds, then, using the fact that 0 ≤ uL,h ≤ 1 a.e. in R+,
one has

DL
4,4 ≤ C

ǫ

η
‖∇ϕ‖. (5.13)

• Assume now that Assumption 2 holds, then one obtains that

DL
4,4 ≤ 2ǫρ(1/2)CBV‖∇ϕ‖. (5.14)

Thus it follows from (5.4)–(5.14) that

∫

R+

∫

R−

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R−

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt

−

∫

R+

∫

R+

ΦuL(s)(uL,h(t))ϕ(0, t)ρη(s− t)dtds ≥ −C‖∇ϕ‖Θ(h, ǫ, η), (5.15)

where

Θ(h, ǫ, η) =















h+ ǫ+ η +
h

ǫ
+
h

η
if Assumption 2 holds,

h+ ǫ+ η +
h

ǫ
+
h

η
+
ǫ

η
otherwise.

(5.16)

Similar calculations carried out for (x, t, y, s) ∈ (R+)
4
with the test function ξR yield

∫

R+

∫

R+

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R+

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt

+

∫

R+

∫

R+

ΦuR(s)(uR,h(t))ϕ(0, t)ρη(s− t)dtds ≥ −C‖∇ϕ‖Θ(h, ǫ, η). (5.17)
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Adding (5.15) and (5.17) provides

∫

R+

∫

R

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt

+

∫

R+

∫

R

Φu(x,t)(uh(x, t))∂xϕ(x, t)dxdt +Rη,h(ϕ) ≥ −C‖∇ϕ‖Θ(h, ǫ, η), (5.18)

where

Rη,h(ϕ) =

∫

R+

∫

R+

[

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t))
]

ϕ(0, t)ρη(s− t)dtds.

Lemma 5.1. Let t > 0 and let G∗(t) be the L1-dissipative germ introduced in Definition 1.1, then, for all
(cL, cR) ∈ G∗(t), for all (κL, κR) ∈ [0, 1]2,

ΦκR
(cR)− ΦκL

(cL) ≤ Lfdist1 ((κL, κR),G
∗(t)) ,

where dist1 ((κL, κR),G
∗(t)) = min(aL,aR)∈G∗(t) (|κL − aL| − |κR − aR|).

Proof. Let (aL, aR) ∈ G∗(t), then, thanks to the definition of G∗(t), one has

ΦaR
(cR)− ΦaL

(cL) ≤ 0.

Now, since κ 7→ Φκ(s) is Lf -Lipschitz continuous for all s ∈ [0, 1], we obtain that

ΦκR
(cR)− ΦκL

(cL) ≤ Lf (|κL − aL| − |κR − aR|) .

Since G∗(t) is closed in [0, 1]2, the above relation thus still holds for the minimum (aL, aR) ∈ G∗(t).
Lemma 5.2. There exists C depending only on f, T,A,B such that

Rη,h(ψ) ≤ Cη‖ψ‖∞, ∀ψ ∈ Cc([0, T );R). (5.19)

Proof. Using the fact that Φκ(u) = Φu(κ), it follows from Lemma 5.1 that

ΦuR(s)(uR,h(t)) − ΦuL(s)(uL,h(t)) ≤ Lf max
{

dist1 ((uL(s), uR(s)),G
∗(t)) , dist1 ((uL,h(t), uR,h(t)),G

∗(s))
}

.

Now, its appears clearly that if (uL(s), uR(s)) ∈ G∗(t) or (uL,h(t), uR,h(t)) ∈ G∗(s), then

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t)) ≤ 0.

Assume now that (uL(s), uR(s)) /∈ G∗(t) and (uL,h(t), uR,h(t)) /∈ G∗(s). This implies that either

F (t) > F (s) and (uL(s), uR(s)) = (A(s), B(s)), (5.20)

or F (t) < F (s) and (uL,h(t), uR,h(t)) = (A(t), B(t)). (5.21)

In the first case (5.20), one has

dist1((uL(s), uR(s));G
∗(t)) ≤ |A(t)−A(s)|+ |B(t) −B(s)|,

while in the second case (5.21), one has

dist1((uL,h(t), uR,h(t));G
∗(s)) ≤ |A(t)−A(s)| + |B(t)−B(s)|.

Hence,

ΦuR(s)(uR,h(t))− ΦuL(s)(uL,h(t)) ≤ Lf (|A(t)−A(s)|+ |B(t) −B(s)|) .

Now, for ψ ∈ Cc([0, T );R), recalling that supp(ρη) ⊂ [0, η], one has

Rη,h(ψ) ≤ Lf‖ψ‖∞

(

sup
τ∈[0,η]

∫ T

0

|A(t+ τ)−A(t)|dt+ sup
τ∈[0,η]

∫ T

0

|B(t+ τ) −B(t)|dt

)

,
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which provides (5.19) using Assumption 1.
Using Lemma 5.2 in (5.18) provides that

∫

R+

∫

R

|uh(x, t)− u(x, t)|∂tϕ(x, t)dxdt +

∫

R+

∫

R

Φu(x,t)(uh(x, t))∂xϕdxdt ≤ C‖∇ϕ‖Θ(h, ǫ, η).

In order to conclude the proof of Theorem 3, it only remains to choose a convenient ϕ, that is

ϕ(x, t) =







ζ(|x| − Lf t)
T − t

T
if (x, t) ∈ R× [0, T ],

0 if t ≥ T.

where ζ(r) = max (0,min(1, R+ 1− r)) for all r ∈ R+, and to notice that choosing ǫ = η = h1/2 (under
Assumption 2) or ǫ = h2/3 and η = h1/3 (general case) provides

min
ǫ,η

Θ(h, ǫ, η) ≤

{

Ch1/2 if Assumption 2 holds,

Ch1/3 otherwise.

5.3. The general case. Denote by ũ the unique solution to the problem corresponding to the constraint
Fh. Then it has been proven previously that

∫∫

ωR

|uh − ũ|dxdt ≤ Chα with α ∈ {1/2, 1/3}.

In order to achieve the proof of Theorem 3, it only remains to show that

∫∫

ωR

|u− ũ|dxdt ≤ Ch1/2.

In fact, one has a better estimate, thanks to the following Proposition, proved in Appendix of [4].
Proposition 5.3 ([4]). Let F, F̆ ∈ L∞(R+; [0, f(u)]), and let u, ŭ be the solutions corresponding respec-

tively to the constraint F, F̆ and to a similar initial data u0. Then,

∫ T

0

∫

R

|u− ŭ|dxdt ≤ 2

∫ T

0

|F − F̆ |dt.

Since A is supposed to belong to BV(0, T ), then F = f(A) also belongs to BV(0, T ). As a consequence, there
exists C depending only on A, f, T such that ‖F − Fh‖L1(0,T ) ≤ Ch. We deduce from the above estimate
and from Proposition 5.3 the following corollary that achieves the proof of Theorem 3.

Corollary 5.4. Under Assumption 1, there exists C depending only on A, f, T such that

∫∫

ωR

|u− ũ|dxdt ≤ Ch.

6. Numerical illustration. We present numerical simulations to illustrate the error estimate (2.12).
Two conservation laws are studied: the first one is based on the flux (called the hat flux in the following)

f(u) = 1/2− |u− 1/2|

which has the particularity of having two linear parts and the second one is based on the flux (called the
GNL flux — as genuinely non linear — in the following)

f(u) = u(1− u)

which is strictly concave. While the present work is devoted to the analysis of the Godunov scheme, we also
present the results obtained with the Rusanov scheme:

G(a, b) =
f(a) + f(b)

2
−

max(|f ′(a)|, |f ′(b)|)

2
(b − a)
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Exact solution for the hat flux
Exact solution for the GNL flux

Fig. 6.1. Left: Exact solutions for each flux (u vs x). Right: Rates of convergence for each flux and each numerical scheme
(L1 error vs h in Log-scale)

and the constraint is still handled using the trick (2.4). The initial data for the test case is u(x, 0) =
0.411x∈(−1/2,0) + 0.511x∈(0,1/2) and the final time is 0.3. For each flux, the constraint is set to F = 0.2 and
is activated (see Figure 6.1, left). For the hat flux, the solution is composed of a left-going shock wave, a
nonclassical stationary shock and a right-going linear wave. For the GNL flux, the solution is composed of a
left-going shock wave, a nonclassical stationary shock and a right-going shock wave. The rates of convergence
are displayed in Figure 6.1, right. They are the same for both numerical schemes, which let us think that our
result should be extended for any monotone numerical scheme. For the hat flux, the measured rate is 1/2
(and therefore it attests the optimality of our result) while the measured rate is 1 for the GNL flux. Note
that in the latter case, it means that the constraint does not alter the classical rate of convergence.

7. Concluding remarks.

7.1. A posteriori error estimate. As noticed by D. Kröner and M. Ohlberger [18], the doubling
variable approach used for obtaining error estimates provides a posteriori estimators, i.e. that for all compact
subset K of R×R+, there exists ηK depending on f,K, u0, A,B (but not on the exact solution u) such that

∫∫

K

|uh(x, t)− u(x, t)|dxdt ≤ ηK(uh).

Since the right-hand side in the above estimate is fully computable, this permits the localization of the error,
and an adaptive mesh refinement strategy (we refer to [18] for more details on both the derivation of the a
posteriori estimator and the mesh refinement algorithm). As a consequence, our estimates can be used to
develop a posteriori estimators for constrained conservation laws.

7.2. Comments on the optimality of the result. The order h1/2 is optimal in the sense that it can
be recovered in some particular cases. Indeed, choosing f(u) = 1/2 − |u − 1/2|, F ≡ 1/2 (this means that
A ≡ B ≡ 1/2, so that the constraint is always inactive), and u0 in BV(R) such that 0 ≤ u0 ≤ 1/2. Then
the problem turns to be the standard linear equation ∂tu+ ∂xu = 0, and the Godunov scheme becomes the
upwind scheme. It is well known that in this case, the error behaves as h1/2, as illustrated in Figure 6.1.

In the case where f is uniformly concave, the numerical experiments provide an error of order h.

7.3. The case of discontinuous flux function. Consider the case of a scalar conservation law with
discontinuous flux function, i.e.

∂tu+ ∂xf(x, u) = 0,

where f(x, u) = fL(u) if x < 0 and f(x, u) = fR(u) if x > 0, with fL, fR bell-shaped reaching their maximum
respectively in uL,uR. As pointed out by Adimurthi and Veerappa Gowda [2], an infinite number of
L1-contractive semi-groups can be built for such an equation, and a criterion has to be taken into account
in order to select one. We refer to the recent contributions of R. Bürger et al. [9], B. Andreianov et
al. [5] and references therein for an overview of this topic, and in particular to the resolution of the Riemann
problem arising at the interface, thanks to which we can define the Godunov scheme, and its approximate
solution uh. In the case where fL 6= fR, no BV estimate is available on u (neither on uh), but we can prove
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that the Temple function

(x, t) 7→ Φu(u(x, t), x) :=







sign(u(x, t)− uL)(fL(u(x, t)) − fL(uL)) if x < 0,

sign(u(x, t)− uR)(fR(u(x, t))− fR(uR)) if x > 0

belong to BVloc(R × R+) (see e.g. [26, 7, 10]). By the use of numerical diffusion introduced by the scheme
(see [13, 27, 15, 12, 22]), it is still possible to derive an error estimate. Indeed, all the tools introduced in
the paper, excepted in Section 3, can be adapted to the case of discontinuous flux functions. Nevertheless,
the theoretical convergence speed will depend on the continuity modulus of the function (Φu)

−1, and will be
furthermore degraded by the fact that no strong BV-estimate is available on the exact solution itself.
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[23] O. A. Olĕınik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2), 26 (1963),

pp. 95–172.
[24] E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ.

Equ., 4 (2007), pp. 729–770.
[25] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), pp. 42–51.
[26] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontin-

uous coefficients, Math. Models Methods Appl. Sci., 13 (2003), pp. 221–257.
[27] J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation

laws. I. Explicit monotone schemes, RAIRO Modél. Math. Anal. Numér., 28 (1994), pp. 267–295.
[28] A. I. Vol′pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.), 73 (115) (1967), pp. 255–302.


