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Abstract. In this paper, we study the initial-value problem for two first order

systems in non-conservative form. The first system arises in elastodynamics
and belongs to the class of strictly hyperbolic, genuinely nonlinear systems.

The second system has repeated eigenvalues and an incomplete set of right

eigenvectors. Solutions to such systems are expected to develop singular con-
centrations. Existence of singular solutions to both the systems have been

shown using the method of weak asymptotics. The second system has been

shown to develop singular concentrations even from Riemann-type initial data.
The first system differing from the second in having an extra term containing

a positive constant k, the solution constructed for the first system have been
shown to converge to the solution of the second as k tends to 0.

1. Introduction

The initial-value problem for the first-order quasilinear hyperbolic system

∂u

∂t
+ u

∂u

∂x
− ∂σ

∂x
= 0,

∂σ

∂t
+ u

∂σ

∂x
− k2 ∂u

∂x
= 0

(1.1)

(in the domain Ω = {(x, t) : −∞ < x < ∞, t > 0}) arising in applications in elas-
todynamics, has been well studied (see [2],[5],[6],[8]). Here k is a positive constant.
It is a strictly hyperbolic system having two real distinct eigenvalues given by

λ1(u, σ) = u− k, λ2(u, σ) = u+ k

with the corresponding right eigenvectors

E1(u, σ) =

(
1
k

)
, E2(u, σ) =

(
1
−k

)
.

Now letting k → 0, we see that the eigenvalues λ1(u, σ) and λ2(u, σ) tend to
coincide. In particular, taking k = 0 in (1.1) we arrive at the system

∂u

∂t
+ u

∂u

∂x
− ∂σ

∂x
= 0,

∂σ

∂t
+ u

∂σ

∂x
= 0.

(1.2)
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which has repeated eigenvalues λ1(u, σ) = λ2(u, σ) = u and an incomplete set of

right eigenvectors (we can take

(
1
0

)
to be a right eigenvector).

In [11], a class of 2x2 systems in conservative form having an incomplete set of
eigenvectors everywhere has been considered. These systems exhibit development
of singular concentrations. We expect a similar kind of development of singular
concentration for the system (1.2). But the analysis in [11] cannot be applied di-
rectly due to the following two reasons:
1. The system (1.2) is in nonconservative form and hence we need to give a suitable
meaning to the nonconservative products which in general lead to different solu-
tions depending upon the meaning attached (see [3],[9],[10]).
2. One of the assumptions that has been used in [11] is that the eigenvalue should
have vanishing directional derivative along a right eigenvector. But the eigenvalue
u in this case has a nonvanishing directional derivative along any right eigenvector.
Thus the assumption is not satisfied.

Another reason to expect singular solutions for the system (1.2) comes from
studying the behaviour as k → 0 of the shock and rarefaction curves obtained for
the Riemann problem for the system (1.1). In [6], the Riemann problem for the
system (1.1) has been studied using Volpert’s product. Starting with Riemann type
initial data

(u(x, 0), σ(x, 0)) =

{
(uL, σL), x < 0

(uR, σR), x > 0.

the shock curves S1(uL, σL), S2(uL, σL) and the rarefaction curves R1(uL, σL),
R2(uL, σL) can be written down in the u− σ plane as in [6]:

R1(uL, σL) : σ = σL + k(u− uL), u > uL,

R2(uL, σL) : σ = σL − k(u− uL), u > uL,

S1(uL, σL) : σ = σL + k(u− uL), u < uL,

S2(uL, σL) : σ = σL − k(u− uL), u < uL.

(1.3)

Now as k → 0, it seems from the above curves that we cannot have a jump in σ
and therefore the Riemann problem might not be solvable using Volpert’s product.
That this is indeed true when k = 0, that is, for the system (1.2) follows from the
following:

For the solution of the Riemann problem using Volpert’s product the following
relations have to be satisfied (see [3])

−s[u] + [
u2

2
]− [σ] = 0, − s[σ] +

1

2
(uL + uR)[σ] = 0

where s denotes the speed of the discontinuity and [w] denotes the jump in the
function w across the discontinuity. It follows from the above relations that [σ] = 0
thus proving what we expected.

This observation again makes us suspect that there might be development of sin-
gular concentrations even if we start with Riemann type initial data.

In what follows our main aim is to construct generalised δ−shock wave solutions for
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the systems (1.1) and (1.2) and examine the role played by the constant k. We use
the method of weak asymptotics (see [1],[4],[7]) as the main tool. Depending upon
the cases, we shall sometimes use the complex-valued weak asymptotic solutions
(see [7]) for our construction.

The plan of the paper is as follows: In Section 2, the notions of the weak asymptotic
solutions, generalised δ−shock wave type solutions are recalled and a brief sketch
of the method of weak asymptotics is given. In Section 3, a few weak asymp-
totic expansions are proved which are crucially used in the construction of singular
solutions. In Section 4, existence of generalised δ−shock wave type solutions for
the systems (1.1) and (1.2) is proved. The role played by k is examined and the
development of singular solutions from Riemann type initial data is exhibited.

2. A brief discussion on the method of weak asymptotics

In this section, we recall the definitions of weak asymptotic solutions and gen-
eralised δ−shock wave type solutions and discuss the method of weak asymptotics
(see [1],[4],[7]).
Let D and D′ denote the space of smooth functions of compact support and the
space of distributions respectively.

Let OD′(εα) denote the collection of distributions f(x, t, ε) ∈ D′(R) such that for
any test function ϕ(x) ∈ D(R) the estimate

〈f(x, t, ε), ϕ(x)〉 = O(εα)

holds and is uniform with respect to t. The relation oD′(εα) is interpreted similarly.

Definition 2.1.([7]) A pair of smooth complex-valued (real-valued) functions
(u(x, t, ε), σ(x, t, ε)) is called a weak asymptotic solution of the system (1.1) with
the initial data (u(x, 0), σ(x, 0)) if

∂u(x, t, ε)

∂t
+ u(x, t, ε)

∂u(x, t, ε)

∂x
− ∂σ(x, t, ε)

∂x
= oD′(1),

∂σ(x, t, ε)

∂t
+ u(x, t, ε)

∂σ(x, t, ε)

∂x
− k2 ∂u(x, t, ε)

∂x
= oD′(1),

u(x, 0, ε)− u(x, 0) = oD′(1),

σ(x, 0, ε)− σ(x, 0) = oD′(1), ε→ 0.

(2.1)

Similarly, for the system (1.2) we define
Definition 2.2.([7]) A pair of smooth complex-valued (real-valued) functions
(u(x, t, ε), σ(x, t, ε)) is called a weak asymptotic solution of the system (1.2) with
the initial data (u(x, 0), σ(x, 0)) if

∂u(x, t, ε)

∂t
+ u(x, t, ε)

∂u(x, t, ε)

∂x
− ∂σ(x, t, ε)

∂x
= oD′(1),

∂σ(x, t, ε)

∂t
+ u(x, t, ε)

∂σ(x, t, ε)

∂x
= oD′(1),

u(x, 0, ε)− u(x, 0) = oD′(1),

σ(x, 0, ε)− σ(x, 0) = oD′(1), ε→ 0.

(2.2)
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Definition 2.3. A pair of real-valued distributions (u(x, t), σ(x, t)) ∈ C(R+;D′(R))
is called a generalised solution of the systems (1.1) or (1.2) if it is the weak limit
(limit in the sense of distributions) of a weak asymptotic solution (u(x, t, ε), σ(x, t, ε))
as ε→ 0.

2.1. The method of weak asymptotics. Instead of writing it down schemati-
cally (see [1]), here we shall try to illustrate the method of weak asymptotics by
applying it to the systems (1.1) or (1.2) with initial data of the form

u(x, 0) = u0 + u1H(−x),

σ(x, 0) = σ0 + σ1H(−x) + e0δ(x).
(2.3)

where u0, u1, σ0, σ1, e
0 are constants. In this case we seek solutions in the form of

the singular ansatz

u(x, t) = u0 + u1H(−x+ φ(t)),

σ(x, t) = σ0 + σ1H(−x+ φ(t)) + e(t)δ(x− φ(t))
(2.4)

Such a solution will be called a generalised δ−shock wave type solution for the
systems (1.1) or (1.2).
The first step is to regularize the Heaviside functions and delta distributions and add
correction terms so as to form a smooth ansatz for the weak asymptotic solutions
in the form:

u(x, t, ε) = u0 + u1Hu(−x+ φ(t), ε) +Ru(x, t, ε),

σ(x, t, ε) = σ0 + σ1Hσ(−x+ φ(t), ε) + e(t)δ(x− φ(t), ε) +Rσ(x, t, ε).
(2.5)

Here Hu, Hσ are regularizations of the Heaviside function, δ(x, ε) is a regularization
of the delta function and Ru, Rσ are correction terms chosen so as to satisfy the
conditions:

Ri(x, t, ε) = oD′(1),
∂Ri(x, t, ε)

∂t
= oD′(1), ε→ 0, i = u, σ.

The next step is to prove the existence of a weak asymptotic solution by substituting
the smooth ansatz in place of u and σ in the left hand side of the systems and finding
out the functions φ(t) and e(t).
Once this step is completed, we obtain a generalised δ−shock wave type solution of
the form (2.4) as the distributional limit of the weak asymptotic solution as ε→ 0.

3. The regularizations and weak asymptotic expansions

In this section, we describe the regularizations and correction term to be used in
the next section and prove a few weak asymptotic expansions for various products
containing them.
As mentioned in Section 2, we seek generalised δ−shock wave type solutions of the
form

u(x, t) = u0 + u1H(−x+ φ(t)),

σ(x, t) = σ0 + σ1H(−x+ φ(t)) + e(t)δ(x− φ(t))
(3.1)

for the systems (1.1) and (1.2) with initial data of the form

u(x, 0) = u0 + u1H(−x),

σ(x, 0) = σ0 + σ1H(−x) + e0δ(x).
(3.2)
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Here φ(t) and e(t) are smooth functions to be determined. To apply the method
of weak asymptotics, we suggest a smooth ansatz of the form (we do not take any
correction term in the expression for σ(x, t, ε))

u(x, t, ε) = u0 + u1Hu(−x+ φ(t), ε) + p(t)R(x− φ(t), ε),

σ(x, t, ε) = σ0 + σ1Hσ(−x+ φ(t), ε) + e(t)δ(x− φ(t), ε).
(3.3)

Here Hu(., ε), Hσ(., ε) are regularizations of the Heaviside function, δ(., ε) is the
regularization of the delta distribution and p(t)R(., ε) is a correction term where
p(t) is a smooth function (complex-valued or real-valued) to be chosen afterwards.
The regularizations of the delta distribution and the correction term used in the
proofs are same as in [7]. The regularization of the Heaviside function has a subtle
change though.

Let ω : R→ R be a non-negative, smooth, even function with support in (−1, 1)
and satisfying ∫

R
ω(x)dx = 1.

Let ω0 =
∫
R ω

2(x)dx and let

R(x, t, ε) =
1√
ε
ω(
x− 2ε

ε
), δ(x, ε) =

1

ε
ω(
x+ 2ε

ε
). (3.4)

Since by definition, R is independent of t, we henceforth denote it by R(x, ε).
An easy calculation using test functions then shows that R(x, ε) = oD′(ε) and since

R is independent of t, we also have ∂R(x,ε)
∂t = oD′(ε). Thus it satisfies the criteria

for being a correction term as stated in Section 2.
Also it can be easily checked that

∂R(x, ε)

∂x
= oD′(ε), R2(x, ε) = ω0δ(x)+oD′(ε), R(x, ε)

∂R(x, ε)

∂x
=

1

2
ω0δ

′(x)+oD′(ε)

and that

δ(x, ε) = δ(x) + oD′(ε),
∂δ(x, ε)

∂x
= δ′(x) + oD′(ε).

An important observation we need to make at this point is that the supports of
R(x, ε) and δ(x, ε) are disjoint. Therefore we have

R(x, ε)δ(x, ε) = 0, R(x, ε)
∂δ(x, ε)

∂x
= 0.

Let c = ( 1
2 −

σ1

u2
1
).

Let us define the smooth function H(x, ε) as follows:

H(x, ε) =


1, x ≤ −4ε

c, −3ε ≤ x ≤ 3ε

0, x ≥ 4ε

(3.5)

and is continued smoothly in the regions (−4ε,−3ε) and (3ε, 4ε).
We take Hu(x, ε) = Hσ(x, ε) = H(x, ε). Again a little bit of calculation shows that

H(x, ε) = H(x)+oD′(ε),
∂H(x, ε)

∂x
= δ(x)+oD′(ε), H(x, ε)

∂H(x, ε)

∂x
=

1

2
δ(x)+oD′(ε)
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Since the supports of R(x, ε) and δ(x, ε) are contained in (−3ε, 3ε), it again follows
that

H(x, ε)
∂R(x, ε)

∂x
= c

∂R(x, ε)

∂x
= oD′(ε),

R(x, ε)
∂H(x, ε)

∂x
= 0.R(x, t, ε) = oD′(ε),

H(x, ε)
∂δ(x, ε)

∂x
= cδ′(x) + oD′(ε).

From the above discussions we then have the following lemma

Lemma 3.1. Choosing the regularizations and corrections as in (3.4) and (3.5) we
have the following weak asymptotic expansions:

R(x, ε) = oD′(1),
∂R(x, ε)

∂x
= oD′(1),

R2(x, ε) = ω0δ(x) + oD′(1),

R(x, ε)
∂R(x, ε)

∂x
=

1

2
ω0δ

′(x) + oD′(1),

δ(x, ε) = δ(x) + oD′(1),
∂δ(x, ε)

∂x
= δ′(x) + oD′(1),

R(x, ε)δ(x, ε) = 0, R(x, ε)
∂δ(x, ε)

∂x
= 0,

H(x, ε) = H(x) + oD′(1),
∂H(x, ε)

∂x
= δ(x) + oD′(1),

H(x, ε)
∂H(x, ε)

∂x
=

1

2
δ(x) + oD′(1),

H(x, ε)
∂R(x, ε)

∂x
= oD′(1), R(x, ε)

∂H(x, ε)

∂x
= oD′(1),

H(x, ε)
∂δ(x, ε)

∂x
= cδ′(x) + oD′(1), ε→ 0.

(3.6)

4. Generalised Delta-shock wave type solutions via construction of
weak asymptotic solutions

In this section, we construct δ−shock wave type solutions for the systems (1.1)
and (1.2) using the method of weak asymptotics.
For the rest of the discussion, we use the convention [v] = vL − vR, where vL, vR
respectively denote the left and right states of v across the discontinuity.

Theorem 4.1. For t ∈ [0,∞), the Cauchy problem (1.1),(3.2) has a weak asymp-
totic solution (3.3) with φ(t), e(t) and p(t) given by the relations

φ̇(t) =
[u

2

2 ]− [σ]

[u]
, ė(t) =

σ2
1

u1
− k2u1,

1

2
p2(t)ω0 − e(t) = 0,

(4.1)

where ω0 is a positive constant (defined in Section 3 ).
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Proof. To begin with, let’s recall the form of the smooth ansatz:

u(x, t, ε) = u0 + u1Hu(−x+ φ(t), ε) + p(t)R(x− φ(t), ε),

σ(x, t, ε) = σ0 + σ1Hσ(−x+ φ(t), ε) + e(t)δ(x− φ(t), ε).

Then the partial derivatives of u(x, t, ε) and σ(x, t, ε) are given by

∂u(x, t, ε)

∂t
= u1φ̇(t)

dHu(−x+ φ(t), ε)

dξ
+ ṗ(t)R(x− φ(t), ε)− p(t)φ̇(t)

dR(x− φ(t), ε)

dξ
,

∂u(x, t, ε)

∂x
= −u1

dHu(−x+ φ(t), ε)

dξ
+ p(t)

dR(x− φ(t), ε)

dξ
,

∂σ(x, t, ε)

∂t
= σ1φ̇(t)

dHσ(−x+ φ(t), ε)

dξ
+ ė(t)δ(x− φ(t), ε)− e(t)φ̇(t)

dδ(x− φ(t), ε)

dξ
,

∂σ(x, t, ε)

∂x
= −σ1

dHσ(−x+ φ(t), ε)

dξ
+ e(t)

dδ(x− φ(t), ε)

dξ
,

where du(.,ε)
dξ denotes the derivative of u(., ε) with respect to the first component.

Substituting these relations into the left-hand side of the system (1.1), we have the
following

∂u(x, t, ε)

∂t
+ u(x, t, ε)

∂u(x, t, ε)

∂x
− ∂σ(x, t, ε)

∂x

= u1φ̇(t)
dHu(−x+ φ(t), ε)

dξ
+ ṗ(t)R(x− φ(t), ε)− p(t)φ̇(t)

dR(x− φ(t), ε)

dξ

− u0u1
dHu(−x+ φ(t), ε)

dξ
− u21Hu(−x+ φ(t), ε)

dHu(−x+ φ(t), ε)

dξ

+ u0p(t)
dR(x− φ(t), ε)

dξ
+ u1p(t)Hu(−x+ φ(t), ε)

dR(x− φ(t), ε)

dξ

− p(t)u1R(x− φ(t), ε)
dHu(−x+ φ(t), ε)

dξ
+ p2(t)R(x− φ(t), ε)

dR(x− φ(t), ε)

dξ

+ σ1
dHσ(−x+ φ(t), ε)

dξ
− e(t)dδ(x− φ(t), ε)

dξ
(4.2)

and

∂σ(x, t, ε)

∂t
+ u(x, t, ε)

∂σ(x, t, ε)

∂x
− k2 ∂u(x, t, ε)

∂x

= σ1φ̇(t)
dHσ(−x+ φ(t), ε)

dξ
+ ė(t)δ(x− φ(t), ε)− e(t)φ̇(t)

dδ(x− φ(t), ε)

dξ

− u0σ1
dHσ(−x+ φ(t), ε)

dξ
− u1σ1Hu(−x+ φ(t), ε)

dHσ(−x+ φ(t), ε)

dξ

+ u0e(t)
dδ(x− φ(t), ε)

dξ
+ u1e(t)Hu(−x+ φ(t), ε)

dδ(x− φ(t), ε)

dξ

− σ1p(t)R(x− φ(t), ε)
dHσ(−x+ φ(t), ε)

dξ
+ p(t)e(t)R(x− φ(t), ε)

dδ(x− φ(t), ε)

dξ

+ k2u1
dHu(−x+ φ(t), ε)

dξ
− k2p(t)dR(x− φ(t), ε)

dξ
.

(4.3)
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Now using the weak asymptotics relations from Lemma 3.1 in the relation (4.2),
we obtain

∂u(x, t, ε)

∂t
+ u(x, t, ε)

∂u(x, t, ε)

∂x
− ∂σ(x, t, ε)

∂x

= {u1φ̇(t)− u0u1 −
1

2
u21 + σ1}δ(x− φ(t)) + {1

2
p2(t)ω0 − e(t)}δ̇(x− φ(t))

+ oD′(1).

Setting the coefficients of δ and δ̇ in the above relation to be zero, we obtain

u1φ̇(t)− u0u1 −
1

2
u21 + σ1 = 0,

1

2
p2(t)ω0 − e(t) = 0.

The first equation above, when rewritten, gives

φ̇(t) =
[u

2

2 ]− [σ]

[u]
.

Substituting φ̇(t) from above in the relation (4.3) and observing that

u1e(t)Hu(−x+ φ(t), ε)
dδ(x− φ(t), ε)

dξ
+ u0e(t)

dδ(x− φ(t), ε)

dξ

− e(t)φ̇(t)
dδ(x− φ(t), ε)

dξ
= oD′(ε),

(the choice of c as in Section 3 helps us in getting this asymptotics) we have

∂σ(x, t, ε)

∂t
+ u(x, t, ε)

∂σ(x, t, ε)

∂x
− k2 ∂u(x, t, ε)

∂x

= {ė(t) + σ1φ̇(t)− 1

2
u1σ1 − u0σ1 + k2u1}δ(x− φ(t)) + oD′(1), ε→ 0.

Setting the coefficient of δ in the above relation to be zero, we obtain

ė(t) + σ1φ̇(t)− 1

2
u1σ1 − u0σ1 + k2u1 = 0,

which on simplification gives

ė(t) =
σ2
1

u1
− k2u1.

Therefore we find that the smooth ansatz (3.3) is a weak asymptotic solution
provided p(t), φ(t), e(t) can be solved from the following equations

φ̇(t) =
[u

2

2 ]− [σ]

[u]
,

ė(t) =
σ2
1

u1
− k2u1,

1

2
p2(t)ω0 − e(t) = 0.

(4.4)
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The above ordinary differential equations can be solved with the initial conditions
φ(0) = 0 and e(0) = e0 and we have

φ(t) =
[u

2

2 ]− [σ]

[u]
t, e(t) = (

σ2
1

u1
− k2u1)t+ e0. (4.5)

Next substituting e(t) in the last equation of (4.4), we can solve for p(t) taken in
the form p(t) = p1(t) + ip2(t) and hence we have a weak asymptotic solution of
the system (1.1). �

Since a δ − shock wave type solution is the distributional limit of a weak
asymptotic solution, we have from the previous theorem

Theorem 4.2. For t ∈ [0,∞), the Cauchy problem (1.1),(3.2) has a generalised
δ−shock wave type solution (3.1) with φ(t) and e(t) given by the relations

φ(t) =
[u

2

2 ]− [σ]

[u]
t, e(t) = (

σ2
1

u1
− k2u1)t+ e0. (4.6)

Remark 4.3. Let e0 = 0. Now ė(t) = 0 in (4.1) would imply the existence of shock-
wave solution (in the class of bounded variation functions) of the system (1.1). But
that implies σ2

1 = k2u21. Imposing Lax’s admissibility condition, which in this case
is u1 > 0, we get the shock curves

S1 : [σ] = k[u],

S2 : [σ] = −k[u].

Also in this case, we have u∂σ∂x = limε→0 u(x, t, ε)∂σ(x,t,ε)∂x = −σ1(u0 + u1

2 )δ, which
again is the Volpert’s product (the negative sign arises because of the convention on
[σ] ). Thus we recover the results proved in [6] for the shock-wave case (see (1.3)).

Remark 4.4. (Overcompressivity condition for δ−shock wave solutions) We recall
that the overcompressivity condition (see [1],[7]) for the δ−shock wave solutions for
a n× n system is

λk(vR) < φ̇(t) < λk(vL), k = 1, .., n.

Therefore for the system (1.1), it takes the form

u0 − k <
[u

2

2 ]− [σ]

[u]
< u0 + u1 − k,

u0 + k <
[u

2

2 ]− [σ]

[u]
< u0 + u1 + k.

The above relations on simplification yield the conditions:

u1 > 2k > 0

and

−(
u1
2
− k) <

σ1
u1

<
u1
2
− k.

Next we prove the existence of a weak asymptotic solution for the system (1.2).
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Theorem 4.5. For t ∈ [0,∞), the Cauchy problem (1.2),(3.2) has a weak asymp-
totic solution (3.3) with φ(t), e(t) and p(t) given by the relations

φ̇(t) =
[u

2

2 ]− [σ]

[u]
, ė(t) =

σ2
1

u1
,

1

2
p2(t)ω0 − e(t) = 0,

(4.7)

where ω0 is a positive constant (defined in Section 3 ).

Proof. Proceeding as in the proof of the Theorem 4.1, we find that the smooth
ansatz (3.3) is a weak asymptotic solution provided p(t), φ(t), e(t) can be solved
from the following equations

φ̇(t) =
[u

2

2 ]− [σ]

[u]
,

ė(t) =
σ2
1

u1
,

1

2
p2(t)ω0 − e(t) = 0.

(4.8)

The ordinary differential equations for φ(t) and e(t) can be solved with the initial
conditions φ(0) = 0 and e(0) = e0 and we have

φ(t) =
[u

2

2 ]− [σ]

[u]
t, e(t) =

σ2
1

u1
t+ e0.

Next substituting e(t) in the last equation of (4.8), we can solve for p(t) taken in
the form p(t) = p1(t) + ip2(t) and hence we have a weak asymptotic solution of
the system (1.2). �

Therefore from the previous theorem, we have

Theorem 4.6. For t ∈ [0,∞), the Cauchy problem (1.2),(3.2) has a generalised
δ−shock wave type solution (3.1) with φ(t) and e(t) given by the relations

φ(t) =
[u

2

2 ]− [σ]

[u]
t, e(t) =

σ2
1

u1
t+ e0. (4.9)

Remark 4.7. The overcompressivity assumption for the system (1.2) yields u1 > 0
and −u1

2 < σ1

u1
< u1

2 .

Remark 4.8. If u1 > 0 (follows from the overcompressivity condition above), then
from equation (4.7) it follows that ė(t) > 0. If in addition we have e0 = 0, then

e(t) =
σ2
1

u1
t which is greater than zero for all t. In this case, it is sufficient to

consider p(t) as a real-valued function only.

Remark 4.9. From Remark 4.8 it also follows that we might have a singular con-
centration developing in the solution of the system (1.2) even if we start with Rie-
mann type initial data.
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Remark 4.10. If we take σ0 = σ1 = 0 in (3.2), then proceeding as in the proof of
the Theorem 4.5 we obtain a generalised δ−shock wave type solution for the system
(1.2) of the form:

u(x, t) = u0 + u1H(−x+ φ(t)),

σ(x, t) = e0δ(x− φ(t))
(4.10)

where φ̇(t) =
[u

2

2 ]

[u] .

Remark 4.11. (Dependence of the solutions on k)
From the structure of the generalised solutions for the systems (1.1),(1.2) obtained
from Theorem 4.2 and Theorem 4.6, it’s quite evident that as k tends to 0, the gen-
eralised solution obtained for the system (1.1) actually converges (in distributional
limit) to that obtained for the system (1.2).
This observation therefore justifies our motivation to study the system (1.2) based
upon the solutions of the system (1.1) (letting k → 0 ).
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