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Abstract

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG)
method [7, 6, 5, 4] for solving conservation Laws. The new formulation requires the
computed RKDG solution in a cell to satisfy additional conservation constraint in adja-
cent cells and does not increase the complexity or change the compactness of the RKDG
method. We use this new formulation to solve one-dimensional and two-dimensional
conservation laws with piecewise quadratic and cubic polynomial approximation, re-
spectively. The hierarchical reconstruction [13, 25] is applied as a limiter to eliminate
spurious oscillations in discontinuous solutions. Numerical computations for scalar
and systems of nonlinear hyperbolic conservation laws are performed. We find that:
1) this new formulation improves the CFL number over the original RKDG formula-
tion and thus reduces the overall computational cost; 2) the new formulation improves
the robustness of the DG scheme with the current limiting strategy and improves the
resolution of the numerical solutions of shock wave problems in multi-dimensions.

1 Introduction

In this paper, we introduce a simple, yet effective technique to improve the Courant-Friedrichs-
Lewy (CFL) condition of the Runge-Kutta discontinuous Galerkin (RKDG) method for
solving nonlinear conservation laws. The discontinuous Galerkin method (DG) was firstly
introduced by Reed and Hill [18] as a technique to solve neutron transport problems. In
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a series of papers by Cockburn, Shu et al. [7, 6, 5, 4], the RKDG method has been de-
veloped for solving nonlinear hyperbolic conservation laws and related equations. In their
formulation, DG is used for spatial discretization with flux values at cell edges computed
by either Riemann solvers or monotone flux functions, the total variation bounded (TVB)
limiter [19, 7] is employed to eliminate spurious oscillations and the total variation diminish-
ing (TVD) Runge-Kutta (RK) method [21] is used for the temporal discretization to ensure
the stability of the numerical approach while simplifying the implementation. The RKDG
method has enjoyed great success in solving the Euler equations for gas dynamics, com-
pressible Navier-Stokes equations, viscous MHD equations and many other equations, and
motivated many related new numerical techniques.

In [7], the RKDG method is shown to be linearly stable when the CFL factor is bounded
by 1

2q+1
for the second order and the third order schemes in the one-dimensional (1D) space,

where q is the degree of the polynomial approximating the solution. It would be desirable
if there is a simple technique to increase CFL number of the RKDG method without in-
troducing too much computational overhead while still being compact and maintaining its
other nice properties. In this paper, we present such a strategy which is to mix the RKDG
method with some of the finite volume reconstruction features (e.g. Abgrall [1]), which are
used as the extra constraint imposed on the numerical solution. With this respect, we would
like to refer to a recent work of van Leer and Nomura [12], in which the diffusive flux for DG
is approximated by using a reconstructed polynomial supported on the union of adjacent
cells out of the set of piecewise polynomials originally defined on these cells, respectively.
Additionally, it is found in [15] that the central DG scheme on overlapping cells with Runge-
Kutta time-stepping can use a CFL number larger than the one that RKDG method can
take on non-overlapping cells when the order of accuracy of these schemes is above the first
order. Other efforts to improve the CFL condition can be found in [24, 3].

In the present paper, we propose the following idea to improve the CFL number that
the RKDG method is allowed to use. We impose additional conservation constraint on the
numerical solution computed by the RKDG method in the sense that in addition to let a
piecewise approximate solution supported on a cell conserve the cell average of this cell,
this solution matches the cell averages of the solution supported on adjacent neighbors of
this cell in a least-square sense. This is implemented by introducing a penalty term to
the original RKDG formulation. This new idea is a simple (and thus potentially useful)
technique connecting the DG and finite volume methods which are both compact. The
resulting method is referred to as the constrained RKDG method in the sections that follow.
We illustrate the effectiveness of our technique by using the 1D and two-dimensional (2D)
third- and fourth-order accurate schemes, respectively. The 2D test cases are solved on
triangular meshes. For nonlinear test problems, we compute both smooth and discontinuous
solutions. Further study on higher-order accurate cases and theoretical analysis will be
reported in the future.

Using finite volume limiting techniques on solutions computed by the RKDG method for
conservation laws has been explored by many researchers. In [17, 28], the WENO finite vol-
ume reconstruction procedures are used as the limiter on cells where the solutions supported
on these cells become oscillatory. In [16], Luo et al. developed a Hermite WENO-based
limiter for the second order RKDG method on unstructured meshes following [17]. Since the
RKDG method is a compact method, it would be ideal to use a compact limiting technique.
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It is a challenging task to use adjacent high order information in the limiting procedure to re-
move spurious oscillations in the vicinities of discontinuities while preserving high resolution.
The first of such limiters is the TVB projection limiter by Cockburn and Shu, which uses
the lowest and (limited) first Legendre moments locally where non-smoothness is detected.
Other compact limiting techniques which are supposed to remove spurious oscillations using
information only from adjacent cells for any orders include the moment limiter [2] and the
recently developed hierarchical reconstruction (HR) [13]. Besides the above related tech-
niques, there are also many research works of compact limiters for high order schemes on
various problems. HR as a limiting technique can be applied without using local charac-
teristic decomposition. One goal of the paper is to verify if our technique for improving
the CFL number of RKDG works well with HR. In [25], HR on 2D triangular meshes has
been studied for the piecewise quadratic DG method; a partial neighboring cell technique
has been developed and a component-wise WENO-type linear reconstruction is used on each
hierarchical level. This new technique has good resolution and accuracy on unstructured
meshes and is easy to implement since the weights on each hierarchical level are trivial to
compute and essentially independent of the mesh.

In this study, we find that the constrained RKDG method increases the CFL number over
the original RKDG method, and further improves the resolution of the numerical solutions
limited by HR. For the 2D third order accuracy case, it also reduces the magnitude of
numerical errors.

We also point out that the computer memory requirement for the constrained RKDG
method is the same as that for the RKDG method. The computer memory utilized by both
methods is mainly for storing the degrees of freedom for each cell. Thus we do not perform
a study on this aspect.

The paper is organized as follows. Section 2 describes the conservation constrained
RKDG formulation and summarizes the limiting procedure. Results of numerical tests are
presented in Section 3. Concluding remarks and a plan for the future work are included in
Section 4.

2 Formulation of the method

In this section, we formulate the conservation constrained Runge-Kutta discontinuous Galerkin
finite element method for solving time dependent hyperbolic conservation laws (2.1){

∂uk

∂t
+∇·Fk(u) = 0 , k = 1, .., p, in Ω× (0, T ) ,

u(x, 0) = u0(x) ,
(2.1)

where Ω ⊂ Rd, x = (x1, ..., xd), d is the dimension, u = (u1, ..., up)
T and the flux vectors

Fk(u) = (Fk,1(u), ..., Fk,d(u)).
The method of lines approach is used to evolve the solution in time. The third- and fourth-

order accurate TVD Runge-Kutta time-stepping methods are used for the test problems
presented in the paper, respectively. At each time level the semi-discrete constrained DG
method is used for spatial discretization. In the vicinities of discontinuities of the solution, the
computed piecewise polynomial solution is reconstructed by the hierarchical reconstruction
to remove spurious oscillations.
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2.1 Conservation constrained discontinuous Galerkin Method

We describe the conservation constrained DG formulation here. First, the physical domain
Ω is partitioned into a collection of N non-overlapping cells Th = {Ki : i = 1, ...,N} so that
Ω =

∪N
i=1Ki. In 2D, we use triangular meshes and for simplicity, we assume that there are

no hanging nodes. Let the basis function set which spans the finite element space on cell Ki

be
Bi = {ϕm(x) : m = 0, ..., r} . (2.2)

In the present study, we choose the basis function set to be a polynomial basis function set of
degree q in a cell Ki, which consists of the monomials of multi-dimensional Taylor expansions
about the cell centroid scaled by the area of the cell. For instance, for a 2D triangular cell
Ki, the basis function set (2.2) in the (x, y) coordinate is

Bi = {ϕm(x− xi, y − yi) : m = 0, ..., r}
=

{
1, (x− xi)/

√
|Ki|, (y − yi)/

√
|Ki|, (x− xi)

2/(
√
|Ki|)2,

(x− xi)(y − yi)/(
√

|Ki|)2, (y − yi)
2/(
√
|Ki|)2, · · · , (y − yi)

q/(
√

|Ki|)q
}

,

(2.3)

where xi ≡ (xi, yi) is the centroid of Ki and r = (q + 1)(q + 2)/2 + 1. |Ki| is the area of cell
Ki. The finite element space on cell Ki is the span of these basis functions.

In each cell Ki, the approximate solution uh,k of the kth equation of (2.1) is expressed as

uh,k =
r∑

m=0

cm(t)ϕm(x) . (2.4)

Let’s assume that the immediate neighbors (sharing same edges or vertices) of Ki are
collected as the set

TC,i = {KJ : J = 1, 2, ..,M.} . (2.5)

We remark that TC,i also contains cell Ki. The semi-discrete DG formulation of the kth

equation of (2.1) is to find an approximate solution uh of the form (2.4) (neglecting its
subscript k for convenience) such that

d

dt

∫
Ki

uhvhdx+

∫
∂Ki

Fk(uh) · nivhdΓ−
∫
Ki

Fk(uh) · ∇vhdx = 0 , (2.6)

for any vh ∈ span{Bi}, where ni is the outer unit normal vector of Ki.
Since the approximate solution uh is discontinuous across cell edges, the interfacial fluxes

are not uniquely determined. The flux function Fk(uh) · ni appearing in equation (2.6) can
be replaced by the Lax-Friedrich flux function (see e.g. [20]) defined as

hk(x, t) = hk(u
in
h ,uout

h ) =
1

2
(Fk(u

in
h ) · ni + Fk(u

out
h ) · ni) +

α

2
(uin

h − uout
h ) , k = 1, ...,m ,

where α is the largest characteristic speed,

uin
h (x, t) = limy→x,y∈Kint

i
uh(y, t) ,

uout
h (x, t) = limy→x,y/∈K̄i

uh(y, t) .
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Equation (2.6) then becomes

d

dt

∫
Ki

uhvhdx+

∫
∂Ki

hkvhdΓ−
∫
Ki

Fk(uh) · ∇vhdx = 0 . (2.7)

The resulting systems of ordinary differential equations can be solved by a TVD Runge-
Kutta method [21] which builds on convex combinations of several forward Euler schemes
of (2.7). Our additional conservation constraint is performed within each of the component
forward Euler scheme. A forward Euler scheme of (2.7) can be written as∫

Ki

un+1
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

hn
kvhdΓ +∆tn

∫
Ki

Fn
k(uh) · ∇vhdx , (2.8)

where the superscript n denotes the time level tn, ∆tn = tn+1 − tn. In particular, letting

vh ≡ 1, we obtain the cell average of un+1
h over cell Ki, denoted by un+1

i , just as with a finite
volume scheme.

Now suppose the cell averages {un+1
i } have been computed on all cells. We do not

compute the rest of the moments of un+1
h on cell Ki by using equation (2.8). Instead, we

let un+1
h on cell Ki minimize an energy functional (variational to (2.8)) subject to that it

conserves additional given cell averages not only in cell Ki but also in some of its neighbors.
Rewrite (2.8) in cell Ki as ∫

Ki

un+1
h vhdx = L(vh) , (2.9)

where L(vh) represents the right-hand-side of (2.8), which is a linear bounded functional
defined on the finite element space on Ki. The variational form of (2.9) is to find un+1

h in
the finite element space on Ki such that it minimizes the energy functional

E(vh) =
1

2

∫
Ki

(vh)
2dx− L(vh) . (2.10)

In [], the conservation constrained RKDG formulation on cell Ki can be described as
replacing each component forward Euler scheme by finding un+1

h in the finite element space
on Ki, such that

E(un+1
h ) = Minimum of {E(vh) : vh ∈ span{Bi}},

subject to 1
|KJ |

∫
KJ

vhdx = un+1
J , J = 1, ...,M .

(2.11)

Here the set {KJ} consists of cell Ki and its immediate neighbors.
This constrained minimization problem can be solved by the method of Lagrangian mul-

tiplier as follows∫
Ki

un+1
h vhdx− L(vh) =

∑M
J=1

λJ

|KJ |

∫
KJ

vhdx, ∀ vh ∈ span{Bi}
1

|KJ |

∫
KJ

un+1
h dx = un+1

J , J = 1, ...,M ,
(2.12)

where {λJ} are Lagrangian multipliers. Coefficients {cm} of un+1
h (see equation (2.4)) are

determined by the above linear system. Note that the left-hand-side of the first equation
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of (2.12) is in the same form as equation (2.9) or (2.8), and M = 4 for the 2D triangular
meshes since the set {KJ} contains the cell Ki and its three adjacent neighbors (sharing
common edges with Ki). (M = 3 in 1D, the set {KJ} contains the cell Ki and its left and
right neighbors.)

Even though this technique increases the CFL number, the use of Lagrangian multipliers
also increases the dimensions of the linear system. In order to overcome this problem, we
introduce a new minimization problem without any constraint.

Find ũn+1
h ∈ span{Bi} such that

E2(ũ
n+1
h ) = Min {E2(vh) : vh ∈ span{Bi}} , (2.13)

where

E2(vh) = (1/|Ki|)E(vh) +
µ

2

∑
j∈N(i)

(
1

|Kj|

∫
Kj

vhdx− un+1
j

)2

, (2.14)

N(i) consists of indices of cell Ki and its immediate neighbors, and µ ≥ 0 is a constant.
Note that when µ = 0 the formulation returns to the standard DG.

Remark 1. It’s easy to verify that energy function E2 (2.14) is invariant (subject to a
constant factor) under the scaling of the coordinates.

The variational formulation of problem (2.13) is to find ũn+1
h ∈ span{Bi} such that

(1/|Ki|)
(∫

Ki
ũn+1
h vhdx+

∫
∂Ki

hkvhdΓ−
∫
Ki

Fk(uh) · ∇vhdx
)
+

µ
∑

j∈N(i)

(
1

|Kj |

∫
Kj

vhdx
)(

1
|Kj |

∫
Kj

ũn+1
h dx− un+1

j

)
= 0,

(2.15)

for any vh ∈ span{Bi}. In order to keep the cell averages of un+1
j , we define un+1

h ∈ span{Bi}
as

un+1
h = ũn+1

h + un+1
i − 1

|Ki|

∫
Ki

ũn+1
h dx (2.16)

Remark 2. Note that the linear system (2.15) consists of the same number of equations
as in a RKDG step (2.8). Therefore the complexity of the new method is close to that of
the standard RKDG (without using orthogonal basis functions).

The linear system (2.15) has a unique solution. In fact, consider the associate homoge-

neous system with hk,Fk = 0 and un+1
j = 0 for all j ∈ N(i),

(1/|Ki|)
(∫

Ki

ũn+1
h vhdx

)
+ µ

∑
j∈N(i)

(
1

|Kj|

∫
Kj

vhdx

)(
1

|Kj|

∫
Kj

ũn+1
h dx

)
= 0. (2.17)

Let vh = ũn+1
h . We conclude that

∫
Ki

|ũn+1
h |2dx = 0, which implies ũn+1

h ≡ 0.
Remark 3. A compromised formulation with only one Lagrangian multiplier can be

written as follows. Find ũn+1
h ∈ span{Bi} such that

E2(ũ
n+1
h ) = Min{E2(vh) : vh ∈ span{Bi}}

subject to 1
|Ki|

∫
Ki

vhdx = un+1
i .

(2.18)

This method has similar complexity and CFL numbers to that of the formulation (2.13),
(2.14) and (2.16).

6



2.2 Implementation

To summarize, assume we employ a s-stage TVD Runge-Kutta method to solve equation
(2.7), which can be written in the form:∫

Ki
u
(j)
h vhdx =

∑j−1
l=0 αjl

(∫
Ki

u(l)vhdx+∆tnβjlL(u
(l)
h , vh)

)
, j = 1, ..., s

≡
∑j−1

l=0 αjl

∫
Ki

u
(j,l+1)
h vhdx ,

(2.19)

with
u
(0)
h = un

h, u
(s)
h = un+1

h . (2.20)

Here αjl and βjl are coefficients of the Runge-Kutta method at the jth stage, and

L(uh, vh) = −
∫
∂Ki

hkvhdΓ +

∫
Ki

Fk(uh) · ∇vhdx .

In particular, u
(j,l+1)
h is determined by∫

Ki

u
(j,l+1)
h vhdx =

∫
Ki

u(l)vhdx+∆tnβjlL(u
(l)
h , vh) , ∀ vh ∈ span{Bi} .

This is a forward Euler scheme as in (2.8) with the time step size ∆tnβjl, and will be replaced
similarly by the modification as in (2.15) and (2.16). This technique can also be applied to
the classical 4th order Rung-Kutta method with the DG component (2.8). The 4 stages are
written as follows

∫
Ki

u
n+1/2−
h vhdx =

∫
Ki

un
hvhdx− 1

2
∆tn

∫
∂Ki

hn
kvhdΓ + 1

2
∆tn

∫
Ki

Fn
k(uh) · ∇vhdx

≡ L1(vh) ,∫
Ki

u
n+1/2+
h vhdx =

∫
Ki

un
hvhdx− 1

2
∆tn

∫
∂Ki

h
n+1/2−
k vhdΓ + 1

2
∆tn

∫
Ki

F
n+1/2−
k (uh) · ∇vhdx

≡ L2(vh) ,∫
Ki

un+1−
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

h
n+1/2+
k vhdΓ +∆tn

∫
Ki

F
n+1/2+
k (uh) · ∇vhdx

≡ L3(vh) ,∫
Ki

un+1
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

h∗
kvhdΓ +∆tn

∫
Ki

F∗
k(uh) · ∇vhdx

≡ L4(vh) ,
(2.21)

where h
n+1/2−
k denotes the numerical flux evaluated with u

n+1/2−
h from the previous stage

and

h∗
k =

1

6
{hn

k + 2h
n+1/2−
k + 2h

n+1/2+
k + hn+1−

k },

similarly for F
n+1/2−
k , F

n+1/2+
k and other fluxes. The modification (2.13) and (2.16) that has

been applied to L in equation (2.9) can be applied t0 L1, L2, L3 and L4 to modify the values

of u
n+1/2−
h , u

n+1/2+
h , un+1−

h and un+1
h respectively.
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2.2.1 Choices of cells being used as constraints

Here we give several possible choices of the set of cells that can be used as constraints.
For the 1D third- and fourth-order accurate constrained RKDG schemes, the set of cells
TC,i defined in Eq. (2.5) for solving for the solution on Ki cell is TC,i = {Ki−1,Ki,Ki+1}.
The resulting 1D third- and fourth-order accurate constrained RKDG schemes are denoted
as “1D Constrained RKDG3-2Cell” and “1D Constrained RKDG4-2Cell” in the following
sections, respectively.

2.3 Analytical estimates of the CFL numbers

Table 1: CFL numbers with α = 0 (no constraint).

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.33 0.11 0.050
3rd 0.40 0.20 0.13
4th - - 0.14

Table 2: CFL numbers with α = 1.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.97 0.86 0.18
3rd 1.2 1.6 0.49
4th - - 0.56

Table 3: CFL numbers with α = 100.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 1.0 0.88 0.18
3rd 1.1 1.6 0.49
4th - - 0.56

2.4 Limiting by hierarchical reconstruction

To prevent non-physical oscillations in the vicinity of discontinuities, we apply HR [25] at
each Runge-Kutta stage to the DG solution. Since shock waves or contact discontinuities
are all local phenomena, we apply the HR limiting procedure to a small region covering
discontinuities. Specifically, we employ a local limiting procedure by using a detector [4]
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to identify cells which may contain oscillatory solutions. HR is then applied to solutions
supported on these cells. We give a brief description of the HR limiting procedure here.
More details can be found in [25].

HR decomposes the job of limiting a high-order polynomial supported on a cell (which
may contain spurious oscillations) into a series of smaller jobs, each of which only involves the
non-oscillatory reconstruction of a linear polynomial, which can be easily achieved through
classical processes such as the MUSCL reconstruction [9, 10, 11] used in [13], or a WENO-
type combination used in [25]. Since the reconstruction of a linear polynomial can only use
information from adjacent cells, HR can be formulated in multi-dimensions on a compact
stencil. Using the basis function set (2.3), the approximate solution uh(x− xi) on cell Ki is
in the Taylor expansion around cell centroid xi

uh(x− xi) =

q∑
m=0

∑
|m|

1

m!
u
(m)
h (0)(x− xi)

m . (2.22)

uh(x−xi) may contain spurious oscillations. The hierarchical reconstruction procedure is to
recompute the coefficients of polynomial uh(x − xi) by using polynomials in cells adjacent
to Ki (or partial neighboring cells [25]). These adjacent cells (or partial cells) are collected
as the set {Kj} (which also contains cell Ki) and the polynomials (of degree q) supported
on them are denoted as {uh,j(x− xj)} respectively. HR recomputes a set of new coefficients

1

m!
ũ
(m)
h (0), |m| = q, q − 1, . . . , 0

to replace the original coefficients 1
m!
u
(m)
h (0) of uh(x−xi) iteratively from the highest to the

lowest degree terms without losing the order of accuracy if the piecewise polynomial solution
is locally smooth, and eliminates spurious oscillations of uh(x− xi) otherwise.

To obtain ũ
(m)
h (0), we first compute candidates of u

(m)
h (0), and then let the new value for

u
(m)
h (0) be

ũ
(m)
h (0) = F

(
candidates of u

(m)
h (0)

)
,

where F is a convex limiter of its arguments (e.g., the center biased minmod function used in
[14], or the WENO-type combination in [25]), F (a1, a2, · · · , al) =

∑l
i=1 θiai, for some θi ≥ 0

and
∑l

i=1 θi = 1.

In order to find these candidates of u
(m)
h (0), |m| = m, we take a (m− 1)th order partial

derivative of uh(x− xi) (and also polynomials in adjacent cells), and express

∂m−1uh(x− xi) = Lh(x− xi) +Rh(x− xi),

Table 4: CFL numbers with α = 1000.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 1.0 0.88 0.18
3rd 1.1 1.6 0.49
4th - - 0.56
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where Lh is the linear part (containing the zeroth and first degree terms) and Rh is the

remainder. Clearly, every coefficient in the first degree terms of Lh is in the set {u(m)
h (0) :

|m| = m}. And for every m subject to |m| = m, one can always take some (m− 1)th order

partial derivatives of uh(x− xi) so that u
(m)
h (0) is a coefficient in a first degree term of Lh.

Thus, a “candidate” for a coefficient in a first degree term of Lh is also the candidate for the
corresponding u

(m)
h (0).

In order to find a set of candidates for all coefficients in the first degree terms of Lh(x−xi),
we need to know the new approximate cell averages of Lh(x − xi) on d + 1 distinct mesh
cells adjacent to cell Ki, which is a key step. Assume Kj0 ,Kj1 , · · · ,Kjd ∈ {Kj} are these cells
and Lj0 , Lj1 , · · · , Ljd are the corresponding new approximate cell averages. For example, in
order to obtain Lj1 , we first compute

Aj1 =
1

|Kj1 |

∫
Kj1

∂m−1uh,j1(x− xj1)dx,

then

Dj1 =
1

|Kj1 |

∫
Kj1

R̃h(x− xi)dx,

where R̃h(x−xi) is the Rh(x−xi) with its coefficients replaced by previously computed new
values. Finally we can set Lj1 = Aj1 −Dj1 .

More details of the HR implementation for one-dimensional test problems in this paper
can be found in [26].

2.4.1 Hierarchical reconstruction with local iteration

On the 2D triangular grids, for limiting the 4th order solutions, we observed the returning of
small overshoots/undershoots when using the partial neighboring cell technique developed
for the 3rd order case. Here we introduce a local iteration technique to further reduce the
small overshoots/undershoots. Assume we need to reconstruct the approximate solution
uh(x−xi) supported on cell Ki by HR, which uses information from neighboring cells (more
precisely, partial neighboring cells [25]). When all new values of the coefficients of uh(x−xi)
have been computed, we will update uh(x−xi) while keeping the solution on its neighboring
cells unchanged, and apply HR to reconstruct uh(x − xi) again. In other words, we apply
HR twice to update uh(x − xi) with the solutions on its neighboring cells being fixed. The
new iteration reduces the possible remaining overshoots/undershoots without spreading out
the diffusion.

3 Numerical Examples

3.1 Accuracy test using 1D linear advection equation

We first test the capability of the constrained RKDG method to achieve the desired order
of accuracy with a large CFL number, using the 1D linear advection equation

ut + ux = 0 , (x, t) ∈ (−1, 1)× (0, T ) (3.1)
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with periodic boundary conditions and the initial condition

u(x, t = 0) =
1

2
+ sin(πx) , − 1 ≤ x ≤ 1 . (3.2)

The uniform mesh is used to solve this test problem. The solution is computed up to T = 2.0.
The cell size, denoted by △x, is listed in tables shown in this section. Table 5 shows that
the third-order accurate constrained RKDG method is stable with that the CFL number is
equal to 1.6; while table 6 shows that the fourth-order accurate constrained RKDG method
is stable with the CFL number equals to 0.6. We also tested the maximum values of the CFL
number that the third-order and fourth-order accurate RKDG methods can use numerically.
We observed that these maximum values are around 0.2 and 0.1 for the third-order and
fourth-order accurate RKDG methods, respectively. Tables 5 and 6 show these test results
as well.

We also studied the how the conservation penalty weight γ affects the CFL numbers that
can be used numerically. Tables 7 and 8 list the accuracy test results with γ = 1, 10, 1000
for the third-order and fourth-order accurate constrained RKDG schemes, respectively. It
is clear that the allowed maximum CFL numbers for these two schemes are not affected by
the choice of γ values. Additionally, the L1 and L∞ errors do not seem to be affected by the
γ values as well.

Table 5: Accuracy test results of solving 1D linear advection equation (3.1) by using the
third-order accurate schemes. L1 and L∞ errors. 2 cells are used for conservation penalty.
T = 2.0.

△x
1D Constrained RKDG3-2Cell, µ = 1, CFL = 1.6 1D RKDG3, CFL = 0.2
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
400 4.74E-7 - 7.45E-7 - 1.48E-9 - 3.84E-9 -
1

800 5.92E-8 3.00 9.31E-8 3.00 1.85E-10 3.64 4.79E-10 3.00
1

1600 7.40E-9 3.00 1.16E-8 3.00 2.31E-11 3.00 6.00E-11 3.00
1

3200 9.25E-10 3.00 1.45E-9 3.00 3.29E-12 2.81 9.21E-12 2.70
1

6400 1.16E-10 3.00 1.82E-10 2.99 3.42E-13 3.27 1.08E-12 3.09
1

12800 1.45E-11 3.00 2.28E-11 3.00 - - - -

3.2 Accuracy test using using 1D Burgers’ equation with a smooth
solution

Here we test the maximum CFL number that the constrained RKDG method can achieve
by using the 1D scalar Burgers’ equation

ut +

(
1

2
u2

)
x

= 0 , (x, t) ∈ (−1, 1)× (0, T ) , (3.3)

with a periodic boundary condition and the initial condition

u(x, t = 0) =
1

2
+ sin(πx) , − 1 ≤ x ≤ 1 . (3.4)

11



Table 6: Accuracy test results of solving 1D linear advection equation (3.1) by using the
fourth-order accurate schemes. L1 and L∞ errors. 2 cells are used for conservation penalty.
T = 2.0.

△x
1D Constrained RKDG4-2Cell, µ = 1, CFL = 0.6 1D RKDG4, CFL = 0.1
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
50 1.34E-7 - 2.65E-7 - 2.06E-9 - 5.33E-9 -
1

100 8.30E-9 4.01 1.63E-8 4.02 1.28E-10 4.01 3.33E-10 4.00
1

200 5.23E-10 3.99 1.05E-9 3.96 8.02E-12 4.00 2.08E-11 4.00
1

400 3.25E-11 4.01 6.42E-11 4.03 7.52E-13 3.41 1.66E-12 3.65
1

800 2.13E-12 3.93 4.23E-12 3.92 - - - -

Table 7: Solving 1D linear advection equation (3.1) by using the 1D third-order accurate
Constrained RKDG (1D RKDG3-2Cell) method with different µ values. L1 and L∞ errors.
2 cells are used for conservation penalty. CFL = 1.6. T = 2.0.

△x
1D Constrained RKDG3-2Cell

µ = 1 µ = 10 µ = 1000
L1 error L∞ error L1 error L∞ error L1 error L∞ error

1
1600 7.40E-9 1.16E-8 7.67E-9 1.20E-8 7.69E-9 1.21E-8
1

3200 9.25E-10 1.45E-9 9.58E-10 1.51E-9 9.62E-10 1.51E-9
1

6400 1.16E-10 1.82E-10 1.20E-10 1.88E-10 1.20E-10 1.89E-10
1

12800 1.45E-11 2.28E-11 1.50E-11 2.36E-11 1.50E-11 2.38E-11

Table 8: Solving 1D linear advection equation (3.1) by using the 1D fourth-order accurate
Constrained RKDG (1D RKDG4-2Cell) method with different µ values. L1 and L∞ errors.
2 cells are used for conservation penalty. CFL = 1.6. T = 2.0.

△x
1D Constrained RKDG4-2Cell

µ = 1 µ = 10 µ = 1000
L1 error L∞ error L1 error L∞ error L1 error L∞ error

1
100 8.30E-9 1.63E-8 8.31E-9 1.63E-8 8.31E-9 1.63E-8
1

200 5.23E-10 1.05E-9 5.24E-10 1.05E-9 5.24E-10 1.05E-9
1

400 3.25E-11 6.42E-11 3.25E-11 6.42E-11 3.25E-11 6.60E-11
1

800 2.13E-12 4.23E-12 2.13E-12 4.24E-12 2.32E-12 9.66E-12
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The uniform mesh is used to solve this test problem. The solution is computed up to
T = 0.5/π, when it is still smooth. △x listed in tables shown in this section is the cell size.

Table 9 shows that the third-order accurate constrained RKDG method can use a CFL
number being equal to 1.6; while table 10 shows that the fourth-order accurate constrained
RKDG method is stable with a CFL number being equal to 0.6 for this 1D nonlinear problem
test case.

Similar to the 1D linear advection equation test case demonstrated in Sec. 3.1, the
numerical study of the choice of γ values for this 1D nonlinear test case shows that the allowed
maximum CFL numbers and L1 and L∞ errors of numerical solutions are not sensitive to γ
values as well. These results are summarized in tables 11 and 12, respectively.

Table 9: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the third-order
accurate schemes. L1 and L∞ errors. 2 cells are used for conservation penalty. T = 0.5/π.

△x
1D Constrained RKDG3-2Cell, µ = 1, CFL = 1.6 1D RKDG3, CFL = 0.2
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
400 9.32E-8 - 6.17E-7 - 3.51E-9 - 5.78E-8 -
1

800 1.18E-8 2.98 8.11E-8 2.93 4.36E-10 3.01 7.30E-9 2.99
1

1600 1.47E-9 3.00 1.00E-8 3.02 5.44E-11 3.00 9.20E-10 2.99
1

3200 1.85E-10 2.99 1.29E-9 2.95 6.84E-12 2.99 1.17E-10 2.98
1

6400 2.30E-11 3.01 1.60E-10 3.01 1.11E-12 2.62 1.81E-11 2.69
1

12800 3.00E-12 2.94 2.01E-11 2.99 - - - -

Table 10: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the fourth-
order accurate schemes. L1 and L∞ errors. 2 cells are used for conservation penalty. T =
0.5/π.

△x
1D Constrained RKDG4-2Cell, µ = 1, CFL = 0.6 1D RKDG4, CFL = 0.1
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
50 4.56E-7 - 1.18E-5 - 2.27E-8 - 3.64E-7 -
1

100 2.99E-8 3.93 7.67E-7 3.94 1.42E-9 4.00 2.27E-8 4.00
1

200 1.93E-9 3.95 4.90E-8 3.97 8.89E-11 4.00 1.44E-9 3.98
1

400 1.21E-10 4.00 3.08E-9 3.99 5.81E-12 3.94 9.27E-11 3.96
1

800 7.87E-12 3.94 1.95E-10 3.98 - - - -

3.3 Accuracy test using 2D linear advection equation

To assess maximum CFL number that the constrained RKDG methods can use on 2D
triangular meshes, we use the following definition of the CFL number, which is the maximum
of

△t(|u|+ c)

D
, (3.5)
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Table 11: Solving 1D Burgers’ equation (3.3) by using the third-order accurate Constrained
RKDG (1D RKDG3-2Cell) method with different µ values. L1 and L∞ errors. 2 cells are
used for conservation penalty. CFL = 1.6. T = 0.5/π.

△x
1D Constrained RKDG3-2Cell

µ = 1 µ = 10 µ = 1000
L1 error L∞ error L1 error L∞ error L1 error L∞ error

1
1600 1.47E-9 1.00E-8 1.49E-9 1.05E-9 1.49E-9 1.06E-8
1

3200 1.85E-10 1.29E-9 1.86E-10 1.33E-10 1.87E-10 1.34E-9
1

6400 2.30E-11 1.60E-10 2.34E-11 1.70E-11 2.34E-11 1.71E-10
1

12800 3.00E-12 2.01E-11 3.04E-12 2.13E-12 3.05E-12 2.15E-11

Table 12: Solving 1D Burgers’ equation (3.3) by using the fourth-order accurate Constrained
RKDG (1D RKDG4-2Cell) method with different µ values. L1 and L∞ errors. 2 cells are
used for conservation penalty. CFL = 0.6. T = 0.5/π.

△x
1D Constrained RKDG4-2Cell

µ = 1 µ = 10 µ = 1000
L1 error L∞ error L1 error L∞ error L1 error L∞ error

1
200 1.93E-9 4.90E-8 1.94E-9 4.91E-08 1.94E-9 4.91E-08
1

400 1.21E-10 3.08E-9 1.21E-10 3.08E-09 1.21E-10 3.08E-09
1

800 7.87E-12 1.95E-10 7.87E-12 1.95E-10 8.03E-12 1.97E-10
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Figure 1: Representative mesh for 2D accuracy tests.

where D is the diameter of the inscribed circle of a triangle, c is the speed of sound for
compressible flow and |u|, defined by (|u| =

√
u2 + v2), is the speed of flow. Both c and |u|

are evaluated by the local cell average value.
We start with the initial-boundary-value problem of the 2D linear advection equation

ut + ux + uy = 0, (x, y, t) ∈ Ω× (0, T )
u(x, y, t = 0) = 1

4
+ 1

2
sin(π(x+ y)), (x, y) ∈ Ω .

(3.6)

to assess the limit of the allowed CFL numbers for the third-order and fourth-order accurate
constrained RKDG methods for solving 2D problems. The domain Ω is the square [−1, 1]×
[−1, 1]. The periodic boundary condition is used in both directions. For the convenience of
implementing the periodic boundary condition, the triangular mesh is obtained by perturbing
a uniform triangulation, see Fig. 1 for a typical mesh used for the accuracy test.

We compute the solution up to T = 2.0. The typical triangle edge length, denoted by h,
is listed in tables shown in this section. The errors presented are for u. For this test case,
|u| in Eq. (3.5) is equal to 1 and c = 0.

Table 14 shows that the fourth-order accurate constrained RKDG method using 13 cells
(2D Constrained RKDG4-13Cell) as constraints is stable when CFL number is equal to 1.3;
while the numerical test shows that the fourth-order accurate RKDG method is stable when
CFL number is around 0.2.

We studied how penalty constant µ affects magnitudes of errors for this test case. Table
15 shows that the L1 and L∞ errors computed by the 2D Constrained RKDG4-13Cell method
increase slightly when µ varies between 1 and 1000. Thus the scheme is not sensitive for the
choice of µ value.

Moreover, we tested how choice of constraint cells affect the CFL number. When 7 cells
are used as constraints, the maximum CFL number the 2D fourth-order accurate Constrained
RKDG method can take is around 0.35. However, the differences between magnitudes of L1
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and L∞ errors computed by the 2D fourth-order accurate Constrained RKDG methods with
13 constraint cells and 7 constraint cells are small. See Table 16 for this result.

Table 13: Accuracy test results of solving 2D linear advection equation (3.6). CFL = 0.80.
L1 and L∞ errors. 7 Cells are used for conservation penalty.

h
2D Constrained RKDG3-7Cell, µ = RKDG3

L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1/20 xxx - xxx - xxx - xxx -

Table 14: Accuracy test results of solving 2D linear advection equation (3.6) by the fourth-
order accurate schemes. L1 and L∞ errors. 13 cells are used for conservation penalty.
T = 2.0.

h
2D Constrained RKDG4-13Cell, µ = 1, CFL=1.3 RKDG4, CFL = 0.2
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 3.28E-7 - 2.62E-7 - 5.42E-9 - 4.80E-9 -
1

160 1.93E-8 4.09 1.79E-8 3.87 3.35E-10 - 3.34E-10 -
1

320 1.29E-9 3.90 1.38E-9 3.70 2.13E-11 - 2.09E-11 -
1

640 8.02E-11 4.01 8.76E-11 3.98 2.73E-12 - 3.57E-12 -

Table 15: Accuracy test results of solving 2D linear advection equation (3.6) by the fourth-
order accurate Constrained RKDG (2D RKDG4-13Cell) method with different µ values. L1

and L∞ errors. 13 cells are used for conservation penalty. CFL = 1.3. T = 2.0.

h
2D Constrained RKDG4-13Cell

µ = 1 µ = 10 µ = 1000
L1 error L∞ error L1 error L∞ error L1 error L∞ error

1
160 1.93E-8 1.79E-8 4.97E-8 2.85E-08 5.57E-8 3.08E-8
1

320 1.29E-9 1.38E-9 3.11E-9 2.03E-9 3.49E-9 2.31E-9
1

640 8.02E-11 8.76E-11 1.96E-10 1.34E-10 2.20E-10 1.46E-10

3.4 Accuracy test using 2D Burgers’ equation with a smooth so-
lution

To assess the limit of the permissible CFL number for the constrained RKDG methods
for the 2D nonlinear scalar conservation laws, we solve the following initial-boundary-value
problem of the 2D Burgers’ equation

ut +
(
1
2
u2
)
x
+
(
1
2
u2
)
y
= 0, (x, y) ∈ Ω× (0, T )

u(x, y, t = 0) = 1
4
+ 1

2
sin(π(x+ y)), (x, y) ∈ Ω ,

(3.7)
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where Ω = [−1, 1] × [−1, 1]. The periodic boundary condition is used in both directions.
The solution is computed up to T = 0.5/π, when it is still smooth. The triangular meshes
utilized for the 2D linear advection equation test are also used for this convergence test. We
use the definition of the CFL number given by Eq. (??). For the 2D Burgers’ equation test
case, |u| =

√
u2 + u2 =

√
2|u|. |u| is evaluated by the local cell average value. The errors

presented in tables shown in this section are for u. h listed in these tables is the edge length
of the triangle.

Table 17 shows the L1 and L∞ errors and numerical orders of accuracy for using the
third-order accurate constrained RKDG method with 7 constraint cells (2D Constrained
RKDG3-7Cell)) for solving Eq. (3.7). With µ = 1.0, we are able to use a CFL number = 0.8
for computing the solution while achieving the desired order of accuracy. In this table, we
also show that the maximum CFL number that the 2D third-order accurate RKDG method
can use is about 0.22 by our numerical test. Table 18 shows that when 4 cells are used
as constraints, the 2D third-order accurate constrained RKDG method (2D Constrained
RKDG3-4Cell) is permitted to use a CFL number = 0.3 for the nonlinear equation test case.
In addition, the L1 and L∞ errors of the numerical solutions to Eq. 3.7 computed by the 2D
Constrained RKDG3-4Cell method is about 3 ∼ 4 times smaller than the ones computed by
the 2D Constrained RKDG3-7Cell method.

In Table 19, we demonstrate the L1 and L∞ errors and numerical orders of accuracy
for using the fourth-order accurate constrained RKDG method with 13 constraint cells (2D
Constrained RKDG4-13Cell) for solving Eq. (3.7). With µ = 1.0, the 2D Constrained
RKDG4-13Cell method is capable of using a CFL number = 1.4 for achieving the fourth-
order accuracy. In this table, we also show that the maximum CFL number that the 2D
fourth-order accurate RKDG method can use is about 0.25 by our numerical test. Table 20
shows that when 7 cells are used as constraints, the 2D fourth-order accurate constrained
RKDG method (2D Constrained RKDG4-7Cell) is allowed to use a CFL number = 0.35 for
the nonlinear equation test case. The L1 and L∞ errors of the numerical solutions to Eq.
3.7 computed by the 2D Constrained RKDG4-7Cell method is about 2 ∼ 4 times smaller
than the ones computed by the 2D Constrained RKDG4-13Cell method.

To summarize, we found that the 2D constrained RKDG3-7Cell method is stable when
CFL ≤ 0.8; this improves CFL number about 3 − 4 times compared with the one that
the 2D third-order accurate RKDG scheme can take. The 2D constrained RKDG4-13Cell
method improves the CFL number over the 2D fourth-order accurate RKDG method by 5

Table 16: Accuracy test results of solving 2D linear advection equation (3.6) by the fourth-
order accurate constrained RKDG method (2D Constrained RKDG4) with different numbers
of cells used for conservation penalty. L1 and L∞ errors. µ = 1. T = 2.0.

h
2D Constrained RKDG4-13Cell, CFL = 1.3 2D Constrained RKDG4-7Cell, CFL = 0.35
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
160 1.93E-8 - 1.79E-8 - 1.92E-8 - 1.04E-8 -
1

320 1.29E-9 - 1.38E-9 - 1.20E-9 - 6.94E-10 -
1

640 8.02E-11 - 8.76E-11 - 7.62E-11 - 4.56E-11 -
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Table 17: Accuracy test results of solving 2D Burgers’ equation (3.7) by the third-order
accurate schemes. L1 and L∞ errors. 7 cells are used for conservation penalty. T = 0.5/π.

h
2D Constrained RKDG3-7Cell, µ = 1, CFL = 0.8 2D RKDG3, CFL = 0.22
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 3.53E-5 - 6.47E-5 - 3.06E-6 - 1.26E-5 -
1

160 4.40E-6 3.00 9.56E-6 2.76 3.85E-7 2.99 1.67E-6 2.92
1

320 5.49E-7 3.00 1.29E-6 2.89 4.85E-8 2.99 2.27E-7 2.88
1

640 6.93E-8 2.99 1.73E-7 2.90 6.08E-9 3.00 3.03E-8 2.91
1

1280 9.44E-9 2.88 2.99E-8 2.53 7.62E-10 3.00 4.04E-9 2.91
1

2560 1.08E-9 3.13 3.31E-9 3.18 9.58E-11 2.99 5.49E-10 2.88

Table 18: Accuracy test results of solving 2D Burgers’ equation (3.7) by the third-order
accurate constrained RKDG method (2D Constrained RKDG3) with different numbers of
cells used for conservation penalty. L1 and L∞ errors. α = 1. T = 0.5/π.

h
2D Constrained RKDG3-7Cell, CFL = 0.8 2D Constrained RKDG3-4Cell, CFL = 0.3
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
160 4.40E-6 - 9.56E-6 - 1.12E-6 - 3.46E-6 -
1

320 5.49E-7 3.00 1.29E-6 2.89 1.42E-7 2.98 4.89E-7 2.82
1

640 6.93E-8 2.99 1.73E-7 2.90 1.80E-8 2.98 6.50E-8 2.91
1

1280 9.44E-9 2.88 2.99E-8 2.53 2.27E-9 2.99 9.23E-9 2.82
1

2560 1.08E-9 3.13 3.31E-9 3.18 2.85E-10 2.99 1.35E-9 2.77

Table 19: Accuracy test results of solving 2D Burgers’ equation (3.7) by the fourth-order
accurate schemes. L1 and L∞ errors. 13 cells are used for conservation penalty. T = 0.5/π.

h
2D Constrained RKDG4-13Cell, µ = 1, CFL = 1.4 2D RKDG4, CFL = 0.25
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 2.39E-6 - 8.22E-6 - 5.18E-8 - 1.88E-7 -
1

160 1.55E-7 3.95 6.38E-7 3.69 3.29E-9 3.98 1.25E-8 3.91
1

320 9.36E-9 4.05 5.19E-8 3.62 2.10E-10 3.97 9.51E-10 3.72
1

640 5.89E-10 3.99 3.29E-9 3.98 1.35E-11 3.96 6.61E-11 3.85
1

1280 3.73E-11 3.98 2.39E-10 3.78 - - - -
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∼ 6 times.

3.5 Test cases using 1D Euler equations with discontinuous solu-
tions

We now assess the resolution and the non-oscillatory property of numerical solutions com-
puted by the constrained RKDG methods and limited by HR. We compute solutions of the
1D Euler equations

ut + f(u)x = 0

with u = (ρ, ρv, E)T , f(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ − 1)(E − 1
2
ρv2) and γ = 1.4.

3.5.1 1D Shu-Osher problem

The 1D Shu-Osher problem [22] is the Euler equations with an initial data

(ρ, v, p) = (3.857143, 2.629369, 10.333333), for x < −4,
(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1), for x ≥ −4.

We computed the numerical solutions using 300 equal size cells. Density profiles of the
solutions computed by the third-order and fourth-order accurate constrained RKDG and
RKDG schemes respectively at the time t = 1.8 are shown in Fig. 2. We can clearly see
that the fourth-order constrained RKDG solution and the fourth-order RKDG solution have
almost identical resolution for this test problem. The resolution of the third-order accurate
constrained RKDG solution is inferior to that of the third-order accurate RKDG solution
for this Shu-Osher test case.

3.5.2 1D Woodward-Colella blast wave problem

The 1D Woodward-Colella blast wave problem [23] is the Euler equations with an initial
data

(ρ, ρv, E) = (1, 0, 2500), for 0 < x < 0.1,
(ρ, ρv, E) = (1, 0, 0.025), for 0.1 < x < 0.9,
(ρ, ρv, E) = (1, 0, 250), for 0.9 < x < 1.

Table 20: Accuracy test results of solving 2D Burgers’ equation (3.7) by the fourth-order
accurate constrained RKDG method (2D Constrained RKDG4) with different numbers of
cells used for conservation penalty. L1 and L∞ errors. µ = 1. T = 0.5/π.

h
2D Constrained RKDG4-13Cell, CFL = 1.4 2D Constrained RKDG4-7Cell, CFL = 0.35
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
160 1.55E-7 - 6.38E-7 - 5.22E-8 - 2.56E-7 -
1

320 9.36E-9 4.05 5.19E-8 3.62 3.41E-9 3.94 1.73E-8 3.89
1

640 5.89E-10 3.99 3.29E-9 3.98 2.21E-10 3.95 1.18E-9 3.87
1

1280 3.73E-11 3.98 2.39E-10 3.78 1.44E-11 3.94 8.41E-11 3.81
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We compute the numerical solutions using 400 equal size cells. The density profiles of the
solutions are plotted at the time T = 0.038 in Fig. 3. We can clearly see that the fourth-
order accurate constrained RKDG solution and the fourth-order accurate RKDG solution
have almost identical resolution for the 1D Woodward-Colella blast wave problem; while the
resolution of the third-order accurate constrained RKDG solution is comparable with that
of the third-order accurate RKDG solution for this test case.

3.5.3 1D Lax problem

The 1D Lax problem [8] is the Euler equations with the Lax’s initial data: the density ρ,
momentum ρv and total energy E are 0.445, 0.311 and 8.928 in (−1, 0); and are 0.5, 0 and
1.4275 in (0, 1). We compute the numerical solutions using 200 equal size cells. The density
profiles of the solutions are plotted at the time T = 0.26 in Fig. 4.

From these 1D compressible gas flow test problems, we conclude that the constraint
RKDG method combined with HR limiter, gives good quality results for problems containing
strong shock waves in the solution.

3.6 Test case using 2D Euler equations with discontinuous solu-
tions

We test 2D problems with discontinuities in solutions to assess the non-oscillatory property
of numerical solutions computed by the 2D constrained RKDG method together with HR
limiter, again using the Euler equations for gas dynamics.

Example 3.6.3. Double Mach reflection. The Double Mach reflection problem is taken from
[23]. We solve the Euler equations in a rectangular computational domain of [0, 4]× [0, 1]. A
reflecting wall lies at the bottom of the domain starting from x = 1

6
. Initially a right-moving

Mach 10 shock is located at x = 1
6
, y = 0, making a 600 angle with the x axis and extends

to the top of the computational domain at y = 1. The reflective boundary condition is used
at the wall.

We test our method on unstructured meshes with the triangle edge length roughly equal
to 1

400
. The density contour of the flow in the [0, 3] × [0, 1] region at the time t = 0.2 is

shown with 30 equally spaced contour lines. Fig. 5 is the contour plot of the numerical
solutions computed by the 3rd order RKDG and constrained RKDG methods respectively.
Fig. 6 shows the “blown-up” portion around the double Mach region. We can see that while
both of the RKDG and constrained RKDG methods successfully reproduce the vortex sheet
roll-up; the solution computed by the constrained RKDG method is better than the one
computed by the RKDG method, namely the constrained RKDG method picks up more
roll-up and computes smoother contour lines.

Example 3.6.4. Flow past a forward facing step. This flow problem is again taken from
[23]. The setup of the problem is the following: a right-going Mach 3 uniform flow enters a
wind tunnel of 1 unit wide and 3 units long. The step is 0.2 units high and is located 0.6
units from the left side of the tunnel. The problem is initialized by a uniform, right-going
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Mach 3 flow, which has density 1.4, pressure 1.0, and velocity 3.0. The initial state of the
gas is also used at the left side boundary. At the right side boundary, the out-flow boundary
condition is applied there. Reflective boundary condition is applied along the walls of the
tunnel.

The corner of the step is a singularity. Unlike in [23] and in other studies, we do not
modify our scheme near the corner, which is known to lead to an erroneous entropy layer at
the downstream bottom wall, as well as a spurious Mach stem at the bottom wall. Instead, we
use the approach taken in [4], which is to locally refine the mesh near the corner, to decrease
these artifacts. The edge length of the triangle away from the corner is roughly equal to 1

160
.

Near the corner, the edge length of the triangle is roughly equal to 1
320

. Fig. 7 is the contour
plot of the numerical solutions computed by the 3rd order RKDG and constrained RKDG
methods respectively. Comparing results in Fig. 7, we can see that the resolution of the
solution computed by the constrained RKDG method is better, especially for the contour
lines around the triple point. Smoother contour lines are obtained in the constrained RKDG
case. The 4th order constrained RKDG solution captures more roll-ups on the vortex sheet.
See Fig. 7(c).

3.7 Remark on Computational Cost of Constrained RKDGMethod

To estimate the computational cost of the (third order) constrained RKDG method, we use
the 2D Burgers’ equation with a smooth solution as a test case. See Section 3.4 for the
description of this benchmark problem. We employ a mesh with the triangle edge length
roughly equal to 1

128
. The code is written in C and is compiled with “g++ -O3”. Simulations

are performed on a Linux workstation with an Intel i7 2.93 GHz processor. Table 21 shows
cpu times spent by the RKDG and constrained RKDG methods for CFL = 0.2 and 0.8
respectively.

Table 21: Cpu time comparison between the third order RKDG and constrained RKDG
methods

CFL = 0.2 CFL = 0.8
RKDG cpu time = sec. -
Constrained RKDG cpu time = sec. cpu time = sec.

4 Concluding Remarks

In this work, we have developed a conservation constrained RKDG method for solving con-
servation Laws. The new formulation requires the computed RKDG solution defined on a
cell to satisfy additional conservation constraints in adjacent cells (in the least-square sense)
and does not increase the complexity or change the compactness of the original RKDG
method. This conservation constrained RKDG method improves the CFL number over the
RKDG method. The CFL number is improved around 5 ∼ 6 times for the fourth-order
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accurate case and around 2 ∼ 3 times for the third-order accurate case on 2D triangular
meshes. Moreover, for the multi-dimensional test problems with discontinuous solutions, the
constrained RKDG method together with HR limiter also produces comparable resolutions
of discontinuous solution compared with the RKDG scheme.

In the future, we will explore the higher order (> 4) constrained DG formulation in multi-
dimensions with TVD Runge-Kutta time-stepping as well as other time-stepping methods
and develop better compact limiting methods so that we will be able to study shock wave
problems with better resolutions.
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Figure 2: Solutions of the 1D Shu-Osher problem computed on 300 cells. (a) The fourth-
order accurate constrained RKDG solution compared with the “exact” solution; (b) the
fourth-order accurate RKDG solution compared with the “exact” solution; (c) the third-
order accurate constrained RKDG solution compared with the “exact” solution; (b) the
third-order accurate RKDG solution compared with the “exact” solution.
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Figure 3: Solutions of the 1D blast wave problem computed on 400 cells. (a) The fourth-
order accurate constrained RKDG solution compared with the “exact” solution; (b) the
fourth-order accurate RKDG solution compared with the “exact” solution; (c) the third-
order accurate constrained RKDG solution compared with the “exact” solution; (b) the
third-order accurate RKDG solution compared with the “exact” solution.
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Figure 4: Solutions of the 1D Lax shock tube problem computed on 200 cells. (a) The
fourth-order accurate constrained RKDG solution compared with the “exact” solution; (b)
the fourth-order accurate RKDG solution compared with the “exact” solution; (c) the third-
order accurate constrained RKDG solution compared with the “exact” solution; (b) the
third-order accurate RKDG solution compared with the “exact” solution.
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Figure 5: Double Mach reflection problem. Third-order results. Density ρ. (a) The 3rd order
RKDG solution; (b) The 3rd order constrained RKDG solution.
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Figure 6: Double Mach reflection problem. Blown-up region around the double Mach stems.
Third-order results. Density ρ. (a) The 3rd order RKDG solution; (b) The 3rd order con-
strained RKDG solution.
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Figure 7: Forward-facing step problem. Third-order results. Density ρ. (a) The 3rd order
RKDG solution; (b) The 3rd order constrained RKDG solution; (c) The 4th order constrained
RKDG solution.
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