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Abstract. We establish a necessary and sufficient condition for decay of periodic renormalized
solutions to a multidimensional conservation law with merely continuous flux vector.
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1. Introduction. In the half-space I = R, x R™, Ry = (0,400), we consider
the Cauchy problem for a first order multidimensional conservation law

up +divgp(u) =0 (1.1)
with initial data
u(0, ) = uo(x). (1.2)
The flux vector ¢(u) is supposed to be only continuous:
p(u) = (p1(u), ..., on(u)) € C(R,R").

We assume that initial function ug(x) is periodic, that is, ug(z+e;) = ug(z) for almost
all z € R” and all i = 1,...,n, where {e;}"; is a basis of periods in R™. Denote by
P the corresponding fundamental parallelepiped

P:{x:Zaieﬂaie[OJ), i=1,...,n }.
i=1

If up(x) € L>°(R™) then the notion of entropy solution of (1.1), (1.2) in the sense
of S.N. Kruzhkov [5] is well-defined.

DEFINITION 1.1. A bounded measurable function u = u(t,z) € L>®(II) is called
an entropy solution (e.s. for short) of (1.1), (1.2) if for all k € R

= Kl + diva[sign(u — k) (p(w) — p(k))] < 0 (13)

in the sense of distributions on II (in D'(II));

ess liOm u(t,") =ug in Lj,.(R™).

Condition (1.3) means that for all non-negative test functions f = f(t,z) € C}(II)
[ = K +-sign(u = B)e(u) — (k) - T fitds > 0
I
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(here - denotes the inner product in R"™).

In the case under consideration when the flux functions are merely continuous,
the effect of infinite speed of propagation for initial perturbations appears, which leads
even to the nonuniqueness of e.s. to problem (1.1), (1.2) if n > 1 (see examples in
[6, 7]). But, if initial function is periodic (at least in n — 1 independent directions),
the uniqueness holds: an e.s. of (1.1), (1.2) is unique and space-periodic, see the proof
in [14, 15].

In the present paper we assume that the initial function ug € L*(P) and may be
unbounded. In this general situation even the natural requirement p(u) € Lj, . (II, R™)
turns out to be too restrictive. However, if we reject these assumption, we cannot
consider entropy conditions (and even the equation itself) within the framework of
the theory of distributions. To define such solutions u = u(¢, z) (called renormalized),
one uses entropy conditions for superpositions s(u), where s are bounded functions of
special form (cut-off functions). Renormalized entropy solutions to the problem (1.1),
(1.2) with summable initial data were first introduced in [1], where the existence and
uniqueness of such solutions were also established. The results of [1] were generalized
in [8] to the case of arbitrary measurable initial data. The notion of renormalized
entropy solution was later modified in [9] for the periodic case.

Recall the corresponding definition. We denote by s,(u) = max(a, min(b, u))
the cut-off function at levels a and b, where a,b € R, a < b.

DEFINITION 1.2. A x-periodic measurable function v = u(t,z) is called a renor-
malized entropy solution (r.e.s. for short) of (1.1), (1.2) if for all a,b € R, a <b

(sa.6(w))e + dive(@(sa,p(u)) = p = pa in D'(ID), (1.4)

where [y, p € R, is a family of x-periodic nonnegative locally finite measures on I1
(tp € Mioc(IT), pp > 0) such that lim p,((0,7) x P) =0 for allT > 0, and
p—00

ess liom [$ap(u(t,)) — sap(uo)] =0 in L'(P).

In the case of bounded u, ug the notions of r.e.s. and e.s. coincide. Moreover, in this
case the defect measures p, satisfy the representation

pp =~ (I ple + dive fsign(u — p)(o(u) — 2()]}.

As was shown in [9], for each ug € L'(P) there exists a unique r.e.s. u = u(t,x)
of problem (1.1), (1.2). Moreover, the following contraction property holds in L!(P)
(see [9, Corollary 3.3]):

PROPOSITION 1.3. Let u(t,z) and v(t,z) be r.e.s. to the problem (1.1), (1.2)
with the initial data ug(x) and vo(x) (which are supposed to be merely measurable
functions), respectively. Then for almost all t > 0

/W@@*MUMWHS/OM@*%@WW% (15)
P P

where we use the notation r+ = max(r,0).
Changing the places of w and v in (1.5), we obtain the inequality

/(v(t,x) ult,2))dz < / (vo() — uo () *+da. (1.6)
P

P
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Putting inequalities (1.5), (1.6) together, we derive the following L' contraction prop-
erty: for almost all t > 0

/|u(t,:z:)—v(t,a:)|da:§/ o () — vo()|da. (1.7)
P P

As was established by G.-Q. Chen and H. Frid [2], under the conditions ¢(u) €
C?*(R,R") and

V(1 &) e R™™ (1,6) #0, meas{ucR |74+ ¢ (u)-£=01}=0, (1.8)

the following decay property holds for bounded space-periodic entropy solutions wu(t, x)
of (1.1), (1.2):

1
esslimu(t,-) = const = ﬁ/ ug(z)dr in L*(P). (1.9)
P

t—o0

Here | P| denotes the Lebesgue measure of P.

In the present paper we generalize this result to the case of renormalized entropy
solutions of (1.1), (1.2) and propose the following necessary and sufficient condition
for the decay property

Ve e L' € #0, the function u — p(u)-€ is not affine on non-empty intervals, (1.10)
where L' = { £ e R" | £-e; € ZVi=1,...,n } is the dual lattice to the lattice of
periods L={ z = Z kie; | ki €Z, i=1,...,n }, Z being the set of integers. Thus,

i=1
our main result is the following theorem.

THEOREM 1.4. Every r.e.s. of equation (1.1) satisfies the decay property (1.9) if
and only if condition (1.10) holds.

In the case when the basis of periods is not fixed and may depend on a solution,
the statement of Theorem 1.4 remains valid after replacement of condition (1.10) by
the following stronger one:

Ve e R™, £ #£0, the function u — o(u) - € is not affine on non-empty intervals.
(L.11)

Obviously, condition (1.11) is strictly weaker than (1.8) even in the case of smooth
flux o(u).

2. Preliminaries. The following technical lemma is rather well-known (cf. [9,
Lemma 3.3]):

LEMMA 2.1. Let pu be locally finite space-periodic Borel measure on II; q(t) €
Co((0,+00)), p(y) € Co(R™). Then, as v — oo

/ G(O)p(a/v)dpt, z) — A(B)dpt, z) / p(y)dy.

n

(0,400)x P

Proof. For the sake of completeness we put below the proof. Let us define locally
finite Borel measure m(z) on R™, setting:

(m, p(x)) = / g(O)p(@)du(t, z), plx) € Co(R™).
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It is clear that m is periodic and

v [ aple/)intt,z) = [ plwim, ). )

where m, = v~"g*m while gfm is the image of m under the linear map y = g, (x) =
x/v. In other words, for each Borel set B C R™ we have m,(B) = v™"m(vB). It
is well-known (see, for example, [23]) that the sequence m, (y) weakly converges as
v — o0 to the measure Cdy, proportional to the Lebesgue measure dy on R™ with
the constant

C=m(P) = /(O#oo)qu(t)du(t,m).
Therefore, as v — oo
v / q(t)p(e/v)du(t, x) = / p(y)dmy, (y) —
o[ = [ awitn) [ i

as was to be proved. O

We will need some further properties of r.e.s.

LEMMA 2.2. Ifu(t,z) is a r.e.s. of (1.1), (1.2) with initial function ug € L*(P)
then after possible correction on a set of null measure,

u(t,-) € C([0,+00), L' (P)) (2.2)

and for every t > 0
YR>0 /P(\u(t,x)| — R)tdx < /P(|u0(x)\ — R)"du, (2.3)
/Pu(t,x)dx = /Puo(x)dx. (2.4)

Proof. Evidently, the constants +R are e.s. of (1.1). Therefore, they are r.e.s.
of (1.1) as well, and by Proposition 1.3 the following inequalities hold for almost all
t>0:

/ (u(t,r)—R)Tdzx < / (ug(x)—R)tdz, / (—R—u(t,z))Tdr < / (—R—up(x))tdz.
P P P P

Putting these inequalities together, we obtain that relation (2.3) holds for almost all
t > 0. Taking R = 0 in this relation, we derive that u(t,-) € L'(P) for almost all
t>0and

/P|u(t,x)|dxg/P\uo(x)\dx. (2.5)

We define the sequence vy (t,z) = s_pr(u(t,z)), k € N. If a,b € R, a < b, then
Sabp(Vk) = g1 (u) whenever o/ = max(a,—k) < b = min(b,k) (that is, [a,d] N

[—k, k] # 0) while sqp(vi) =c= { Z ’ Zz ﬁ’k otherwise. Therefore,

7 )

(8a,0(vi))t + divep(sa,b(vk)) = 7§,b € Mi,e(IT) in D'(I), (2.6)
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fy = par @ <V,
0 , a >Vb.

Relation (2.6) means that vg(t,x) is a quasi-solution of (1.1) in the sense of
[16, 17]. We fix tg > 0. Then by [16, Theorem 1.2, Corolary 7.1] there exist strong
traces vg(to+, z) = etsitl;rf vi(t, z) and v (to—, z) = %Sﬁtlérjl vg(t, z) (in the case g > 0)

in L} _(R™) (and therefore in L'(P) as well). By (2.3) with R = k, we see that for

loc

almost all ¢ >0 and all k,l e N, I > &k

where the measure 'yf b=

/ fur(t, @) — v (t, 2)|dz < / fu(t, ) — ve(t, 2)|dz =
P P
/ (lu(t, )] - k)*de < I = / (luo ()| - k)* da.
P P

This implies that
/ (o, ) — vi(tok, 2)|dz < I (2.7)
P

Since I, — 0 as k — oo, it follows from the above estimate that {vi(to£, x)}ren are
Cauchy sequences in L'(P). Therefore there exist functions u(to+,z) € L*(P) such
that vg(to%, ) — u(tot,x) in LY(P) as k — oo. Passing in (2.7) to the limit as
[ — oo we find that

/ lultod, 7) — vg(tod, 2)ldz < Iy, (2.8)
P

Recall that also for almost every ¢t > 0

/ lu(t, ) — vg(t, z)|dx < I. (2.9)
P

In view of (2.8), (2.9)

ess limsup/ |u(t, z) — u(toL, x)|dz < esslimsup (/ |vg (t, ) — vk (toL, x)|dz+
t—tot P t—tot P

/ lu(t, ) — vg(t, z)|dx —|—/ |u(tot, ) — vk(tozbm)dx) < 21
P P

and since I, — 0 as k — 0o, we conclude that

ess lim/ lu(t, z) — u(tot, z)|dz = 0. (2.10)
t—>t0i P

Now, we will demonstrate that u(to+, ) = u(to—, x) for each ¢ty > 0. Since vi(t,x) =
S_pk(u(t,x)) then

(vr)e + divep(vr) = Yk = px — p—k

and by [16, Corolary 7.1] for each f(z) € Co(P)

/ (vk (b0t ) — vg(to— 2)) f(x)dz = / F@dn(t) < |flwce,  (210)
P

{to}XP
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where €, = ur({to} X P) + p—r({to} x P) — 0 as k — oo. It follows from relations
(2.8), (2.11) that

+ /P(u(to—i—,x) —u(to—,x)) f(x)dx = + /P(u(to—i—, x) — v (to+, z)) f(z)dz

:l:/P(vk(to—i—,x) —vk(to—,ac))f(ac)dm:t/P(vk(to—,x) —u(to—, x)) f(z)dx
< [ lloo 21k + &)

Passing in this inequality to the limit as kK — oo, we arrive at the equality
/ (u(to+,x) —u(to—, ) f(z)dz = 0.
P

Since the function f(x) € Cy(P) is arbitrary, we conclude that u(tg+,z) = u(to—, )
almost everywhere on P. Hence, for ty > 0 there exists the essential limit

esslimu(t, z) = u(to+,z) in L'(P).

t—to

From this relation it follows that for each T > 0

h—=0 Ji0,11x P

1 h
h /0 </[0 TIxP |u(t + 7, z) — u(t, $)|dtdx> dr — ‘U(H-,x) _ U(L%)\dtdm.
T

On the other hand, by the known property of integrable functions,

1 h
f/ / |u(t + 7, 2) — u(t,x)|dtde | dr — 0
h Jo [0,T]x P h—0

and we claim that for all T" > 0
/ lu(t+, x) — u(t, z)|dtdz = 0.
[0,T]x P

Therefore, u(t,z) = u(t+,x) almost everywhere on II and, evidently, the function
u(t+,z) € C([0,+00), L' (P)).

Hence, without lost of generality we may initially assume that wu(t,:) €
C([0,+00), L} (P)). Then inequalities (1.5), (1.7), (2.3) hold for all ¢ > 0 (without
exemption of a set of null measure).

To prove (2.4), we choose nonnegative functions p(y) € C§°(R™), ¢(t) €
C5°((0,400)) such that [, p(y)dy = 1 and set p,(z) = v "p(z/v), v € N. Ap-
plying relation (1.4) to the test function f(¢,z) = p,(x)q(t), we arrive at the relation

/ Sab(u)q (t)py (x)dtdz + v~ """ / o(sap(u)) - Vyp(z/v)q(t)dtdz =
n 1

/ 2Oy (@) dpa(t, z) — / 9(t)py (2)dpun(t, ).

Passing to the limit as ¥ — oo in the above equality with the help of Lemma 2.1, we
obtain that

/ el @)t = / ) - [ atdmeo. (1)

Ry xP
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We chose T' > 0 such that supp ¢(¢t) C (0,7"). Then for k € N

0< / () dpsn(t,z) < [gloopiar((0,T) x P) — 0 (2.13)
Ry xP

k—o0

Since |s_g k(u)| < |u| while, in view of (2.5),

/ fu(t, 2)1q' (1) dtdz < ¢']l / fut, z)|dtdz
R+><P

(QT)XP
< T¢ oo / o ()| < +00,
P

then by the Lebesgue dominated convergence theorem and relation (2.13) we derive
from (2.12) with —a = b = k in the limit as k — +oo that

/ u(t, z)q (t)dtder = 0,
]R+ X P

that is, for each ¢(t) € Cg°(R4), ¢(t) >0

+o0o
/ [(t)¢'(H)dt = 0, where I(t) — / u(t, z)da.

Since every function ¢(t) € C§°(R4) is the difference of two nonnegative functions
from C§°(R), then the above relation remains valid for all ¢(t) € C§°(Ry.), that is,
I'(t) = 0 in D'(R4). This implies that for all ¢ > 0

I(#) = const = 1(0) = / o () da
P

and completes the proof. O
LEMMA 2.3. Let u = u(t,x) be a r.e.s. of (1.1), (1.2), and pp, € Mioc(II), p € R,
be the family of defect measures from condition (1.4). Then

(i x P) < [ (fuo(e)] = o

Proof. We choose a function p(s) € C§°(R) such that supp p(s) C [0,1], p(s) > 0,

fj;o p(s)ds = 1 and set for v € N §,(s) = vp(vs). Obviously, the sequence §,(s)
converges as v — oo to the Dirac §-measure in D'(R). Let

0= [ aopas= [ pisris

It is clear that the sequence 6, (t) converges pointwise as ¥ — oo to the Heaviside

function 6(t) = (signt)™ = { 1, >0, We choose tg,t1 € Ry, t1 > to and set

0, t<0.
g (t) = 0,(t —to) — 0, (t — t1).

Obviously, 0 < ¢,(t) < 1 and ¢, (t) converges pointwise as ¥ — oo to the indicator
function x (¢, 4,1(t) of the segment (to,t;]. Taking ¢ = ¢,(t) in relation (2.12), we
obtain the equality

/;OO T ()(8,(t — o) — 6,(t — t1))dt = /

Ry xP

00 (t)dpia(t ) — / 4 (D) (1, ),

Ry xP
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where I, (1) = / Sap(u(t,z))dx € C([0,+00)). Passing in this relation to the limit

P
as v — oo and taking into account that x,(f) — X(.¢,)(t) pointwise, we arrive at
V—0Q0

the equality

Iayb(t()) — Ia7b(t1) = ,ua((t(),tl] X P) — /Lb((toﬂfl] X P) (214)

In view of the initial requirement in Definition 1.2 ( or relation (2.2) ), as to — 0

I p(to) — a7b(0):/ Sq.b(uo(2))dz

P

and it follows from (2.14) in the limit as ¢ — 0 that for all t =¢; > 0

/Sa,b(U(tw))dz—/ Sa,p(uo(2))de = Lap(t) = Lap(0) =
P P
1((0, 8] X P) = na((0,7] X P). (2.15)

Let us assume first that p > 0. Taking in (2.15) a = p, b > p, and passing to the limit
as b — +oo, we find that

/ max(u(t, x), p)dz —/ max(ug(z), p)dx = —pp((0,t] x P)
P P

(we take here into account that pp((0,¢] x P) — 0 as b — oo by the definition of
r.e.s.). Therefore,

pp((0,t] x P) = /P[max(uo(x),p) — max(u(t, z),p)ldr <

[ maxtuo(e).p) = plde = [ (wo@) =) *de < [ (uo(o)] = pl)* o (216

In the case p < 0, we take in (2.15) b = p, a < b and pass to the limit as a — —oo,
deriving the relation

/ min(u(t, z), p)dz 7/ min(ug(x),p)dr = pu,y((0,t] x P),
P P

which implies

pp((0,t] x P) = /P[min(u(t, x),p) — min(ug(z), p)ldz <

/P [p — min(uo(z), p))dz = /P (b — uo(x))*dr < /P (luo(x)| - p]) . (217)

To conclude the proof, we only need to pass to the limit in relations (2.16), (2.17) as
t — 4o00. 0

If w(t,z) is a r.es. of (1.1), (1.2) then for each h € R™ the function u(t,z + h)
is a r.e.s. of (1.1), (1.2) with initial function ug(x + k). By (1.7) and (2.2) for each
t>0andall h € R”

/ lult, z + h) — u(t, 2)|dx < / oz + 1) — o (2)|dz, (2.18)
P P
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which implies that the family of functions u(t,-), t > 0, is precompact in L'(P). This
allows to derive the following result.
LEMMA 2.4. Let s(u) be a bounded Lipschitz function, v(t,z) = s(u(t, z)), and

v(t,x) = Z a(t)e?™ e

KEL’
be the Fourier series of v(t,-) in L?>(R"), so that

ag(t) = |P|_1/ eIy (t ) d.
P

Then this series converges to v(t,-) in L?(P) uniformly with respect to t, that is, for
each € > 0 there exists N € N such that
Pl > ae(®))? <e* VE>0. (2.19)
KEL' |k|>N

Proof. Taking (2.18) into account, we find that for all ¢ > 0
/P lo(t,z + h) —v(t,z)Pde <
lo(t,z + h) —v(t, z)] o /P lo(t,x + h) —v(t,z)Pde <
2L max |s(u)| /P lut, 2 + h) — ut, )|dz <

2L max |s(u)] /P luo(x + h) — ug(z)|dx, (2.20)

where L is a Lipschitz constant of s(u). In view of (2.20), the set of functions F' =
{wv(t,") | t>0}isprecompact in L?(P). By Hausdorff’s compactness criterion there
exists a finite e/2-net {gy (z)}7, for F in L*(P). Let by = |P|™! [, e 2™ gy (x)du,
k € L', be Fourier coefficients of gi(z). Observe that

IPIY " [bwkl® = llgrll72(p) < +oo.
KEL’

Therefore, there exists an integer N such that

Pl > |besl> <e?/4 (2.21)
KEL' |k|>N
for all k =1,...,m. Since {gx(x)}7, is a €/2-net for F' then for each ¢ > 0 one can
find such k € {1,...,m} that
IPID lan(t) = bil® = llv(t, ) = gillZz(py < /4. (2.22)
KEL’
In view of (2.21), (2.22) and Minkowski inequality we find
1/2 1/2
PSS Je®P] <[P e -bl] 4
KEL’|k|>N KEL’|k|>N
1/2

Pl > bl <e,

KEL'|K|>N
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and (2.19) follows. O

To prove Theorem 1.4, we use, as in [2], the strong pre-compactness property for
the self-similar scaling sequence uy, = u(kt, kz), k € N. This pre-compactness property
will be obtained under condition (1.10) with the help of localization principles for H-
measures with “continuous indexes”, introduced in [11, 12].

First, we recall the original concept of H-measure invented by L. Tartar [22] and,
independently, by P. Gerard [4]. Let

F(u)(&) = /RN 6_27’15'1u(m)dx, £eRY,

be the Fourier transform extended as an unitary operator on the Hilbert space of
functions u(z) € L2(RY), S = SN-1 = { ¢ e RNV | |¢| =1 } be the unit sphere in
RY. Denote by v — %, u € C the complex conjugation.

Let Q be an open domain in RY, and let Uy (x) € L2 (£2) be a sequence weakly
convergent to the zero function.

PROPOSITION 2.5 (see Theorem 1.1 in [22]). There exists a nonnegative Borel
measure i in Q X S and a subsequence U, (x) = Ug(z), k = k., such that

(10, () Do (@)0(E)) = lim [ F(@,U,)(€) F@:0,) @) (5) & (223)

r=oo Jpn €]

for all ®1(x), Da(x) € Co(R) and Y(§) € C(S).

The measure 4 is called the Tartar H-measure corresponding to U, (x).

REMARK 2.6. In the case when the sequence Uy(z) is bounded in L™ (Q) it
follows from (2.23) and the Plancherel identity that pr,|uP? < Cmeas, and that
(2.23) remains valid for all ®1(z), ®o(x) € L3(Q), cf. [18, Remark 2(a)]. Here we
denote by |u| the variation of measure p (it is a nonnegative measure), and by meas
the Lebesgue measure on €.

We need also the concept of measure valued functions (Young measures). Recall
(see [3, 21]) that a measure-valued function on a domain Q C RY is a weakly mea-
surable map z — v, of  into the space Probg(R) of probability Borel measures with
compact support in R.

The weak measurability of v, means that for each continuous function g(\) the
function x — (v, g(\)) = [ g(A)dv, () is measurable on .

Measure-valued functions of the kind v, (X) = 6(A — u(x)), where u(z) € L>(Q)
and 6(A — u*) is the Dirac measure at u* € R, are called regular. We identify these
measure-valued functions and the corresponding functions w(z), so that there is a
natural embedding of L*°(2) into the set MV (£2) of measure-valued functions on €.

Measure-valued functions naturally arise as weak limits of bounded sequences in
L*>(Q) in the sense of the following theorem by L. Tartar [21].

THEOREM 2.7. Let up(z) € L>®(Q), k € N, be a bounded sequence. Then there
exist a subsequence (we keep the notation uy(x) for this subsequence) and a measure
valued function v, € MV(Q) such that

Vg(A) € C(R) g(uk) kjoo(uw,g()\» weakly-+ in L>°(2). (2.24)

Besides, v, is regular, i.e., vz(A) = (A — u(x)) if and only if ux(x) — wu(zx) in

k—oo
L} () (strongly).
In [11] the new concept of H-measures with “continuous indexes” was introduced,
corresponding to sequences of measure valued functions. We describe this concept in
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the particular case of “usual” sequences in L (). Let ug(x) be a bounded sequence
in L*°(2). Passing to a subsequence if necessary, we can suppose that this sequence
converges to a measure valued function v, € MV(Q) in the sense of relation (2.24).
We introduce the measures v%(\) = d(\ — ug(x)) — v,(\) and the corresponding
distribution functions Ug(x,p) = v¥((p, +00)), uo(x,p) = v.((p,+x)) on Q x R.
Observe that Ug(z,p), uo(z,p) € L (Q) for all p € R, see [11, Lemma 2]. We define
the set

E=E(v,)= { po €R | uo(:c,p)pjpo uo(z,po) in L}OC(Q) }

As was shown in [11, Lemma 4], the complement R \ E is at most countable and if
p € E then U (x,p) . 0 weakly-+ in L*°(9).

The next result, similar to Proposition 2.5, has been established in [11, Theo-
rem 3|, [13, Proposition 2, Lemma 2].

PROPOSITION 2.8. 1) There exists a family of locally finite complex Borel mea-
sures {pP1} g in QxS and a subsequence U, (z,p) = Uy, (x,p) such that for all
Dy (), Po(x) € Cp(R) and (&) € C(S)

(47, 1 ()3 (2)0(E)) =
) Y (2.25)
im [ F(@.0,(,p) (O F @0, ) @ () dé:

r—oo JrN €]

2) The correspondence (p,q) — uP? is a continuous map from E x E into the
space Moe(2 x S) of locally finite Borel measures on 2 x S (with the standard locally
convex topology);

3) For any p1,...,p € E the matriz {pPiPi }éyjzl 1s Hermitian and positive
semidefinite, that is, for all (1,...,(; € C the measure

l
D GG 2 0.

ij=1

Notice that assertion 3) readily follows from relation (2.25).

We call the family of measures {ﬂpq}p7 G€E the H-measure corresponding to the
subsequence u,(z) = ug, ().

As was demonstrated in [11], the H-measure uP? = 0 for all p, ¢ € F if and only if

the subsequence u,.(z) converges as 7 — oo strongly (in L},.(€2)). Observe also that

assertion 3) in Proposition 2.8 implies that measures pPP > 0 for all p € E, and that

PI(A)] < /(A (A) (2.26)
for any Borel set A C 2 x S and all p,q € F.
3. Main results. We fix a periodic r.e.s. u = u(t,x) of (1.1), (1.2).
Let s(u) be a bounded Lipschitz function, v(t, z) = s(u(t, z)), and
v(t,x) = Z a(t)e? e (3.1)
KEL’
be the Fourier series of v(t,-) in L?(P). Then
v (t,x) = v(kt, kx) = Z ay (kt)emikre,

KEL’
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which implies that, may be after extraction of a subsequence, vy — v* as k — oo
weakly-* in L>°(II), where v* = v*(t) being the weak limit of the coefficient ag(kt).
Let fi be the Tartar’s H-measure corresponding to the sequence v, — v*, where v, =
vg, (t, z) is a subsequence of vy.

LEMMA 3.1. The following inclusion holds: supp i C II x Sy, where

—{éNélesié=(g+0 rereer }.

Proof. For m € N we introduce the sets

Sm={é/iéles|é=(r,0)#0, reR el g <m }.

It is clear that Sy, is a closed subset of the sphere S (it is the union of the finite set
of circles { (p,q&/I€]) | p* +¢*> =1}, where £ € L', 0 < |¢] < m), and Sy = US>_; Syy,.
Let

v(t,z) = s(u(t,x)) = Z ap (1)e2mins

KEL’
be the Fourier series for v(t,-) in L?(P). Then
vty @) = vkt k) = Y ag(kpt)e® R, (3.2)
KeL’

We denote by, = ag(kyt) — v*(t); bu,r = ax(kyt), where k € L', Kk # 0. Let
a(t) € Co(Ry), and B(z) € L2R™) N C°(R") be such that its Fourier transform
is a continuous compactly supported function:

B(€) = / ) e~ 83 (g)dx € Co(R™). (3.3)
We take R = max _[¢]. Let ®(¢,z) = a(t)5(z). By (3.2) we find that
§esupp
(vp(t, ) — v*(t))P(t, ) = Z b (t)au(t)e2™HFrr2 B (). (3.4)

KEL’
Observe that the Fourier transform of €275 3(z) coincides with 3(¢ — k,x). Let
d=min{ |s| | k€L ,k#0} > 0.

Since for k. > 2R/d the supports of the functions 3(¢ — k,x) do not intersect for
different x, then for such r the series

> s (t)a(t)B(E — kor) (3.5)

rEL’

is orthogonal in L?(R") for each ¢ > 0. Besides, by the Plancherel equality
18(€ = kri)llL2@ny = 18]z = [1Bl2, and

PLS [ber (t) PUB(E = ko) 32 gy =

KEL’

[Plla@) 18113 D [brr (O = la@PI813 - vkt ) = v () Z2(py < +o0.

KREL’
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Therefore, orthogonal series (3.5) converges in L?(R") for each t > 0. Moreover, by

Lemma 2.4
2 _ 2
S be®P= Y e~ 0
KEL'|K|>N REL’|K|>N

uniformly with respect to ¢ > 0. Hence, series (3.5) converges in L?(R™) uniformly
with respect to ¢t. Since the Fourier transformation is an isomorphism on L?(R™),
we conclude that series (3.4) also converges in L?(R") (not only in L?(P)) uniformly
with respect to t. Since a(t) € Co(R), this implies that (3.4) converges in L?(II), and

F((v, —0)®)(€) = Y F'abu,)(7)B(E — krk), €= (7,€), (3.6)

KEL’

where F'(h)(1) = [, e"*™7h(t)dt denotes the Fourier transform over the time vari-
able (we extend functions h(t) € L?(Ry) on the whole line R, setting h(t) = 0 for
t < 0). It follows from (3.6) that for k, > 2R/d

/RM |F(@(v, —v) () Pp(E/1E])dE =
> /R I (ab ) (P15 - k)| 20 (€ |€])dE, (3.7)

KREL’

where the function ¥(§) € C(S) is arbitrary. Now we fix ¢ > 0. Recall that b, , =
ax(k,t) for k # 0, and by Lemma 2.4 there exists m € N such that

2 /R+ |F (b ) (T)21B(E — ki) |2dE =

KEL’|K|>m

> /H la(t)a, (kb)) B(x)Pdtdr <

KEL’|K|>m

@[5 -sup D> as(®)] <e. (3-8)

KEL’|K|>m

Now we suppose that [|¢)]sc <1 and ¢(€) = 0 on the set S,,. By (3.8)

> / |F (b, ) (1) P18 = ko) P |(E/ €] dE < e. (3.9)
kEL’ | |Kk|>m Rt

Since continuous function t(€) is uniformly continuous on the compact S then we can
find such § > 0 that [1h(€1) — 1h(€2)] < & whenever £1,& € S, € — &| < 6. Suppose
that k # 0, 8(§ — krk) # 0. Then | — kx| < R. For a fixed 7 € R we denote
£ =(r,6), 1 = (7, ker). As is easy to compute,

L) A AE—Eal o (3.10)
i€l Il bl bl

Observe that for each nonzero k € L’ |fj)| > k.d. Then, by (3.10) we see that for all
r € N such that k. > 2R/(dd) and all kK € L, 0 < |k| < m,

[W(E/IEDT = 1D (E/IED) — @/ ll)] < e. (3.11)
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We use here that 7/|7| € Sp, and, therefore, (7/|)]) = 0. In view of (3.11), for all
k. > 2R/(d9)

2 / [P (0 ) (1) PB(E = o) P (E/1€])]dE <

KEL’,0<|k|<m

F /Rn+1 |F*(aby ) (T)P1B(€ — ki) PdE <

kEL’,0<|k|<m

BIE S [ ot (e < el @]Bsup 3 o0 =

KkEL’ KkeL’
6IP|’1II‘1>||§§1>118 [o(ket, ) — 0" ()| Z2(py < Cell@]3, (3.12)

where C' = 4||v||%,. Further, it follows from (3.10) with 7 = (7,0) that for [{] < R
and || > Ry =2R/¢
[(E/1ED] = [ E/IED = (r/I7],0)] < e

Therefore,
[ 00 = Ra)IP et YRR ENEDIE < Cell@l. (313)

Here 6(r) is the Heaviside function.

For |r| < R; we are reasoning in the following way. Since a(t)bg,(t) =
o(t) (a0, (t) — v*(£) = 0 a5 7 — 00, and [Jabo, s < Cy = 2ollacllals, the Fourier
transform (b, )(7) = 0 for all 7 € R and uniformly bounded: |F(aby,)(T)| <

C1. By Lebesgue dominated convergence theorem

/RQ(Rl—\T|)|Ft(ab0,r)(7')|2d7' N

T—00

Therefore (recall that ||1|s < 1),

[ 0GR = rDIP @b ()PP (€ 1€D1E <

181 [ (s ~ [7) | (abo,)(7)Pdr = 0. (3.14)
R
In view of (3.13), (3.14) we find
lim sup /RM |F! (abo, ) (T)PIBE)P14(E/1€])|dE < Ce|| @3, (3.15)
Using (3.7), (3.9), (3.12) and (3.15), we arrive at the relation
timsup [ P, —0)@FWE/EIE < o (3.16)

where C is a constant independent on 1) and m. By the definition of H-measure and
Remark 2.6

lim [P (@(v, = v")) ()P[0 (E/1€])]dE =

r—o0 Jpnt1

(@12, 2) Ple(€))) :/ |@(t,2) ] [(E)|dia(t, . &),

1% (S\Sm)
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and (3.16) implies that

/ B(t, 2) 2 (E)dji(t, 7, €) < Coe
IIx(S\Sm)

for all (&) € Co((S \ Sm)) such that 0 < (&) < 1. Therefore, we can claim that
[ ) Pdan < G
1% (S\Sm)
and since S\ Sy C S\ Sy, we obtain the relation
[ 1ea)Pdalt ) < Cac,
% (S\So)
which holds for arbitrary positive €. Therefore,
/ |®(t, 2)|2d(t, z, €) = 0. (3.17)
% (S\So)

Since for every point (o, zo) € II one can find functions «(t), B(x) with the prescribed
above properties in such a way that ®(t,z) = «(t)5(z) # 0 in a neighborhood of
(to, o), we derive from (3.17) the desired inclusion supp & C II x Sp.
0

We fix | € N and consider the H-measure {u’?}, ,cp corresponding to a sub-
sequence v, = v, (t,x) of the sequence vy = s_j;(u(kt,kx)), k € N, defined in
accordance with Proposition 2.8.

THEOREM 3.2. For every p,q € E supp uP? C II x Sy.

Proof. Let vt ; be a weak measure valued limit of the sequence v,. We introduce
Imeasures

Vw(A) = 06X = vp(t,2)) = vie(N),

and set U,.(t, ,p) = 7{ ,((p, +00)). Let s(u) € C'(R), r € N. Then s(v,) = v*(t,z) =
J s(A\)dvy o (X) as 7 — oo weakly-* in L (II). Integrating by parts, we find that

s(v)(t,7) — v* (¢, 7) = / SO drfL (V) = / SO (Lo, Ny (3.18)

(observe that U, (t,z,\) = 0 for |A| > 1). Let ®(¢,z) € Co(II), (&) € C(S). Then, in
view of (3.18), we find

/}Rn+1 |F(®(s(v,) —v*))(€)Pe(E/1E])dé =
[ [2os@ ([ F@v o @Feu o) @uE/iE ) ds. (.19)
By the definition of H-measure, for each p,q € E

lim F(U, (-, p)) () F(®U (-, ) ) (E/I1E)dE = (P, |(t, 2) P4 (€)).

r—o0 fpn+1
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Using Lebesgue dominated convergence theorem, we can pass to the limit as r — oo
in equality (3.19) and arrive at

(A 19(t,2)*¢(€)) = lim |F(@(v, —0)(E)P$(E/I€)dé =

r—0o0 Jpnt1

// P @ (t,2)*e(€))dpdg,  (3.20)

where i = fi(t, z, é) is the Tartar’s H-measure, corresponding to the scalar sequence
s(vy) —v*. Observe that s(v,) = §(u(k,t, krx)), where §(u) = s(s—;;(u)) is a bounded
Lipschitz function. By Lemma 3.1 we claim that suppg C II x Sy. Clearly, the
equality

(|0t 2) 20 (€ / / §P1, 102, 7) [2(€)) dpdg

remains valid for every Borel function 1/}({?) Taking z/;(f ) being the indicator function
of the set S\ Sy, we obtain the relation

[ 5@ @ur oo o) dpa = o, (3.21)
Now we take in (3.21) s'(p) = lw(l(p—po)), where py € E,l € N, and w(y) € Cy((0,1))
be a non-negative function such that [w(y)dy = 1. Since the H-measure pP? is

strongly continuous with respect to (p, q) at point (pg, po), we derive from (3.21) in
the limit as [ — oo that

P |0 (t,2) P E) =
lim 12 / / w(l(p — po))w(l(q — o)) (4P, B (¢, ) *())dpdg = 0.

l—o0

Since @(t,z) € Cy(II) is arbitrary, we conclude that pPoPo (II x (S'\ Sp)) = 0 ( remark
that pPoPo > 0 ). Hence, for every p = pg € E supp pP? C II x Sp. Finally, as directly
follows from (2.26), for p,q € E supp puP? C supp uP? C IIx Sy. The proof is complete.
|

Observe that for each p € R

(vr - p)+ = sp/,l(uk) - min(pv l),
0(vk — p)(p(vr) — ©(p)) = @(spr 1(ur)) — p(min(p, 1)),

where p’ = s_;;(p), and 6(u) = (sign(u))" is the Heaviside function. Therefore, in
view of (1.4)

((ve = p)™)e + divg [0(vr — p)(0(vi) — @(p))] = pf — s in D'(IT),

where pu = kp, (kt, kx) in D'(IT), that is, (uk, f(t,2)) = k™" (up, f(t/k, z/k)) for each
f(t,z) € Co(II), p € R. By the periodicity of y, this implies that

HE(Re % P) = K"y (R X kP) = iRy x P) < Gy = [ (lun(o)] = [pl)*do

in view of Lemma 2.3. Thus, the sequence of measures uf —,u’;/ is bounded in M (R, X
P). By the Murat interpolation lemma [10] this sequence is precompact in the Sobolev
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space H l;cl(H) Then, as one can easily derive from [12, Lemma 2 and the proof of
Theorem 4] ( see also [18, Theorem 4] ), the following second localization principle
holds.

THEOREM 3.3. Let X = X (p) C R"*! be the minimal linear subspace such that
supp PP C II x X. Then there exists § > 0 such that the function u — Tu + & - p(u)
is constant on the interval (p — 6,p + 0) for all £ = (r,6) e X.

For the sake of completeness, we give below the proof of Theorem 3.3, based on
results of [18, Theorem 4].

Proof. Let D C E be a countable dense subset such that p € D. By [18,
Proposition 3] ( see also [13, Proposition 3] ) there exists a family of complex finite
Borel measures pit?%, € M(S) on the sphere S € R™*!, where p,q € D, (t,x) € I, such

that pP7 = pf? dtdz, i.., for all ®(t,z,£) € Co(R"™ x S) the function
(t3) = G420, 9(t.2.8) = [ Bttt )

is Lebesgue-measurable, bounded, and
G (t..8) = [ (L (E). 0., &)itda.

Observe that sq 5(v) = Serp (ug) if ¢’ = max(a, —1) < b = min(b,!) while sq(vg) =
const in the case when a’ > b’. Therefore,

(Sab(ve))e + divap(sap(vr)) =L, in D'(ID),

ur — pk, a <b
where 7§,b = { Ob O 4> b; are bounded sequences in M (R4 x P), in view
) -

of the uniform estimates uf(R4 x P) < Cp. By the Murat interpolation lemma [10]
for every a,b € R, a < b the sequence of distributions (sq4(vk))e + divee(ses(vy)) is
precompact in the Sobolev space H l_ocl(H)

Then, by [18, Theorem 4] the H-measure u, corresponding to the subsequence
vp = vy, , satisfies the following localization property: for all p € D and for almost all
(t,x) € TL it holds supp uy, C X1, where

Xi={é=(r,§) eR"™ |36 >0Vue (p—d,p+9)
(u=p)7 + (p(u) —@(p) - £=0}.
In view of the representation uP? = up* dtdx we derive that
supp u? C II x X;.

In particular, X C X;. Let él =(7,&),i=1,...,m =dim X, be a basis in X. Since
& € X1, then there exist §; > 0 such that the functions

(u —p)7i + ((u) —@(p)) - & =0 (3.22)

forall u € (p—d;,p+9;),i=1,...,m. Setting § = Ilnin 0;, we find that (3.22)

i=1,...,
holds on the interval u € (p—d,p+ 6) for all vectors &;, i = 1,...,m. Since the linear
span of these vectors coincides with X, the relation

(u=p)7 + (p(u) = ¢(p)) - £ =0
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remains valid for u € (p — 0, p + ¢) and every é € X. The proof is complete. O

Now we are ready to prove our main Theorem 1.4. As follows from Theo-
rems 3.2, 3.3, if dim X > 0 then there exists nonzero vector (7,£) € X N (R x L’) such
that the function 7u + £ - ¢(u) is constant on some interval (p — §,p + §). Obviously
then £ # 0 and - p(u) is affine on (p—9, p+4). But this contradicts to nondegeneracy
condition (1.10). We conclude that X = {0} and, therefore, uP? = 0 for all p € E. In
view of (2.26) the H-measure pP? is trivial and the sequence v, = s_;;(u,) converges

strongly in L}, (II) to some function u}. As was shown above, before the formulation

of Lemma 3.1, the limit functions do not depend on z: u; = v/ (t). By the standard
diagonal extraction we can choose a subsequence u, = uy, (t,x) such that
v =s_(u) — uj in L}, (1) VI € N.
T—00

By Lemma 2.2 for all m,l,r € N, m >
/ 15 (i (£, 2)) = 510t (1, 2)) | < / (ulkot, kpz)| — ) +da =
P P
/P (lulknt, )| — 1)+ dy < Cr = /P (luo(w)] — O dy. (3.23)

We use here the change of variables y = k,z and the space periodicity of u(t,z). It
follows from (3.23) in the limit as r — oo that for almost ¢ > 0

m

lug, (t) —uj ()] < |P|71C, e 0. (3.24)

We see that the sequence uj (¢) is fundamental in L>°(R™) and, therefore, this sequence
converges in L2 (R™) to some function u* = u*(t). Passing to the limit as m — oo in
relations (3.23), (3.24), we obtain the inequalities

/ lur(t, ) — s_ii(ur(t,2))|de < Cy, | Pllu™(t) — uy (B)] < C, (3.25)
P
which hold for almost all ¢ > 0. By these inequalities we find that for each T > 0

/ |y (t, ) — u*(t)|dtde < / |s—1.1(ur(t, z)) — uy (t)|dtdz + 2TC)
0,T)xP (0, T)yxP

and, therefore, for every [ € N

lim sup/ | (t, 2) — u*(t)|dtdx < 2TC;.
0, T)xP

7—00

Since C; — 0 as | — oo, we claim that for each T > 0

lim lur(t, 2) —u*(t)|dtdx = 0,
"= J0,T)x P

that is, u, — u*in L}

r—00 loc

/PuT(t,x)dx:/Pu(kjrt,kra:)dx:/Iau(krt,y)dyz/lguo(y)dy,

(II). Further, by Lemma 2.2 for all t > 0
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and, in particular, for almost every ¢t > 0

|Plu*(t) = lim ur(t,x)daﬁ:/uo(m)dw.
P P

T —00

1
Hence u* = ¢ = m/ ug(z)dz. The relation u,(t,z) — cin L}, (II) implies that
P T—00

(after possible extraction of a subsequence) for a.e. t >0 w,(t,z) — cin L}, (R™).
T—00

By the periodicity, this reads

/|u(krt,er)fc|dx — 0.
P

r—00

Making again the change of variables y = k,x, we find that for almost every ¢t > 0

/ |u(krt,y) — c|ldy :/ lu(krt, krx) — c|de — 0. (3.26)
P P

T—00

We fix such t = ¢ty > 0. Then, by inequality (1.7) together with continuity property
(2.2), for each t > k.t

/ fu(t, ) — eldy < / fulkrtory) — cldy. (3.27)
P P

In view of (3.26) it follows from (3.27) that tlim u(t,z) = cin L'(P). Hence the decay
property holds for every r.e.s. u(t, ).
Conversely, assume that condition (1.10) fails. Then we can find the segment [a, b],

a < b, and a nonzero point (7,&) € R x L’ such that the function v — 7u + £ - p(u) is
constant on the segment [a,b]. Then, as is easy to verify, the function

a+b b-—
+

5 5 a sin(2m (1t 4+ € - x))

u(t,x) =
is a periodic bounded e.s. of (1.1), which does not satisfy the decay property. The

obtained contradiction shows that condition (1.10) is also necessary for the decay
property. This completes the proof of our main Theorem 1.4.

The proof of Theorem 1.4 for bounded entropy solutions of equation (1.1) can be
found in paper [20], see also preprint [19].
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