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Abstract

The paper is concerned with a scalar conservation law with nonlocal flux, provid-
ing a model for granular flow with slow erosion and deposition. While the solution
u = u(t, x) can have jumps, the inverse function x = x(t, u) is always Lipschitz
continuous; its derivative has bounded variation and satisfies a balance law with
measure-valued sources. Using a backward Euler approximation scheme combined
with a nonlinear projection operator, we construct a continuous semigroup whose
trajectories are the unique entropy weak solutions to this balance law. Going back
to the original variables, this yields the global well-posedness of the Cauchy problem
for the granular flow model.

1 Introduction

In this paper we study the scalar conservation law with nonlocal flux

ut(t, x)−
(

exp

∫ ∞
x

f (ux(t, y)) dy

)
x

= 0 , u(0, x) = ū(x). (1.1)

Here x ∈ IR is the space variable, and one can think of u(t, ·) the height of a standing
profile of sand (or some other granular material). We assume that x 7→ u(t, x) is strictly
increasing, with ux → 1 as x→ ±∞. In this model, the variable t should not be thought
as the usual time on the clock. Rather, t measures the total amount of sand poured
from the top, i.e. at x = +∞. As it slides downward, this thin moving layer of sand will
put further sand into motion, at points where the slope is ux > 1. On the other hand,
if the slope is ux < 1, part of the moving layer will be deposited and become part of the
standing profile.

To understand the meaning of the flux in (1.1), consider a unit amount of sand
poured down at x = +∞. Let σ(t, x) be the amount of sand which crosses the point x,
from right to left. For a fixed t, this is determined by solving the linear ODE

− d

dx
σ(t, x) = f(ux(t, x)) · σ(t, x), σ(+∞) = 1. (1.2)

1



Here f is called the erosion function, since it describes the amount of erosion as a function
of the slope, per unit distance travelled in space and per unit mass passing through. We
shall always assume that f is an increasing function with f(1) = 0. Solving (1.2) one
obtains

σ(t, x) = exp

∫ ∞
x

f(ux(t, y)) dy.

The rate at which sand is deposited inside any given interval [a, b] is thus computed by

d

dt

∫ b

a
u(t, x) dx = σ(t, b)− σ(t, a) =

∫ b

a

(
exp

∫ ∞
x

f(ux(t, y)) dy

)
x

dx.

Since a < b are arbitrary, this yields the conservation law (1.1).
Equation (1.1) was first derived in [1] as the slow erosion limit for the two-layer

model of granular flow by Hadeler and Kuttler [13], with the specific erosion function
f(p) = (p− 1)/p. In this paper, more general increasing functions f will be considered.

Differentiating (1.1) w.r.t. x, and denoting by p = ux > 0 the slope, one obtains the
additional conservation law

pt(t, x) +

(
f(p(t, x)) · exp

∫ ∞
x

f(p(t, y)) dy

)
x

= 0 , p(0, x) = p̄(x) . (1.3)

If the function f satisfies

f(1) = 0, f ′ > 0, f ′′ < 0, lim
p→0+

f(p) = −∞, lim
p→+∞

f(p)

p
= 0, (1.4)

then one can show that solutions p(t, x) of (1.3) remain bounded for all t ≥ 0. In
particular, this is the case when f(p) = (p − 1)/p, as for the limit of Hadeler-Kuttler
model, studied in [1]. Under suitable assumptions on the initial data, the existence and
uniqueness of BV solutions for (1.3) has been established in [2, 3], using front tracking
and operator splitting techniques.

If the erosion function f is allowed to have asymptotically linear growth, then it is
known that the slope p = ux can blow up in finite time. Throughout this paper, instead
of (1.4) we shall use the following assumptions on the erosion function:

(A1) The function f : IR+ 7→ IR is twice continuously differentiable and satisfies

f(1) = 0, f ′′ < 0, η
.
= lim

p→+∞
f ′(p) > 0,

lim
p→0+

f(p) = −∞, lim
p→+∞

f(p)− pf ′(p) < ∞.
(1.5)

These conditions imply that, as p→ +∞, the graph of f approaches a linear asymptote
with slope η > 0.

When the slope p = ux becomes infinite and the function u becomes discontinuous,
the equation (1.3) is no longer appropriate and one must study the original equation
(1.1). As shown in [15], solutions can have three types of singularities. These are kinks
(where ux has jumps but u is continuous), shocks (where u has jumps), and hyperkinks
(where u is continuous but ux approaches +∞). With the presence of the jumps in u, the
distributional derivative ∂xu contains point masses, causing technical difficulties in the
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analysis. For a suitable family of initial data, the global existence of entropy admissible
solutions was proved in [15], by means of piecewise affine approximations generated by
an adapted front tracking algorithm. However, the uniqueness of these solutions has
remained an open problem.

We observe that, as long as ux(t, x) ≥ c0 > 0, the inverse function x = X(t, u) is al-
ways well-defined and globally Lipschitz continuous. Whenever u(t, x) has a jump, with
left and right states u− < u+, the map u 7→ X(t, u) remains constant over the interval
[u−, u+]. If u = u(t, x) is a smooth solution of (1.1), a straightforward computation
shows that X = X(t, u) satisfies the conservation law

Xt(t, u) +

(
exp

∫ +∞

u
g (Xu(t, v)) dv

)
u

= 0 , X(0, u) = X(u) . (1.6)

Here the function g is recovered from f according to

g(z) =̇ z f

(
1

z

)
. (1.7)

A straightforward computation yields

g′(z) = f

(
1

z

)
− 1

z
f ′
(

1

z

)
, g′′(z) =

1

z3
f ′′
(

1

z

)
. (1.8)

From the assumptions (1.5) on f it thus follows

g(1) = 0, g′′ < 0, lim
z→+∞

g(z) = −∞, g(0) > 0, g′(0) <∞. (1.9)

Differentiating (1.6) w.r.t. u, and writing z(t, u)
.
= Xu(t, u), one obtains

zt(t, u)−
(
g(z(t, u)) · exp

∫ +∞

u
g(z(t, v)) dv

)
u

= 0 , z(0, u) = z̄(u) . (1.10)

The advantage of this alternative formulation is that, while u in (1.1) can be discon-
tinuous and p in (1.3) can become a distribution with point masses, the variable X in
(1.6) is always Lipschitz continuous and z in (1.10) remains a globally bounded function.
However, this comes at a price, because a solution of (1.10) may well become negative.
In this case, the map u 7→ X(t, u) is no longer invertible and the connection with the
original equation (1.3) is lost.

To preserve its physical meaning, the equation (1.10) must be supplemented by the
pointwise constraint z ≥ 0. This leads to

zt(t, u)−
(
g(z(t, u)) · exp

∫ +∞

u
g(z(t, v)) dv

)
u

= µ(t) , z(0, u) = z̄(u) , (1.11)

where, for each t ≥ 0, µ(t) is a suitable measure supported on the set where z = 0.
Throughout this paper we shall consider solutions of (1.11) which are nonnegative, lower
semicontinuous, and such that z(t, ·) ∈ BV for every t ≥ 0. In this case, a precise set of
conditions on the measures µ(t) can be stated as follows.
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(C) There exists a jointly measurable function Θ = Θ(t, u) such that Θ(t, ·) ∈ BV and
µ(t) = ∂uΘ(t, ·) is the derivative in distributional sense, for a.e. t ≥ 0. Moreover

z(t, u) 6= 0 =⇒ µ(t)( ]−∞, u]) = 0, (1.12)

z(t, a) 6= 0, z(t, b) 6= 0 =⇒
∫ b

a
µ(t)( ]−∞, u]) du = 0. (1.13)

A semigroup of solutions to (1.11) was first constructed in [9]. The analysis in [9]
shows that the limits of front tracking approximations yield entropy weak solutions
which depend continuously on the initial data as well as on the erosion function g.

The purpose of the present paper is three-fold. First, we provide an entirely dif-
ferent construction of the flow generated by (1.11). Solutions are here obtained by a
flux-splitting method, alternating backward Euler steps for (1.10) with a nonlinear pro-
jection operator on the cone of positive functions. This approach is much in the spirit
of nonlinear semigroup theory, as in [10]. We then prove the uniqueness of entropy
weak solutions of (1.11) by a classical Kruzhkov-type argument. Finally, we prove the
equivalence between entropy solutions of (1.11) and entropy solutions of the original
equation (1.1). As a consequence, this yields the global existence and uniqueness of
entropy admissible solutions to (1.1), and their continuous dependence on the initial
data.

The remainder of the paper is organized as follows. In Section 2 we define a backward
Euler step for (1.10) and establish several estimates. In Section 3 we study a nonlinear
projection operator from a subset of L1

loc into the cone of non-negative functions. By
combining these two steps, approximate solutions to (1.11) are constructed in Section 4.
Letting the time step approach zero, a compactness argument derived from Helly’s
theorem yields a continuous semigroup of entropy weak solutions. See Definition 5.1
and Theorem 5.4 in Section 5 for a precise result.

The uniqueness of entropy weak solutions to (1.11) is proved in Section 6, by adapting
the classical variable doubling technique [14]. Finally, Theorem 7.4 in Section 7 shows
that the entropy weak solutions to (1.11) correspond to entropy admissible solutions for
the original problem (1.1). This equivalence heavily relies on the fact that our solutions
are BV functions and the flux function is convex. In this case, the Kruzhkov entropy
conditions are satisfied if and only if the Lax admissibility conditions hold at every point
of approximate jump. From the existence and uniqueness of solutions to (1.11), thanks
to this equivalence result we eventually obtain the well-posedness of the Cauchy problem
for (1.1).

For the basic theory of conservation laws we refer to [5, 16, 17]. The admissibility
conditions and the variable-doubling technique to establish uniqueness of entropy weak
solutions were introduced in the classical papers [18] and [14]. The semigroup approach
to a scalar conservation law, based on backward Euler approximations, is originally due
to Crandall [10].

It is interesting to compare the equation (1.1) with similar conservation laws with
nonlocal flux. In the models considered in [6, 7, 8], the structure of the equation provides
uniform a priori bounds on the integral

∫
u2
x dx. As a consequence, solutions remain uni-

formly Hölder continuous and no shock is ever formed. On the other hand, solutions to
(1.1) can become discontinuous in finite time, and display various types of singularities.
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As a related result, we mention that the existence and local stability of traveling
wave solutions for (1.11) have been recently established in [12].

2 Backward Euler approximations

In this section we study the backward Euler step for the slow erosion model without the
constraint z ≥ 0. Note that in this case the solution of (1.10) could become negative.
We thus need to extend the definition of the erosion function g(z) also for negative
values of z. For convenience, we extend the domain of g by setting

g(z) = g(0) + g′(0)z, z ∈ [−1, 0]. (2.1)

and further extend g in a smooth way for z ≤ −1. Recalling (1.9), we can assume that
this extended function g satisfies the following assumptions:

(A2) The function g : IR 7→ IR is continuously differentiable, vanishes for s ≤ −2, is
affine for s ∈ [−1, 0], and is twice continuously differentiable for s > 0. Moreover
it satisfies

g(0) ≥ 0, g(1) = 0, g′′(s) < 0 for all s > 0. (2.2)

g(z)

zw0
1

f(w)

0
−1−2

Figure 1: A function f and the corresponding function g in (1.7), extended to negative values
according to (A2).

In the rest of the paper, we denote TV{·} the total variation of a function. Our
approximate solutions will take values inside the domain

D0
.
=

{
z : IR 7→ IR ; z is absolutely continuous and there exist

constants M,U0 > 0 such that ‖z(·)− 1‖L1 ≤M,

TV{z(·)} ≤M, z(u) = 1 for all u ≥ U0

}
.

(2.3)

The set of nonnegative functions in D0 will be written as

D+
0

.
=
{
z ∈ D0 ; z(u) ≥ 0 for all u ∈ IR

}
. (2.4)
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For z ∈ D0, we define

G(u; z)
.
= exp

∫ ∞
u

g(z(y)) dy . (2.5)

Using the assumptions (A2) one obtains

Gu(u; z) = − g(z) ·G(u; z), lim
u→+∞

G(u; z) = 1 , (2.6)

and

0 < G(u; z) ≤ exp

∫
z∈[−2,1]

g(z(y)) dy ≤ exp
{

max
−2≤z≤1

|g′(z)| · ‖z − 1||L1

}
. (2.7)

We shall construct approximate solutions using a backward Euler scheme. For con-
venience, instead of (1.10) we consider the equivalent equation

zt(t, u)− (g(z) ·G(u; z))u − λzu = 0 , (2.8)

where the constant λ > 0 is chosen large enough (depending on the initial condition)
such that all the characteristic speeds for (2.8) become ≤ −1. By (2.6), this is the case
provided that

sup
t,u

∣∣g′(z(t, u))
∣∣ · sup

t,u
G(u; z(t, u)) + λ ≥ 1. (2.9)

It is clear that these two problems are entirely equivalent: z(t, u) is a solution of (2.8)
if and only if z(t, u− λt) is a solution of (1.10).

Definition 2.1 (Backward Euler operator). Consider a function z ∈ D+
0 and let ε > 0

be given. We define the backward Euler operator E−ε : D+
0 7→ D0 by setting

E−ε z = w , (2.10)

where w ∈ D0 is the unique function satisfying the implicit ODE

w(u) = z(u) + ε
(
g(w(u))G(u;w)

)
u

+ ελwu . (2.11)

Notice that the condition w ∈ D0 singles out the unique solution of (2.11) such that

w(u) = 1 for all u sufficiently large. (2.12)

The next lemma shows that the backward Euler operator is well defined, and estab-
lishes some of its properties.

Lemma 2.2. Let g satisfy the assumptions (A1). Let z ∈ D0 and let M , U0 be the
corresponding constants in (2.3). We introduce the constants{

κ = M ‖g′‖L∞([−2,M+1]) ,

λ = 1 + eκ ‖g′‖L∞([−2,M+1]) ,

{
C0 = eκ · sups≤0 g

2(s) ,

C1 = ‖g′‖2L∞([−2,M+1]) · 2M eκ.
(2.13)

Then for every ε > 0 the problem (2.11)-(2.12) admits a unique solution w = E−ε z ∈ D0.
Moreover, the following properties hold.
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(i) sup
u

w(u) ≤ sup
u

z(u) ≤ M + 1.

(ii) ‖w(·)− 1‖L1 ≤ ‖z(·)− 1‖L1 ≤ M .

(iii) e−κ ≤ G(u;w) ≤ eκ.

(vi) inf
u

w(u) ≥ − C0ε.

(v) TV{w} ≤ (1− εC1)−1TV{z}, provided that ε < 1/C1.

(vi) ‖w − z‖L1 ≤ ε (4λ+ 2κeκ) · TV{z}, provided that ε ≤ 1/(2C1).

(vii) If z∗ ∈ D0 and w∗ = E−ε z
∗ is the corresponding solution to (2.11)-(2.12), then

(1− εC) ‖w − w∗‖L1 ≤ ‖z − z∗‖L1 , (2.14)

for some constant C depending only on the function g and on M .

(viii) For any constant c > 0 and any positive test function ψ, one has∫
|w − c| − |z − c|

ε
ψ du+

∫ ∣∣∣(g(w)− g(c))G(u;w) + λ(w − c)
∣∣∣ψu du

≤ − g(c)

∫
sign(w − c)g(w)G(u;w)ψ du .

(2.15)

Proof. The implicit ODE (2.11) can be rewritten as(
λ+ g′(w)G(u;w)

)
wu =

w − z
ε

+ g2(w)G(u;w). (2.16)

By assumption z ∈ D0, hence there exists U0 such that z(u) = 1 for all u ≥ U0. Since
g(1) = 0, it is clear that w = E−ε z is the unique absolutely continuous function that
solves the ODE (2.16) for u ≤ U0 and such that

w(u) = 1 for all u ≥ U0 . (2.17)

Because of the regularity of the coefficients, this ODE has a unique local solution. It
thus remains to check that this solution can be prolonged backwards for u ∈ ]−∞, U0].
This requires to prove a priori estimates showing that w(u) remains uniformly bounded,
while the coefficient λ+ g′(w)G(u;w) in (2.16) remains uniformly positive.

(i) - Upper and lower bounds on w. We begin by showing that, on any domain
[u0,∞[ where the solution of (2.11) is defined, one has the a priori bounds

−2 ≤ w(u) ≤ sup
u

z(u) . (2.18)

Indeed, consider any w] > supu z(u) ≥ 1. If w(u) ≥ w] for some u, a contradiction is
obtained as follows. Define

u]
.
= sup

{
u ∈ IR ; w(s) > w]

}
.
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We then have

w
(
u]
)

= w], w(u) ≤ w] for all u > u] , so wu

(
u]
)
≤ 0 .

However, this is impossible because

wu

(
u]
)

=
[
λ+ g′

(
w]
)
G
(
u];w

)]−1
(
w] − z

(
u]
)

ε
+ g2

(
w]
)
G
(
u];w

))
> 0.

Next, if w(u) < −2 for some u, define

u[
.
= sup {u ; w(u) < −2} .

We then have

w
(
u[
)

= −2, w(u) ≥ − 2 for all u > u[, so wu

(
u[
)
≥ 0 .

However, this is impossible because by using g(−2) = 0 and g′(−2) = 0 we have

wu

(
u[
)

=
[
λ+ g′(−2)G

(
u[;w

)]−1
(
−2− z

(
u[
)

ε
+ g2(−2)G

(
u[;w

))
< 0.

(ii)-(iii) Bounds on ‖w − 1‖L1 and on G. Let the solution of (2.11) be defined on
[u0,∞[. We rewrite (2.11) as

w(u)− 1 = z(u)− 1 + ε
[
g(w)G(u;w) + λ(w − 1)

]
u
. (2.19)

Multiplying by sign(w − 1) and integrating in u, for any u∗ ≥ u0 one obtains∫ ∞
u∗
|w(u)− 1| du

≤
∫ ∞
u∗
|z(u)− 1| du+ ε

∫ ∞
u∗

sign(w − 1)
[
g(w)G(u;w) + λ(w(u)− 1)

]
u
du

≤ ‖z − 1‖L1 − ε sign(w(u∗)− 1)
[
g (w (u∗))G (u∗;w) + λ (w (u∗)− 1)

]
, (2.20)

because w is absolutely continuous and g(w)G(u;w) + λ(w − 1) = 0 whenever w = 1.
We claim that the last term on the right hand side of (2.20) is non-positive. Indeed, by
(2.18) it follows

sup
u

∣∣g′(w(u))
∣∣ ≤ sup

−2≤s≤M+1

∣∣g′(s)∣∣ =
∥∥g′∥∥

L∞([−2,M+1])
.

Observing that
|g(w(u∗))| ≤

∥∥g′∥∥
L∞([−2,M+1])

· |w (u∗)− 1| ,

to prove that

− sign (w (u∗)− 1) ·
[
g (w (u∗))G (u∗;w) + λ (w (u∗)− 1)

]
≤ 0 , (2.21)
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by (2.13) it suffices to show that G (u∗;w) ≤ eκ. If this inequality fails, a contradiction
is obtained as follows. Define

u]
.
= sup {u ; G(u;w) > eκ} .

By continuity, G
(
u];w

)
= eκ. Hence by (2.13) there exists δ > 0 such that∥∥g′∥∥

L∞([−2,M+1])
·G (u∗;w) < λ for all u∗ ∈ [u] − δ, ∞[ . (2.22)

Using (2.22) in (2.20), for every u∗ > u] − δ we obtain∫ ∞
u∗
|w(u)− 1| du ≤ ‖z − 1‖L1 ,

so∣∣∣∣∫ ∞
u∗

g(w(y)) dy

∣∣∣∣ ≤ ∥∥g′∥∥L∞([−2,M+1])
· ‖w − 1‖L1 ≤

∥∥g′∥∥
L∞([−2,M+1])

· ‖z − 1‖L1 ≤ κ .

Hence G (u∗;w) ≤ eκ for all u∗ > u] − δ, against the assumption.

The previous analysis shows that, if a solution of (2.11)-(2.12) is defined on [u0,∞[
for some u0, then the bounds (2.18) hold, together with

λ+ g′(w(u))G(u,w) ≥ 1 for all u ≥ u0 . (2.23)

We thus conclude that the solution w of (2.11)-(2.12) can be extended backwards to the
entire real line, and satisfies (i)–(iii).

(iv) Lower bound on w. We now refine the lower bound in (2.18), deriving an ε-
dependent estimate. Recalling (2.13), consider any value w[ < −C0ε. If w(u) < w[ for
some u, a contradiction is obtained as follows. Define

u[
.
= sup

{
u ∈ IR ; w(u) < w[

}
.

We then have

w
(
u[
)

= w[, w(u) ≥ w[ for all u > u[.

However, this is impossible because the inequalities G
(
u[;w

)
≤ eκ and z

(
u[
)
≥ 0 yield

wu

(
u[
)

=
(
λ+ g′

(
w[
)
G
(
u[;w

))−1
(
w[ − z

(
u[
)

ε
+ g2

(
w[
)
G
(
u[;w

))

≤
(
λ+ g′

(
w[
)
G
(
u[;w

))−1
(
w[

ε
+ C0

)
< 0 .

(v) Bound on the total variation. Fix any h > 0. Then

w(u) = z(u) + ε
[
g(w(u))G(u;w) + λw(u)

]
u
,

w(u− h) = z(u− h) + ε
[
g(w(u− h))G(u− h;w) + λw(u− h)

]
u
.
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Writing σ(u) = sign(w(u)− w(u− h)), we obtain

TV{w} − TV{z} = lim
h→0+

1

h

∫ {
|w(u)− w(u− h)| − |z(u)− z(u− h)|

}
du

≤ ε lim
h→0+

1

h

∫
σ(u) ·

[
g(w(u))G(u;w)− g(w(u− h))G(u− h;w)

+λ(w(u)− w(u− h))
]
u
du

= ε lim
h→0+

1

h

∫
σ(u) ·

[
(g(w(u))− g(w(u− h)))G(u;w) + λ(w(u)− w(u− h))

]
u
du

+ ε lim
h→0+

1

h

∫
σ(u) ·

[
g(w(u− h))(G(u;w)−G(u− h;w))

]
u
du .

Here the first term vanishes because w(u) is absolutely continuous and

sign(w(u)− w(u− h)) = sign [(g(w(u))− g(w(u− h)))G(u;w) + λ(w(u)− w(u− h))] .

Thus, we have

TV{w}−TV{z} ≤ ε lim
h→0+

1

h

∫
σ(u) ·

[
g(w(u−h))(G(u;w)−G(u−h;w))

]
u
du . (2.24)

To simplify notation, call

G(u;w)
.
=

G(u;w)−G(u− h;w)

h
=

1

h

∫ u

u−h
Gu(s;w) ds = (Jh ∗Gu) (u),

where the right hand side denotes the convolution of the derivative Gu(u;w) with the
step function

Jh(s)
.
=

{
h−1 if s ∈ [0, h] ,

0 otherwise.

By (i) and (iv), and by choosing ε > 0 sufficiently small we can assume that

w(u) ∈ [−1, M + 1], so |g(w)| ≤ M ·
∥∥g′∥∥

L∞([−2,M+1])
. (2.25)

By standard properties of convolutions one obtains

TV{G(·;w)} ≤ TV {Gu(·;w)} = TV{g(w) ·G(·;w)}
≤ TV{g(w)} · ‖G(·;w)‖L∞ + ‖g(w)‖L∞ · TV{G(·;w)} . (2.26)

We now have the following estimates:

‖g(w)‖L∞ ≤
∥∥g′∥∥

L∞([−2,M+1])
· ‖w − 1‖L∞

≤
∥∥g′∥∥

L∞([−2,M+1])
· TV{w} , (2.27)

TV{G(·;w)} = ‖Gu(·;w)‖L1 = ‖g(w)G(·;w)‖L1 = ‖G(·;w)‖L∞ · ‖g(w)‖L1

≤ ‖G(·;w)‖L∞ ·
∥∥g′∥∥

L∞([−2,M+1])
· ‖w − 1‖L1

≤ eκ
∥∥g′∥∥

L∞([−2,M+1])
·M, (2.28)

‖G(·, w)‖L∞ ≤ ‖Gu(·, w)‖L∞ ≤ ‖g(w)‖L∞ · ‖G(·, w)‖L∞
≤ M ·

∥∥g′∥∥
L∞([−2,M+1])

eκ. (2.29)
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We can represent the open set

{u ; w(u) 6= w(u− h)} = {Ik ; k ≥ 1}

as a disjoint union of open intervals Ik = ]ak, bk[ . Using (2.26) and (2.27)–(2.29) we thus
obtain ∫

σ(u) ·
[
g(w(u− h))

G(u;w)−G(u− h;w)

h

]
u

du

≤
∑
k

∣∣∣g (w (bk − h)) · G (bk)− g (w (ak − h)) · G (ak)
∣∣∣

≤ ‖g(w)‖L∞ · TV{G(·, w)}+ TV{g(w)} · ‖G(·, w)‖L∞
≤

∥∥g′∥∥2

L∞([−2,M+1])
·M eκ · TV{w}+

∥∥g′∥∥2

L∞([−2,M+1])
·M eκ · TV{w}

=
∥∥g′∥∥2

L∞([−2,M+1])
· 2M eκ · TV{w} . (2.30)

Together with (2.24), this yields

TV{w} − TV{z} ≤ εC1 TV{w} .

Therefore, assuming εC1 < 1, we conclude

TV{w} ≤ TV{z}
1− ε(2M + 2)eκ ‖g′‖2L∞([−2,M+1])

=
TV{z}
1− εC1

. (2.31)

(vi) - L1 continuity in time. If w = E−ε z, recalling (2.23) and (2.27)-(2.28) we obtain

‖w − z‖L1 ≤ ε

∫ ∣∣∣ (g′(w(u))G(u;w) + λ
)
wu

∣∣∣ du+ ε

∫ ∣∣∣g(w(u))Gu(u;w)
∣∣∣ du

≤ ε ·
∫

2λ |wu| du+ ε‖g(w)‖L∞ · TV{G(·;w)}

≤ ε
(

2λ+Meκ
∥∥g′∥∥

L∞([−2,M+1])

)
· TV{w}

≤ 2ε (2λ+ κeκ) · TV{z} . (2.32)

Here the last inequality follows from (2.31), provided that εC1 ≤ 1/2.

(vii) L1 stability. Assume z∗(u) ∈ D0 and let w∗ = E−ε z
∗, so that

w∗(u) = z∗(u) + ε
[
g (w∗(u))G (u;w∗)

]
u

+ ελw∗u . (2.33)

By possibly increasing the values of M,U0 we can assume that both z(·) and z∗(·) satisfy
the inequalities in (2.3), with these constants. We then have

‖w∗ − w‖L1 ≤ ‖z∗ − z‖L1 + ε

∫
sign (w∗ − w)

[
g (w∗)G (u;w∗)− g(w)G(u;w)

]
u
du

+ε λ

∫
sign (w∗ − w) (w∗ − w)u du ,
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where the last term vanishes. Therefore, we have

‖w∗ − w‖L1 − ‖z∗ − z‖L1

≤ ε

∫
sign (w∗ − w)

[
g (w∗)G (u;w∗)− g(w)G(u;w)

]
u
du

= ε

∫
sign (w∗ − w)

[
{g (w∗)− g(w)}G (u;w∗)

]
u
du

+ε

∫
sign (w∗ − w)

[
g(w) {G (u;w∗)−G(u;w)}

]
u
du

= ε

∫
sign (w∗ − w)

[
g(w) {G (u;w∗)−G(u;w)}

]
u
du

≤ ε

∫ ∣∣∣g′(w)wu {G (u;w∗)−G(u;w)}
∣∣∣ du+ ε

∫ ∣∣∣g(w) {G (u;w∗)u −G(u;w)u}
∣∣∣ du

≤ ε‖g′‖L∞([−2,M+1]) · TV{w} · ‖G (·;w∗)−G(·;w)‖L∞
+ε‖g(w(·))‖L∞ · TV {G (·;w∗)−G(·;w)} . (2.34)

The definition of G at (2.5) and the bound G ≤ eκ imply

‖G(·;w)−G(·;w∗)‖L∞ ≤ eκ ·
∥∥g′∥∥

L∞([−2,M+1])
‖w − w∗‖L1 . (2.35)

Moreover,

TV
{
G(u;w)−G (u;w∗)

}
≤
∫ ∣∣∣G(u;w)g(w)−G (u;w∗) g (w∗)

∣∣∣ du
≤

∫
G(u;w)

∣∣∣g(w)− g (w∗)
∣∣∣ du+

∫ ∣∣∣G(u;w)−G (u;w∗)
∣∣∣ · |g (w∗)| du

≤ ‖G(·;w)‖L∞
∥∥g′∥∥

L∞([−2,M+1])
‖w − w∗‖L1

+ ‖g(w∗(·))‖L1 · ‖G(·;w)−G(·;w∗)‖L∞
≤ eκ

∥∥g′∥∥
L∞([−2,M+1])

‖w − w∗‖L1

+
∥∥g′∥∥

L∞([−2,M+1])
‖w∗ − 1‖L1 · eκ

∥∥g′∥∥
L∞([−2,M+1])

‖w − w∗‖L1

= eκ
∥∥g′∥∥

L∞([−2,M+1])
(1 + κ) · ‖w − w∗‖L1 . (2.36)

Using (2.35) and (2.36) in (2.34) we obtain an estimate of the form

(1− εC) ‖w − w∗‖L1 ≤ ‖z − z∗‖L1

for a suitable constant C, depending on g and on the constant M , but not on ε.

(viii) - Entropy inequality. Let c > 0 be an arbitrary constant, and let ψ ∈ C∞c be a
positive test function. From (2.11) it follows

w − c = z − c+ ε
{[
g(w)− g(c)

]
G(u;w) + λ(w − c)

}
u
− εg(c)g(w)G(u;w). (2.37)

Note that the condition (2.9) implies

sign(w − c) = sign
[
(g(w)− g(c))G(u;w) + λ(w − c)

]
. (2.38)
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Multiplying (2.37) by sign(w − c) · ψ and integrating in u, we obtain∫
|w − c| − |z − c|

ε
ψ du ≤

∫
sign(w − c)

[
(g(w)− g(c))G(u;w) + λ(w − c)

]
u
ψ du

−
∫

sign(w − c)g(c)g(w)G(u;w)ψ du .

By using integration by parts on the first integral on the right-hand side, and then
applying (2.38), we obtain (2.15). This completes the proof.

3 A projection operator

The backward Euler step maps a positive function z ∈ D+
0 to a function w = E−ε z ∈ D0

which may also take negative values. We now introduce a projection operator π, mapping
D0 back into D+

0 , and determine some of its properties. For notational convenience, in
this section by f ∈ L1

loc we denote a generic function, not to be confused with the erosion
function.

Consider the sets

X
.
=
{
f ∈ L1

loc(IR) ; lim
|x|→∞

f(x) = 1, ‖f(·)− 1‖L1 ≤M
}

(3.1)

and
X+ .

= {f ∈ X ; f(x) ≥ 0} . (3.2)

For a given f ∈ X, define

F (x)
.
=

∫ x

0

∫ y

0
f(s) ds dy . (3.3)

Notice that this implies

F ′(x)
.
=

∫ x

0
f(s) ds , (3.4)

hence F ′ is absolutely continuous and

F ′′ = f(x) for a.e. x . (3.5)

Let F∗ be the lower convex envelope of F , namely

F∗(x)
.
= min

{
θf(a) + (1− θ)f(b) ; θ ∈ [0, 1] , x = θa+ (1− θ)b

}
. (3.6)

For f ∈ X, we denote by

Kf
.
=
{
x ∈ IR ; F∗(x) = F (x)

}
(3.7)

the closed set where F coincides with its lower convex envelope. We observe that

Kf =
{
x ∈ IR ; F (y)− F (x)− (y − x)F ′(x) ≥ 0 for all y ∈ IR

}
=

{
x ∈ IR ;

∫ y

x

∫ s

x
f(r) dr ds ≥ 0 for all y ∈ IR

}
. (3.8)
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x

F
*

F

γ

Figure 2: A function F and its lower convex envelope F∗. One has F∗(x) = F (x) if and only
there exists a line γ supporting the graph of F at the point x. This is the case if and only if
x ∈ Kf .

Moreover, the assumption limx→±∞ f(x) = 1 implies F ′′(x) = f(x) > 1/2 whenever |x|
is sufficiently large. Hence the complement of Kf is a bounded open set, possibly empty.

The projection operator π : X 7→ X+ is now defined by setting

πf(x)
.
= F ′′∗ (x) =

{
f(x) if x ∈ Kf ,

0, if x /∈ Kf .
(3.9)

Since F∗ is convex, its second derivative is non-negative. Hence πf ∈ X+.
The next lemma collects the main properties of this operator.

Lemma 3.1. Let π : X 7→ X+ be the operator defined at (3.9). Then the following
holds.

(i) πf = f for every f ∈ X+.

(ii) For any a, b ∈ Kf one has∫ b

a
πf(x) dx =

∫ b

a
f(x) dx , (3.10)∫ b

a

∫ x

a
πf(y) dy dx =

∫ b

a

∫ x

a
f(y) dy dx . (3.11)

Moreover∫ ξ

a

∫ x

a
πf(y) dy dx ≤

∫ ξ

a

∫ x

a
f(y) dy dx for all ξ ∈ IR . (3.12)

(iii) (monotonicity) If f, g ∈ X and f(x) ≤ g(x) for a.e. x, then

πf(x) ≤ πg(x) for a.e. x, (3.13)

and
‖πg − πf‖L1 = ‖g − f‖L1 . (3.14)
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(iv) (L1-contractivity) For any f, g ∈ X, we have

‖πf − πg‖L1 ≤ ‖f − g‖L1 . (3.15)

In particular,
‖πf − 1‖L1 ≤ ‖f − 1‖L1 . (3.16)

(v) (BV stability) For any f ∈ X having bounded total variation, one has

TV{πf} ≤ TV{f}. (3.17)

Proof. (i) If f ∈ X+, then F is convex. Hence F∗ = F and πf = f .
(ii). The assumption a, b ∈ Kf implies

F (a) = F∗(a), F (b) = F∗(b), F ′(a) = F ′∗(a), F ′(b) = F ′∗(b).

Therefore∫ b

a
πf(x) dx =

∫ b

a
F ′′∗ (x) dx = F ′∗(b)− F ′∗(a) = F ′(b)− F ′(a) =

∫ b

a
f(x) dx ,

proving (3.10). Next, still for a, b ∈ Kf we have∫ b

a

∫ x

a
πf(y) dy dx =

∫ b

a

∫ x

a
F ′′∗ (y) dy dx =

∫ b

a

(
F ′∗(x)− F ′∗(a)

)
dx

= F∗(b)− F∗(a)− (b− a)F ′∗(a) = F (b)− F (a)− (b− a)F ′(a)

=

∫ b

a

∫ x

a
f(y) dy dx .

This proves (3.11). Finally, for any ξ ∈ IR the inequality (3.12) follows from∫ ξ

a

∫ x

a
(πf(y)− f(y)) dy dx =

∫ ξ

a

∫ x

a

(
F ′′∗ (y)− F ′′(y)

)
dy dx

=

∫ ξ

a

[(
F ′∗(x)− F ′(x)

)
−
(
F ′∗(a)− F ′(a)

)]
dx =

∫ ξ

a

(
F ′∗(x)− F ′(x)

)
dx

= (F∗(ξ)− F (ξ))− (F∗(a)− F (a)) = F∗(ξ)− F (ξ) ≤ 0.

(iii). If f ≤ g a.e., then∫ y

x

∫ s

x
f(r) dr ds ≤

∫ y

x

∫ s

x
g(r) dr ds, for all x, y ∈ IR.

Hence, by the characterization (3.8), the corresponding sets satisfy Kf ⊆ Kg.
To prove (3.13) we consider two cases. If x ∈ Kf , then x ∈ Kg, hence πf(x) =

f(x) ≤ g(x) = πg(x). Otherwise, if x /∈ Kf , then πf(x) = 0 ≤ πg(x).
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To prove (3.14), we choose an interval [a, b] so large that [a, b]∪Kf = [a, b]∪Kg = IR.
Since πf(x) ≤ πg(x) for all x, using (3.10) we obtain

‖πg − πf‖L1 =

∫
IR\[a,b]

[πg(x)− πf(x)] dx+

∫ b

a
[πg(x)− πf(x)] dx

=

∫
IR\[a,b]

[g(x)− f(x)] dx+

∫ b

a
g(x) dx−

∫ b

a
f(x) dx = ‖g − f‖L1 .

(iv) Let f, g ∈ X, and denote

f ∨ g =̇ max{f, g}, f ∧ g =̇ min{f, g} .

Since the operator π preserves the ordering, for every x ∈ IR we have

|πf(x)− πg(x)| ≤ π(f ∨ g)(x)− π(f ∧ g)(x).

Then, (3.15) follows because

‖πf − πg‖L1 ≤
∫
IR

[
π(f ∨ g)(x)− π(f ∧ g)(x)

]
dx

=

∫
IR

[
(f ∨ g)(x)− (f ∧ g)(x)

]
dx = ‖f − g‖L1 .

Finally, by taking g ≡ 1 in (3.15), we obtain (3.16).
(v). Since the projection π commutes with translations, using the contractivity property
(3.15) one obtains the estimate

TV{πf} = lim sup
h→0+

1

h

∫ ∞
−∞
|πf(x+ h)− πf(x)| dx

≤ lim sup
h→0+

1

h

∫ ∞
−∞
|f(x+ h)− f(x)| dx = TV{f} ,

completing the proof.

We now study how the projection operator behaves in connection with a family of
convex entropies. For f ∈ X, define the function

Θf (x) =̇

∫ x

−∞
[πf(y)− f(y)] dy, (3.18)

so that Θf is an absolutely continuous function which vanishes for |x| large and satisfies

Θf
x(x) = πf(x)− f(x) . (3.19)

The following properties of Θf follow immediately from Lemma 3.1.

Lemma 3.2. Let f ∈ X, and assume a, b ∈ Kf . Then

Θf (a) = Θf (b) = 0,

∫ b

a
Θf (y) dy = 0, (3.20)

and ∫ x

a
Θf (y) dy ≤ 0 for all x ∈ IR. (3.21)
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The next lemma shows that the projection operator is dissipative w.r.t. a family of
convex entropies.

Lemma 3.3. Let f ∈ X. For any constant c > 0 and any non-negative test function
ψ ∈ C∞c (IR) one has∫

IR
|πf(x)− c|ψ(x) dx ≤

∫
IR
|f(x)− c|ψ(x) dx

−
∫
IR

sign(πf(x)− c)Θf (x)ψx(x) dx. (3.22)

Proof. By (3.19) we have

πf(x)− c = f(x)− c+ Θf
x(x).

Multiplying both sides by sign(πf(x)− c) · ψ and integrating over IR, we obtain∫
IR
|πf(x)− c|ψ(x) dx ≤

∫
IR
|f(x)− c|ψ(x) dx+

∫
IR

sign(πf(x)− c) Θf
xψ(x) dx ,

To handle the last term, we observe that Θf is supported on the region where πf = 0,
hence sign(πf(x)− c) = −1. An integration by parts yields∫

IR
sign(πf(x)− c)Θf

xψ(x) dx = −
∫
IR

Θf
x(x)ψ(x) dx

= −
∫
IR

sign(πf(x)− c)Θf (x)ψx(x) dx ,

completing the proof.

4 Approximate solutions by a flux-splitting algorithm

Combining the backward Euler operator and the projection operator introduced in the
previous sections, we now construct a family of approximate solutions. Let an initial
data z(0, ·) = z̄ ∈ D0 be given. Fix a time step ε > 0 and let zε : IR 7→ D0 be the unique
function such that {

zε(t) = z̄ if t ≤ 0 ,
zε(t) = π (E−ε zε(t− ε)) if t > 0 .

(4.1)

Here E−ε is the backward Euler step introduced in Definition 1, and π is the projection
operator defined at (3.9). It is understood that, in the construction of E−ε , we choose
λ > 0 sufficiently large so that (2.9) holds. Thanks to Lemma 2.2, the constant λ can
be chosen as in (2.13), depending on the initial data z̄ but not on ε.

Notice that zε(·) can be constructed through discrete time iterations. Consider the
times

tk
.
= kε , k = 0, 1, 2, . . .
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We begin by setting
z0(u) = z̄(u). (4.2)

Next, given zk(·) = zε(tk, ·), the function zk+1 = zε(tk+1, ·) is computed by setting

wk+1 = E−ε z
k , zk+1 = πwk+1 , (4.3)

The solution of (4.1) is then

zε(t, u) = zk(u), if t ∈ [tk, tk+1[ . (4.4)

To study the projection operator at every time step tk, it is convenient to introduce the
functions

Θk(u) =̇
1

ε

∫ u

−∞

[
zk(u)− wk(u)

]
du , Θk

u(u) =
1

ε

[
zk(u)− wk(u)

]
, (4.5)

and
Θε(t, u) = Θk(u), Θε

u(t, u) = Θk
u(u) if t ∈ [tk, tk+1[ . (4.6)

Combining the properties of the backward Euler operator proved in Lemma 2.2 and
the properties of the projection operator in Lemma 3.1 and Lemma 3.3, we obtain similar
estimates for zε.

Lemma 4.1. Consider initial data z̄, z̄∗ ∈ D0 where D0 is defined in (2.3), and let

M
.
= max

{
‖z̄ − 1‖L1 , ‖z̄∗ − 1‖L1 , TV{z̄} , TV {z̄∗}

}
.

Let zε(t, u), z∗ε (t, u) be the corresponding solutions of (4.1), with λ chosen as in (2.13).
Then, for every ε > 0 sufficiently small and every t ≥ 0, the following estimates hold.

(i) supu{zε(t, u)} ≤ supu{z̄(u)}.

(ii) ‖zε(t, ·)− 1‖L1 ≤ ‖z̄ − 1‖L1 ≤M .

(iii) 0 < C−1 ≤ G (u; zε(t)) ≤ C.

(iv) TV {zε(t, ·)} ≤ eCtTV {z̄}.

(v) ‖zε(t, ·)− z∗ε (t, ·)‖L1 ≤ eCt · ‖z̄ − z̄∗‖L1 .

(vi) ‖zε(tj , ·)− zε(ti, ·)‖L1 ≤ C eCtj |tj − ti| for any integers 0 ≤ i < j.

(vii) (Kruzhkov entropy inequality) For any c > 0 and any positive test function ψ ∈
C∞c (]0, T [×IR), we have∫ ∫

|zε − c|ψt du dt ≥
∫ ∫

|(g(zε)− g(c))G(u; zε) + λ(zε − c)|ψu du dt

+

∫ ∫
sign(zε − c) · g(c)g(zε)G(u; zε)ψ du dt

+

∫ ∫
sign(zε − c) ·Θεψu dudt− Cε. (4.7)

Here C is a suitable constant independent of ε.
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(viii) (Θε has uniformly bounded support) For any given T,R0 > 0 there exist R, δ > 0
such that the following holds. If z̄(u) ≥ 1 − δ for |u| > R0, then for every ε > 0
small enough one has

zε(t, u) >
1

2
for all t ∈ [0, T ], |u| > R. (4.8)

In particular, the support of Θε is contained in [0, T ]× [−R,R].

Here the constant C depends only on M and on the function g, while K depends on M ,
g, c, T , and on ‖ψ‖C2 . The constants R, δ depend on M , g, c, T , and on R0.

Proof. 1. The properties (i)–(iv) are straightforward consequences of the corresponding
properties in Lemma 2.2 for the backward Euler step and in Lemma 3.1 for the projection
operator.

2. To prove (v), we observe that the (2.14) and the contraction property of the projection
π imply

‖zε(tk+1)− z∗ε (tk+1)‖L1 ≤
1

1− Cε
‖zε(tk)− z∗ε (tk)‖L1 ,

for some constant C depending only on M and for any ε < C−1. By induction on
k = 0, 1, 2 . . . we obtain (v), with a possibly different constant C.

3. To prove (vi) we observe that, by (2.32),∥∥∥E−ε zk − zk∥∥∥
L1
≤ εC0 · TV

{
zk
}
. (4.9)

Here C0 is a constant depending only on supu z
k(u) and on

∥∥zk − 1
∥∥
L1 . In addition,

since zk = πzk and π is a contraction, we have∥∥∥π(E−ε z
k)− E−ε zk

∥∥∥
L1
≤

∥∥∥π(E−ε z
k)− πzk

∥∥∥
L1

+
∥∥∥πzk − E−ε zk∥∥∥

L1

≤ 2
∥∥∥E−ε zk − zk∥∥∥

L1
. (4.10)

Putting together (4.9)-(4.10) and using the estimate (iv) on the total variation of zk =
z(tk), we obtain∥∥∥zk+1 − zk

∥∥∥
L1

=
∥∥∥π(E−ε z

k)− zk
∥∥∥
L1
≤ 3εC0 · TV

{
zk
}
≤ 3εC0 · eCtk TV{z̄} . (4.11)

We now write

‖zε(tj , ·)− zε(ti, ·)‖L1 ≤
j−1∑
k=i

∥∥∥zk+1 − zk
∥∥∥
L1

and use (4.11) to estimate each term. This yields (vi), for a suitable constant C and all
ε > 0 sufficiently small.

4. To prove the Kruzhkov entropy inequality, we use property (viii) in Lemma 2.2 with
z = zk = zε(tk, ·), w = wk+1, and then Lemma 3.3 with f = wk+1, πf = zk+1 =
zε(tk+1, ·). Choose N so large that T < Nε. By assumption, the test function ψ
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vanishes for t = 0 and for t ≥ Nε. Summing over k = 0, . . . , N − 1, by a standard
summation-by-parts technique we obtain

N∑
k=0

ε

∫ ∣∣∣zk+1(u)− c
∣∣∣ · ψ (tk+1, u)− ψ (tk, u)

ε
du

=

N−1∑
k=0

∫ (∣∣∣zk(u)− c
∣∣∣− ∣∣∣zk+1(u)− c

∣∣∣)ψ (tk, u) du

=
N∑
k=0

∫ [(∣∣∣zk(u)− c
∣∣∣− ∣∣∣wk+1(u)− c

∣∣∣)
+
(∣∣∣wk+1(u)− c

∣∣∣− ∣∣∣zk+1(u)− c
∣∣∣) ]ψ (tk, u) du

≥
N∑
k=0

ε

∫ ∣∣∣ (g (wk+1(u)
)
− g(c)

)
G
(
u;wk+1

)
+ λ

(
wk+1(u)− c

) ∣∣∣ψu (tk, u) du

+

N∑
k=0

ε

∫
sign

(
wk+1(u)− c

)
· g(c)g

(
wk+1(u)

)
G
(
u;wk+1

)
ψ (tk, u) du

+
N∑
k=0

ε

∫
sign

(
zk+1(u)− c

)
·Θε (tk+1, u)ψu (tk, u) du. (4.12)

As ε → 0, the difference between the left hand side of (4.7) and the left hand side of
(4.12) is bounded by a constant multiple of ε. Similarly, comparing the right hand side
of (4.7) (with C = 0) with the right hand side of (4.12), we see that the difference is
again bounded by a constant multiple of ε. Therefore the inequality in (4.7) follows
from (4.12), for a suitable constant C.

5. The bound (4.8) will be established by a comparison argument. For every t = tk
.
= kε

we will prove by induction that z(t, ·) satisfies bounds of the form

z(t, u) ≥


ξ(t) if u > R(t),

0 if u ∈ [−R(t), R(t)],

η(t, u) if u < −R(t).

(4.13)

See Figure 3. Here the functions t 7→ ξ(t), t 7→ R(t) and η(t, u) are defined as

ξ(t) =̇ 1− δ − 2δt , R(t) =̇ R0 +Mt , η(t, u)
.
= 1− δe2Ct − e

u+R(t)
2ε . (4.14)

The value of δ will be chosen sufficiently small, as specified later.
At t = 0, the bounds (4.13) hold by assumption. Now assume that, at time t = tk,

z(t, ·) satisfies the bounds (4.13). We will show that (4.13) holds at t = tk+1 = t+ε. On
the interval u ∈ [−R(tk+1) , R(tk+1)], (4.13) holds trivially, because zk+1(u) ≥ 0. Next,
consider the half line {u > R(tk+1)}. We claim that

wk+1(u) ≥ ξ(tk)− 2εδ = ξ (tk+1) for all u > R (tk) . (4.15)
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z(t,u)

−R(t)
R(t)0

1

1−δ

u

Figure 3: The lower estimates on a flux splitting approximation z(t, ·).

Indeed, if wk+1(u) achieves a local min at u∗, one then has wk+1
u (u∗) = 0 if u∗ > R(tk),

while wk+1
u (u∗) ≥ 0 if u∗ = R(tk). Then, from (2.16) we obtain

wk+1(u∗) ≥ zk(u∗)− εGmaxL
2
(

1− wk+1(u∗)
)2

,

which is equivalent to[
1− wk+1(u∗)

]
≤
[
1− zk(u∗)

]
+ εGmaxL

2
[
1− wk+1(u∗)

]2
, (4.16)

where Gmax provides an an upper bound on G and L is a constant strictly larger than
the Lipschitz constant of g. We compare (4.16) to the problem

b = a+ εMb2, (0 < 4εMa ≤ 0.5), b =
1−
√

1− 4εMa

2εM
< a+ 2εMa2,

where in the last inequality we used the relation 1−
√

1− x < 1
2x+ 1

4x
2 for 0 < x < 0.5.

By a standard comparison argument, choosing ε and δ sufficiently small such that

4εGmaxL ≤
1

2
, δ ·GmaxL

2(1 + 2T )2 ≤ 1

2
(4.17)

we have [
1− wk+1(u∗)

]
≤
[
1− zk(u∗)

]
+ 2εGmaxL

2
[
1− zk(u∗)

]2
.

Applying the assumption
[
1− zk(u∗)

]
≤ δ(1 + 2t) and the condition (4.17), we get[

1− wk+1(u∗)
]
≤ δ(1 + 2t) + 2εGmaxL

2δ2(1 + 2t)2 ≤ δ(1 + 2t) + 2εδ = 1− ξ(tk + ε),

proving (4.15). The projection operator could move the support of Θε further to the
right. Thanks to the properties (ii) and (vi) in Lemma 2.2, we have the estimate

R (tk+1)−R (tk) ≤
MC0ε

1− ξ (tk+1)
≤ 2MC0ε.

Finally, we consider the half line u < −R(tk+1). Suppose zk(u) ≥ η(tk, u), we first

show that, for some constant M̃ it holds

wk+1(u) ≥ η̃(u) =̇ 1− δe2C(tk+ε) − e(u+R(tk)+M̃ε)/(2ε) . (4.18)
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From (2.16) and property (vi) in Lemma 2.2, we have[
wk+1

]
u
≤ wk+1 − zk

ε
+ C3

(
1− wk+1

)
, wk+1 (R(tk)) ≥ −C0ε. (4.19)

We proceed by contradiction. Assume that (4.18) fails and let u] < R(tk) be the right-
most point where the equality holds:

u] =̇ max
{
u ≤ R(tk) : wk+1 = η̃(u)

}
.

This yields a contradiction provided that

wk+1
u

(
u]
)

< η̃′
(
u]
)

= − 1

2ε
e[u

]+R(tk)+Mε]/(2ε). (4.20)

Using (4.19), at u = u] we have

wk+1
u

(
u]
)
≤

η̃
(
u]
)
− η(tk, u

])

ε
+ C

(
1− η̃

(
u]
))

≤ −1

ε

[
δe2Ctk

(
e2Cε − 1

)
+ e[u

]+R(tk)+M̃ε]/(2ε)
(

1− e−M/2
)]

+C
(
δe2Ctk+1 + e[u

]+R(tk)+M̃ε]/(2ε)
)

= −δe2Ctk

(
e2Cε − 1

ε
− Ce2Cε

)
− 1− e−

M
2 − Cε
ε

e[u]+R(tk)+M̃ε]/(2ε).

Here the first term is negative, and the constant in the second term is bounded by

−1− e−M/2 − Cε
ε

< − 1

2ε

for ε sufficiently small and M̃ sufficiently large, thus (4.20) holds, providing the contra-
diction. We choose δ small such that δe2CT < 1/3. By the property of the exponential
function, there exist constants C̃ and C ′, such that∫ 0

−C′ε

(
2/3− e−u/(2ε)

)
du = Cε, η̃(u) >

1

3
,

(
u ≤ −R(tk)− M̃ε− C̃ε

)
.

The projection step will push −R(tk) − M̃ε further to the left. Thanks the properties
(ii) and (vi) in Lemma 2.2, and the properties of the exponential function, we have,

zk+1(u) ≥ η̃(u) for u ≤ −R(tk)− M̃ε− C ′ε. Finally, letting M = M̃ + C ′, we conclude
that zk+1 ≥ η(tk+1, u) for u ≤ −R(tk+1), completing the inductive step.

5 A semigroup of weak solutions

Taking a sequence of flux-splitting approximations, as the time step ε→ 0, in the limit
we expect to recover a semigroup of weak solutions. Before stating the main result in
this direction, we give a precise definition of entropy weak solution.
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Definition 5.1. Given a time interval [0, T ], an entropy weak solution to the Cauchy
problem (1.11) is a bounded, measurable function z = z(t, u) ≥ 0 with the following
properties.

(P1) The map t 7→ z(t, ·) is continuous from [0, T ] into L1
loc(IR). Moreover, z(0, u) −

z̄(u) = 0.

(P2) There exist a measurable function Θ = Θ(t, u) with compact support in [0, T ]× IR,
such that

z(t, u) > 0 =⇒ Θ(t, u) = 0

z(t, a) > 0, z(t, b) > 0 =⇒
∫ b

a
Θ(t, u) du = 0 .

(5.1)

Moreover, for any constant c ≥ 0 and every non-negative test function ψ ∈
C∞c (]0, T [×IR), the following entropy inequality holds:

−
∫ T

0

∫
IR
|z − c|ψt du dt+

∫ T

0

∫
IR

sign(z − c) · (g(z)− g(c))G(u; z(t))ψu du dt

≤ −
∫ T

0

∫
IR

sign(z − c) · g(c) g(z)G(u; z(t))ψ du dt

−
∫ T

0

∫
IR

sign(z − c) ·Θ(t, u)ψu du dt . (5.2)

Remark 5.2. Since the function Θ is supported on the set where z = 0, for c > 0 in
(5.2) we always have

sign(z − c) ·Θ(t, u) = −Θ(t, u).

Remark 5.3. According to (5.2), for every c ≥ 0 the function z = z(t, u) satisfies the
inequality

|z − c|t −
[

sign(z − c) (g(z)− g(c))G(u; z(t))
]
u
−Θu ≤ 0 (5.3)

in distributional sense, for some measurable function Θ(t, u) satisfying (5.1).

We now state the main result on the global existence of BV solutions to the Cauchy
problem. Consider the domain

D+ .
=
{
z : IR 7→ [0,∞[ ; z is absolutely continuous and

‖z(·)− 1‖L1 <∞, TV{z(·)} <∞
}
,

(5.4)

and, for any M > 0, the subdomain

DM .
=
{
z ∈ D+ ; ‖z(·)− 1‖L1 < M

}
. (5.5)

Theorem 5.4. Let the function g satisfy the assumptions (A2). Then for any M > 0
there exists a map S : D+

M × [0,∞[ 7→ D+ with the following properties.
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(i) For every z̄ ∈ DM , the trajectory t 7→ Stz̄ is an entropy weak solution to the
Cauchy problem (1.11) in the sense of Definition 5.1.

(ii) For any M ′, one can find a constant C such that, if

z̄, z̄∗ ∈ DM , TV{z̄} ≤M ′ , TV{z̄∗} ≤ M ′,

then for all t > s ≥ 0 one has

‖Stz̄ − Ssz̄‖L1 ≤ CeCt(t− s), (5.6)

‖Stz̄ − Stz̄∗‖L1 ≤ CeCt ‖z̄ − z̄∗‖L1 . (5.7)

Proof. 1. The domain DM is a separable metric space, with the L1 distance. In partic-
ular, we can select a countable subset D] ⊂ DM ∩ D+

0 such that the following holds.

(P]) For every z̄ ∈ DM , there exists a sequence of elements z̄n ∈ D] such that

‖z̄n − z̄‖L1 → 0 , lim sup
n→∞

TV{z̄n} ≤ TV{z̄} . (5.8)

2. Let the constants κ, λ be as in (2.13), depending on g and on the constant M .
Let an initial condition z̄ ∈ D] be given. Consider a sequence εn → 0. Let t 7→ zεn(t)
be the corresponding solutions to (4.1). Observe that, as t ranges over any compact
interval [0, T ], the total variation of zεn(t, ·) remains uniformly bounded. Next, let
Zεn : [0,∞[ 7→ D+

0 be the piecewise affine function which coincides with zεn at the
discrete times tk

.
= k · εn. Then the maps t 7→ Zεn(t) are uniformly Lipschitz continuous

w.r.t. the L1 distance, on bounded intervals of time. By Helly’s compactness theorem
(see for example [5]), we can extract a subsequence (εν)ν≥1 such that the functions
Zεν converge in L1

loc, and hence the same holds for the functions zεν . By a standard
diagonalisation argument, we can assume that the same sequence εν → 0 achieves
convergence for every z̄ ∈ D].

If now zεν → z in L1
loc, we define the function Stz̄ by setting

(Stz̄)(u) = z(t, u− λt). (5.9)

3. For initial data z̄, z̄∗ ∈ D], the estimates (5.6)-(5.7) follow from the corresponding
estimates (v)-(vi) in Lemma 4.1. We can now extend the definition of S from D]×[0,∞[
to the whole domain DM × [0,∞[ , by continuity. Indeed, given z̄ ∈ DM , there exists a
sequence of initial data z̄n ∈ D] such that (5.8) holds. We then define

Stz̄ = lim
n→∞

Stz̄n . (5.10)

The inequalities (5.6)-(5.7), valid for z̄, z̄∗ ∈ D], guarantee that the limit exists and is
independent of the approximating sequence.

By continuity, the estimates (5.6)-(5.7) remain valid also for z̄, z̄∗ in the larger domain
DM . This already proves part (ii) of the theorem.

4. It remains to prove that each trajectory t 7→ Stz̄ is an entropy weak solution. We
fix a z̄ ∈ DM . By choosing a further subsequence, we can assume the weak convergence
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Θεn ⇀ Θ̃. By construction, the map t 7→ z̃(t) is Lipschitz continuous from [0, T ] into
L1(IR) and satisfies the initial condition z̃(0)− z̄ = 0. Moreover, by (vii) in Lemma 4.1,
as ε→ 0 we have∫ ∫

|z̃ − c|ψt du dt−
∫ ∫ ∣∣∣(g(z̃)− g(c))G(u; z̃) + λ(z̃ − c)

∣∣∣ψu du dt
≥
∫ ∫

sign(z̃ − c) · g(c)g(z̃)G(u; z̃)ψ du dt+

∫ ∫
sign(z̃ − c) · Θ̃ψu du dt,

(5.11)

for any c > 0 and any positive test function ψ ∈ C∞c (]0, T [×IR). Defining

z(t, u)
.
= z̃(t, u+ λt), Θ(t, u)

.
= Θ̃(t, u+ λt) (5.12)

we obtain an entropy weak solution of the Cauchy problem (1.11).

Remark 5.5. We cannot construct the flow generated by the equation (1.11) simultane-
ously for all initial data z̄ ∈ D+. This is because the backward Euler approximations are
defined for the conservation law (2.8), where the shift λ must be chosen large enough so
that the characteristic speed is strictly negative. This choice of λ depends on ‖z(t)−1‖L1

and on supu z(t, u). As shown in Lemma 2.2, both of these quantities do not increase in
time, hence their upper bounds are determined by the initial conditions.

Remark 5.6. If we assume that g(0) = 0, then for any z ≥ 0 the solution w = E−ε z
to the backward Cauchy problem (2.16)-(2.17) can never become negative. In this case,
in (4.3) one has zk+1 = πwk+1 = E−ε z

k. Hence the projections π can be omitted, and
trajectories of the semigroup S can be constructed simply as limits of backward Euler
approximations.

Under the assumption g(0) = 0, a unique solution of the Cauchy problem (1.1) with
Lipschitz continuous initial data ū was constructed in [2, 9]. In particular, it was proved
that the u-profile never develops shocks. In terms of the transformed variables, this
means that

z̄(u) > 0 for all u ∈ IR =⇒ z(t, u) > 0 for all u ∈ IR, t ≥ 0.

6 Uniqueness of entropy weak solutions

We are now ready to state the uniqueness Theorem.

Theorem 6.1. For any initial datum z̄ ∈ D+, the entropy weak solution of the Cauchy
problem (1.11) is unique.

Proof. We implement a “doubling of variables” argument to show that the entropy
inequality (5.2) implies uniqueness. Let ẑ and z be two entropy weak solutions of (1.11)
according to Definition 5.1, and let Θ̂,Θ be the corresponding functions in (5.1)-(5.2).
Let φ ∈ C∞c (]0, T [×IR×]0, T [×IR) be any positive test function, and let c, c′ ≥ 0 be two
arbitrary constants. Then ẑ = ẑ(t, u) satisfies

−
∫∫
|ẑ − c| · φt du dt+

∫∫
sign(ẑ − c) ·

[
(g(ẑ)− g(c))G(u; ẑ) + Θ̂(t, u)

]
φu du dt

≤ −
∫∫

sign(ẑ − c)g(c)g(ẑ)G(u; ẑ) · φdu dt (6.1)
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Similarly, using (s, v) as independent variables, the solution z = z(s, v) satisfies

−
∫∫
|z − c′| · φs dv ds+

∫∫
sign(z − c′) ·

[
(g(z)− g(c′))G(v; z) + Θ(s, v)

]
φv dv ds

≤ −
∫∫

sign(z − c′)g(c′)g(z)G(v; z) · φdv ds (6.2)

Choosing c = z(s, v) in (6.1) and c′ = ẑ(t, u) in (6.2), integrating w.r.t. all variables,
and summing the resulting inequalities, we obtain

−
∫∫∫∫ [

L1 + L2 + L3 + L4

]
du dt dv ds ≤ 0 (6.3)

where

L1 = |ẑ − z| · (φt + φs) , (6.4)

L2 = − sign(ẑ − z)(g(ẑ)− g(z)) ·
[
G(u; ẑ) · φu +G(v; z) · φv

]
, (6.5)

L3 = − sign(ẑ − z) · g(z)g(ẑ)
[
G(u; ẑ)−G(v; z)

]
φ , (6.6)

L4 = Θ̂(t, u)φu + Θ(s, v)φv . (6.7)

Here for L4 we used the fact that sign(ẑ − c) = −1 where ever Θ̂(t, u) is non-zero, and
sign(z − c′) = −1 where ever Θ(s, v) is non-zero. See Remark 5.2.

Let δρ(·) and ηρ(·) be two standard one-dimensional mollifiers, and let

φ = φ(t, u, s, v) = ψ
( t+ s

2
,
u+ v

2

)
· δρ
( t− s

2

)
· ηρ
(u− v

2

)
. (6.8)

To shorten the notation, in the following we write

ψ = ψ
( t+ s

2
,
u+ v

2

)
, δρ = δρ

( t− s
2

)
, ηρ = ηρ

(u− v
2

)
,

etc. One has

∂uηρ = − ∂vηρ, ∂uψ = ∂vψ
∂uφ = ∂uψ · δρηρ + ψδρ · ∂uηρ, ∂vφ = ∂vψ · δρηρ − ψδρ · ∂uηρ,

∂t+sφ = (∂tψ + ∂sψ) · δρ · ηρ, ∂v+uφ = (∂uψ + ∂vψ) · δρ · ηρ .

With the choice (6.8) of the test function φ, the above terms L1, L2 = L21 + L22, L3

and L4 = L41 + L42 in (6.4)-(6.7) take the form

L1 = |ẑ − z| · (ψt + ψs) · δρ · ηρ,

L21 = − sign(ẑ − z)(g(ẑ)− g(z)) ·
[
G(u; ẑ) +G(v; z)

]
· ∂uψ · δρ · ηρ,

L22 = − sign(ẑ − z)(g(ẑ)− g(z)) ·
[
G(u; ẑ)−G(v; z)

]
· ψ · δρ · ∂uηρ,

L3 = − sign(ẑ − z)g(z)g(ẑ)
[
G(u; ẑ)−G(v; z)

]
· ψ · δρ · ηρ,

L41 =
[
Θ̂(t, u) + Θ(s, v)

]
∂uψ · δρ · ηρ,

L42 =
[
Θ̂(t, u)−Θ(s, v)

]
· ψ · δρ · ∂uηρ.
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Taking the limit as ρ ↓ 0 and writing ψ = ψ(t, u), one obtains∫∫∫∫
L1 →

∫∫
|ẑ − z|ψt du dt,∫∫∫∫

L21 → −
∫∫

sign(ẑ − z)(g(ẑ)− g(z))
1

2

[
G(u; ẑ) +G(u; z)

]
ψu du dt,∫∫∫∫

L3 →
∫∫
− sign(ẑ − z)g(z)g(ẑ)

[
G(u; ẑ)−G(u; z)

]
ψ du dt,∫∫∫∫

L41 →
∫∫

1

2

[
Θ̂ + Θ

]
ψu du dt.

Concerning the term L22, an integration by parts yields∫∫∫∫
L22 = −

∫∫∫∫
sign(ẑ − z)(g(ẑ)− g(z))ψ · g(ẑ)G(u; ẑ) · δρ · ηρ du dt

+

∫∫∫∫ [
sign(ẑ − z)(g(ẑ)− g(z))ψ

]
u
·
[
G(u; ẑ)−G(v; z)

]
· δρ · ηρ du dt .

Taking the limit ρ ↓ 0 and the integrating by parts, we get∫∫∫∫
L22 →

∫∫ [
sign(ẑ − z)(g(ẑ)− g(z))ψ

]
u
·
[
G(u; ẑ)−G(u; z)

]
du dt

−
∫∫

sign(ẑ − z)(g(ẑ)− g(z))ψ · g(ẑ)G(u; ẑ) du dt

= −
∫∫

sign(ẑ − z)(g(ẑ)− g(z))ψ ·
[
G(u; ẑ)−G(u; z)

]
u
du dt

−
∫∫

sign(ẑ − z)(g(ẑ)− g(z))ψ · g(ẑ)G(u; ẑ) du dt

= −
∫∫

sign(ẑ − z)(g(ẑ)− g(z))ψ · g(z)G(u; z) du dt .

Therefore, we have∫∫∫∫
L22 + L3 →

∫∫
− sign(ẑ − z)g(z)

[
g(ẑ)G(u; ẑ)− g(z)G(u; z)

]
du dt.

The term L42 is treated in a similar way as for L22. An integration by parts yields∫∫∫∫
L42 = −

∫∫∫∫ [
(Θ̂−Θ)ψu δρ ηρ + (Θ̂−Θ)uψ δρ ηρ

]
du dt,

Taking the limit ρ ↓ 0 and use integration-by-parts for the second term, we get∫∫∫∫
L42 → −

∫∫
(Θ̂−Θ)ψu du dt−

∫∫
(Θ̂−Θ)uψ du dt

= −
∫∫

(Θ̂−Θ)ψu du dt+

∫∫
(Θ̂−Θ)ψu du dt = 0 .

Combining the above expressions one obtains∫∫
−|ẑ − z|ψt + sign(ẑ − z)(g(ẑ)− g(z))

1

2

[
G(u; ẑ) +G(u; z)

]
ψu du dt

≤ −
∫∫

sign(ẑ − z)
[
g(ẑ)G(u; ẑ)− g(z)G(u; z)

]
g(z)ψ du dt

−
∫∫

1

2

[
Θ̂ + Θ

]
ψu du dt . (6.9)
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Since both ẑ and z satisfy the conditions in Definition 5.1, we can find a constant M
such that

ẑ(t, u) ∈ [0,M ], z(t, u) ∈ [0,M ], G(u; ẑ(t)) ≤M, G(u; z(t)) ≤M (6.10)

for all t, u. Since g is uniformly Lipschitz continuous on the interval [0,M ], setting
λ
.
= M ‖g′‖L∞([0,M ]), for all t, u we obtain∣∣∣(g(ẑ)− g(z))

∣∣∣ · 1

2

[
G(u; ẑ) +G(u; z)

]
≤ λ|ẑ − z| . (6.11)

Concerning the first term on the right hand side of (6.9), using (2.35)-(2.36), we
have the estimate

|g(ẑ)G (u; ẑ)− g(z)G(u; z)|
≤ |g(ẑ)− g(z)|G(u; ẑ) + |g(z)| · |G(u; ẑ)−G(u; z)|
≤ eκ

∥∥g′∥∥
L∞([−2,M+1])

|ẑ − z|+ |g(z)|ek
∥∥g′∥∥

L∞([−2,M+1])
‖ẑ − z‖L1

Let 0 < t1 < t2 < T , and consider the domain

Γ =̇ {(t, u); t ∈ [t1, t2], |u| ≤ R− λt} ,

where R is chosen large enough so that Θ̂(t, u) = Θ(t, u) = 0 whenever |u| ≥ R − λt.
This is possible because, according to Definition 5.1, Θ̂ and Θ have compact support
in [0, T ]× IR. Following a well established technique, we now consider test functions ψ
which approximate the characteristic function of the domain Γ. Thanks to the choices
of R and λ in (6.10)-(6.11), in the limit one obtains∫ R−λt2

−R+λt2

|ẑ(t2, u)− z(t2, u)| du−
∫ R−λt1

−R+λt1

|ẑ(t1, u)− z(t1, u)| du

≤
∫ t2

t1

M2 ‖ẑ(t, ·)− z(t, ·)‖L1 dt .

Letting R→∞, for any t2 ≥ t1 > 0 we obtain

‖ẑ(t2, ·)− z(t2, ·)‖L1 − ‖ẑ(t1, ·)− z(t1, ·)‖L1 ≤ M2

∫ t2

t1

‖ẑ(t, ·)− z(t, ·)‖L1 dt .

By Gronwall’s lemma, for any 0 < t ≤ T this implies

‖ẑ(t, ·)− z(t, ·)‖L1 ≤ eM
2t · ‖ẑ(0, ·)− z(0, ·)‖L1 .

This shows the continuous dependence on initial data, and thus the uniqueness of entropy
weak solutions.
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7 Equivalence with the original problem

By Theorem 6.1, for every nonnegative initial data z̄ ∈ D+ defined at (5.4), the entropy
solution of (1.11) is unique. In particular, it does not depend on the constant λ > 0
chosen to construct the backward Euler approximations. Putting together the estimates
proved in the previous sections, we thus obtain

Theorem 7.1. Let the function g satisfy the assumptions (A2). Then there exists a
continuous semigroup S : D+ × [0,∞[ 7→ D+ such that, for every z̄ ∈ D+, the trajectory
t 7→ Stz̄ is the unique entropy weak solution to the Cauchy problem (1.11), in the sense
of Definition 5.1.

In this final section we study the equivalence between solutions z = z(t, u) of the
equation (1.11) and solutions u = u(t, x) of the original problem (1.1). Before stating a
precise result, some definitions are needed. Recall in (1.5) we define the parameter

η =̇ lim
p→∞

f ′(p) = g(0) > 0.

Given an increasing function u : IR 7→ IR, call µ = µa + µs the decomposition of the
measure µ = Dxu into an absolutely continuous and a singular part (w.r.t. Lebesgue
measure). Motivated by (1.1), we introduce the flux function

Φu(x)
.
= exp

{∫ ∞
x

f(ux(y)) dy + µs([x,∞[) · η
}
. (7.1)

Definition 7.2. Consider a measurable function u = u(t, x), such that u(t, ·) is strictly
increasing for every fixed time t. We say that u is a weak solution of (1.1) if the map
t 7→ u(t, ·) is continuous with values in L1

loc and∫ ∞
0

∫ [
uϕt − Φu(t)ϕx

]
dxdt+

∫
ū(x)ϕ(0, x) dx = 0 (7.2)

for every test function ϕ ∈ C1
c (IR2).

To achieve uniqueness of solution, one clearly needs to impose additional entropy
conditions. We shall do this by assuming some additional BV regularity and by imposing
the Lax admissibility conditions at each point of approximate jump.

(RC) There exists a function w = w(t, x) ≥ 0 such that, for every t ≥ 0, the map
x 7→ w(t, x) is lower semicontinuous bounded variation (uniformly w.r.t. time), and
satisfies

w(t, x) =

{
0 if x ∈ Supp(µs(t)),

[ux(t, x)]−1 for a.e. x ∈ IR .
(7.3)

Here µs(t) is the singular part of the measure Dxu(t, ·).

Remark 7.3. The variable w introduced here is essentially the same as z in Theorem 5.4.
However, we prefer to keep different notations to stress the fact that w = w(t, x) while
z = z(t, u).
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Following [4, 5, 11], we say that (t, x) is a point of approximate jump for the
function u if there exist u−, u+, λ such that, setting

U(s, y)
.
=

{
u− if y − x < λ(s− t),
u+ if y − x > λ(s− t),

(7.4)

one has

lim
ε→0

1

ε2

∫ ∫
(s−t)2+(y−x)2<ε2

|u(s, y)− U(s, y)| dyds = 0 . (7.5)

We denote by Ju, Jw the jump points of u and w, respectively. Since u,w ∈ BV , a
classical structure theorem [4, 11] implies that the sets Ju, Jw are rectifiable, i.e. they
are contained in the union of countably many Lipschitz continuous curves, together with
a set whose one-dimensional Haussdorff measure is zero. We can now impose additional
admissibility conditions on the solution u of (1.1).

(AC) There exists a set of times N with measure zero such that, at each point of jump
of u or w with t /∈ N , the following holds.

(i) Let (t, x) ∈ Ju, so that (7.4)-(7.5) hold. Then the speed of the jump is greater
than or equal to the characteristic speed of the right state. Namely

λ ≥ f ′ (ux(t, x+)) Φu(t)(x+). (7.6)

(ii) Let (t, x) ∈ Jw \ Ju. Then the Lax admissibility condition holds:

w(t, x−) > w(t, x+). (7.7)

The next theorem provides a basic correspondence between solutions of (1.1) and
entropy weak solutions to the auxiliary equation (1.11).

Theorem 7.4. (i) Let z = z(t, u) be an entropy weak solution of (1.11), with z̄ ∈ D+.
Fix any constant C and define

X(t, u)
.
= u−

∫ ∞
u

[z(t, ξ)− 1] dξ + C. (7.8)

Let x 7→ u(t, x) be the inverse function of u 7→ X(t, u) and call ū(·) the inverse
function of X(0, ·). Then u = u(t, x) provides a weak solution to the Cauchy prob-
lem (1.1) satisfying the regularity condition (RC) and the admissibility conditions
(AC).

(ii) Viceversa, let u = u(t, x) be a solution to a weak solution to (1.1) satisfying
the regularity and admissibility conditions (RC)-(AC). For each t ≥ 0, let u 7→
X(t, u) be the inverse function of x 7→ u(t, x) Then the function z(t, u) = Xu(t, u)
provides the unique weak entropy solution of (1.11), with z̄ = Xu(0, ·).

By the uniqueness of entropy solutions to (1.11), the above theorem implies
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Corollary 7.5. Let ū : IR 7→ IR be an increasing function such that the inverse function
X : IR 7→ IR is Lipschitz continuous and its derivative satisfies

Xu ∈ BV, ‖Xu − 1‖L1 < +∞. (7.9)

Then the Cauchy problem (1.1) has a unique weak solution satisfying the regularity and
admissibility conditions (RC)-(AC).

a

b

ba

u

ε

u

u(  ,x)τ

x

Figure 4: Proving the continuity of the inverse function in L1
loc.

Proof. (of Theorem 7.4) 1. We start by proving (i). Let z = z(t, u) be a weak entropy
solution to (1.11), according to Definition 5.1. Since z(t, ·) − 1 ∈ L1(IR), the function
X(t, u) in (7.8) is well defined. For simplicity we assume C = 0, which is not restrictive.
Since 0 ≤ z(t, u) = Xu(t, u) < M for some constant M and all t, u, for each t ≥ 0
the inverse function u(t, ·) is well defined and strictly increasing. Since t 7→ Xu(t, ·) is
Lipschitz continuous with values in L1(IR), by integrating w.r.t. u we see that t 7→ X(t, ·)
is Lipschitz continuous with values in L∞(IR).

Fix τ ≥ 0. For any interval [a, b], let

ua
.
= sup

x<a
u(τ, x), ub

.
= inf

x>b
u(τ, x) .

Given ε > 0, choose δ > 0 so that ‖X(t, ·) −X(τ, ·)‖L∞ ≤ ε whenever |t − τ | ≤ δ. An
elementary argument (see Fig. 4) shows that the inverse function satisfies

‖u(t, ·)− u(τ, ·)‖L1([a,b]) ≤ (ub − ua + 2Mε) · ε .

Since ε > 0 is arbitrary, this shows the continuity of the map t 7→ u(t, ·) with values in
L1
loc.

2. Let ϕ ∈ C1
c (IR2). Changing the variables of integration from (t, x) to (τ, u) and

writing φ(τ, u)
.
= ϕ(τ,X(τ, u)), we compute{

t = τ ,
x = X(τ, u) ,

{
φτ = ϕt + ϕxXτ ,
φu = ϕxXu ,

dx dt = Xu du dτ .
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Next, we observe that for a.e. x the flux in (7.1) is equivalently computed by

Φu(t)(x) = exp

{∫ +∞

u(t,x)
g(z(t, u)) du

}
= G(u; z(t)) , (7.10)

where z = Xu. Observing that X = X(τ, u) is locally Lipschitz continuous w.r.t. both
variables and the same is true for (t, u) 7→ G(u; z(t)), we compute∫ ∞

0

∫ [
u(t, x)ϕt(t, x)− Φu(t)(x)ϕx(t, x)

]
dxdt

=

∫ ∞
0

∫
[uφτXu − uφuXτ −G(u;Xu(τ))φu] dudτ

=

∫ ∞
0

∫ {
Xu(uφ)τ −Xτ (uφ)u +Xτφ−G(u;Xu(τ))φu

}
dudτ

= −
∫ ∞

0

∫ {
Xφτ +G(u;Xu(τ))φu

}
dudτ

= −
∫ ∞

0

∫ {(
u−

∫ ∞
u

[z(τ, ξ)− 1] dξ
)
φτ +

(
G(u; z(τ))− 1

)
φu

}
dudτ (7.11)

Introduce the test function ψ by setting

ψ(τ, u)
.
=


∫ u

−∞
φ(τ, v) dv if u ≤ N,

0 if u ≥ N + 1,

and such that u 7→ ψ(τ, u) is affine for u ∈ [N,N + 1]. Observe that ψ is Lipschitz
continuous with compact support, and ψu = φ for u < N . Let N be large enough so
that the support of Θ is contained on the set where u < N . Using (5.2) we then obtain∫ ∫

zψτ dudτ −
∫ ∫

g(z)G(u; z)ψu dudτ =

∫ ∫
Θψu dudτ = 0 (7.12)

Indeed, ψu(τ, ·) = φ(τ, ·) is constant on every interval [a, b] where z(τ, ·) = 0. By (5.1),
the integral of Θu over this interval is zero.

Integrating by parts, for N sufficiently large, the right hand side of (7.11) can now
be estimated by

−
∫ ∞

0

∫ N

−∞

{(
u−

∫ ∞
u

[z(τ, ξ)− 1] dξ
)
φτ +

(
G(u; z(τ))− 1

)
φu

}
dudτ

=

∫ ∞
0

∫ N

−∞
zψτ dudτ −

∫ ∞
0

∫ N

−∞
g(z)G(u; z)ψu dudτ

−
∫ ∞

0

[(
u−

∫ ∞
u

[z(τ, ξ)− 1] dξ
)
ψτ +

(
G(u; z(τ))− 1

)
ψu

]
u=N

dτ

.
= AN +BN . (7.13)
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Assuming that φ, ψ vanish for t /∈ [0, T ], as N →∞ one has

|AN | =

∣∣∣∣∫ T

0

∫ N+1

N
zψτ dudτ +

∫ T

0

∫ N+1

N
g(z)G(u; z)ψu dudτ

∣∣∣∣
≤ ‖ψ‖L∞ ·

∫ N+1

N
TV
{
z(·, u) ; [0, T ]

}
du

+‖G‖L∞ ‖φ‖L∞ ·
∫ T

0

∫ N+1

N
|g(u, z)| dudτ ,

|BN | =

∫ T

0

[(
u−

∫ ∞
u

[z(τ, ξ)− 1] dξ
)
ψτ +

(
G(u; z(τ))− 1

)
ψu

]
u=N

dτ

≤ ‖ψτ‖L∞ · sup
τ∈[0,T ]

∣∣∣X(τ,N)−N
∣∣∣+ ‖φ‖L∞ · sup

τ∈[0,T ]

∣∣∣G(N ; z(τ))− 1
∣∣∣.

From the above, it is clear that AN , BN → 0 as N → ∞. This shows that the left
hand side of (7.11) vanishes. Hence u = u(t, x) provides a weak solution to the Cauchy
problem (1.1).

3. Since z has bounded variation, and can be rendered lower semicontinuous by a
change on a set of measure zero, the regularity condition (RC) is clearly satisfied. It
remains to prove that the admissibility conditions (AC) are satisfied as well.

Consider first a point (t, x) ∈ Jw where u is continuous. This means that ux has a
jump, but the limits u(t, x−) = u(t, x+)

.
= u0 coincide. To fix the ideas, assume that

(t, u0) is a point of jump for z, with left and right states z−, z+ and speed λ0. The
continuity assumption on u implies that G(t, u) is continuous at (t, u0). Hence, from
(5.3) we deduce (see for example [5], p.84)

λ0

( ∣∣z+ − c
∣∣− ∣∣z− − c∣∣ ) ≥ −G(u0, z(t)) ·

(
sign(z+ − c)(g(z+)− g(c))

− sign(z− − c)(g(z−)− g(c))
)
. (7.14)

Choosing c = 1
2(z+ + z−) we obtain

0 ≤ G(u0, z(t)) sign(z+ − z−)

(
g(z+) + g(z−)− 2g

(z+ + z−

2

))
. (7.15)

Since g is concave down, this implies sign(z+ − z−) < 0. Recalling that z = 1/ux = w,
we conclude that (7.7) holds.

4. Next, assume (t, x) ∈ Ju and let u−, u+ and ẋ = λ be as in (7.4)-(7.5) (see Fig. 5).
Then z(t, u) = 0 for u ∈ [u−, u+]. By removing a set of times of measure zero, it is not
restrictive to assume that (t, u−) and (t, u+) are jump points for z = z(t, u), say with
speeds u̇−, u̇+, respectively. For notational convenience, define

G+ =̇ G(u+; z(t)), G− =̇ G(u−; z(t)) = e(u+−u−)g(0)G+ . (7.16)

By the projection property, the function Θ is non-zero on the interval [u−, u+], with

Θu(t, u) = g2(0)G(u; z(t)) = g2(0)e(u+−u)g(0)G+ > 0, u ∈ [u−, u+] ,
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while Θ(t, ·) has jumps at u− and u+. By using the conditions in (5.1), we can obtain
an explicit formula for Θ. In particular the sizes of jumps at u− and u+ are given as

B− =̇ Θ(t, u−+)−Θ(t, u−−) =
G− −G+

u+ − u−
− g(0)G−, (7.17)

B+ =̇ Θ(t, u++)−Θ(t, u+−) = − G− −G+

u+ − u−
+ g(0)G+. (7.18)

Note that B− < 0 and B+ < 0. Writing z− = z(t, u−−) and z+ = z(t, u++), where
z− > 0 and z+ > 0, using (7.17) and the Rankine-Hugoniot condition, we obtain the
two jump speeds:

u̇− = −g(z−)− g(0)

z−
G− +

B−

z−
, (7.19)

u̇+ = −g(z+)− g(0)

z+
G+ − B+

z+
. (7.20)

Consider the jump in z at (t, u−), where z−
.
= z(t, u−−) > 0 while z(t, u−+) = 0. A

direct computation shows that the Lax condition

u̇− < − g(z−)− g(0)

z−
G− < − g′(z−)G− (7.21)

is always satisfied, because g is strictly concave.

u

u

z+

z
_

u
+_

u

z(t,u)

u

+
u

_

x

u(t,x)

Figure 5: A point where u(t, ·) has a jump (right) corresponds to an interval [u−, u+] where
z(t, u) ≡ 0 (left).

Next, consider the jump at u+, where z+ .
= z(t, u++) > 0 while z(t, u+−) = 0.

Choosing 0 < c < z+, from (5.2) one obtains[
(z+ − c)− (c− 0)

]
u̇+ ≥ (g(z+)− g(c))G+ + (g(0)− g(c))G+ +B+ .

Adding z+u̇+ to both sides and using (7.20) we obtain, for all c with 0 < c < z+,

2(z+ − c)u̇+ ≥ z+u̇+ +
(
g(z+) + g(0)− 2g(c)

)
G+ +B+

= −
(

2g(z+)− 2g(c)
)
G+ .

34



Since g is strictly concave, the above condition is equivalent to the constraint

u̇+ ≥ − min
0<c<z+

{
g(z+)− g(c)

z+ − c

}
G+ = − g′(z+)G+ . (7.22)

Combining (7.22) with (7.20) and (7.18), then using (7.16), we obtain

z+u̇+ = − [g(z+)− g(0)]G+ +

[
G− −G+

u+ − u−
− g(0)G+

]
≥ − z+g′(z+)G+, (7.23)

and
eg(0)(u+−u−) − 1

u+ − u−
≥ g(z+)− z+g′(z+) . (7.24)

We now return to the original (t, x) coordinates. Recalling (7.1), let Φ+ .
= Φu(t)(x+) =

G+ and Φ−
.
= Φu(t)(x−) = G− be the fluxes to the right and to the left of the point of

jump. It will be useful to recall the identities

f

(
1

z

)
=

g(z)

z
, f ′

(
1

z

)
= g(z)− zg′(z), lim

p→∞
f ′(p) = g(0).

By the Rankine-Hugoniot condition, using (7.24) we find that the speed of the jump
satisfies

ẋ(t) = −Φ+ − Φ−

u+ − u−
=

ef
′(+∞)(u+−u−) − 1

u+ − u−
Φ+ =

eg(0)(u+−u−) − 1

u+ − u−
G+

≥ g(z+)− z+g′(z+) = f ′ (ux(t, x+)) Φu(t)(x+) .

This proves the admissibility condition (7.6), completing the proof of part (i) of the
Theorem.

5. From now on, we work on part (ii). Let u = u(t, x) be a solution to (1.1) which
satisfies the regularity and admissibility conditions (RC)-(AC). For each fixed time
t ≥ 0, let u 7→ X(t, u) be the inverse function. By (RC), the derivative z(t, u)

.
= Xu(t, u)

is well defined a.e. and has bounded variation. Up to a modification on a set of measure
zero, we can assume that z is lower semicontinuous. We claim that the function z
provides an entropy solution to (1.11), according to Definition 5.1.

As a first step, we show that the map t 7→ z(t, ·) is continuous with values in L1
loc(IR).

By the continuity of the map t 7→ u(t, ·) with values in L1
loc, it is clear that the inverse

function t 7→ X(t, ·) is also continuous with values in L1
loc. Consider any convergent

sequence of times tj → τ . By the regularity condition (RC), the functions z(tj , ·) are
uniformly bounded and have uniformly bounded total variation. Hence, by extracting a
subsequence, we can assume the convergence z(tj , ·)→ z̃ in L1

loc, for some BV function
z̃. From the convergence X(tj , ·)→ X(τ, ·) it now follows the identity z̃(u) = Xu(τ, u) =
z(τ, u). The above argument shows that from every sequence tj → τ one can extract a
subsequence (tjk)k≥1 such that z(tjk , ·)→ z(τ, ·) in L1

loc. This proves continuity property
(P1) in Definition 5.1.

6. In the remaining steps we will prove that (P2) in Definition 5.1 also holds. For
each t ≥ 0, the measure µ(t) on the right hand side of (1.11) is determined as follows. If
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u(t, ·) is continuous, then µ(t) = 0. In general, let u(t, ·) have jumps at countably many
points xi and call

u+
i

.
= u(t, xi+), u−i

.
= u(t, xi−),{

G+
i = Φ+

i
.
= Φ(u(t))(xi+),

G−i = Φ−i
.
= Φ(u(t))(xi−) = exp{(u+

i − u
−
i )f ′(+∞)}Φ+

i ,

G(u) = e(u+i −u)g(0)G+
i , u ∈ [u−i , u

+
i ].

Restricted to each interval [u−i , u
+
i ], the measure µ(t) is the sum of an absolutely con-

tinuous measure with density G(u), plus two point masses at u+
i , u−i . The sizes of these

masses are given by B+
i , B−i , where

B+
i = −

G−i −G
+
i

u+
i − u

−
i

+ g(0)G+
i , B−i =

G−i −G
+
i

u+
i − u

−
i

− g(0)G−i . (7.25)

Notice that these masses are chosen so that µ(t)([u−i , u
+
i ]) = 0, while the barycenter of

the positive part of µ(t) coincides with the barycenter of the negative part. Equivalently,
one can define µ(t) = DuΘ(t, ·), where

Θ(t, u) =
∑
i

Θi(u), Θi(u) =

 B−i +

∫ u

u−i

g2(0)G(ξ) dξ if u−i < u < u+
i ,

0 otherwise.

With the above definitions, one easily checks that the properties in (5.1) hold.

7. For each fixed time t ≥ 0, let u 7→ X(t, u) be the inverse of the map x 7→
u(t, x). By the regularity assumption (RC), the derivative ux is positive and uniformly
bounded away from zero. Since the flux function in (1.1) remains uniformly bounded,
we conclude that the map (t, u) 7→ X(t, u) is uniformly continuous and therefore has
partial derivatives Xt, Xu defined pointwise for a.e. t, x. Since u provides a solution to
(1.1), it follows that X satisfies the PDE

Xt(t, u)− g (Xu(t, u)) ·
(

exp

∫ ∞
u

g (Xu(t, v)) dv

)
−Θ(t, u) = 0 (7.26)

pointwise almost everywhere. In turn, the BV function z = Xu provides a distributional
solution to the equation

zt −
(
g(z) · exp

∫ ∞
u

g(z(t, v)) dv

)
u

−Θu(t, u) = 0. (7.27)

In particular, (5.2) is satisfied as an equality in the special case where c = 0.
To prove that the inequality (5.2) holds for every non-negative test function ψ ∈

C1
c (]0, T [×IR) and every constant c, we recall that z is a BV function of the two variables
t, u. By a well known structure theorem [4, 11], for almost every c ∈ IR the sets

Ω+
c

.
= {(t, u) ; z(t, u) > c} , Ω−c

.
= {(t, u) ; z(t, u) < c} ,
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have a common, rectifiable boundary Γc = ∂Ω+
c = ∂Ω−c . Moreover, a.e. point (t, u) ∈ Γc

is a point of continuity or of approximate jump for z. We can now write

Ic
.
=

∫ T

0

∫
IR

{
|z − c|ψt − sign(z − c) · [(g(z)− g(c))G(u; z(t)) + Θ(t, u)] ψu

}
du dt

−
∫ T

0

∫
IR

sign(z − c) · g(c) g(z)G(u; z(t))ψ du dt

=

∫ ∫
Ω+
c

[
(z − c)ψt − (g(z)− g(c))Gψu − g(c) g(z)Gψ −Θ(t, u)ψu

]
du dt

−
∫ ∫

Ω−c

[
(z − c)ψt − (g(z)− g(c))Gψu − g(c) g(z)Gψ −Θ(t, u)ψu

]
du dt.

(7.28)
Consider the vector-valued function

F(t, u) =̇

(
z − c

−(g(z)− g(c))G−Θ

)
ψ. (7.29)

By the assumption z ∈ BV and the explicit definition of Θ, it follows that the traces

F−(t, u) , F+(t, u) (t, u) ∈ ∂Ω−c = ∂Ω+
c = Γc ,

on the boundaries of Ω−c and Ω+
c are well defined. In the (t, u) plane, a formal compu-

tation of the divergence of F yields

∇ · F = ((z − c)ψ)t − [(g(z)− g(c))Gψ]u − (Θψ)u

= (z − c)tψ + (z − c)ψt − ((g(z)− g(c))G)uψ − (g(z)− g(c))Gψu −Θuψ −Θψu

= [(z − c)t − ((g(z)− g(c))G)u −Θu]ψ + (z − c)ψt − (g(z)− g(c))Gψu −Θψu

= g(c)Guψ + (z − c)ψt − (g(z)− g(c))Gψu −Θψu

= (z − c)ψt − (g(z)− g(c))Gψu − g(c)g(z)Gψ −Θψu .

Using the divergence theorem, the integral in (7.28) can be computed as

Ic =

∫ ∫
Ω+
c

∇ · F du dt−
∫ ∫

Ω−c

∇ · F du dt =

∫
Γc

(
F+ + F−

)
· n dσ . (7.30)

Here n is the unit outer normal vector to the boundary ∂Ω+
c and dσ denotes arc-length.

8. To prove that Ic ≥ 0, it suffices to show that, for a.e. point in Γc, one has(
F+ + F−

)
· n ≥ 0. (7.31)

Let (t̄, ū) ∈ Γc. If z is continuous at this point, then

z(t̄, ū) = c, F+(t̄, ū) = F−(t̄, ū) = 0 ,

and the conclusion is immediate. On the other hand, if z has a jump at (t̄, ū), call
z±,Θ± the left and right values of z,Θ across the jump, and let λ be the jump speed.
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We observe that, by the definition of Ω+
c ,Ω

−
c , either z− ≤ c ≤ z+ or else z+ ≤ c ≤ z−.

We shall consider three cases.

CASE 1: z− > 0 and z+ > 0. In this case we have Θ+ = Θ− = 0. The admissibility
condition (7.7) now implies

0 < z+ < z−.

In a neighborhood of (t̄, ū), the set Ω+
c lies on the left of Γc while Ω−c lies on the right

of Γc. Hence the normal vector n pointing toward Ω−c is

n =
1√

1 + λ2

(
−λ
1

)
. (7.32)

We compute

F+ =

(
z+ − c

−(g(z+)− g(c))G

)
ψ =

(
−|z+ − c|

sign(z+ − c)(g(z+)− g(c))G

)
ψ ,

F− =

(
z− − c

−(g(z−)− g(c))G

)
ψ =

(
c|z− − c|

− sign(z− − c)(g(z−)− g(c))G

)
ψ ,

and so(
F+ + F−

)
·
(
−λ
1

)
=

{
λ ·
(
|z+ − c| − |z− − c|

)
+ sign(z+ − c)(g(z+)− g(c))G

− sign(z− − c)(g(z−)− g(c))G
}
ψ . (7.33)

Since g is strictly concave, for any c ∈ [z+, z−] and z− > z+, the Rankine-Hugoniot
speed λ satisfies

λ ·
(
|z+ − c| − |z− − c|

)
≥ − sign(z+− c)(g(z+)− g(c))G+ sign(z−− c)(g(z−)− g(c))G.

Since ψ ≥ 0 we conclude that, at the point (t̄, ū), the quantity in (7.33) is non-negative.
Hence (7.31) holds.

CASE 2: z− > 0, z+ = 0. We then have Θ+ = 0, Θ− < 0. As in the previous case, Ω+
c

lies on the left of Γc and Ω−c lies on the right of Γc, hence n has the same expression
(7.32) as in Case 1. Observing now

F− =

(
−c

−(g(0)− g(c))G−Θ−

)
ψ, F+ =

(
z− − c

−(g(z−)− g(c))G

)
ψ ,

we thus have(
F+ + F−

)
·
(
−λ
1

)
=
{
λ ·(2c−z−)−(g(0)−g(c))G−Θ−−(g(z−)−g(c))G

}
ψ . (7.34)

The speed λ of the jump, given at (7.19), with the present notation takes the form

λ = − g(z−)− g(0)

z−
G+

Θ−

z−
.
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By (7.21) and the concavity of g, it follows that

(z− − c)λ ≤ − (g(z−)− g(c))G .

The term between brackets on the right hand side of (7.34) can now be written as

cλ− (g(0)− g(c))G− (z− − c)λ− (g(z−)− g(c))G−Θ−

≥ cλ− (g(0)− g(c))G−Θ−

= −c g(z−)− g(0)

z−
G+ c

Θ−

z−
− (g(0)− g(c))G−Θ−

= −c
[
g(z−)− g(0)

z−
− g(c)− g(0)

c

]
G+

c− z−

z−
Θ− ≥ 0.

Here the last inequality follows since both terms are positive. Since ψ ≥ 0, we again
conclude that at the point (t̄, ū) ∈ Γc the quantity in (7.34) is nonnegative. Hence (7.31)
holds.

CASE 3: z− = 0, z+ > 0. In this case Θ+ = 0, Θ− > 0, and Ω+
c lies on the right of

Γc while Ω−c lies on the left of Γc. The normal vector pointing toward Ω−c now has the
form

n =
1√

1 + λ2

(
λ
−1

)
.

We have

F− =

(
−c

−(g(0)− g(c))G−Θ−

)
ψ, F+ =

(
z+ − c

−(g(z+)− g(c))G

)
ψ.

Hence(
F+ + F−

)
·
(
λ
−1

)
=
{
λ·(z+−2c)+(g(0)−g(c))G+Θ−+(g(z+)−g(c))G

}
ψ . (7.35)

The speed λ of the jump, given at (7.20), with the present notation takes the form

λ = − g(z+)− g(0)

z+
G+

Θ−

z+
.

This yields the relation

Θ− = λz+ + (g(z+)− g(0))G .

The admissibility condition (7.6) and the concavity of g imply

λ ≥ − g′(z+)G ≥ − g(z+)− g(c)

z+ − c
G . (7.36)

The term between brackets on the right hand side of (7.35) can now be written as

λ (z+ − 2c) + (g(0)− g(c))G+ λz+ + (g(z+)− g(0))G+ (g(z+)− g(c))G

= 2λ(z+ − c) + 2(g(z+)− g(c))G ≥ 0 ,
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because of (7.36). Once again, we conclude that, at the point (t̄, ū) ∈ Γc, the quantity
in (7.35) is nonnegative. Hence (7.31) holds.

The above arguments show that, for any positive test function ψ, the inequality (5.2)
holds for a.e. constant c. By continuity, it remains true for all c ∈ IR. This completes
the proof of part (ii) of the theorem.
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